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Chapter

Parameter Optimization for
Spacecraft Attitude Stabilization
Using Magnetorquers
Renato Bruni and Fabio Celani

Abstract

The attitude stabilization of a spacecraft that uses magnetorquers as torque
actuators is a very important task. Depending on the availability of angular rate
sensors on the spacecraft, control laws can be designed either by using measure-
ments of both attitude and attitude rate or by using measurements of attitude only.
The parameters of both types of control laws are usually determined by means of a
simple trial-and-error approach. Evidently, such an approach has several draw-
backs. This chapter describes recently developed systematic approaches for deter-
mining the parameters using derivative-free optimization techniques. These
approaches allow to find the parameter values that minimize the settling time of the
attitude error or an indirect measure of this error. However, such cost indices
depend also on initial conditions of the spacecraft, which are not known in advance.
Thus, a min-max optimization problem is formulated, whose solution provides
values of the parameters minimizing the chosen cost index under the worst initial
conditions. The chapter also provides numerical results showing the effectiveness of
the described approaches.

Keywords: derivative-free optimization, spacecraft attitude control,
robust optimization, min-max problems, magnetic actuators

1. Introduction

A magnetorquer (or magnetic torquer) is a torque actuator widely used for
attitude control in satellites, especially those flying in low Earth orbits. The
magnetorquer generates a magnetic dipole that interacts with the Earth magnetic
field, thus generating a torque used to control the spacecraft attitude. The control
torque generated by magnetorquers is constrained to belong to a plane orthogonal
to the Earth magnetic field; hence, magnetorquers may be supported by additional
torque actuators to achieve full three-axis control (see [1], Chapter 7). However,
attitude control systems using only magnetorquers represent a feasible option espe-
cially for low-cost satellites or for satellites with a fault in the main attitude control
system. Therefore, attitude control of spacecraft using magnetorquers is a very
important topic in aerospace engineering.

Many control laws have been designed in such a setting, and an overview can be
found in [2]. In particular, Celani [3] shows that attitude stabilization using only
magnetorquers can be achieved by proportional derivative-like (PD-like) control
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which requires measurements of both attitude and attitude rate. The same work
shows that attitude stabilization can also be obtained by using attitude-only feed-
back, which has the advantage of not requiring the installation of angular rate
sensors (rate gyros), thus saving in cost, volume, and weight. Those control laws
contain parameters. Thus, numerical values must be assigned to those parameters to
practically implement the laws. A common way to find those values is by using a so-
called trial-and-error approach, consisting in trying several values and rejecting
those which are not acceptable, and eventually choosing the best among the
acceptable ones. This approach is affected by two important drawbacks: (a) it is
often very time-consuming, and (b) it is not systematic. Thus, even if an obtained
solution is satisfactory, it is not known if protracting the search could lead to better
solutions and which would be the magnitude of the possible improvement.

On the other hand, a systematic approach for determining the parameters should
aim at finding the values which minimize the settling time of the attitude error.
Such an approach has been recently proposed in [4–6]. However, this is not an easy
objective to pursue. The settling time depends not only on the parameters but also
on the initial conditions of the spacecraft. To overcome this issue, the above works
propose to compute the values of the parameters that minimize the settling time
obtained under the worst initial conditions, so as to provide averagely good results
and to set as bound the worst-case behavior. Hence, in the above works, the
problem is modeled as a min-max problem, and the obtained parameters’ values are
called robust optimal values.

This min-max problem is considerably challenging, since solving the main min-
imization problem (upper-level) requires solving a maximization problem (lower-
level) at every evaluation of its objective function. A decomposition is not possible
because the worst initial conditions are not determined in general: they, in turn,
depend on the adopted parameters. Optimizing this min-max problem involves
other two mathematical issues:

1.Settling time cannot be expressed as an analytical function of parameters and
initial conditions; therefore the specification of an explicit optimization model
is not possible.

2.Settling time is not even continuous with respect to both parameters and initial
conditions, in the sense that small variations of the latter may result in a
substantial gap in the variation of the settling time.

To overcome these issues, the approach proposed in [4–6] relies on the use of
derivative-free optimization algorithms as building blocks. These techniques do not
need first-order information on the objective function nor do they need its analyt-
ical expression. They only need to compute the objective function over a number of
points by means of simulations.

For the design of the specific optimization algorithm, a distinction must be done
between spacecraft equipped with angular rate sensors, studied in [5], and space-
craft not equipped with those sensors, studied in [6]. This because, in the first case,
the control is based on the availability of measurements of both attitude and atti-
tude rates and is realized through a PD-like control, while in the second case, the
control can rely only on attitude feedback, and it is called attitude-only feedback
control.

The first case, though presenting the mentioned difficulties, turns out to be the
easier among the two, since the PD-like control law has only two parameters, and
their robust optimal values can be successfully determined by means of a global
search optimization procedure of the type of DIRECT algorithm [7], as proposed in
[5]. In the second case, the control law contains four parameters, and their range of
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variation is wider than the first case. Thus, the determination of the robust optimal
parameters becomes even harder, and a very complex derivative-free optimization
algorithm based on a combination of both local and global search had to be devel-
oped. Moreover, numerical experience has shown that dealing with a discontinuous
objective function makes the determination of the optimal solution very challenging
even when using derivative-free algorithms. Thus, in Ref. [4, 6], the objective
function is changed to the so-called integral time absolute error (ITAE) which is
continuous with respect to both the parameters and the initial conditions. Such a
change is acceptable since it has been shown that minimizing the ITAE is approxi-
mately equivalent to minimizing the settling time (see [8]).

This chapter describes in detail the abovementioned approaches to the determi-
nation of robust optimal values for the parameters in order to minimize the settling
time or the ITAE obtained under the worst initial conditions. The exposition will
highlight in particular the following main contributions: (i) the definition of a new
systematic approach for the determination of the parameters for the PD-like control
algorithm and for the attitude-only feedback, (ii) the formulation of a min-max
optimization model to find a robust optimal solution to both problems, and
(iii) the development of derivative-free optimization strategies to tackle the
min-max problems.

The chapter is organized as follows: Section 2 defines the spacecraft model and
the control algorithms for the two cases mentioned above; Section 3 describes the
optimization model and the solution algorithm for the case of PD-like control;
Section 4 provides some computational experience for this first case; Section 5
describes the optimization model and the solution algorithm for the case of attitude-
only feedback control; Section 6 provides again computational experience for this
second case.

2. Spacecraft model and control algorithms

The following coordinate frames are introduced to describe the attitude dynam-
ics of an Earth-orbiting spacecraft and the Earth magnetic field:

Earth-centered inertial frame F i. The origin of the frame is the center of the
Earth, the xi axis coincides with the vernal equinox direction, the zi axis is the axis
of rotation of the Earth and points northward, and the yi axis completes the frame
(see [1], Chapter 2.6.1).

Spacecraft body frame F b. Its origin is in the spacecraft mass center. The axes
are attached to the spacecraft and are selected so that the (inertial) pointing objec-
tive is having F b aligned with F i.

Since the objective is having F b aligned to F i, consider the relative kinematics
and dynamics of the satellite with respect to the inertial frame. Let the attitude of

F b with respect to F i be represented by quaternion q ¼ q1 q2 q3 q4
� �T ¼ qTv q4

� �T
.

