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Chapter

A Numerical Approach to Solving
an Inverse Heat Conduction
Problem Using the Levenberg-
Marquardt Algorithm
Tao Min, Xing Chen, Yao Sun and Qiang Huang

Abstract

This chapter is intended to provide a numerical algorithm involving the com-
bined use of the Levenberg-Marquardt algorithm and the Galerkin finite element
method for estimating the diffusion coefficient in an inverse heat conduction
problem (IHCP). In the present study, the functional form of the diffusion coeffi-
cient is an unknown priori. The unknown diffusion coefficient is approximated by
the polynomial form and the present numerical algorithm is employed to find the
solution. Numerical experiments are presented to show the efficiency of the
proposed method.

Keywords: parabolic equation, inverse problem, Levenberg-Marquardt

1. Introduction

The numerical solution of the inverse heat conduction problem (IHCP) requires
to determine diffusion coefficient from an additional information. Inverse heat
conduction problems have many applications in various branches of science and
engineering, mechanical and chemical engineers, mathematicians and specialists in
many other sciences branches are interested in inverse problems, each with differ-
ent application in mind [1–15].

In this work, we propose an algorithm for numerical solving an inverse heat
conduction problem. The algorithm is based on the Galerkin finite element method
and Levenberg-Marquardt algorithm [16–17] in conjunction with the least-squares
scheme. It is assumed that no prior information is available on the functional form
of the unknown diffusion coefficient in the present study, thus, it is classified as the
function estimation in inverse calculation. Run the numerical algorithm to solve the
unknown diffusion coefficient which is approximated by the polynomial form. The
Levenberg-Marquardt optimization is adopted to modify the estimated values.

The plan of this paper is as follows: in Section 2, we formulate a one-dimensional
IHCP. In Section 3, the numerical algorithm is derived. Calculation of sensitivity
coefficients will be discussed in Section 4. In order to discuss on some numerical
aspects, two examples are given in Section 5. Section 6 ends this paper with a brief
discussion on some numerical aspects.
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2. Description of the problem

The mathematical formulation of a one-dimensional heat conduction problem is
given as follows:

∂u

∂t
¼

∂

∂x
q xð Þ

∂u

∂x

� �

þ f x, tð Þ, x, tð Þ∈ 0, Lð Þ � 0, Tð �, (1)

with the initial condition

u x, 0ð Þ ¼ u0 xð Þ, 0≤ x≤L, (2)

and Dirichlet boundary conditions

u 0, tð Þ ¼ g1 tð Þ, 0≤ t≤T, (3)

u 1, tð Þ ¼ g2 tð Þ, 0≤ t≤T, (4)

where f x, tð Þ, u0 xð Þ, g1 tð Þ, g2 tð Þ and q xð Þ are continuous known functions. We
consider the problem (1)–(4) as a direct problem. As we all know, if u0 xð Þ, g1 tð Þ,
g2 tð Þ are continuous functions and q xð Þ is known, the problem (1)–(4) has a unique
solution.

For the inverse problem, the diffusion coefficient q xð Þ is regarded as being
unknown. In addition, an overspecified condition is also considered available. To
estimate the unknown coefficient q xð Þ, the additional information on the boundary
x ¼ x0, 0< x0 <L is required. Let the u x, tð Þ taken at x ¼ x0 over the time period
0, T½ � be denoted by

u x0, tð Þ ¼ g tð Þ 0≤ t≤T: (5)

It is evident that for an unknown function q xð Þ, the problem (1)–(4) is under-
determined and we are forced to impose additional information (5) to provide a
unique solution pair u x, tð Þ, q xð Þð Þ to the inverse problem (1)–(5).

We note that the measured overspecified condition u x0, tð Þ ¼ g tð Þ should con-
tain measurement errors. Therefore the inverse problem can be stated as follows: by
utilizing the above-mentioned measured data, estimate the unknown function q xð Þ.

