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Chapter

The Colonial Microalgae
Botryococcus braunii as Biorefinery
Edmundo Lozoya-Gloria, Xochitl Morales-de la Cruz

and Takehiro A. Ozawa-Uyeda

Abstract

The growing shortage of fossil fuels caused an increase in the demand for
alternative and renewable fuels. Biofuels, like bioethanol and biodiesel, have
received more attention as a sustainable replacement of fossil fuels. However, these
have a poor oxidative stability, little energy content by volume, and many oxygen-
ated compounds, which may cause corrosion and damage to the engines. Therefore,
they are used as a mixture with standard fuels. Some species of microalgae are
candidates to produce oils as triglycerides (TGA) to produce biodiesel by
transesterification; however, the problem will remain. The colonial microalgae
Botryococcus braunii produces and accumulates a high amount of long-chain
nonoxygenated hydrocarbons, similar to those obtained from the fractionated dis-
tillation of crude petroleum. This is one of the few organisms reported to have a
direct contribution in the formation of the oil reserves currently in use. Addition-
ally, B. braunii produces pigments and long-chain carbohydrates that have interest-
ing properties for various industries. There are still problems to be solved in order to
consider it as economically viable and profitable, but important progress is being
made. Therefore, this microalga is very attractive for the synthesis of hydrocarbons
and other value-added compounds, making it an interesting biorefinery organism.

Keywords: biorefinery, Botryococcus, exopolysaccharides, hydrocarbons, lipids,
pigments

1. Introduction

Botryococcus braunii is a colonial microalga Trebouxiophyceae, distributed in
brackish and sweet water [1]. It reaches densities of 1.4 � 106 colonies/L [2], and its
geochemistry significance is important. Paleobotanical studies suggest that it is one
of the largest sources of hydrocarbons in oil-rich deposits dating back to the Ordo-
vician period [1, 3–5]. It is the only colonial microalga that accumulates and secrets
liquid hydrocarbons (Figure 1), and depending on the strain and growing condi-
tions, race B can accumulate hydrocarbons up to 85% and race A up to 61% of their
dry weight.

B. braunii is related with Characium vaculatum and Dunaliella parva [1]. Due to
the hydrocarbons and the molecular phylogeny of B. braunii [6], it is classified in
three races (A, B, and L). Race A produces n-alkadienes and alkatrienes of C23–C33
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[7], although two unusual hydrocarbons have been characterized, the triene C27H51

and tetraene C27H48 [1]. Race A hydrocarbon dry weight varies from 0.4 to 61%
[7, 8]. Race B produces triterpenoids hydrocarbons known as botryococcenes
(CnH2n�10, n = 30-37) [9] and methylsqualenes C31–C34 [10, 11]. The
botryococcenes can be from 27 to 86% of the dry weight [12]. Race L produces a
tetraterpene C40 known as lycopadiene and constitutes from 0.1 to 8% of the dry
weight [13, 14]. This race contains 5% of lycopatriene, lycopatetraene,
lycopapentaene, and lycopahexaene [15]. In addition, a race S is proposed, which
synthesizes saturated n-alkanes C18 and C20, and epoxy-alkanes; however, its
existence is not yet fully accepted [6].

Figure 1.
B. braunii race B colony secreting liquid hydrocarbons.

Figure 2.
Hydrocarbons produced by the B. braunii races. Biofuels derived from race B are shown. RON, research octane
number = 92–98, this is a measure of autoignition resistance in a spark-ignition engine. In the USA: regular (97
RON) and premium (95 RON). Adapted from [16–18].
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After the hydrocracking process and subsequent distillation, race B hydrocar-
bons become biofuels currently used in internal combustion engines [16] as shown
in Figure 2.

2. Physiology and biochemistry of Botryococcus braunii

B. braunii races differ also by its morphological and physiological characteristics.
Cells from A and B races are of 13 μm � 7–9 μm, and those of L race are
8–9 μm � 5 μm [19].

Each colony is constituted by a group of 50–100 piriform cells embedded in a
hydrocarbon network and the extracellular matrix (ECM). This ECM contains three
main components: (1) a fibrous cell wall surrounding each cell and having β-1,4-
and/or β-1,3-glucans including cellulose; (2) the intracolonial space constituted by a
network of liquid hydrocarbons; and (3) a fibrillary sheath composed mainly of
arabinose and galactose polysaccharides, holding the liquid hydrocarbons [20].