The corresponding direction cosine matrix is equal to

C qð Þ ¼ q24 � qTv qv
� �

I þ 2qvq
T
v � 2q4q

�
v , (1)

where I is the identity matrix (see [9], Section 5.4). Moreover, given a∈
3

symbol a� denotes the skew symmetric matrix

a� ≔

0 �a3 a2

a3 0 �a1

�a2 a1 0

2
64

3
75 (2)
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so that the cross product a� b can be expressed as the matrix multiplication a�b.
The attitude kinematics equation is equal to _q ¼ W qð Þω (see [9], Section 5.5.3),

where ω∈
3 is the spacecraft angular velocity resolved in F b and

W qð Þ≔ 1

2

q4I þ q�v
�qTv

� �
: (3)

The attitude dynamics equation resolved in body frame is equal to

J _ω ¼ �ω�Jωþ T, where J ∈
3�3 is the inertia matrix of the spacecraft and T is the

control torque resolved in F b (see [9]). Three magnetic coils aligned with the F b

axes equip the spacecraft. Thus, the following magnetic attitude control torque is
created

T ¼ mcoils � Bb ¼ �Bb� mcoils: (4)

In the previous expression, mcoils ∈
3 is the column matrix of the magnetic

dipole moments for the three coils, and Bb is the Earth magnetic field at spacecraft

resolved in body frame F b (see [1], Section 7.4.1). Let Bi be the Earth magnetic field

at spacecraft expressed in inertial frame F i. Observe that B
i changes in time, at least

because of the motion of the spacecraft along the orbit. Hence,

Bb q, tð Þ ¼ C qð ÞBi tð Þ (5)

showing the explicit dependence of Bb on both q and t. The previous equations
grouped together lead to the following system

_q¼ W qð Þω

J _ω¼ �ω�Jω� Bb q, tð Þ� mcoils

(6)

wheremcoils is the control variable. Let us characterize the dependence on time of

Bb q, tð Þ, which is equivalent to characterize the time dependence of Bi tð Þ. Assume a
circular orbit with radius R. Through the adoption of the so-called dipole model of
the Earth magnetic field (see [10], Appendix H), obtain:

Bi tð Þ ¼ μm

R3 3 m̂i tð Þ
� �T

r̂i tð Þ
� 	

r̂i tð Þ � m̂i tð Þ
h i

: (7)

In the previous equation, μm is the total dipole strength, ri tð Þ is the position of

the spacecraft resolved in F i, and r̂i tð Þ is the column matrix of the direction cosines

of ri tð Þ. The coordinates of vector m̂i tð Þ are the direction cosines of the Earth
magnetic dipole expressed in F i which are written as follows:

m̂i tð Þ ¼
sin θmð Þ cos ωetþ α0ð Þ
sin θmð Þ sin ωetþ α0ð Þ

cos θmð Þ

2
64

3
75 (8)

where θm is the coelevation of the dipole, ωe ¼ 360:99 deg/day is the average
angular velocity of the Earth, and α0 is the dipole right ascension at t ¼ 0. Set

μm ¼ 7:746 1015 Wb m and θm ¼ 170:0∘ as reported in [11].

Eq. (7) shows that to characterize the time dependence of Bi tð Þ, one needs to
determine an expression for ri tð Þwhich is the spacecraft position vector resolved inF i.
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Define the orbital plane coordinate system ap, bpwhose origin is at the Earth center and
with ap axis coincidingwith the line of nodes. Then, the center ofmass of the satellite is
positioned in

ap tð Þ ¼ R cos ntþ ψð Þ
bp tð Þ ¼ R sin ntþ ψð Þ

(9)

where n is the orbital rate and ψ is spacecraft argument at time t ¼ 0. It is
possible to determine the mass center coordinates in the inertial frame F i from (9)
by means of a rotation matrix which depends on the inclination incl of the orbit and
on the right ascension of the ascending node (RAAN) Ω (see [1], Section 2.6.2). By
inserting the expressions of the latter coordinates into (7), we obtain an explicit

expression for Bi tð Þ.
Since C qð Þ ¼ I for q ¼ qTv q4

� �T ¼ �q where q ¼ 0 0 0 1½ �T (see (1)), then the

goal is designing control strategies formcoils so that qv ! 0 and ω ! 0. Reference [3]
proposes the following stabilizing proportional derivative (PD)-like control law,
which is a modification of those in [12, 13]:

mcoils ¼ �m⋆
coils sat

1

m⋆
coils

Bb q, tð Þ � κpqv þ κdω
� �
 �

: (10)

In the previous equation, m⋆
coils is the saturation limit on each magnetic dipole

moment, “sat” denotes the standard saturation function, and κp and κd are param-
eters. As shown in [3], if the orbit’s inclination incl is not too low, there are large
ranges for the values of κp >0 and κd >0 which lead to local exponentially stability
of equilibrium q,ωð Þ ¼ q, 0ð Þ for the closed-loop systems (6) and (10).

The following attitude-only feedback, obtained as modification of one described
in [12], is also proposed in [3]

_δ¼ α q� βδð Þ

mcoils ¼ �m ∗
coilssat

1

m ∗
coils

Bb q, tð Þ � κ1qv þ κ2αβW qð ÞT q� βδð Þ
� 	
 �

:
(11)

In (11), δ∈
4 is an internal state of the controller, κ1 κ2 α β are all parameters,

and W qð Þ was introduced in (3). Note that the previous equation describes an
attitude feedback, since it requires only the measure of attitude q and not of attitude
rate ω. It has the advantage of not requiring the installation of rate gyros obtaining
savings in cost, volume, and weight. As shown in [3], if the orbit’s inclination incl is
not too low, there are large ranges for the values of κ1 >0, κ2 >0 α>0, β>0 which
lead to local exponential stability of equilibrium q,ω, δð Þ ¼ q, 0, 1

ϵλ
q

� �
achieved for

the closed-loop system (6) and (11).
For both control laws, there are no precise indications for choosing the parame-

ters. In practice, they are usually computed recurring to a trial-and-error approach.
This causes the two main limitations: (1) the computation is quite time-consuming,
and (2) it is not systematic. This means that when a satisfactory set of parameter
values is finally obtained, it is unknown whether continuing the search could allow
to discover new parameter values producing a better performance of the closed-
loop system. And, if the search is continued, it is unknown when it should be
stopped and what could be the possible improvements obtained with this additional
search. In any case, it can easily happen to neglect values providing an overall better
performance, unless all possible values are tried. However, such an exhaustive
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search is generally impracticable, because the search space is way too vast to be
completely explored. Therefore, we describe here a different approach to find the
values of the feedback parameters. Since the desired attitude is obtained when
qv ¼ 0, we define the settling time tsi for each component qi, with i∈ 1, 2, 3f g, as:

tsi ≔ min t s:t:∣qi tð Þ∣ ≤ ν ∀t≥ tsi: (12)

In other words, this is the time needed for ∣qi∣ to permanently remain under ν.
Value 0< ν< 1 can be set depending on the desired final value of qi. Finally, we can
define the settling time ts for the whole quaternion q as the time required by the
slowest component of qv, hence

ts ≔ max
i¼1, 2, 3

tsi (13)

Now, having set the spacecraft initial conditions to specific values, one can
determine the values of the parameters that minimize the settling time ts for each
control law (10) and (11).