In this work the polynomial form is proposed for the unknown function q xð Þ
before performing the inverse calculation. Therefore q xð Þ approximated as

q xð Þ≈ ^q xð Þ ¼ p1 þ p2xþ p3x
2 þ⋯þ pmþ1x

m, (6)

where p1, p2,⋯, pmþ1 are constants which remain to be determined simulta-
neously. The unknown coefficients p1, p2,⋯, pmþ1 can be determined by using least
squares method. The error in the estimate

F p1, p2,…, pmþ1

� �

¼
X

n

i¼1

u x0, ti, p1, p2,…, pmþ1

� �

� g tið Þ
� �2, (7)

is to be minimized. Here, u x0, ti, p1, p2,…, pmþ1

� �

are the calculated results.
These quantities are determined from the solution of the direct problem which is
given previously by using an approximated ^q xð Þ for the exact q xð Þ. The estimated
values of p j, j ¼ 1, 2,⋯,mþ 1 are determined until the value of F p1, p2,…, pmþ1

� �

is
minimum. Such a norm can be written as
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F Pð Þ ¼ U Pð Þ‐G½ �T U Pð Þ‐G½ �, (8)

where PT ¼ p1, p2,⋯, pmþ1

� �

denotes the vector of unknown parameters and the

superscript T above denotes transpose. The vector U Pð Þ‐G½ �T is given by

U Pð Þ‐G½ �T ¼ u x0, t1,pð Þ � g t1ð Þ, u x0, t2,pÞ � g t2ð Þ,⋯, u x0, tn,pÞ � g tnð Þð �:ð½ (9)

F Pð Þ is real-valued bounded function defined on a closed bounded domain
D⊂Rmþ1. The function F Pð Þ may have many local minimum in D, but it has only
one global minimum. When F Pð Þ and D have some attractive properties, for
instance, F Pð Þ is a differentiable concave function and D is a convex region, then a
local maximum and problem can be solved explicitly by mathematical program-
ming methods.

3. Overview of the Levenberg-Marquardt method

The Levenberg-Marquardt method, originally devised for application to
nonlinear parameter estimation problems, has also been successfully applied to the
solution of linear ill-conditioned problems. Such a method was first derived by
Levenberg (1944) by modifying the ordinary least-squares norm. Later Marquardt
(1963) derived basically the same technique by using a different approach.
Marquardt’s intention was to obtain a method that would tend to the Gauss method
in the neighborhood of the minimum of the ordinary least-squares norm, and would
tend to the steepest descent method in the neighborhood of the initial guess used for
the iterative procedure.

To minimize the least squares norm (8), we need to equate to zero the derivatives
of F Pð Þ with respect to each of the unknown parameters p1, p2,⋯, pmþ1

� �

, that is

∂F Pð Þ

∂p1
¼

∂F Pð Þ

∂p2
¼ ⋯ ¼

∂F pð Þ

∂pmþ1
¼ 0: (10)

Let us introduce the sensitivity or Jacobian matrix, as follows:

J Pð Þ ¼
∂UT Pð Þ

∂P

� �T

¼

up1 x0, t1,pð Þ up2 x0, t1,pð Þ ⋯ upmþ1
x0, t1,pð Þ

up1 x0, t2,pð Þ up2 x0, t2,pð Þ ⋯ upmþ1
x0, t2,pð Þ

⋯

up1 x0, tn,pð Þ up2 x0, tn,pð Þ ⋯ upmþ1
x0, tn,pð Þ

2

6

6

6

4

3

7

7

7

5

, (11)

or Jij ¼ up j
x0, ti,pð Þ ¼

∂u x0, ti,pð Þ

∂p j

, i ¼ 1, 2,…n, j ¼ 1, 2,…mþ 1: (12)

The elements of the sensitivity matrix are called the sensitivity coefficients, the
results of differentiation (10) can be written down as follows:

�2JT Pð Þ U Pð Þ �G½ � ¼ 0: (13)

For linear inverse problem the sensitivity matrix is not a function of the
unknown parameters. The Eq. (13) can be solved then in explicit form:

P ¼ JTJ
� �

‐1
JTG: (14)
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In the case of a nonlinear inverse problem, the matrix J has some functional
dependence on the vector p. The solution of Eq. (13) requires an iterative proce-
dure, which is obtained by linearizing the vector U Pð Þ with a Taylor series expan-
sion around the current solution at iteration k. Such a linearization is given by