B. braunii may have a hetero-, mixo-, or phototrophic grow and the morphology
will depend on the C source and the amount of light [21]. The hydrocarbon pro-
duction is associated with the cell division [22], likely due to the localization of the
enzymes involved in the alkadienes, alkatrienes (race A), and botryococcenes
(race B) biosynthesis [23].

Other difference among the races is the keto-carotenoid accumulation in the
stationary phase of cultures. Races B and L change color from green-brown to
orange, and race A changes from green to yellow-orange [1]. The production of
carotenoids is also a stress response by environmental factors. The DAD1 gene
expression, a suppressor of programmed cell death, was reported in race B, under
stress conditions at 10–60 min [24]. B. braunii is tolerant to desiccation and extreme
temperatures, which allows its global dispersion in different environments [25]. The
reproduction mechanism of B. braunii seems to be autosporic [26].

Symbiotic bacteria have been reported after microscopic observations, and an
ectosymbiont α-proteobacteria (BOTRYCO-2) that promotes the productivity of
biomass and hydrocarbons was described [2, 27].

2.1 Biosynthesis of alkadienes and alkatrienes

Characteristic alkadienes and alkatrienes of race A have double links and similar
stereochemistry as oleic acid. Experiments with labeled fatty acids have shown that
this one is the main precursor by the long-chain fatty acids (LCFAs) pathway,
followed by a decarboxylation process [1, 17, 28, 29]. The first step is the elongation
of oleic acid (18:1 cis-Δ9) and its isomer elaidic acid (18:1 trans-Δ9). The acyl-CoA
reductase and decarbonylase enzymes in race A microsomes suggest an alternative
mechanism where the LCFAs are reduced to aldehydes and decarbonylated to
produce alkadienes and alkatrienes [17, 30]. Race A transcriptome allowed the
identification of six candidate genes potentially involved in this biosynthesis [31].

2.2 Biosynthesis of botryococcenes

The analysis of race B transcriptome and other evidences suggests that the
biosynthesis of isoprenoids comes from the deoxyxylulose phosphate/methyler-
ythritol phosphate (DXP/MEP) pathway [32–34]. Expressed sequence tag (EST)
markers for enzymes of the DXP/MEP pathway [34], as well as multiple isoforms of
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enzymes for the 3-phospho-D-glycerate biosynthesis from D-glyceraldehyde-3-
phosphate and pyruvate as precursors, were identified. Some of the respective
transcripts are present in high abundance (>250 reads/Kb), suggesting a high met-
abolic flow in B. braunii [31].

The first step is the formation of 1-deoxy-D-xylulose-5-phosphate (DOXP) by
the DOXP synthase (DXS) (Figure 3).

The characterization of three DXS isoenzymes in race B shows that they are
active and have similar kinetic parameters, which increases the metabolic flow for
the production of terpenoids [35]. The DOXP is reduced by the DXP reductoi-
somerase (DXR) to 2-C-methylerythritol-4-phosphate (MEP), and converted to
isopentenyl diphosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). In the
B. braunii transcriptome, only one DXR has been found [34]. The next step involves
condensation of IPP and DMAPP to form geranyl diphosphate (GPP), and the
addition of other IPP produces farnesyl diphosphate (FPP) [17] (Figure 3a). Two B.
braunii genes code for farnesyl diphosphate synthase isoenzymes (FPPS) with an
amino acid identity of 72% [34].