3. Determination of optimal parameters for the case of PD-like control

In the case of PD-like control (10), the minimization of the settling time can be
formulated as follows

min
κp ≥0, κd ≥0

ts: (14)

In order to practically solve the problem, the feasible set should be reasonably
bounded and not infinite. Hence, we define two upper bounds cκp and cκd for the
gains κp and κd. These values can usually be determined for the specific problem; we
do this for our case study in Section 3.3. Thus, the problem becomes as follows,
where the dependence of ts on the initial conditions q0 ≔ q 0ð Þ, ω0 ≔ω 0ð Þ, and ψ (see
(9)) is explicitly indicated,

min
κp, κdð Þ∈K

ts κp, κd, q0,ω0,ψ
� �

, (15)

and the feasible set is K ¼ κp, κd
� �

: 0≤ κp ≤ κ̂p, 0< κd ≤ κ̂d
� 


. Even though ts
obviously depends on κp and κd and on initial conditions, it is not possible in
practice to express this relation in analytical form. Moreover, ts is discontinuous
with respect to κp, κd and initial conditions See for example in ([14], p. 233) the
prove that the settling time of the step response is not continuous with respect to
the system parameters.

Now, problem (15) has the following features: (i) an analytic expression of the
objective function cannot be given, and (ii) the objective function is not continuous
with respect to the decision variables. Therefore, we cannot use standard optimiza-
tion techniques. Instead, we need to use derivative-free optimization.

3.1 From the simple min to the min-max problem

Given the initial conditions q0,ω0,ψ
� �

, problem (15) can be solved to optimality

by using the global optimization derivative-free technique described in Section 3.2.
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However, when the initial conditions change, then that solution may be no longer
optimal. An example of this is given in Section 4.1. Therefore, a robust approach
consists in searching for the optimal solution to (15) under the worst initial condi-
tion. Such a worst-case approach is commonly used in similar cases. In other words,
we accept to pay something, in terms of objective function values, in the easy cases,
but we obtain in return advantages in the more difficult situations. However, the
worst initial condition is not a priori known, since it depends on the chosen values
of κp and κd. Therefore, the problem cannot be decomposed and should be solved as
a whole.

The set of values describing the initial conditions is given by:

S ¼ q0,ω0,ψ
� �

: ∥q0v∥≤ 1, q04 ¼ 1� qT0vq0v
� �1=2

,
n

jω01j≤ ω̂01, jω02j≤ ω̂02, jω03j≤ ω̂03, 0≤ψ < 2πg
(16)

Set S includes any possible initial attitude and any possible initial argument ψ for
the spacecraft; only the magnitude of the initial angular rate is limited. The worst-
case minimization of ts can be modeled as follows:

min
κp, κdð Þ∈K

max
q0,ω0,ψð Þ∈ S

ts κp, κd, q0,ω0,ψ
� �

: (17)

To use the derivative-free algorithm explained in Section 3.2, the feasible set of
each optimization problem must be now converted into a hyperrectangle. This can
be obtained by expressing ∥q0v∥≤ 1 in spherical coordinates ρ,ϕ, θð Þ:

S ¼ q0,ω0,ψ
� �

: q01 ¼ ρ sin θ cosϕ, q02 ¼ ρ sin θ sinϕ, q03 ¼ ρ cos θ,
�

q40 ¼ 1� qT0vq0v
� �1=2

, 0≤ ρ≤ 1, 0≤ϕ< 2π, 0≤ θ≤ π,

jω01j≤ ω̂01, ω02j≤ ω̂02j ω03, ≤ ω̂03j 0≤ψ < 2πjg:
(18)

The dependence of ts on q0 can be expressed as dependence on the variables
ρ,ϕ, θð Þ, as follows. We introduce the hyperrectangle:

H ¼ ρ,ϕ, θ,ω0,ψð Þ : 0≤ ρ≤ 1, 0≤ϕ< 2π, 0≤ θ≤ π,f
jω01j≤ ω̂01, ω02j≤ ω̂02j ω03, ≤ ω̂03j 0≤ψ < 2πjg:

(19)

Now, the min-max problem (17) can be equivalently reformulated as follows:

min
κp, κdð Þ∈K

max
ρ,ϕ, θ,ω0,ψð Þ∈H

ts κp, κd, ρ,ϕ, θ,ω0,ψ
� �

: (20)

3.2 The whole derivative-free optimization approach

This section explains the min-max procedure to solve problem (20). Its building
blocks are given by the following derivative-free algorithms:

3.2.1 The global strategy

Lipschitzian methods constitute a main approach in non-differentiable optimi-
zation. However, they are limited by their requirement of knowing the value of the
Lipschitz constant. On the other hand, the search may be conducted without
knowing the Lipschitz constant if we use DIRECT-type algorithms [15]. These
techniques are based on the partitioning of the feasible region into hyperrectangles
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and on their examination in a specific order. The feasible region starts as a single
hyperrectangle that is internally normalized to a unit hyperrectangle. At each
iteration k, the algorithm partitions the hyperrectangles identified in the
previous (k�1)th iteration, obtaining a collection of smaller hyperrectangles

H kð Þ ¼ H1,…,Hkf g, and evaluates the objective function in their central points.
The computation of the objective value allows to identify potentially optimal

hyperrectangles within H kð Þ. These hyperrectangles are further partitioned and
investigated in the next (k+1)th iteration of the algorithm, while the rest of them is
simply discarded. The algorithm stops when the hyperrectangle size becomes very
small or when the maximum number of iterations is reached. This algorithm guar-
antees to converge to the global optimum of the function if sampling is dense
enough. However, a large number of function evaluations might be needed to
obtain dense sampling, and consequently large computational times could be
required.

3.2.2 The local strategy

When the function under optimization is sufficiently regular, it can be opti-
mized by using gradient-based methods, which require the computation of the first-
order derivatives of the objective function. However, the basic strategy underlying
these methods could be replicated even if no information on the derivatives is
available. This is the basic idea of the SDBOX algorithm [16], which can be
described as follows. After the selection of a starting point, it cyclically determines a
feasible and good descent direction for the objective function, and then it performs a
sufficiently large step along such direction. To find the good feasible descent direc-
tion, at each iteration k, the algorithm computes the local behavior of the objective
function at the variation of the i-th variable. If a move of length α along di gives a
feasible point where the function is reduced enough, the algorithm applies a
linesearch technique di to find the stepsize αk. Otherwise, the algorithm tries the
same operations in the opposite direction �di. If both di and �di are not able to
obtain a sufficient decrease, the stepsize α is decreased. The linesearch technique
does not require information on the slope of the objective function. Note that the
convergence of the algorithm was proved in [16] for minimization of a continuously
differentiable function; however, the same technique is often used to optimize
different types of functions. This approach is considerably faster than the global
strategy; however it is well known that a poor choice of the initial point leads to
poor solutions.

3.2.3 The whole procedure

To simplify thedescriptionof the robust optimization approach,wenowrename the
set of variables κp, κd

� �
as x belonging to a feasible set Fx ¼ lbi ≤ xi ≤ ubi, i ¼ 1,…, nf g

⊂
n (in our case Fx ¼ K and n ¼ 2) and the set of initial conditions ρ,ϕ, θ,ω0,ψð Þ as y

belonging to a feasible set Fy ¼ lbj ≤ yj ≤ ubj, j ¼ 1,…,m
n o

⊂
m (in our case Fy ¼ H

andm ¼ 7, sinceω0 has three components).Moreover,wenowuse g x, yð Þ to denote the
objective function (in our case ts). Its analytical expression is not known; however its
value can be computed via a software simulation.