U Pð Þ ¼ U Pk
� �

þ Jk P‐Pk
� �

, (15)

where U Pk
� �

and Jk are the estimated temperatures and the sensitivity matrix
evaluated at iteration k, respectively. Eq. (15) is substituted into (14) and the
resulting expression is rearranged to yield the following iterative procedure to
obtain the vector of unknown parameters P:

Pkþ1 ¼ Pk þ Jk
� �T

Jk
h i

‐1
Jk
� �T

G‐U Pk
� �� �

: (16)

The iterative procedure given by Eq. (16) is called the Gauss method. Such
method is actually an approximation for the Newton (or Newton-Raphson)
method. We note that Eq. (14), as well as the implementation of the iterative
procedure given by Eq. (16), require the matrix JTJ to be nonsingular, or

JTJ
�

�

�

� 6¼ 0, (17)

where �j j is the determinant.
Formula (17) gives the so called identifiability condition, that is, if the determi-

nant of JTJ is zero, or even very small, the parameters p j, for j ¼ 1, 2,⋯,mþ 1,
cannot be determined by using the iterative procedure of Eq. (16).

Problems satisfying JTJ
�

�

�

�≈0 are denoted ill-conditioned. Inverse heat transfer
problems are generally very ill-conditioned, especially near the initial guess used for
the unknown parameters, creating difficulties in the application of Eqs. (14) or (16).
The Levenberg-Marquardt method alleviates such difficulties by utilizing an itera-
tive procedure in the form:

Pkþ1 ¼ Pk þ Jk
� �T

Jk þ μkΩk
h i

‐1
Jk
� �T

G‐U Pk
� �� �

, (18)

where μk is a positive scalar named damping parameter and Ωk is a diagonal
matrix.

The purpose of the matrix term μkΩk is to damp oscillations and instabilities due
to the ill-conditioned character of the problem, by making its components large as
compared to those of JTJ if necessary. μk is made large in the beginning of the
iterations, since the problem is generally ill-conditioned in the region around the
initial guess used for iterative procedure, which can be quite far from the exact
parameters. With such an approach, the matrix JTJ is not required to be non-
singular in the beginning of iterations and the Levenberg-Marquardt method tends
to the steepest descent method, that is, a very small step is taken in the negative
gradient direction. The parameter μk is then gradually reduced as the iteration
procedure advances to the solution of the parameter estimation problem, and then
the Levenberg-Marquardt method tends to the Gauss method given by (16). The
following criteria were suggested in literature [13] to stop the iterative procedure of
the Levenberg-Marquardt method given by Eq. (18):

F pkþ1� �

< ε1, (19)

4
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Jk
� �

G‐U pk
� �� �

	

	

	

	< ε2, (20)

pkþ1
‐pk

	

	

	

	< ε3, (21)

where ε1, ε2 and ε3 are user prescribed tolerances and �k k denotes the Euclidean
norm. The criterion given by Eq. (19) tests if the least squares norm is sufficiently
small, which is expected in the neighborhood of the solution for the problem.
Similarly, Eq. (20) checks if the norm of the gradient of F pð Þ is sufficiently small,
since it is expected to vanish at the point where F pð Þ is minimum. The last criterion
given by Eq. (21) results from the fact that changes in the vector of parameters are
very small when the method has converged. Generally, these three stopping criteria
need to be tested and the iterative procedure of the Levenberg-Marquardt method is
stopped if any of them is satisfied.

Different versions of the Levenberg-Marquardt method can be found in the liter-
ature, depending on the choice of the diagonal matrix Ωk and on the form chosen for
the variation of the damping parameter μk. In this paper, we choose the Ωk as

Ωk ¼ diag Jk
� �T

Jk
h i

: (22)

Suppose that the vector of temperature measurements G ¼ g t1ð Þ, g t2ð Þ,⋯, g tnð Þ½ �

are given at times ti, i ¼ 1, 2,⋯, n and an initial guess P0 is available for the vector of
unknown parameters P. Choose a value for μ0, say, μ0 ¼ 0:001 and k ¼ 0. Then,

Step 1. Solve the direct problem (1)–(4) with the available estimate Pk in order
to obtain the vector U Pk

� �

¼ u x0, t1,pk
� �

, u x0, t2,pkÞ,⋯, u x0, tn,pkÞ
� ���

.