Figure 3.
Biosynthesis of tri- and tetraterpenes in B. braunii race B. (a) FPP production; (b) carotenoid production from
GGPP; (c) squalene production from FPP; (d) methylated botryococcene production; (e) methylated squalene
production. BSS, Botryococcus squalene synthase; CtrB, phytoene-synthase; DXR, 1-deoxy-D-xylulose-5-
phosphate reductase; DXS, 1-deoxy-D-xylulose-5-phosphate synthase; FPPS, farnesyl diphosphate synthase;
GPPS, geranyl diphosphate synthase; NADPH+ and NADP+, nicotinamide adenine dinucleotide phosphate
(reduced and oxidized); PPi, inorganic pyrophosphate; PSPP, cyclopropyl presqualene diphosphate; SAM,
S-adenosyl methionine; SAH, S-adenosyl-L-homocysteine; SSL, squalene synthase-like; SMT, squalene
methyltransferase; TMT, triterpene methyltransferase. Adapted from [17, 34].
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Addition of another IPP forms the geranylgeranyl diphosphate (GGPP), pre-
cursor of the tetraterpenoid carotenoids (Figure 3b). This begins with the forma-
tion of a trans-isoprenyl diphosphate by the phytoene synthase (CtrB) enzyme,
condensing two GGPP molecules in two steps with the release of pyrophosphate.
In the first step, (1R, 2R, 3R)-prephytoene diphosphate is produced from half
cyclopropyl (C10-2-3) reordered to provide 15-cis-phytoene, which can be
converted into a wide variety of carotenoids [34, 36–38]. All are important anti-
oxidant photoprotectors and modulators of the function of membrane proteins for
photosynthetic complexes [39].

The squalene production [40] starts with the Botryococcus squalene synthase
(BSS) enzyme, using two FPP molecules. Botryococcenes production uses also two
FPP molecules but the product is the intermediary cyclopropyl presqualene diphos-
phate (PSPP) (Figure 3c). With NADPH, the PSPP has two options; one forms the
botryococcene with a C3-C1 connection between the FPP molecules (Figure 3d).
The other option forms a C1-C10 between two FPP molecules producing squalene

Figure 4.
Lycopadiene biosynthetic pathway. (a) Reduction of GGPP to PPP and condensation by LOS. (b) LOS
condensation of GGPP to form phytyl diphosphate and reduction to lycopaoctaene. (c) FPP use by LSS or LOS
for squalene production. DXR, 1-deoxy-D-xylulose-5-phosphate reductase; DXS, 1-deoxy-D-xylulose-5-
phosphate synthase; FPP, farnesyl diphosphate; FPPS, farnesyl diphosphate synthase; GGPP, geranylgeranyl
diphosphate; GPPS, geranyl diphosphate synthase; GPPR, geranyl diphosphate reductase; NADPH+ and
NADP+, nicotinamide adenine dinucleotide phosphate (reduced and oxidized); PPi, inorganic pyrophosphate;
PPP, phytyl diphosphate; PLPP, prelycopaoctaene diphosphate; LOS, lycopaoctaene synthase; LSS, B. braunii
race L squalene synthase. Adapted from [15].
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that will be methylated (Figure 3e) further on. These reactions are catalyzed by
squalene synthase-like (SSL) enzymes. Three SSL genes have been identified but
none is directly related with the botryococcene biosynthesis [41]. However, when
the 3 SSLs enzymes were mixed in vivo and in vitro, botryococcene (SSL-1 + SSL-3)
or squalene (SSL1 + SSL-2) was synthesized. SSL-1 condenses two FPP molecules to
produce PSPP [42], demonstrating the versatility and potential for metabolic engi-
neering of botryococcene biosynthesis.

Most botryococcenes are excreted to the ECM where they are methylated. The
di- and tetramethyl forms are related to six genes coding for triterpene and squalene
methyltransferases (TMT, SMT) [43] (Figures 3d and 3e). The botryococcenes are
methylated to produce C31–C37 hydrocarbons, C34 being the main in race B. Three
cyclic botryococcene C33 molecules and a trimethylsqualene isomer were recently
found [44]. Also, two squalene epoxidase (BbSQE-I and -II) enzymes converting
squalene into membrane sterols were identified [45]. Data of the B. braunii race B
nuclear genome will allow the search for possible regulatory routes of this singular
metabolism [46].

2.3 Biosynthesis of lycopadiene

The formation of lycopadiene of race L is similar to the squalene. In the
B. braunii transcriptome, there are two homologous contigs to squalene synthase
(SS) [31]. One encodes a squalene synthase (LSS) and the other for a lycopaoctaene
synthase (LOS). LOS uses preferentially in vivo GGPP, and C15 and C20 prenyl
diphosphates as substrates [15] (Figure 4).