The upper-level minimization problem min
x∈Fx

g x, yð Þmust be solved by means of a

global strategy applied one time: no starting points can be considered here; hence,
there is no ground for a local strategy. Thus, the procedure will contain an external
loop implementing the global strategy. This loop essentially computes the value of g
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obtained for a numbermaxeval_ext of points x. Let x be one of them. The evaluation
of x requires however to solve one lower-lever maximization problem max

y∈Fy

g x, yð Þ.

Hence, the lower-lever problem should be solved many times, and its
corresponding computation time must be reduced to a few seconds. We can solve it
in three ways: (1) with the global strategy but using a necessarily small maximum
number of function evaluations maxeval_int; (2) with the local strategy, allowing
the same number of function evaluations from a single start; and (3) with the local
strategy, using a multistart from different starting points, still allowing maxeval_int
total function evaluations. This last option allows to use information that happens to
be available in the choice of the starting points. In our case, from the physics of the
problem, we suppose that good solutions are in the vicinity of extremal values of
angular velocity, so we take them as starting points. We report the whole procedure:

Procedure 1: Solve min-max

Input: A g x, yð Þ computable by means of a software simulation for xi ∈ lbi, ubi½ �
with i ¼ 1,…, n and yj ∈ lbj, ubj

� �
with j ¼ 1,…,m.

Output: A robust optimum value x ∗ ¼ arg min
x∈Fx

max
y∈Fy

g x, yð Þ

 �

.

External loop:
Solve the upper-level problem min

x∈Fx

f xð Þ, with f xð Þ ¼ max
y∈Fy

g x, yð Þ by using

DIRECT for maxeval_ext evaluations of f , and return x ∗ .

The k-th evaluation works with point x kð Þ

Internal loop:

Solve the lower-level problem max
y∈Fy

g x kð Þ, y
� �

by using

DIRECT performing maxeval_ int evaluations of g

SDBOX single start performing maxeval_ int evaluations of g

SDBOX multistart with s starting points, performing

maxeval_ int

s
evaluations of g for each of them

8
>>>>>>><

>>>>>>>:

:

4. Computational results for the case of PD-like control

We apply the above approach to solve the numerical example studied in [3].

The inertia matrix of the spacecraft is equal to J ¼ diag 27, 17, 25½ � kgm2; the

saturation level for each magnetic dipole moment is given by m ∗
coils ¼ 10 Am2. The

orbit has an inclination of incl ¼ 87∘ and an altitude of 450 km. The orbital period in
these conditions is about 5609 s. The value Ω of RAAN is 0. Given these values, we

can compute an upper bound κ̂p for κp. Simulation shows that ∥Bi tð Þ∥≥Bmin ¼ 2:4�
10�5 T for the considered orbit; since ∥Bb q, tð Þ∥ ¼ ∥Bi tð Þ∥, it follows that

∥Bb q, tð Þ∥≥Bmin. Assume that the resolution of the attitude sensor is qs ¼ 0:04 in
terms of quaternion component. In this case, an upper bound for κp can be com-

puted by enforcing that each component of the term Bb q, tð Þ � κpqv (see (10)) does

9
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not exceed the saturation limit m ∗
coils ¼ 10 Am2 when Bb q, tð Þ and qv are orthogonal,

∥Bb q, tð Þ∥ ¼ Bmin and ∣qi∣ ¼ qr for one index i∈ 1, 2, 3, and qi ¼ 0 for the other ones.

This is achieved if κp is smaller than m ∗
coils= Bminqr

� �
¼ 1:0417 � 108; thus, we set

κ̂p ¼ 108. Assuming that the attitude rate sensor has a resolution of ωr ¼ 4� 10�4

rad/s, by a parallel argument it follows that an upper bound for κd is given by

m ∗
coils= Bminωrð Þ ¼ 1:0417 � 109; thus, we set κ̂d ¼ 109.

4.1 Fixed initial conditions

Consider an initial state characterized by attitude equal to the target attitude
q0 ¼ q (which corresponds to having ρ ¼ 0 and any value for ϕ and θ) and by the
following initial angular rate:

ω0 ¼ 0:02 0:02 � 0:03½ �T rad=s: (21)

This example corresponds to a spacecraft possessing the desired attitude and no
angular momentum, which received an impact from a small object leading to an
instantaneous change in the spacecraft angular rate. We assign to ψ a random value
over the interval 0, 2π½½ by setting ψ ¼ 0:332 rad.

Gains κp and κd have been found by trial-and-error in [3] as κp ¼ 2� 105 and

κd ¼ 3� 108. The settling time corresponding to these values of the gains is
ts = 4.002 orbital periods, while the vast majority of possible gain values would
produce settling times larger than 10 orbital periods. On the contrary, if we use the
optimization algorithm described in Section 3.2, we obtain the following fixed
initial condition optimal gains after only 32,821 iterations (i.e., 251 s of
computation):

κp ¼ 205761:316872

κd ¼ 99382716:049383
(22)

The corresponding optimal settling time is ts ¼ 1.775 orbital periods. Hence, the
optimization algorithm can provide a significant improvement in convergence
speed.

However, the above gains might become no longer optimal if we assume differ-
ent initial conditions. Consider, for example, the case of initial conditions with the
same attitude q0 ¼ q (i.e., ρ ¼ 0 and any ϕ and θ), the same argument ψ ¼ 0:332
rad, but a different initial angular rate

ω0 ¼ 0:1 0:1 0:1½ �T rad=s: (23)

The above gains yield a settling time ts = 3.562, and they are no longer optimal, as
shown in Section 4.2. Indeed, the optimal values of the gains would need to be
determined for every possible initial condition, which is clearly impossible in prac-
tice. As seen in Section 3.1, we can instead search for the gain values providing the
best performance under the worst initial condition. It has been found that the worst
initial conditions corresponding to gains (22) are

ρ ¼ 0:5, ϕ ¼ 0:0, θ ¼ 2:356194490192345, ψ ¼ 1:570796326794897,

ω0 ¼ �0:1 0:1 0:1½ �T:
(24)
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Under conditions (24), the above values of κp and κd yield a settling time
ts ¼ 4:338.

4.2 Variable initial conditions

We now search for κp and κd using the robust optimization approach. We allow
initial conditions to vary as follows: 0≤ ρ≤ 1, 0≤ϕ≤ 2π, 0≤ θ≤ π, ∣ω01∣ ≤0:1,
∣ω02∣ ≤0:1, ∣ω03∣ ≤0:1, and 0≤ψ ≤ 2π. We allow a maximum of 2,200 function
evaluations in each internal loop, in order to practically solve the problem. Table 1
reports the results of Procedure Solve min-max with maxeval_ext = 10,000 and
maxeval_int = 2200.

