
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

1

Chapter

Computational Efficiency: Can
Something as Small as a Raspberry
Pi Complete the Computations
Required to Follow the Path?
Toby White

Abstract

This chapter explains the development processes of a prototype autonomous
toy car. It focuses on the design and implementation of transforming a normal
remote control toy car into a self-contained vehicle with the capability to drive
autonomously. This would be proven by making it follow a track of any layout.
It uses a neural network (NN) in the form of a multilayer perceptron (MLP) to
process images in real time to generate a movement instruction. Upon completion,
the vehicle demonstrated the ability to be able to follow a track of any layout, while
staying between both sides of the track. The collision avoidance system proved to be
effective up to a distance of 50 cm in front of the vehicle in order to let it stop prior
to hitting an object. The neural network processing of the image in order to clas-
sify it in a real time proved to be above the expectation of around 5 FPS and has an
accuracy score of over 90%.

Keywords: raspberry pi, image recognition, classification, machine learning,
neural networks

1. Introduction

Given the recent development of self-driving cars by companies such as Tesla,
Google and others, it was of interest to attempt to replicate this on a smaller scale,
by implementing a similar method on a small electronic toy car. An issue many
developers in this industry are having is the issue of leaving the device connected to
a wide area network (WAN) all the time, leaving the vehicles vulnerable to not only
hacking but also vulnerable to being unable to make decisions in out-of-reach places
such as the countryside where a WAN may not be available or only available inter-
mittently. The decision was made to attempt the replication on a small scale, using
a closed network with the computations occurring within the vehicle, as opposed
to externally. The study was viewed as a proof of concept to test the possibility and
feasibility, which could help lead research on full-scale self-driving cars and poten-
tially also enhance the toy industry.

This study mainly focuses on a proof-of-concept implementation of artificial
neural networks (ANNs) to classify road sign images in a real-time scenario

Control Theory in Engineering

2

integrated with relevant image processing techniques. The study includes how the
processed data outputted by ANN models is translated into defined movements of
the car and whether it is suitably efficient to follow a track.

Neural networks are often used for image processing. Once the network is
trained and the weighting values/structure is stored, all that would be required
on future runs of the program would be to load these stored values/designs for
the trained network for it to have the ability to run correctly. This means that
once the network is trained, real-time image classification and thus prediction of
the movement become very efficient. This is a beneficial method for a project of
this sort, as the car is driving in real time and thus computations must be made in
real time.

The overall objective was to allow the vehicle to drive autonomously around an
unknown track with little to no error, utilising collision avoidance.

2. Background and literature survey

This project is a proof-of-concept study to demonstrate how existing ANN state-
of-the-art knowledge and related theory can be used for developing an autonomous
toy vehicle and letting it to operate without the need to use external computations.
It has been adopted as a research problem, which means it has resulted from a lack
of current evidence into the subject matter, and thus this project is an attempt at
proving that such a concept is not only theoretically feasible but actually possible.

2.1 Hardware

The system is comprised of three subsystems: an input unit (sensors, camera),
the processing unit (Raspberry Pi) and an output unit (L293D motor controller
connected to Raspberry Pi).

The input required two front-placed ultrasonic sensors both at a 15° left and
right angle from the vehicle’s direct line of sight. This is mainly used to ensure no
objects are within a certain distance from the front of the vehicle (this prevents
collisions) and a Pi Camera which is used to stream video data. This data is used
in the processing subsystem by the neural network to calculate the direction and
recognise the track and stop signs. Both peripherals are constantly sending data to
the Raspberry Pi.

HC-SR04 sensors, raspiCam and L293D chip were the best hardware options of
obvious choice—because they are all the most commonly used [1, 2] supported and
documented hardware in the Raspberry Pi.

The processing unit handles multiple tasks such as dealing with input data,
scaling down and applying necessary imaging filters to the data received from the
camera, calculating distances based on data received from the ultrasonic sensors
to be used for object detection, controlling the motors via L293D chip, utilising a
neural network to process the data from the camera to recognise the track ahead
and further recognise on-track stop signs and assigning a corresponding movement
instruction based on this data.

The output unit consists mainly of the hardware which is wired to the Pi such
as the motor controller and the motors themselves, both of which are controlled
by the Pi.

This report follows a structure where I outline the research into my theory, the
design process of the vehicle itself including the neural network, implementation
and finally testing processes involved in proving this as a concept.

3

Computational Efficiency: Can Something as Small as a Raspberry Pi Complete…
DOI: http://dx.doi.org/10.5772/intechopen.88342

2.2 Hardware libraries

A variety of libraries/application programming interfaces (APIs) were required
to implement the hardware in C++:

WiringPi: “WiringPi is a PIN based GPIO access library written in C for the
BCM2835 used in the Raspberry Pi. It is released under the GNU LGPLv3 licence
and is usable from C, C++ and RTB (BASIC) as well as many other languages with
suitable wrappers” [3]. WiringPi allows the user to apply and change power levels
to the peripheral devices which are installed [4]. This results in a lot smoother code
interface which avoids system calls to use the hardware, in particular, the use of the
“softPwm” function which allows easy and convenient power on/off capabilities
which will be necessary for sending “pulses” of power to the ultrasonic sensors.

libv4l (Video 4Linux): “libv4l is a collection of libraries which adds a thin
abstraction layer on top of video 4linux2 devices. The purpose of this (thin) layer is
to make it easy for application writers to support a wide variety of devices without
having to write separate code for different devices in the same class.” [5]. The libv4l
library will allow the Pi Camera to be recognised as an external camera through the
Pi, which allows extra functionalities on image processing and avoids the need of a
system call through the C++ code to use it.

PIGPIO: “pigpio is a library for the Raspberry which allows control of the
General-Purpose Input Outputs (GPIO). pigpio works on all versions of the Pi.” [3].