Step 2. Compute F Pk
� �

from the Eq. (8).

Step 3. Compute the sensitivity matrix Jk from (12) and then the matrix Ωk from
(22), by using the current value of Pk.

Step 4. Solve the following linear system of algebraic equations, obtained from

(18): Jk
� �T

Jk þ μkΩk
h i

ΔPk ¼ Jk
� �T

G‐U Pk
� �� �

in order to compute ΔPk ¼ Pkþ1
‐Pk.

Step 5. Compute the new estimate Pkþ1 as Pkþ1 ¼ Pk þ ΔPk.
Step 6. Solve the exact problem (1)–(4) with the new estimate Pkþ1 in order to

find U Pkþ1� �

. Then compute F Pkþ1� �

.

Step 7. If F Pkþ1� �

≥F Pk
� �

replace μk by 10μk and return to step 4.
Step 8. If F Pkþ1� �

≤F Pk
� �

, accept the new estimate Pkþ1 and replace μk by 0:1μk.
Step 9. Check the stopping criteria given by (19). Stop the iterative procedure if

any of them is satisfied; otherwise, replace k by kþ 1 and return to step 3.

4. Calculation of sensitivity coefficients

Generally, there have two approaches for determining the gradient; the first is a
discretize-then-differentiate approach and the second is a differentiate-then-
discretize approach.

The first approach is to approximate the gradient of the functional by a finite
difference quotient approximation, but in general, we cannot determine the sensi-
tivities exactly, so this method may led to larger error.

Here we intend to use differentiate-then-discretize approach which we refer to
as the sensitivity equation method. This method can be determined more efficiently
with the help of the sensitivities
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uk ¼
∂u

∂pk
, k ¼ 1, 2,⋯mþ 1: (23)

We first differentiate the flow system (1)–(4) with respect to each of the design
parameters p1, p2,…, pmþ1

� �

, to obtain the mþ 1 continuous sensitivity systems: for
k ¼ 1, 2,⋯,mþ 1

∂uk
∂t

¼
∂

∂x
p1 þ p2xþ⋯þ pmþ1x

m
� � ∂uk

∂x
þ xk�1 ∂u

∂x

� �

uk x, 0ð Þ ¼ 0

uk 0, tð Þ ¼ 0

uk L, tð Þ ¼ 0

8

>

>

>

>

>

<

>

>

>

>

>

:

: (24)

There have (mþ 2) equations, we can make them in one system equation and
use the finite element methods to solve the system of equation. Here, we give the
vector form of the equation as follow:

P1ð Þ

∂U
!

∂t
þ ∇ � Γ

!
¼ F

!

U
!

x, 0ð Þ ¼ U
!

0 xð Þ

U
!

0, tð Þ ¼ G
!

1 tð Þ

U
!

L, tð Þ ¼ G
!

2 tð Þ

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

, (25)

where

U
!

¼

u

u1

u2

⋯

umþ1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

, Γ
!
¼

� p1 þ p2xþ⋯þ pmþ1x
m

� � ∂u

∂x

� p1 þ p2xþ⋯þ pmþ1x
m

� � ∂u1
∂x

�
∂u

∂x


 �

� p1 þ p2xþ⋯þ pmþ1x
m

� � ∂u2
∂x

� x
∂u

∂x


 �

⋯

� p1 þ p2xþ⋯þ pmþ1x
m

� � ∂umþ1

∂x
� xm

∂u

∂x


 �

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, F
!
¼

f x, tð Þ

0

0

⋯

0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: (26)

U
!

0 xð Þ ¼ u0 xð Þ, 0, 0,⋯0½ �T,G
!

1 tð Þ ¼ g1 tð Þ, 0, 0,⋯0
� �T,G

!