When using SDBOX multistart, the starting points are ρ ¼ 0:5, ϕ ¼ π, θ ¼ π=2,
ψ ¼ π, and all the eight combinations of extreme angular velocities

0:1 0:1 0:1½ �T, 0:1 0:1 � 0:1½ �T,…, �0:1 � 0:1 � 0:1½ �T: (25)

These results show that (i) SDBOXmultistart is able to reach the highest value of
the objective ts even with the small number of computations allowed in the internal
loop and (ii) the different results in the solution of the lower-level problems cause a
different evolution of the upper-level search. To understand which among the three
points above is the best choice, we continue the analysis in Table 2. We fix param-
eters κp and κd, and we solve the maximization problem with increased accuracy by
allowing more function evaluations. We do this by means of global strategy, local
multistart strategy (which proved to dominate the single start one), and an exhaus-
tive grid search, which is much slower but used here as reference.

DIRECT + DIRECT DIRECT + SDBOX single start DIRECT + SDBOX multistart

κp 205493.82716049382 203930.04115226338 209581.61865569273

κd 117283950.61728397 154320987.65432101 117283950.61728397

ts 3.359 3.142 3.742

ext eval 10,641 11,127 10,011

Time (s) 172,242.6 57,255.1 89,640.8

Table 1.
Results of Solve min-max with maxiter_ext = 10,000 and maxiter_int = 2200.

Gains DIRECT SDBOX multistart Grid search

eval = 40,000 eval = 40,000 (5000 � 8) eval = 78,125 (57)

κp ¼ 205493:82716049382 3.876 3.872 3.990

κd ¼ 117283950:61728397

κp ¼ 203930:04115226338 4.223 4.149 4.362

κd ¼ 154320987:65432101

κp ¼ 209581:61865569273 3.895 3.744 4.016

κd ¼ 117283950:61728397

Table 2.
Accurate evaluation of the previously obtained gains.
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This analysis shows that the first point has the smallest maximum settling time.
In conclusion, the robust optimal solution is:

κp ¼ 205493:82716049382, κd ¼ 117283950:61728397: (26)

To evaluate the performance of the above solution (26), we try it with the three
different initial conditions reported above. If the initial state is (21), the settling
time becomes ts ¼ 1:945 (instead of 1.775). Hence, there is a small worsening.
Clearly, no improvement was possible because gains (22) are optimal for state (21).
If the initial state is given by (23), we obtain ts ¼ 2:958 (instead of 3.562). Hence,
there is an improvement. This could be expected, though not guaranteed, since
gains (22) have a higher worst-case result than gains (26).

Finally, if the initial state is given by (24), then we obtain ts ¼ 3:370 (instead of
4.338). Hence, there is a substantial improvement. Indeed, this was certain, since
gains (26) have a worst-case result considerably better than gains (22). In conclu-
sion, the gains computed with the proposed robust optimization approach offer
improvements in the difficult situations. Moreover, even if they may be suboptimal
in the easier cases, the balance appears beneficial.

5. Determination of optimal parameters for the case of attitude-only
feedback control

As observed, the objective function ts is not continuous with respect to the
parameters, and this introduces numerical difficulties in solving the optimization
problem. Thus, one can consider an alternative objective function named integral
time absolute error (ITAE) [8], indicated by Γ:

Γ ¼
ðTf

0
t∥qv tð Þ∥dt (27)

where ∥ � ∥ represents the Euclidean norm and Tf is a time which is selected large
enough. The ITAE carries the benefit of being continuous with respect to the design
parameters. Continuous differentiability cannot be guaranteed. However, since

q,ω, δð Þ ¼ �q, 0, 1
β
q

� 	
are equilibria of the closed-loop system (6) and (11), it is

very unlikely that qv becomes 0 0 0½ �T at some finite time. Note that this would
make Γ not continuously differentiable with respect to the design parameters

because ∥qv∥ is not continuously differentiable at qv ¼ 0 0 0½ �T.
Minimizing the ITAE is known to lead to nearly optimal solutions with regard to

the settling time. In fact, in very simple situations, it is shown analytically that
minimizing the ITAE leads to solutions that minimize the settling time. In more
complex scenarios, it was numerically shown that minimizing the ITAE gives solu-
tions that are very close to the optimal ones in terms of settling time (see [8]).

By introducing physically reasonable upper bounds κ̂1, κ̂2, α̂, β̂ for the design
parameters, we obtain the feasible set K ¼ f κ1, κ2, α, βð Þ : 0≤ κ1 ≤ κ̂1,

0≤ κ2 ≤ κ̂2, 0≤ α≤ α̂, 0≤ β≤ β̂g. Now, our optimization problem is:

min
κ1, κ2,α, βð Þ∈K

Γ: (28)

Given specific initial conditions of the spacecraft, problem (28) can be solved by
a suitable use of derivative-free techniques. However, if the initial conditions of the
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spacecraft change, that solution might be no longer optimal. Since several different
initial conditions for the spacecraft are possible in practical situations, a robust
solution is an optimal solution to problem (28) under the worst spacecraft initial
conditions. Such a worst-case optimization is widely employed in such scenarios,
because by adopting the latter approach, we can give an efficient bound on the
objective value in spite of the uncertainty on the spacecraft initial conditions.
However, the worst initial conditions for the spacecraft cannot be determined a
priori, since they depend on the selected values of κ1, κ2, α, β. The initial conditions
of the spacecraft are given by q0 ¼ q 0ð Þ, ω0 ¼ ω 0ð Þ, 0≤ψ < 2π, and 0≤ α0 < 2π.
We chose the set of their possible values as:

S ¼ q0,ω0,ψ , α0
� �

: ∥q0v∥≤ 1, q04 ¼ 1� qT0vq0v
� �1=2

,
n

jω01j≤ ω̂01, ω02j≤ ω̂02j ω03, ≤ ^ω03j 0≤ψ < 2πj 0≤ α0 < 2π,
o
:

(29)

Note that S includes all possible initial attitudes, all possible right ascensions of
the Earth magnetic dipole at time t ¼ 0, and all possible initial arguments ψ for the
spacecraft. It only constrains the amplitude of the initial angular velocity. The
minimization of Γ under the worst spacecraft initial conditions is equivalent to
formulating the following min-max problem:

min
κ1, κ2, α, βð Þ∈K

max
q0,ω0,ψ, α0ð Þ∈ S

Γ: (30)

To apply the optimization techniques, we convert the feasible set of each opti-
mization problem into a hyperrectangle by expressing the set ∥q0v∥≤ 1 in spherical
coordinates ρ,ϕ, θð Þ:

S ¼ q0,ω0,ψ , α0
� �

: q01 ¼ ρ sin θ cosϕ, q02 ¼ ρ sin θ sinϕ, q03 ¼ ρ cos θ,
�

q40 ¼ 1� qT0vq0v
� �1=2

, 0≤ ρ≤ 1, 0≤ϕ< 2π, 0≤ θ≤ π,

ω01j≤ ω̂01j ω02, ≤ ω̂02j ω03j≤ ω̂03, 0≤ψ < 2πj 0≤α0 < 2πjg:
(31)

The dependence of Γ on q0 can now be expressed as dependence on the variables
ρ,ϕ, θð Þ. Consequently, after having introduced the hyperrectangle

H ¼ ρ,ϕ, θ,ω0,ψ , α0ð Þ : 0≤ ρ≤ 1, 0≤ϕ< 2π, 0≤ θ≤ π,f
jω01j≤ ω̂01, ω02j≤ ω̂02j ω03, ≤ ω̂03j 0≤ψ < 2πj 0≤ α0 < 2π, g,