These three libraries would allow me to use the camera through the Pi, control
the motors’ directions and send the relevant pulses to the ultrasonic sensors to
calculate a distance regarding object detection.

2.3 Image processing

The image stream from the camera is a 60 FPS video stream in 1920 × 1080
resolution. This obviously is too big to be fed into any kind of machine learning
algorithm and would require huge amounts of processing, which, given the rela-
tively low computational power of a Raspberry Pi, would not be efficient enough to
give the car the ability to work in real time.

To combat this, a variety of image processing techniques can be applied. For
example, the image would need to be scaled down to 10x10 which still is of high
enough resolution to recognise lines but is more computable.

An interesting article regarding image processing by Rosebrock showed a very
useful image processing process which would be very beneficial for my type of
project called canny edge processing:

• “Step 1: Smooth the image using a Gaussian filter to remove high frequency
noise.

• Step 2: Compute the gradient intensity representations of the image.

• Step 3: Apply non-maximum suppression to remove “false” responses to edge
detection.

• Step 4: Apply thresholding using a lower and upper boundary on the gradient
values.

• Step 5: Track edges using hysteresis by suppressing weak edges that are not
connected to strong edges” [6].

Control Theory in Engineering

4

The following results are presented in Figure 1.
It appeared to work quite well, with adaptable options regarding the strength of

the effect. It was decided an automatic level should be applied for ease of use. It is
clear that this is easily adaptable for the issue of recognising two lines either side of the
vehicle and would (assuming a plain background) solve the problem very efficiently.

This reduction in noise on the image would also help with real-time processing
and stop the issue of anomalous results which would cause the vehicle to potentially
go off-track.

2.4 General architecture of an autonomous vehicle

This is a generalised diagram of how these types of devices usually run.
Machine learning algorithms are often used in self-driving cars due to their

advanced capabilities to be adapted for use in image processing. The most popular
form of machine learning algorithm is known to be artificial neural networks,
which are very good, in that a NN can be trained methodically for nearly every
given circumstance imaginable. It can be highly adaptable in terms of size/comput-
ing power required and can be designed in any given way relevant to the user’s
needs. To do this, calculation and specification of the number of nodes in each layer
need to accurately produce the required outputs (Figure 2).

In a NN, the connections between each node have a “weighting” value which is
applied to the data which passed through it; these values are determined through
training via the use of “training data” and then stored in a final version which is
called the “model”. The model can then be used with unseen data in real time to pro-
duce an accurate output; this is called “testing” via the use of “test data”. Adapting
these values to be correct for all input circumstances is known as the aforemen-
tioned “training”; this can be done through a variety of different methods, one of
which is backpropagation. When training is complete, the weighting values can be
stored, and thus further usage of the NN from then on will only require loading
these stored values to make it run correctly (provided no changes have been made
to the design of the NN) [7]. This means that once the network is trained, predic-
tion of the movement becomes very fast. This is beneficial especially for real-time
computation projects, as computation is done at a very efficient rate.

Figure 1.
An overview of canny edge detections [6].

5

Computational Efficiency: Can Something as Small as a Raspberry Pi Complete…
DOI: http://dx.doi.org/10.5772/intechopen.88342

The middle (hidden) layers of the neural network are used to recognise patterns,
such as in this case, the edges of the track, which are conceived from the input data.
The output layer interprets these patterns to generate a probability for each output
being true. These probabilities are then interpreted to determine whether to turn
left/right or stay straight and go forwards or backwards.

By installing a Raspberry Pi, camera and ultrasonic sensors, the aim was to
give the Raspberry Pi capabilities of driving the car through a written piece of
software which is be run using C/C++. The intention was to create, within this,
a form of artificial intelligence called a neural network. The neural network acts
as the “brain” of the device and after extensive training can be used for image
processing/classification of real-time camera data in order to aid the computa-
tion of real-time decisions on which movement instruction the car should follow
during the movement step. This allows the device to drive autonomously and
thus be adaptable to different situations. It does this by recognising two white
lines either side of the vehicle, known as the “track” which the car should stay
between.

2.5 Related works

Considered to be the first “self-driving remote-controlled (RC) car” design
was done in 2015 by “Team Pegasus”, a team of graduates from the Gothenburg
University. They used Arduino and Raspberry Pi to build a robot car, integrated
with a remote-controlled software application running on an Android device [8].
Team Pegasus is the first creator of an Android-powered RC car using similar
computation methods; however, they used an external server which was connected
to the mobile device to perform the computing process.

The only other similar project found was done by Zheng Wang using Python
and utilising a NN to process the images. Again, this used an external server con-
nected to the Pi network to do the computing. This was a very small-scale device
but worked very well. Wang also utilised OpenCV—an open source computer vision
library which has a large variety of functionalities. Wang’s device was able to follow
lines, recognise objects and stop signs [9]. The only real weakness of this was its
inability to do on-board computation.

Figure 2.
Autonomous car system overview.

Control Theory in Engineering

6

These projects both used very large-scale NN to do the computation efficiently;
thus, both were required to use an external server to do the computation. This was
a problem as the device can only be used indoors with a suitable connection to the
server. Despite the large-scale network, it could only be implemented on a small-
scale track to ensure there was always an adequate connection to the server.

3. Computational foundations

3.1 Machine learning

Machine learning is one of the main forms of artificial intelligence; it is an area
concerned with how machines can learn to recognise patterns in data and thus
enable them to predict future outcomes based on previous patterns. It is a branch of
artificial intelligence which often interlaces with a wide variety of mathematic func-
tions and pattern recognition techniques [10]. Some methods of machine learning
include decision trees, K-nearest neighbours (KNN) and the most famous ANNs.