2 tð Þ ¼ g2 tð Þ, 0, 0,⋯0
� �T

: (27)

We use the Galerkin finite element method approximation for discretizing
problem (25). For this, we multiply the Eq. (25) by a test function v : 0,L½ � ! R,
v∈V0 ≔H1

0 0,Lð Þ and integrate the obtained equation in space form 0 to L. We
obtain the following equation:

ðL

0

∂U x, tð Þ

∂t
� v xð Þdx‐

ðL

0
∇Γ � v xð Þdx ¼

ðL

0
F x, tð Þ � v xð Þdx, (28)

integrating by parts gives

ðL

0
∇Γ � v xð Þdx ¼ Γ � v xð Þð Þ L

0

�

� �

ðL

0
Γ �

∂v x, tð Þ

∂x
dx: (29)

6
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We can change the first derivative in time and the integral. We have
v 0ð Þ ¼ 0 ¼ v Lð Þ, because v∈V0. This leads to an equivalent problem to P1ð Þ: ∀t>0,
find U x, tð Þ satisfying

d

dt

ðL

0
U x, tð Þ � v xð Þdxþ

ðL

0
Γ �

∂v x, tð Þ

∂x
dx ¼

ðL

0
F x, tð Þ � v xð Þdx, (30)

for all v∈V0 ≔H1
0 0,Lð Þ. To simplify the notation we use the scalar product in

L2 0,Lð Þ

f , gð Þ ¼

ðL

0
f xð Þ � g xð Þdx: (31)

We also can define the following bilinear form:

a U, vð Þ ¼

ðL

0
Γ �

∂v x, tð Þ

∂x
dx ¼

Ð

L

0
� p1 þ p2xþ⋯þ pmþ1x

m
� � ∂u

∂x

∂v

∂x
dx

Ð

L

0
� p1 þ p2xþ⋯þ pmþ1x

m
� � ∂u1

∂x

∂v

∂x
�

∂u

∂x

∂v

∂x


 �

dx

Ð L
0 � p1 þ p2xþ⋯þ pmþ1x

m
� � ∂u2

∂x

∂v

∂x
� x

∂u

∂x

∂v

∂x


 �

dx

⋯

Ð L
0 � p1 þ p2xþ⋯þ pmþ1x

m
� � ∂umþ1

∂x

∂v

∂x
� xmþ1 ∂u

∂x

∂v

∂x


 �

dx

:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(32)

Finally, we obtain with this notations the weak problem of P1ð Þ:

P2ð Þ

d

dt
U, vð ÞL2 þ a U, vð Þ ¼ F, vð ÞL2

U x, 0ð Þ ¼ U0 xð Þ

U 0, tð Þ ¼ G1 tð Þ

U L, tð Þ ¼ G2 tð Þ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

: (33)

4.1 Space-discretization with the Galerkin method

In this section, we search a semi-discrete approximation of the weak problem
P2ð Þ, using the Galerkin finite element method. This leads to a first order Cauchy-
problem in time.

Let Vh be a Nx þ 1 dimensional subspace of V and V0,h ¼ Vh∩V0. Then the
following problem is an approximation of the weak problem, find
uh, u1,h, u2,h⋯umþ1:h ∈Vh that satisfies:

d

dt
Uh, vhð Þ þ a Uh, vhð Þ ¼ F, vhð Þ

Uh x, 0ð Þ ¼ U0,h xð Þ

Uh 0, tð Þ ¼ G1 tð Þ

Uh L, tð Þ ¼ G2 tð Þ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

, (34)

for all vh ∈V0,h. where Uh ¼ uh, u1,h, u2,h⋯umþ1:h½ �T .
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The choice of Vh is completely arbitrary. So we can choose it the way that for
later treatment, it will be as easy as possible. For example, we subdivide the interval
0,L½ � into partitions of equal distances h:

0 ¼ a1 < a2 <⋯< aNx
< aNxþ1 ¼ L, , ai ¼ i� 1ð Þ � h (35)

Vh ¼ vh ∈C0 0,L½ � : vh ai,aiþ1½ �

�

� ∈P1,∀i ¼ 1⋯Nx

� 

, (36)

V0,h ¼ vh ∈Vh : vh 0ð Þ ¼ vh Lð Þ ¼ 0f g: (37)

Note, that the finite dimension allows us to build a finite base for the
corresponding space. In the case of V0,h, we have: φif gNx

i¼2 where ∀i ¼ 2⋯Nx.