(32)

the min-max problem (30) can be equivalently reformulated as follows:

min
κ1, κ2,α, βð Þ∈K

max
ρ,ϕ, θ,ω0,ψ,α0ð Þ∈H

Γ: (33)

5.1 Combining global and local search

To simplify the description of the proposed approach, we now rename
the set of design parameters κ1, κ2, α, βð Þ as x belonging to a feasible set Fx ¼
lbxi ≤ xi ≤ ubxi, i ¼ 1,…, nf g⊂

n (in our case Fx ¼ K and n ¼ 4) and the

set of initial conditions ρ,ϕ, θ,ω0,ψ , α0ð Þ as y belonging to a feasible set Fy ¼

lbyj ≤ yj ≤ ubyj, j ¼ 1,…,m
n o

⊂
m (in our case Fy ¼ H and m ¼ 8, since ω0
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possesses three components). Indicate by f x, yð Þ the function giving the objective
value (in our case Γ). When y is fixed (the initial conditions are assigned), we
simply write y in it; when x is fixed (the design parameters are assigned), we write x
in it. Problem (28) can be written as

min
x∈Fx

f x, yð Þ (34)

and may be tackled by a global derivative-free optimization algorithm of the
type of DIRECT [7], already described in Section 3. Those methods work without
the need for analytically writing the objective function; they only need to compute
it in a number of points by using simulations. Due to the so-called everywhere dense
property, such an algorithm reaches a global optimum if the sampling is dense
enough. However, a dense search may require that the function is evaluated
many times.

In our case, all lbxi ¼ 0, since design parameters have to be greater than or
equal to zero. Values ubxi can typically be set to very large values based on some
physical considerations. For instance, κ̂1 can easily become equal to 109, since its
maximum feasible value can be determined knowing the saturation level of the
coil moments, the minimum amplitude of the geomagnetic field, and the attitude
sensor resolution. However, when considering these values, a sufficiently dense
exploration of the feasible set Fx requires a number of function evaluations such
that the corresponding run time is impracticable. On the other hand, a sampling
that uses a practically sustainable number of function evaluations does not produce
solutions substantially better than random solutions. The presence of a large num-
ber of local minima makes the optimization task particularly difficult. In such
conditions, the evaluation of the generic Hh using only one point may be very
inaccurate at the first iterations of the algorithm, because the dimension of the
hyperrectangles is too large. By proceeding with the iterations, the hyperrectangles
becomes smaller, but their number, and consequently the run time, increases
exceedingly.

On the other hand, if a fast but effective probing technique to early identify the
“promising” Hh would be available, then one could explore densely only such
promising regions in reasonable times. Hence, a probing technique based on the use
of the local derivative-free optimization algorithm SDBOX was proposed in [6].
This algorithm was originally presented in [16] as a globally convergent algorithm
for the minimization of a continuously differentiable function, but in practice it can
be employed to optimize different types of functions as a good trade-off between
efficiency and convergence properties. Most interestingly for our case, given an
initial guess κ01, κ

0
2, α

0, β0
� �

¼ x0, this algorithm should be able to find good solutions
in short times in the neighborhood of x0. We describe below a solution approach
combining these global and local strategies to solve problem (28).

Procedure 2: Solve min combining global and local search

Input: A vector y∈ Fy and a function f x, yð Þ computable by means of a software
simulation for any x∈Fx. Values for the parameters p, maxeval,
maxsubsets, maxiter, maxpost.

Output: A solution x ∗ ∗ approximating one vector in argmin
x∈Fx

f x, yð Þ.

1.Normalize and grid partition the whole feasible set Fx into a collection of

hyperrectangles H 1ð Þ ¼ H1,…,Hp

� 

similarly to the initial phase of

DIRECT.
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2.For each Hh ∈H 1ð Þ, compute the value f h of the solution obtained by
maxeval iterations of SDBOX in Hh starting from its central point. This is an
upper bound on the value of the best solution in Hh and constitutes our
“evaluation” of Hh.

3.Take a number maxsubsets of hyperrectangles corresponding to the smallest
of the above f h values.

4.Take the region given by the union of those subsets, and “convexify” it by
including also the additional subsets required to convert it into an
hyperrectangle Fx

∗ .

5.Switch to DIRECT algorithm to continue the search in Fx
∗ allowing maxiter

function evaluations. This search can now be dense using reasonable time,
and it gives a solution x ∗ .

6.Try to improve x ∗ by using maxpost iterations of a local search method,
finally obtaining a solution x ∗ ∗ to problem (28).

Depending on the practical case, the number of hyperrectangles p in the
partitioning phase (step 1) and the number of iterations maxeval in the evaluation
phase (step 2) must be selected in order to allow a fixed computational time to the
evaluation phase. Indeed, we search for a compromise between speed and effec-
tiveness at this stage. Those parameters must be tuned by also considering that the
accuracy of the evaluation of each Hh depends not only on maxeval but also on the
span of each Hh, which in turn depends on p. However, there is no need that all the

hyperrectangles in the initial partition H 1ð Þ have the same size. Their size could be
growing with the absolute values of the coordinates so that p is kept smaller. The
number maxsubsets in the selection phase (step 3) must be chosen so that Fx

∗

remains much smaller than Fx; otherwise the benefits of the proposed procedure is
reduced. The number of function evaluations maxiter in the standard DIRECT
phase (step 5) is chosen so that the search in Fx

∗ is dense enough. This is now
possible because of the size reduction in Fx. The post-optimization phase (step 6)
can be executed with SDBOX or with CS-DFN [17], which is another linesearch-
based method which uses a dense set of search directions and not only the coordi-
nates ones. CS-DFN does not require f to be continuously differentiable; however, it
could be more computationally expensive on smooth problems. For example, in our
case, Γ is at least continuous, and even if there are no theoretical arguments to
ensure its continuous differentiability, in practice this property may often occur. In
conclusion, we can choose between SDBOX and CS-DFN depending on the pres-
ence or absence of the continuous differentiability of f , and if we set maxpost to be
sufficiently large, we obtain a solution x ∗ ∗ which satisfies necessary conditions for
a local optimum. Moreover, x ∗ ∗ should approximate one of the global optima,
because, given the dense search in F ∗ , it should provide one of the global minima of
F ∗ , and the regions of FfF ∗ , which were less “promising,” should not contain
better solutions. Note that the accuracy and the properties of the evaluation phase
can be modified, depending on the computational request of the practical case,
either by modifying the number of iterations or even by employing an alternative
evaluation algorithm, still keeping the same algorithmic framework.

On the other hand, problem (33) is made of an upper-level minimization prob-
lem and a lower-level maximization one. By changing the names of the set of vari-
ables as explained at the beginning of the section, the problem becomes
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min
x∈Fx

max
y∈Fy

f x, yð Þ

 �

¼ min
x∈Fx

g xð Þ (35)

with function g such that its value at the generic point x is given by the solution
of the lower-level problem:

g xð Þ ¼ max
y∈Fy

f x, yð Þ: (36)

The upper-level problem is solved through an external loop applying the com-
bination of local and global search described as Procedure 2. This loop computes,
using a parameter maxeval_ext, to define the overall maximum number of function
evaluations and the value of g corresponding to different points of Fx. Let x be one
of them; then the evaluation of g xð Þ requires the solution of one lower-level maxi-
mization problem max

y∈Fy

f x, yð Þ. Thus, the lower-level problem must be solved up to

maxeval_ext times. Consequently, solving it in a few seconds is crucial.
For this problem, the global strategy either would perform a very poor search or

would need excessive time. Therefore, the local strategy appears to be the only
feasible choice for the lower-level problem. However, taking as initial guess the
center of the feasible set Fy does not lead to good solutions of the maximization
problem within the limited available time.