3.2 Artificial neural networks

An artificial neural network is a system that is designed to replicate the con-
nections from the synapses within the human brain and their associated learning
processes. The human brain consists of many neurons (cells) which all can process
information independently. Within these cells are three main parts, the cell body,
which contains the nucleus, the “dendrites” which receive information and a long
axon connected to other cell’s dendrites for outputting information. Information
passed between neurons in the brain through the dendrites is in a form similar to
that of an electrical signal. When the signal level is of a required value (which will
be set within the individual nucleus), the neuron will activate, and information will
be sent along its axon to other neurons [11]. This can be applied to a piece of written
software to replicate this process for any modelling and problem-solving purposes.

Another similarity that can be achieved through an ANN is processing informa-
tion via interconnected nodes using simple signals, each link between nodes has its
own numerical “weight” when coded, and this is the primary means of learning,
which is achieved by altering these “weight values” towards an optimum value to
gain a connection with a high success rate.

ANNs are code-based representation of a biological neural network; they are
incredibly adaptable and have a variety of different structures/training techniques
which can be used to adapt the network based on the most efficient design to solve
the problem in hand. NN applications are mainly used for data mining purposes;
however, they are also adaptable for use for many other computational problems.
One example of this is using a particular model of NN, renown as multilayer per-
ceptron (MLP), for image recognition to note and recognise the difference between
things such as handwriting styles, animal types, facial recognition and many others.

3.3 Learning process in ANN

There are two types of learning strategies available to the training of neural
networks:

• Supervised learning: within this the concept of a “teacher” is present,
and its role is to compare the network output with the correct output and
make “adjustments” if necessary. One of the most well-known examples is

7

Computational Efficiency: Can Something as Small as a Raspberry Pi Complete…
DOI: http://dx.doi.org/10.5772/intechopen.88342

“backpropagation” algorithm, which is a gradient-based approach minimis-
ing the error level between the output and the desired results [11]. This is
highly effective when your training data is of a high quality and well labelled.
However, it runs risks in terms of performance should you have any anomalies
within your training set that you are unaware of.

• Unsupervised learning: within this there is no concept of a “teacher”, and thus
the network learns by examining the input data over multiple iterations until
any inherent properties are discovered [12]. This is much more effective over a
longer period of time and can be very efficient when done correctly.

The learning process of ANNs is also known as the process of “training”, where a
set of test values or a “training set” is passed through the ANN and its output values
are compared to those which are expected and then the values are altered accordingly
for the next iterative trial. To compare this to the human NN, the ANN’s nodes are
trained to fire in response to a particular input of bits/pattern. Each input will have its
own value or according weight, and this will be calculated by multiplying the value
by its assigned weight. If the sum of all these inputs equals a greater value than the
activation threshold, the neuron will activate; this is the same as in ANN’s. Once these
values are accurate for many cases, should the same pattern of input be placed into the
ANN, its associated output will be given. This is a typical process of machine learning.
If in non-training mode, the ANN will process the bits as normal and usually and if
training was sufficient, the NN should still produce the correct output in the end.

For this project, supervised learning was used as we had an abundance of very
high-level training data to work with, all of which was already labelled.

3.4 Multilayer perceptrons

Multilayer perceptrons (also known as backpropagation neural network) are a
type of neural network. As seen in Figure 3, they consist of a feedforward network
structure including one or more hidden layers and a non-linear activation function
(e.g. sigmoid) and utilise a supervised learning approach to training using a method
called “backpropagation”. MLPs are the most commonly used form of ANNs since
they have a very flexible form—meaning they are adaptable to many different
circumstances and problems [13].

Figure 3.
Backpropagation neural network with one hidden layer [14].

Control Theory in Engineering

8

3.5 Feedforward structure

The feedforward structure was the first released structure for a neural networks
and is also the simplest form. It originates with an X amount of input nodes, in
which each receives one value. The number of input nodes is always equal to the
size of one individual element in the data set. For example, when using an MLP for
image processing, if the image is 20 × 20 pixels, there would need to be 400 input
neurons to account for each pixel. This helps to determine the size of the network,
and because of this all data being fed into the network must be of the same size.

As these values go through the network in the same method as in a NN, an input
pattern from the data set is passed through the input layer, and each value proceeds
to propagate through the layers of the network with the weights being applied to the
value until the output values are produced. Typically, the output values are a set of
probabilities for each output option to be true.

When this process is occurring during the iterations through the training set,
the set of output values is compared to the expected output set, and a set of error
values is calculated for how much of an error each node contributes to the overall
error. This error calculation occurs across all layers in the network due to the simple
fact that inevitably all layers and their respective nodes contribute a small amount
to the overall error. To combat this the error calculation occurs through each layer,
and each input value to determine the amount connection has contributed to the
overall error. This is then used in the backpropagation function to alter the weights
accordingly.

3.6 Training the model

Training the model is the most crucial part of the process. Firstly, the weighting
values are all initialized with random numbers between −1 and +1. Then the train-
ing set or “training data” is imported.

Next begins the recursive process which, each time, presents one piece of train-
ing data to the network, which propagates through the network, and an output is
produced. This output is then compared to the labelled output of the training data.
Following this comparison, the training algorithm propagates backwards through
the network, known as “backpropagation”, and alters the weighting values accord-
ingly. This is repeated a finite amount of times specified by the person running the
training model, until it is completed and the values are stable.

Backpropagation algorithm is a supervised learning technique which is applied
to train neural networks. It works by propagating the error backwards through
the network and internally altering the weight values between each node to try to
improve the quality of output by minimising the error in the next runs. This is done
in the “training” phase where the network is shown a “training set” which consists
of a series of data and the correct output per data item is attached. This is then fed
through the network, and backpropagation alters the weights to make it work for all
data types and their corresponding outputs.

Backpropagation works by receiving the error value for each node, as calculated
in the feedforward propagation, and utilises these error values while propagat-
ing through the network to adjust the node weightings positively or negatively in
accordance with the error values per node.