φi xð Þ ¼

0 x∈ a0, ai�1½ �
x

h
� i� 2ð Þ x∈ ai�1, ai½ �

i�
x

h
x∈ ai, aiþ1½ �

0 x∈ aiþ1, aNxþ1½ �

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

, (38)

while we add for Vh the two functions φ1 and φNxþ1 defined as:

φ1 xð Þ ¼
1�

x

h
, if x∈ a1, a2½ �

0, if x∈ a2, aNxþ1½ �

8

<

:

, (39)

φNxþ1 xð Þ ¼
0, if x∈ a1, aNx½ �
x

h
�Nx þ 1, if x∈ aNx , aNxþ1½ �

(

, (40)

so that we can write Uh as a linear combination of the basic elements:

Uh x, tð Þ ¼
X

Nxþ1

j¼1

~U j tð Þ � φ j xð Þ, (41)

U0,h x, tð Þ ¼
X

Nxþ1

j¼1

U0 x j

� �

� φ j xð Þ, (42)

where ~U1 tð Þ ¼ G0 tð Þ and ~UNxþ1 tð Þ ¼ G1 tð Þ. Using that a �, �ð Þ is bilinear form and
that Eq. (34) is valid for each element of the base φif gNx

i¼2, we obtain

X

Nxþ1

j¼1

d

dt
~U j tð Þ � φ j,φi

� �

þ
X

Nxþ1

j¼1

~U j tð Þ � a φ j,φi

� �

¼ F,φið Þ, (43)

∀i ¼ 2⋯Nx. This equation can be written in a vector form. For this we define the

vectors u! , u
!
0 and F

!
with components

Fi tð Þ ¼ F,φið ÞL2 ,u j tð Þ≔ ~u j tð Þ,u0 , j ¼ u0 x j

� �

, (44)

and matrices M and A as

mij ≔ φi,φ j

� �

L2
, aij ≔ a φi,φ j

� �

, (45)

8
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Note that M,A∈RNx�1�Nxþ1, u!∈RNxþ1, and F
!
∈RNx�1. So that (43) is equal to

the Cauchy problem

M
d

dx
u
!

tð Þ þA � u
!

tð Þ ¼ F
!

tð Þ

u
!

t0ð Þ ¼ u
!
0

8

>

<

>

:

, (46)

the Crank-Nicolson method can be applied to (46) at time tk, resulting in

M �
u
!
kþ1 � u

!
k

Δt

 !

þ
1
2
A � u

!
k þ 1 þ

1
2
A � u

!
k ¼

1
2

F
!

k þ F
!

k þ 1

� �

, (47)

where u
!
k ¼ u

!
tkð Þ, F

!

k ¼ F
!

tkð Þ, k ¼ 0, 1,⋯:.
The Eq. (47) can be written in simple form as

Mþ
Δt

2
A


 �

� u
!
k þ 1 ¼ M�

Δt

2
A


 �

� u
!
k þ

Δt

2
F
!

k þ F
!

k þ 1

� �

, (48)

the algebraic system (48) is solved by Gauss elimination method.

5. Numerical experiment

In this section, we are going to demonstrate some numerical results for
u x, tð Þ, q xð Þð Þ in the inverse problem (1)–(5). Therefore the following examples are
considered and the solution is obtained.

Example 1. Consider (1)–(4) with

u x, 0ð Þ ¼ sinx, 0≤ x≤ 1, (49)

u 0, tð Þ ¼ 0, 0≤ t≤ 1 (50)

u 1, tð Þ ¼ sin 1ð Þe‐t, 0≤ t≤ 1, (51)

f x, tð Þ ¼ sin x
x2

4
þ
x

2
þ 1


 �
 �

e�t �
xþ 1ð Þ

2
cos xð Þe�t � sin xe�t, 0≤ x≤ 10≤ t≤ 1 (52)