In this case, based on the problem physics, it can be assumed that good solutions
of the maximization problem are in the neighborhood of extreme values of angular
velocity. Therefore, we solve the lower-level problem in a nested loop by using a local
search with multistart. We take as initial guesses the eight combinations of extreme
values for the three components of the angular velocity �ω̂01, �ω̂02, and �ω̂03.
This can be done with SDBOX or CS-DFN, depending on the presence or absence of
the continuous differentiability of f. In our case, Γ is at least continuous also with
regard to the initial conditions of the spacecraft. Again, there are no theoretical
arguments to ensure its continuous differentiability; however in practice this may
often happen. For each solution of the lower-level problem, we allow a necessarily
small maximum number of function evaluations maxeval_int. In conclusion, this
produces a solution x ∗

R for problem (33). We report here the whole procedure:

Procedure 3: Solve min-max combining global and local search

Input: A f x, yð Þ computable by means of a software simulation for any x∈ Fx

and y∈Fy. Values for the parameters maxeval_ext, maxeval_int, s.

Output: A robust solution x ∗
R approximating one vector in

argmin
x∈Fx

max
y∈Fy

f x, yð Þ

 �

.

External loop:
Solve the upper-level problem min

x∈Fx

g xð Þ, with g xð Þ ¼ max
y∈Fy

f x, yð Þ ∀x∈ Fx,

by using Procedure 2 withmaxeval_ext total evaluations of g, and return x ∗
R .

Given x, the evaluation of g xð Þ is performed by the internal loop.

Internal loop:
Take x, and solve the lower-level problem max

y∈Fy

f x, yð Þ

by using multistart local search with s starting points,

performing maxeval_ int
s evaluations of f for each of them.
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6. Computational results for the case of attitude-only feedback control

We apply the above method to solve the numerical example presented in [3].
The spacecraft inertia matrix is J ¼ diag 27, 17, 25½ � kg m2, and the saturation

level for each dipole moment is m ∗
coils ¼ 10A m2. The orbit inclination is incl ¼ 87∘,

and the orbit altitude is 450 km; the right ascension of the ascending node Ω is equal

to 0. Upper bounds κ̂1, κ̂2, α̂, β̂ are selected as 109, 109, 104, 10�3
� �

.
At the beginning we consider the easier situation of known spacecraft initial

conditions, and we present, in Section 6.1, the results of Procedure 2 in solving this
problem. We report also a comparison with the classical DIRECT method. Subse-
quently, in Section 6.2, the more realistic case of a spacecraft having variable initial
conditions is considered.

6.1 Fixed initial conditions

We consider here the case of the above described spacecraft with known fixed
initial conditions; thus we deal with problem (28) using the following values:

ρ,ϕ, θ,ω0,ψ , α0ð Þ ¼ 0, 0, 0, 0:02, 0:02,�0:03, 0:9416, 4:5392ð Þ: (37)

The best solution obtained in [3] by trial and error search achieves a value of

ITAE=3:7 � 107, while the vast majority of the solutions have the ITAE limit value

of about 1:2� 109. This upper limit is related to the value of Tf in the definition of
ITAE (27), which is chosen equal to 56,009 s corresponding to 10 orbital periods.
Practically this means that when we reach the limit value of ITAE, the
corresponding settling time would be roughly larger than 10 orbital periods. Then,
that solution is not an attractive one, and we are not interested in determining it
with further precision. Even if this choice causes a flattening in the values of ITAE,
the use of such a finite Tf is necessary to run the simulations that compute the ITAE
in practice.

Table 3 reports two solution attempts carried on with the standard DIRECT
algorithm on the whole feasible set K with, respectively, 50,000 and 100,000
iterations, followed by 1000 iterations of local search refinement using CS-DFN. In
spite of the significant computational effort (the running times of these experi-
ments, respectively, correspond to about 3 days and 1 week), the obtained solutions

have values of ITAE greater than 1:1� 109 that is not very different from the ITAE
value of a random solution. Evidently, the search was not dense enough to explore

Algorithm Solution Obj. value Time

DIRECT 50,000 + CS-DFN 1000 κ1 = 913405022.139

κ2 = 195426826.870

α = 9794.170752422

β = 0.000000000000

1,142,470,478.101 262,000 + 5460 s

DIRECT 100,000 + CS-DFN 1000 κ1 = 500798437.500

κ2 = 159788790.177

α = 9996.679486501

β = 0.000000000003

1,129,234,873.703 565,200 + 5040 s

Procedure 2: Combining global and

local strategies

κ1 = 246494.579020

κ2 = 233333315.349

α = 92.5925925927

β = 0.000129629629

8,021,573.4077 201,500 + 15 + 4 s

Table 3.
Comparison of Procedure 2 and standard DIRECT with 50,000 or 100,000 iterations.
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the feasible set as it would be needed. Other similar attempts with standard DIRECT
do not achieve better results. The same table also reports Procedure 2 of Section 5.1.
As observable, this procedure is able to reach a much better solution, with a value of

ITAE of about 8� 106. Note that this solution is also considerably better than the
best solution obtained by trial and error in days of work.

The promising region of the feasible set K has been identified with the previ-
ously described probing technique. The values of maxelav and p are selected so that
this step is executed in reasonable time, according to the following considerations.
One single function evaluation takes a time which is very variable and goes from
fractions of seconds to several tenths of seconds; but a very rough average function
evaluation time can be assessed as equal to 1 s. By selecting maxeval = 10, the
evaluation of each hyperrectangle would require roughly 10 s. Thus, to finish within
2 or 3 days of computation, we select p ¼ 40, 960, which is obtained by making 64
partitions on the domain of κ1, 64 partitions on the domain of κ2, and 10 partitions
on the domain of α. The intervals corresponding to these partitions do not have the
same size; they increase with the absolute value of the coordinates. The following
hyperrectangle is obtained as convexification of the collection of the most promis-
ing regions, as in Step 4 of Procedure 2:

K ∗ ¼ κ1, κ2, α, βð Þ : 200000≤ κ1 ≤ 260000, 200000000f

≤ κ2 ≤ 310000000, 0≤ α≤ 100, 0≤ β≤0:001g:
(38)

The determination of K ∗ actually needs 409,600 iterations of SDBOX and
201,500 s of computations (about 56 hours). Note that the time necessary for each
function evaluation is generally much faster in K ∗ , where it can be less than 0.01 s
than in the rest of K. Now, by applying standard DIRECT strategy over the feasible
set K ∗ , as in Step 5 of Procedure 2, after 3007 iterations and only 15 s, we obtain the
solution:

κ1 ¼ 200781:893004, κ2 ¼ 226268861:454, α ¼ 39:3004115226, β ¼ 0:0005 (39)

whose value is ITAE = 9.072�106. Note that the volume of the set K* is consid-
erably smaller than that of K: it is only 1=15151515:15 of the volume of K. To better
appreciate the difference, consider that an exploration of K with the same degree of
density used on K* would require 15� 15, 151, 515:15 ¼ 227, 272, 727:25 s that
roughly corresponds to more than 7 years, if the simulation times on K were the
same as on K*. Since they are often much slower, the time needed would be even
more.