This is explained in more detail [11] with “Once the error signal for each node
has been determined, the errors are then used by the nodes to update the values
for each connection weight until the network converges to a state that allows all
the training patterns to be encoded. The Backpropagation algorithm looks for the
minimum value of the error function in weight space using a technique called the

9

Computational Efficiency: Can Something as Small as a Raspberry Pi Complete…
DOI: http://dx.doi.org/10.5772/intechopen.88342

delta rule or gradient descent. The weights that minimise the error function are then
considered to be a solution to the learning problem” [11].

3.6.1 Training algorithm

The standard pseudocode for training a neural network using backpropagation
method which can be adapted to any language is as follows (Figure 4):

3.6.2 Over-training and under-training

While training the network to understand data, it is very important not to over-
train or under-train the network, as both have problems associated.

Under-training can occur when the network does not have enough hidden
layers/nodes within these layers to accurately represent the complexities of the
problem accurately. The result of this is that the network is not of a sufficient size to
recognise patterns effectively and will consequently under-fit the data pattern.

Over-training can be caused by a network that is overly complex—meaning that
it follows the major pattern exactly and when confronted with other data, may not
produce results that are within the average range of the training data. Networks
with too many hidden nodes will tend to over-fit the data pattern [16].

This can be combatted by designing an adequate network structure prior to
training and ensuring the rate/iterations of backpropagation are not too low or too
high, thus creating a network that creates good solutions to new data problems.

Figure 4.
Training a neural network using a backpropagation algorithm [15].

Control Theory in Engineering

10

3.6.3 Other machine learning algorithms

Machine learning is a vast field of artificial intelligence, which includes many
learning and modelling approaches. Another algorithm which could be an alter-
native solution to this problem is to implement the K-nearest-neighbour search
algorithm, which is one of the most known unsupervised learning algorithms used
for data clustering and classification. This is explained briefly in [17] as “Nearest
neighbour search is an optimization technique for finding closest points in metric
spaces. Specifically, given a set of n reference points R and query point q, both in the
same metric space V” [17].

This would allow a training set similar to that of a neural network; however,
here, they are all stored alongside their relevant move instruction. In larger data
sets, this could be very beneficial, as there would be a large training set to compare
to; however, with such a simple task as this, autonomous car application, it could be
considered “overkill” as the potential for undertraining is too high. Furthermore,
in safety-critical situations such as a car driving, a “best guess” kind of algorithm
may not return the best results; should an anomaly arise, it could have serious
repercussions.

3.6.4 Libraries for machine learning

There are two commonly used C/C++ libraries which support machine learning,
FANN and OpenCV. The decision was made to use OpenCV due to the fact that it is
much more well-documented and has a tutorial part of their documentation which
is considered to be very helpful. Furthermore, neither FANN’s documentation nor
the library itself has been modified since 2007, which deems it potentially outdated
for newer versions of C++ [18].

3.6.5 Compelling performance constraints

The developed system carries a variety of performance constraints. The
Raspberry Pi does not have high processing capabilities, and thus the network
needed to be efficient enough for the device to get at least five MLP runs per second
in order to run smoothly. The amount of time between calculations will directly
affect the quality of the cars’ driving ability. This study is however merely a proof
of concept, and thus a high processing power is not necessary to prove the concept
works.

A further performance constraint would be in relation to the quality of the
driving of the vehicle, for example, it could be very jittery when driving or be quite
smooth—this is all proportionate to the amount of computations the neural net-
work can do per second. If the computation power of the Pi means that this is quite
slow, naturally, the vehicle will not be 100% accurate in staying between the lines,
whereas if it can be developed to work efficiently, this may be less of a problem and
the vehicle will drive more “smoothly”.

A solution’s quality could be measured in terms of the number of errors/stops
the vehicle makes in a given time frame, and the lower this value is, the more
efficient the device is.

3.7 Hardware design and implementation

Below is the design of the hardware side of the system, excluding the external
camera; we used two motors to control drive and steering and two HC-SR04 ultra-
sonic distance sensors to ensure for obstacle detection (Figure 5).

11

Computational Efficiency: Can Something as Small as a Raspberry Pi Complete…
DOI: http://dx.doi.org/10.5772/intechopen.88342

3.7.1 Hardware circuit design

Implementation of the hardware can be a challenge without the correct equip-
ment. Following the initial designs, in the prototyping stage, a breadboard was used
(see above) to manually switch wires and avoid soldering until the circuit was fully
working. However, breadboards are not a long-term solution, and the wires will
begin to fall out of the sockets, so at the point that a working circuit is created, it
should be noted down in a form such as this (Figure 6).

This then allows the creation of a long-term solution: a custom printed circuit
board (PCB) soldering is required to do this, but it is much more secure and thus
more reliable, especially in projects which experience a high level of movement.
PCB designs usually represent the following (Figure 7).

3.8 Track design

A more modular layout is required for a project of this sort, because it
is designed to be totally mobile and adaptable to different circumstances.
Consequently, a Scalextric-type (modular) approach with around 6 corners and 10
straight pieces would be a good idea.

The turning circle of the car required a large space, and the size of an A2 paper
was chosen to make a modular-type design of which various sheets could contain
different directions which led to the following two possibilities:

Figure 5.
System design architecture of hardware.

Control Theory in Engineering

12

Figure 8.
White background with black lines.

Figure 6.
Hardware circuit, sensors and motor controller.

Figure 7.
Final PCB design of the hardware.

13

Computational Efficiency: Can Something as Small as a Raspberry Pi Complete…
DOI: http://dx.doi.org/10.5772/intechopen.88342

Due to the nature of the testing environment/demonstration environment—a
floor—a decision was made to determine the track would have to blend into the
background on which the track was being set, in case of the unlikely event when
the track went off course. It was viewed, while considering the “canny edge detec-
tion” in Figure 8, that the white background may interfere with the surrounding
environment and the image preprocessing would essentially and completely alter
the image, so it is viewed that the black background would be more suitable for the
environment the vehicle will be in (Figure 9).