We obtain the unique exact solution

q xð Þ ¼ 1þ 0:5xþ 0:25x2 (53)

And

u x, tð Þ ¼ sin xð Þe‐t: (54)

We take the observed data g as

g tð Þ ¼ u 0:5, tð Þ ¼ sin 0:5ð Þe‐t0≤ t≤ 1 (55)

The unknown function q xð Þ defined as the following form

^q xð Þ ¼ p1 þ p2xþ p3x
2, (56)
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where p1, p2, p3 are unknown coefficients.
Table 1 shows how the Levenberg-Marquardt algorithm can find the best

parameters after 12 iterations when it is initialized in four different points.
Figures 1–4 show the fitness of the estimated parameters and the rate of con-

vergence.
Figures 5–8 show the comparison between the inversion results q̂ xð Þ and the

exact value q xð Þ:
Table 2 shows the values of q jΔxð Þ and u jΔx, 0:5ð Þ in x ¼ jΔx with the all the

initial values are set 1.
Example 2. Consider (1)–(4) with

u x, 0ð Þ ¼ xe‐x, 0≤ x≤ 1, (57)

u 0, tð Þ ¼ te‐t, 0≤ t≤ 1 (58)

u 1, tð Þ ¼ 1þ tð Þe‐1‐t, 0≤ t≤ 1 (59)

f x, tð Þ ¼ e‐ tþxð Þ
‐ tþ xð Þe‐ tþxð Þ

‐ex e‐ tþxð Þ
‐ tþ xð Þe‐ tþxð Þ

� �

þ ex 2e‐ tþxð Þ
‐ tþ xð Þe‐ tþxð Þ

� �

, 0≤ x≤ 10≤ t≤ 1 (60)

Starting

point

0.5 0.5 0.5 1 1 1 10 10 10 50 50 50

Iteration 12 0.999729028233135
0.499885876453067
0.252009862457275

0.999729028233183
0.499885876453056
0.252009862457315

0.999729028233194
0.499885876453057
0.252009862457325

0.999729028307261
0.499885876454169
0.25200986249336

Error F 8.7564944405 � 10�14 8.7564944427 � 10�14 8.7564944420 � 10�14 8.7564944420 � 10�14

Table 1.
Performance of the algorithm when it is run to solve the model using three different parameters guesses.

Figure 1.
All the initial values for the parameters are set 0.5.
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We obtain the unique exact solution

q xð Þ ¼ ex, (61)

And

u x, tð Þ ¼ xþ tð Þe‐x‐t: (62)

We take the observed data g as

Figure 2.
All the initial values for the parameters are set 1.

Figure 3.
All the initial values for the parameters are set 10.
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Figure 4.
All the initial values for the parameters are set 50.

Figure 5.
The comparison chart with all the initial values for the parameters is set 0.5.

Figure 6.
The comparison chart with all the initial values for the parameters is set 1.
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g tð Þ ¼ u 0:5, tð Þ ¼ 0:5þ tð Þe ‐0:5‐tð Þ0≤ t≤ 1: (63)

The unknown function q xð Þ defined as the following form
^q xð Þ ¼ p1 þ p2xþ p3x

2 þ p4x
3 þ p5x

4 þ p6x
5 þ p7x

6 þ p8x
7, where

p1, p2,⋯, p7, p8 are unknown coefficients.
Table 3 shows how the Levenberg-Marquardt algorithm can find the best

parameters after 20 iterations when it is initialized in four different points.
Figures 9–12 show the fitness of the estimated parameters and the rate of

convergence.
Figures 13–16 show the comparison between the inversion results q̂ xð Þ and the

exact value q xð Þ:

Figure 7.
The comparison chart with all the initial values for the parameters is set 10.