Solution (39) can be further refined by using the local search strategy, as in Step
6 of Procedure 2. By performing 1000 iterations of the local search CS-DFN, which
can move along a dense set of directions [17], the solution (39) is improved in 4 s to

ITAE = 8:021� 106 with the solution:

κ1 ¼ 246494:579020, κ2 ¼ 233333315:349, α ¼ 92:5925925927,

β ¼ 0:000129629629:
(40)

We also tested in this post-optimization phase the local search SDBOX, which
moves only along the coordinate directions [16]. With 5000 additional iterations of
SDBOX that requires 11 s, solution (39) is improved to the following new solution,

which has ITAE = 9.062�106
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κ1 ¼ 200781:893004, κ2 ¼ 226268812:597, α ¼ 39:3004115226,

β ¼ 0:000500000024:
(41)

Solution (40) corresponds to x ∗ ∗ of Procedure 2. Note that this is actually an
approximation of a theoretical optimal solution. Since there is probably no
optimal solutions available for comparison, we evaluate it by using the following
considerations.

The settling time (see (12) and (13)) corresponding to (40) is computed as
ts ¼ 6280 s. Then, we search for a lower bound ts on the minimum settling time of

the considered case, through physical considerations. The initial conditions (37)
correspond to having the spacecraft with the desired attitude but with a nonzero

initial angular velocity ω 0ð Þ ¼ 0:02 0:02 � 0:03½ �T . Consider now simple rotations
about each single body axis, and for each simple rotation, compute lower bounds tsx,

tsy, tsz of the times necessary to move to the desired attitude with final zero angular

rate. Then, a rough lower bound for the settling time is given by

ts ¼ max tsx, tsy, tsz
n o

. Value tsx can be computed using the equation which describes

rotation about the x body axis, which is given by

€ϕ ¼ JxTx (42)

where ϕ is the roll angle. The amplitude of torque Tx is limited by an upper limit
T ∗ , which can be found using (4). Indeed, numerical simulations show that

∥Bi∥≤B ∗ ¼ 5 � 10�5 T. Since ∥Bb∥ ¼ ∥Bi∥ (see (5)), then ∥Bb∥≤B ∗ . Moreover, each

component of mcoils is bounded by m ∗
coils ¼ 10 A m2 and then ∥mcoils∥≤

ffiffiffi
3

p
m ∗

coils.

Thus, T ∗ ¼
ffiffiffi
3

p
B ∗ m ∗

coils ¼ 5
ffiffiffi
3

p
� 10�4 N m. Next, the minimum time to bring the

state of system (42) subject to the constraint ∣Tx∣ ≤T ∗ , from the initial state ϕ ¼
0 _ϕ ¼ ωx 0ð Þ to the final state ϕ ¼ 0 _ϕ ¼ 0, is given by (see [18], Section 7.2)

tsx ¼
Jx
T ∗ 1þ

ffiffiffi
2

p� 	
∣ωx 0ð Þ∣ ¼ 1505 s: (43)

Similar considerations hold for rotations about y and z axes leading to

tsy ¼
Jy
T ∗ 1þ

ffiffiffi
2

p� 	
∣ωy 0ð Þ∣ ¼ 948 s:

tsz ¼ Jz
T ∗ 1þ

ffiffiffi
2

p� 	
∣ωz 0ð Þ∣ ¼ 2091 s:

(44)

Then, ts ¼ max tsx, tsy, tsz
n o

¼ 2091 s. Therefore, solution (40) takes just about

70 min more than the minimum time necessary to rotate the spacecraft about a
single body axis at the maximum speed allowed by the available magnetorquers so
that it reaches the desired rest position. Thus, solution (40) does not appear to be
too far from an optimal solution. Note also that the above computed bound is very
conservative, in the sense that the minimum spacecraft evolution time surely can-
not require less, though it could very easily require more.

6.2 Variable initial conditions

Now, problem (33) is solved by employing the above described Procedure 3. We
select 20 partitions on the domain of κ1, 20 on that of κ2, and 10 on that of α. We
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therefore perform 40,000 evaluations of g xð Þ for the identification of the new K ∗

and then another 3000 + 1000 evaluations of g xð Þ to solve the problem on this K ∗ ,
for a total of maxeval_ ext ¼ 44, 000.

For the internal loop, as described in Procedure 3, we employ as initial guesses
the eight combinations of extreme values for the three components of the angular
velocity �ω̂01, �ω̂02, and �ω̂03. We allow 64 iterations per point, for a total of 512
iterations per single lower-level problem, which requires slightly less than 3 s in
average within K ∗ . Run times are greater in the rest of K; however, we try to keep
them under control by allowing to exit the internal loop when the value of f x, yð Þ
is large enough to reach the limit value for ITAE of about 1:2� 109. Then, the
whole nested loop procedure provides the following solution in about 342,000 s
(about 95 h)

κ1 ¼ 227777:777778, κ2 ¼ 294444444:444,

α ¼ 83:3333333333, β ¼ 0:00061095869532:
(45)

The ITAE value of this solution is 2:176� 107 for the initial conditions (37)

instead of ITAE ¼ 8:021� 106 of solution (40). However, this solution is a robust
solution: by varying the initial conditions in H, the worst value that can be obtained

is ITAE ¼ 1:357 � 108 that is still considerably better than average solutions, whose

vast majority has the limit value for ITAE of 1:2� 109. As a comparison, the worst

value achievable by varying the initial conditions in H for solution (40) is ITAE ¼
1:103� 109 that is very close to the limit value for ITAE. Indeed, the above limit

value for ITAE is very easily obtainable for almost any generic tuple κ1, κ2, α, β
� �

by
simply searching for difficult initial conditions. Note also that this value of ITAE is
obtained in some attempts in solving problem (33) by using standard DIRECT
algorithm on the whole feasible set K allowing no more than 1 day of computation.
More time-consuming attempts in solving problem (33) using standard DIRECT
algorithm cannot be practically accomplished. This holds for the following motiva-
tions. In the case of fixed initial conditions (Section 6.1), 1 week of computation was
not enough to explore the search space. In this case, there is an internal loop
requiring 512 function evaluations instead of one single function evaluation. Hence,
any serious attempt would need to allocate months of computation and would
obtain results probably similar to those obtained in Section 6.1.

7. Conclusions

The attitude of a spacecraft can be controlled using only magnetorquers by
means of a PD-like control or an attitude feedback. However, for both control laws,
design parameters must be assigned. These parameters may be conveniently
selected so that they minimize the spacecraft settling time, or an indirect measure of
it, either for fixed initial conditions of the spacecraft or under the worst initial
conditions. This latter choice gives an upper bound on the minimum value of the
objective obtainable by varying the initial conditions. This chapter has described
solution approaches based on an innovative use of global and local derivative-free
optimization techniques to practically solve these computationally demanding
problems. This approach is able to provide robust solutions to the considered
application in reasonable times.
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