4. Implementation

4.1 Machine learning

4.1.1 Neural network topology

The following decisions were made:

1. The images are scaled down from 1024x720 to 10x10 to add efficiency to the
network as the larger the image, the larger is the network; 100 bits was an
efficient base level for the number of nodes in the input layer.

2. The neural network should have five layers, to account for a steady rate of drop
off in the number of nodes per layer, inevitably aiming to end up with three
outputs.

3. Given the objective was to achieve 5 FPS while the vehicle was driving and the
length of the test track was around 25 m, we determined at a steady speed of
2.5 km/h; the vehicle would undergo around 300 frames per iteration. This was
then used to calculate that at a high level, while taking into account the possi-
bility of overtraining and undertraining, the training set should be around 50x
the size of the data it would be handling, taking into account duplicate images
around corners and other variables, so a training set of ~15,000 images were
collected manually and labelled accordingly.

The MLP topology for this project is as follows (Figure 10):
The first layer is the input layer—this has 100 nodes to represent the 100 values

in the one-dimensional array the live image is converted to. Each one of these nodes
represents 1 pixel in the 10x10 image.

Figure 9.
Black background with white lines.

Control Theory in Engineering

14

The second, third and fourth layers have 50, 25 and 12 nodes, respectively; these
are known as hidden layers, and these sizes are calculated automatically.

The fifth layer which happens to be the output layer has three nodes, which all
correspond to the steering control instructions:

• Output 0: FORWARDS | LEFT

• Output 1: FORWARDS | RIGHT

• Output 2: FORWARD ONLY

4.1.2 Data collection

The training images are taken by a small script on the Pi which allows a photo to
be taken every X seconds. This was set to 0.8. The image resizing and image filters
were added and then implemented; while this was running, the car was moved
round the track allowing for multiple angles and directions. All of these photos were
then stored on the Pi.

From that set of photos, manual collation was required to store each picture in
its corresponding class folder, in this case, one of 0, 1, or 2.

Once these images had been correctly stored, another part of the program could
read them from their containing class folder and compute the following to store
them in an XML file named Train_data.xml.

This data is all then stored in Training_data.xml. The same process occurs again
for generating/gathering of training data.

This process occurs to convert the real-time image into a format that is suitable
for a neural network’s input Layer (Figure 11).

Figure 11.
The process of generating training and test data sets.

Figure 10.
System topology.

15

Computational Efficiency: Can Something as Small as a Raspberry Pi Complete…
DOI: http://dx.doi.org/10.5772/intechopen.88342

The image is filtered using the image processing techniques (black and white,
Gaussian blur, canny edge detection) in order to make the image as simple as pos-
sible and have only the lines as a defining feature; this means there is less chance of
errors in recognising and classifying the image via the NN.

The images are scaled down to 10x10 in order to make an efficient and enough
neural network; the larger the image, the larger the size of the neural network will
need to be, which is directly proportionate to the efficiency/iterations per second
of the image classifying loop that the device can perform. Thus, a smaller image
resolution was chosen in order to make the device as efficient as possible.

Firstly, the filtered image is retrieved from the live stream from the camera and
reshaped row by row to create a 1x100 image and converted to a one-dimensional
array of 100 values ranging from 0 to 255 to represent each pixel of the image by
each particular element of the array. The one-dimensional array is then directly fed
into the neural network as the correct input format. Provided this process occurs on
each data item, it can then be fed into the network for training, testing and predic-
tion purposes.

4.2 Training the network

Training the network is done via the Train() function within OpenCV. Prior to
calling this, the associated parameters have to be set. The process of doing this is
relatively simple due to the helpful documentation provided in the OpenCV source
codes and thus drastically reduces the amount of code required to show this.

Firstly, all values from training data set need to be loaded and added to the stack
in their respective math formats (Figure 12).

Following this, the network needs to be defined and its topology declared
(Figure 13).

Next, the relevant network parameters need to be set.
Firstly, the activation function must be set, due to the fact that this network is a

Multilayer-perceptron, the chosen activation function is sigmoid (Figure 14).

Figure 12.
Loading the data from XML file.

Figure 13.
Declaring the network and assigning its topology.

Figure 14.
Set the activation function to sigmoid.

Control Theory in Engineering

16

Next, setting the training method and training criteria, a backpropagation rate
of 0.0001 for 50,000 iterations was chosen, the higher level of iterations will make
the weighting more secure and could be potentially viewed as “over-training”;
however, in the given circumstance of a real-time application, the network has to be
as accurate as possible. The rate of backpropagation ratio being set to 0.0001 is the
standard rate which is used by the majority of users (Figure 15).

Following this, all that is required is to call the TRAIN function from the CV
library, to run the training algorithm with the above specified topology, parameters
and data (Figure 16).

4.3 Prediction

Prediction is used in the testing process and the self-driving process. Prediction
is the processing of unknown data in order to categorise the class of the image it is
being given.

In the case of testing, this is used to compare the network’s output to the correct
output in order to calculate the accuracy of the network.

In the self-driving process, the unknown data (camera image and sensor date)
is fed into the neural network via prediction to determine the classification of the
image. The value returned is used to determine the current state of the track in front
of the vehicle, and this is the direction the car should move in.

In the real-time processing part of the project, the real-time image has the
aforementioned image preprocessing functions applied to it, to transform it from
a fully coloured image into a one-dimensional array of binary values, to match the
input layer of the MLP.

Prediction works by receiving this correctly formatted array and passing it to the
input layer. This is then fed through the network (which has been fully loaded from
the NNVALUES.XML file).

Following this, the network will produce an array of float values, representing
the probability of the image belonging to that class. So, in this case it will produce
an array of three float values, representing the probability the image which belongs
to each of those classified outputs (0, 1, 2).