Figure 8.
The comparison chart with all the initial values for the parameters is set 50.
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Numerical Exact Numerical Exact

j q jΔxð Þ q jΔxð Þ u jΔx, 0:5ð Þ u jΔx, 0:5ð Þ

0 0.999729028233183 1 0 0

1 1.05223771450306 1.0525 0.0605593190239173 0.0605520280601669

2 1.10978659802209 1.11 0.120511797611786 0.120499040271796

3 1.17237567879026 1.1725 0.179257059078521 0.179242065904716

4 1.24000495680758 1.24 0.236207449080344 0.236194164064666

5 1.31267443207404 1.3125 0.290793943250869 0.290786288212692

6 1.39038410458965 1.39 0.342471828361625 0.342472971890064

7 1.47313397435441 1.4725 0.390726114897089 0.390737778838824

8 1.56092404136831 1.56 0.435076630410587 0.435098463062163

9 1.65375430563136 1.6525 0.475082717530532 0.475111787267016

10 1.75162476714355 1.75 0.510347406713368 0.510377951544573

Table 2.
The values of q jΔxð Þ and u jΔx, 0:5ð Þ in x ¼ jΔx with the all the initial values being set to 1.

Starting point 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

Iteration 20 1.01536263526644
0.896348846894057
0.954285303464511
–0.890298938193057
1.40131927153131

–0.871276408882294
0.183785623507722
0.0359103726343979

1.01536263500695
0.896348850692318
0.954285278486704
–0.890298849338373
1.40131909032315
–0.871276197318301
0.183785492186491
0.0359104061952515

1.01536263525763
0.896348847022403
0.954285302637587
–0.890298935334171
1.40131926588117

–0.871276402487896
0.18378561965322

0.0359103735933848

1.01536263525905
0.896348846999736
0.954285302790922
–0.890298935876618
1.40131926696099
–0.87127640370648
0.183785620380814
0.0359103734148875

Error F 7:89749200363512� 10‐11 7:89749200363504� 10‐11 7:89749200353888 � 10‐11 7:8974920035389� 10‐11

Table 3.
Performance of the algorithm when it is run to solve the model using four different parameters guesses.

Figure 9.
All the initial values for the parameters are set 0.1.
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Figure 10.
All the initial values for the parameters are set 0.5.

Figure 11.
All the initial values for the parameters are set 1.

Figure 12.
All the initial values for the parameters are set 2.
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Figure 13.
The comparison chart with all the initial values for the parameters is set 0.1.

Figure 14.
The comparison chart with all the initial values for the parameters is set 0.5.

Figure 15.
The comparison chart with all the initial values for the parameters is set 1.
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Table 4 shows the values of q jΔxð Þ and u jΔx, 0:5ð Þ in x ¼ jΔx with the all the
initial values are set 1.

6. Conclusions

A numerical method to estimate the temperature u x, tð Þ and the coefficient q xð Þ
is proposed for an IHCP and the following results are obtained.

1.The present study, successfully applies the numerical method involving the
Levenberg-Marquardt algorithm in conjunction with the Galerkin finite
element method to an IHCP.

Figure 16.
The comparison chart with all the initial values for the parameters is set 2.

Numerical Exact Numerical Exact

j q jΔxð Þ q jΔxð Þ u jΔx, 0:5ð Þ u jΔx, 0:5ð Þ

0 1.01536263525763 1 0.303342962644088 0.303265329856317

1 1.11378168059013 1.10517091807565 0.329201964677126 0.329286981656416

2 1.22765694959399 1.22140275816017 0.347492882224886 0.347609712653987

3 1.35549021305874 1.349858807576 0.359347568702678 0.359463171293777

4 1.4973722149265 1.49182469764127 0.365808711321159 0.365912693766539

5 1.65432828415206 1.64872127070013 0.367792378208857 0.367879441171442

6 1.82785056869393 1.82211880039051 0.366091218454182 0.366158192067887

7 2.01963499046464 2.01375270747048 0.361387761473796 0.361433054294643

8 2.23154102006879 2.22554092849247 0.354267869273063 0.354291330944216

9 2.46579237015687 2.45960311115695 0.345233023618059 0.345235749518249

10 2.72543670622333 2.71828182845905 0.334712604803175 0.334695240222645

Table 4.
The values of q jΔxð Þ and u jΔx, 0:5ð Þ in x ¼ jΔx with the all the initial values are set 1.
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2.From the illustrated example it can be seen that the proposed numerical
method is efficient and accurate to estimate the temperature u x, tð Þ and the
coefficient q xð Þ.
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