The highest value in this array is recorded, and its location in the array (0, 1, 2)
defines which class the image is most likely to belong to.

This highest value location is then fed into a switch statement which implements
a move instruction based on the value.

4.4 Autonomous driving

Prior to the calling of the AutoDrive function, the following criteria must be met
in order for it to work fully:

All hardware devices must be fully installed and working.
Training and testing data must be created and stored.

Figure 15.
Set training method and training criteria.

Figure 16.
Train model.

17

Computational Efficiency: Can Something as Small as a Raspberry Pi Complete…
DOI: http://dx.doi.org/10.5772/intechopen.88342

Training must be called to train the network and save it once trained.
Testing of the network must prove a high accuracy level of the network.
The track must be ready to use.
All of this is however done by the administrator to initialise the system prior to

demonstration.
Following this, the device can be placed onto the track and will drive around it,

utilising object detection and NN prediction in order to make informed decisions on
which directions to drive.

It can begin the self-driving Loop in which it will continue driving until the
process is halted. This loop will continue to iterate, driving the car in the desired
direction based on the current image of the track in front of it, which will change
each iteration.

5. Testing

5.1 Unit testing

Unit testing is the testing for the initial components and all basic instructions
in the system. These are developed from the basic implementation of the system
(Table 1).

5.2 Integration testing

Integration testing is testing to see if the more advanced functionalities of the
system are comprised from the design process (Table 2).

Test Test criteria Where Qualifier Pass

1 Does front motor turn right? TestMotors() Visual Yes

2 Does front motor turn left? TestMotors() Visual Yes

3 Does rear motor go forward? TestMotors() Visual Yes

4 Does rear motor go forwards and front motor go

left?

TestMotors() Visual Yes

5 Does rear motor go forwards and front motor go

right?

TestMotors() Visual Yes

6 Does sensor A function halt when object is within

15 cm?

TestSensors() Visual Yes

7 Does sensor B function halt when object is within

15 cm?

TestSensors() Visual Yes

8 Sensor A distance of 15 cm shown when object is

15 cm away

DistanceSenseA() Visual Yes

9 Sensor A distance of 50 cm shown when object is

50 cm away

DistanceSenseA() Visual Yes

10 Sensor B distance of 15 cm shown when object is

15 cm away

DistanceSenseB() Visual Yes

11 Sensor B distance of 50 cm shown when object is

50 cm away

DistanceSenseB() Visual Yes

Table 1.
Unit testing and results.

Control Theory in Engineering

18

5.3 System testing

The system testing is the tests of the overall system. These are defined by
the research section to determine what is needed from the system for the user
(Table 3).

5.4 Acceptance tests: qualitative results of self-driving

These tests are used to qualitatively test the self-driving capabilities of the car
and measure how smoothly it runs.

These are measured visually during demonstration and thus are only considered
to be an opinion as opposed to a solid pass/fail scheme (Table 4).

Test Test criteria Where Qualifier Pass

12 Does canny edge filter apply to image stream from

camera?

TestCamera() Visual Yes

13 Does camera image become scaled down to 10x10

resolution?

TestCamera() Visual Yes

14 Can image stream from camera be converted to

black and white?

TestCamera() Visual Yes

15 Can image stream from camera be saved/loaded? TestCamera() Visual Yes

16 Can image stream from camera be reshaped from

10x10 to 1x100?

TestCamera() Visual Yes

17 Can image be converted to a 1D array of values

[0–255]?

TestCamera() Visual Yes

18 Can a saved image be loaded? AutoDrive() Visual Yes

19 Can a set of images and their classes (read from

folder name) be stored as a training data set?

ReadScanStore() Visual Yes

20 Can training data be stored in an XML file? ReadScanStore() Visual Yes

21 Can a MLP be defined and created based on its

topology?

TrainNetwork() Visual Yes

22 Can a trained MLP be stored once trained to an

XML file?

TrainNetwork() Visual Yes

23 Can a trained MLP be loaded from an XML file? TestNetwork() Visual Yes

24 Can a training data set be used to train an MLP? TrainNetwork() Visual Yes

25 Is backpropagation the algorithm used to train the

MLP?

TrainNetwork() Visual Yes

26 Does test data allow user to define accuracy of a

trained MLP?

TestNetwork() Visual Yes

27 Does OpenCV’s backpropagation algorithm work? TestNetwork() Visual Yes

28 Are weight values stored of trained MLP not all the

same?

TestNetwork() Visual Yes

29 Does NN/MLP allow prediction with current

image?

AutoDrive() Visual Yes

30 Calculate most likely output via neural network

(prediction)

AutoDrive() Visual Yes

Table 2.
Integration testing and results.

19

Computational Efficiency: Can Something as Small as a Raspberry Pi Complete…
DOI: http://dx.doi.org/10.5772/intechopen.88342

6. Evaluation

6.1 Performance summary and achievements

Overall the project has achieved what it was required to do; it is fully able to
drive around the track to a suitable level of accuracy. The chosen libraries were suit-
able for the project and provided well-documented functions regarding all aspects
required to enable the vehicle to do the tasks that it had to perform.

In my opinion, the best feature of the vehicle is the custom-made circuit
board, which required a great deal of time and effort to design and build. Once
this occurred, everything from the operational hardware point of view went very
smoothly.

The system passed all of the required tests. However, there was not enough time
to implement some of the “would like to” aspects of the MoSCoW requirement
analysis, but as discussed below, there is potential for further development.

6.2 Reflection

The main aims were to verify:
Can the vehicle recognise a track via NN and camera data?
Can the vehicle follow the track?
Can the vehicle control the car motors?

Test Test criteria Where Qualifier Pass

31 User menu option: testing for camera SysMenu() Visual Yes

32 User menu option: testing for MLP accuracy SysMenu() Visual Yes

33 Is user menu easy to use? SysMenu() Visual Yes

34 User menu option: testing for motors SysMenu() Visual Yes

35 User menu option: testing for ultrasonic sensors SysMenu() Visual Yes

36 Does the vehicle stay still if there is an object within

15 cm of the front of it?

AutoDrive() Visual Yes

37 Does the vehicle stay between the two lines needed to

drive?

AutoDrive() Visual Yes

38 Does the vehicle successfully drive one loop around the

track?

AutoDrive() Visual Yes

Table 3.
System testing and results.

Test Test criteria Where Qualifier Score

41 Score out of 10 for smoothness of drive when

following a straight line

AutoDrive() Visual

opinion

9

42 Score out of 10 for smoothness of drive when going

around a corner

AutoDrive() Visual

opinion

6

43 Score out of 10 for smoothness of driving when

following an entire track

AutoDrive() Visual

opinion

7

Table 4.
Acceptance test and results.

Control Theory in Engineering

20

Can the vehicle utilise collision avoidance via ultrasonic sensors?
Can the vehicle recognise and stop at stop signs for a certain amount of time?
Following the test phase, the vehicle has shown the capabilities required to pass

the first four out of five aims.
The vehicle fully utilises the neural network to accurately classify the real-time

image to decide upon and then implement a movement instruction. This allows the
vehicle to follow the track given any set layout and follow it until the procedure is
manually stopped. A variety of obstacles have been placed in front of the vehicle
during operation, and when this occurs, the ultrasonic sensors recognise it, and the
vehicle stops within the specified distance in order to avoid collision. The vehicle
remains stationary until the obstacle moves away or is removed from its path. If
the obstacle is moved around incrementally, it will “follow” the object staying
at a minimum of the specified distance away. This is a very useful functionality
for potential additions to the project which is to have the vehicle following other
moving vehicles or staying a specified distance away from the obstacle should it be
moving.

However, the stop sign detection capability was not implemented due to time
constraints. To do this a Haar cascade qualifier must be used; this is an entirely
different machine learning algorithm and thus would have to be implemented
alongside the neural network. This naturally would have added many further
functionalities. This was placed into the “would like to have this requirement later to
develop the system design further” section of the MoSCoW analysis of the require-
ments because not only would this further implementation be time-consuming
but finding small-scale stop signs that would be adequate for this task proved to be
challenging and thus was not achieved in time.

6.3 Relation to MoSCoW and further improvements

In relation to the MoSCoW analysis, “all of the must have”, “should have” and
“could have” related requirements were fully met to a good standard.

Further developments may be made as specified to cover the “would like to”
aspect of the requirements.

Implementing a backpropagation algorithm manually as opposed to relying on
the one provided from OpenCV, this would be desirable as it has the potential to be
developed in a manner that may be more efficient for the problem at hand than just
a generic algorithm.

A possible improvement would also be integrating the capability of designing,
recognising and acting upon stop signs via a Haar cascade qualifier. This would be a
further development to the device which could allow it to have more functionality
and thus be more applicable to real-world projects.

Another adaptation which would have been interesting to implement would
be using a K-nearest neighbour algorithm for the machine learning part of the
project. This could be used to compare the results from this to that of the neural
network, to see which is more accurate. However, as aforementioned this was not
implemented currently because of the much larger data set that would be required
to train it.

The only final improvement which could be made to the system would be to
improve the mathematical functions applied to the ultrasonic distance sensors,
which will be discussed below. These are currently only accurate at reading dis-
tances up to 50 cm using a simple mathematic function which for the present prob-
lem is acceptable, but future adaptations to the device may require more accuracy
and thus more advanced mathematics to allow it to be accurate up to 5 m.

21

Computational Efficiency: Can Something as Small as a Raspberry Pi Complete…
DOI: http://dx.doi.org/10.5772/intechopen.88342

6.4 Obstacles faced

6.4.1 Hardware

Hardware design encountered a variety of problems with the circuitry of the
vehicle which connected the external components to the Pi. Using a breadboard to
connect all the components was not viable in the long term, and testing proved that
as the car rattled, wires would come free as they were not fixed in place.

This was fixed by having a permanent version of the circuit made and soldered
in the workshops at the university, producing a finished product seen in Figure 7.
This took a while to be perfect, and because of this, other tasks had to be put on
hold pending the new board design. The new board completely solved the problem
and provided both stability and much greater longevity to the product.

6.4.2 Software

The software design process also had problems along the way which required
solving.

The ultrasonic sensors in front of the vehicle required advanced mathemati-
cal formulae to be accurate at all distances, which would take time to complete,
whereas using much a simpler formula would only mean they were accurate up to
50 cm as opposed to 5 m. This in the end was chosen as the vehicle only needs to be
able to stop within 50 cm of an object, and anything beyond that distance cannot
be considered an object in the vehicle’s path. A useful add-on to develop the device
further would be to utilise this functionality correctly for all distances. However, for
the purpose of the current project, it was not viewed as critical.

6.4.3 Track design

Overall, the track design was a good choice. The black background stops the
edges of the paper from being seen as different to the colour of the dark floor,
meaning only the edges of the track (white lines) are seen as fully qualified edges
by the edge detector. The only issue with the track is that the corners can be viewed
by some as “too tight” and thus the vehicle sometimes struggles to stay completely
between the lines while turning through them. However, this is not a major issue as
overall the vehicle remains between the lines for the majority of the driving cases,
and if it does go out of the lines, it will self-correct.

6.4.4 Image recognition and obstacle detection

Obstacle detection works perfectly, allowing the vehicle to stop moving if
anything is within 15 cm in front of it. This is exactly what was stated in the system
requirements.

Image recognition correctly classifies the images based on the direction they are
qualified under, with a score of 114/114 on the test data.

7. Conclusion

Overall, I feel that this was a successful project, in that it demonstrates a clear
proof of concept that the computations required for autonomous cars do not have
to be performed externally but may be done within the vehicle itself. The effect of

Control Theory in Engineering

22

Author details

Toby White
University of the West of England, ARTIMUS Solutions LTD, Bristol,
United Kingdom

*Address all correspondence to: toby@artimus-uk.com

this will be to make it much more versatile and adaptable for different environments
and requirements. Another benefit of increased capacity and functionality within
the vehicle would be to make it less vulnerable to external access, such as hacking,
which could have implications for the vehicle, its user and others.

The limitations imposed by the scale of the vehicle used in this work will affect
the physical space available to house the computing hardware to that which will fit
within the vehicle. This will have consequences for the functionalities the car is able
to effectively demonstrate when using such small-scale computational devices.

Acknowledgements

I would like to thank my supervisor Dr. Mehmet Aydin, professor of enterprise
system module, for being available throughout the entire process of this project
and having an in-depth knowledge of all the software techniques and development
techniques required to complete this task.

I would also like to thank Dr. Larry Bull, professor of artificial intelligence, for
his help in the general structure of the neural network and advice regarding the
training data.

Notes

This project was chosen because it is considered to be very complex and the
use of neural networks to process images is a study that is always improving.
Furthermore, this project was chosen as a proof of concept for autonomous vehicles,
which are constantly in development for future real-world applications. This means
it is an area where this theory may be beneficial for further research by others.

My intention was to improve this by scaling down the size of the neural network,
making the device more portable and thus more realistic. This can be done by allow-
ing the computations to be done on the Pi itself, making the device more mobile. It
was concluded that this could potentially come at the cost of performance as trying
to do computations of a large-scale neural network on a Raspberry Pi will be near
impossible. As a result of this, the network needed to be scaled down, meaning much
smaller images being passed, and the FPS rate will also need to be reduced to around
5–10 FPS. This is sufficient, considering the project is only a proof of concept.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

23

Computational Efficiency: Can Something as Small as a Raspberry Pi Complete…
DOI: http://dx.doi.org/10.5772/intechopen.88342

References

[1] Zimine T. Drive a Lamborghini with
your Keyboard. 2013. Available from:
http://thelivingpearl.com/2013/01/04/
drive-a-lamborghini-with-your-
keyboard/ [Accessed: 22 February
2019]

[2] Bell G. Software Adafruit’s
Raspberry Pi Lesson 9. Controlling a DC
Motor|Adafruit Learning System. 2015.
Available from: https://learn.adafruit.
com/adafruit-raspberry-pi-lesson-
9-controlling-a-dc-motor/software
[Accessed: 21 February 2019]

[3] Wiring Pi. 2017. Available from:
http://wiringpi.com/ [Accessed:
22 February 2019]

[4] Henderson G. WiringPi. 2012.
Available from: https://projects.drogon.
net/raspberry-pi/wiringpi/ [Accessed:
22 February 2019]

[5] Phillips. Phillips/libv4l. 2017.
Available from: https://github.com/
philips/libv4l [Accessed: 22 February
2019]

[6] Rosebrock A. Zero-parameter,
Automatic Canny Edge Detection
with Python and OpenCV—
PyImageSearch. 2015. Available
from: http://www.pyimagesearch.
com/2015/04/06/zero-parameter-
automatic-canny-edge-detection-
with-python-and-opencv/ [Accessed:
22 February 2019]

[7] Galkin I. Crash Introduction to
Artificial Neural Networks. 2017.
Available from: http://ulcar.uml.
edu/~iag/CS/Intro-to-ANN.html
[Accessed: 22 February 2019]

[8] Platis D. The World’s first Android
Autonomous Vehicle. 2016. Available
from: https://platis.solutions/
blog/2015/06/29/worlds-first-android-
autonomous-vehicle/ [Accessed:
22 February 2019]

[9] Wang Z. Self Driving RC Car. 2015.
Available from: https://zhengludwig.
wordpress.com/projects/self-driving-
rc-car/ [Accessed: 22 February 2019]

[10] ByteFish. Machine Learning with
OpenCV2. 2017. Available from: https://
www.bytefish.de/pdf/machinelearning.
pdf [Accessed: 22 February 2019]

[11] Kim D, Papagelis A. Back
Propagation Tutorial. 2006. Available
from: http://www.cse.unsw.edu.
au/~cs9417ml/MLP2/ [Accessed:
22 February 2019]

[12] Berwick B. Neural Networks II.
2014. Available from: http://web.mit.
edu/6.034/wwwbob/recitation8-fall11.
pdf [Accessed: 22 February 2019]

[13] Kendall G. G5AIAI: Neural
Networks. 2017. Available from: http://
www.cs.nott.ac.uk/~pszgxk/courses/
g5aiai/006neuralnetworks/neural-
networks.html [Accessed: 22 February
2019]

[14] Wei L. Neural Network Model for
Distortion Buckling Behaviour of Cold-
Formed Steel Compression Members.
1st ed. Helsinki: Helsinki University
of Technology Laboratory of Steel
Structures Publications

[15] Tveter D. Evaluating a Network. 1st
ed. Canada: McGill University; 1995

[16] Barry R. Artificial Neural Network
Prediction of Wavelet Sub-bands for
Audio Compression. 2000. Available
from: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.24.362
&rep=rep1&type=pdf [Accessed:
22 February 2019]

[17] Mateo F, Sovilj D, Gadea R.
Approximate k-NN delta test
minimization method using genetic
algorithms: Application to time series.
2010;73:10-12

Control Theory in Engineering

24

[18] Rpi Forum. Raspberry Pi View
Topic—C vs Python for GPIO.
2017. Available from: https://www.
raspberrypi.org/forums/viewtopic.
php?f=33&t=22640 [Accessed:
22 February 2019]