There are two biosynthetic mechanisms for lycopadiene from C20 prenyl
diphosphate intermediates. In one, the GGPP reduction by a GGPP-reductase pro-
duces phytyl diphosphate (PPP), and LOS condenses two PPP molecules producing
lycopadiene (Figure 4a). In the other one, LOS condenses two GGPP molecules
producing prelycopaoctaene diphosphate (PLPP), which rearranges into
lycopaoctaene. Finally, lycopadiene seems to be produced by enzymatic reductions
not yet identified (Figure 4b).

LOS may also form squalene from FPP (Figure 4c). These results show the
plasticity of L race to synthesize squalene and lycopadiene.

2.4 Extracellular matrix (ECM) polymers

ECM contains long chains of polymerized polyacetal hydrocarbons joined to
specific hydrocarbons of each race. There is a fibrillary sheath that envelops the
entire colony, formed mainly by arabinose (42%) and galactose (39%). The cell wall
contains β-1,4 and/or β-1,3 glucans making a cellulose-like polymer [20].

Also, there's a biopolymer resistant to nonoxidative chemical degradation as
acetolysis. This biopolymer resembles sporopollenins [1] of the outer walls of pollen
grains and spores of microorganisms [47]. It seems to be formed by oxidized
carotenoid polymers and phenolic compounds that absorb UV-B light as p-coumaric
and p-ferulic acids [48].

3. Profitability of B. braunii derivatives

3.1 Hydrocarbons

Both bioethanol and biodiesel have a poor oxidative stability, low energy content
by volume, and high content of oxygenated compounds, which damage combustion
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engines and cause corrosion, erosion, and accumulation of deposits in the nozzles;
because of these reasons, they are mixed with standard fuels [49, 50]. B. braunii
accumulates hydrocarbons similar to those of the crude oil, and their direct contri-
bution in the formation of oil reserves currently in use has been reported [3–5]. The
B. braunii oils showed almost equal values in density and surface tension than the
diesel, but with higher kinematic viscosity and distillation temperature [50]. The B.
braunii race B oil was already converted into diesel with an 85% performance, using
a simple conversion process under mild conditions of 260°C and 1 atm. The physical
properties are relatively close to the specification for diesel, with 40 as estimated
cetane (CN) number [51].

The limitation to use B. braunii as biorefinery is the slow growth rate of days in
comparison with hours in other algae [49, 52]. Other factors affecting the growth

St Culture conditions SCGR Dt THC Ref.

°C PAR Php CO2

Showa (B) 30 850 14:10 1 0.5 1.40 NIA [54]

Showa (B) 25, 30 85–398 14:10 1.0–10.0 0.19–0.44 1.60–3.60 30–39 [54]

Showa (B) 23–25 250 24 0.3 0.42 1.70 24–29 [52]

Showa (B) 23 150 16:8 2 0.17 4.08d 25 [55]

Yayoi (B) 25 240 12:12 2 0.2 3.50 40.5 [38]

AC759 (B) 23 150 16:8 2 0.07 9.90d 21 [55]

AC761 (B) 23 150 16:8 2 0.11 6.30d 45 [55]

IPE001 (B) 25 35 16:8 1 0.15c 4.50c 64.3 [61]

BOT-144 (B) 25 60a 24 0 0.16 4.33d 50 [62]

LB-572 (A) 26 12 Klux 24 2 0.07c 10.60c 28 [53]

Gottingen 807/1 (A) 25 26b 14:10 1 0.3 2.30 40.5 [67]

AC755 (A) 23 150 16:8 2 0.05 13.86d 16 [55]

CCALA777 (A) 23 150 16:8 2 0.06 11.55d 10 [55]

CCALA778 (A) 23 150 16:8 2 0.17 4.08d 0 [55]

CCAp807/2 (A) 23 150 16:8 2 0.11 6.30d 7 [55]

765 25 150 24 20 0.13c 5.50c 24 [64]

765 25 120 24 ASLW NIA NIA 23.8 [65]

GUBIOTJTBB1 25 35 16:8 0 0.112 6.19 52.6 [66]

AP 103 23 30 16:8 0 NIA NIA 13 [67]

ASLW, aerated swine lagoon wastewaters (not sterile); °C, temperature; CO2, % v/v; Dt, doubling time (days); NIA,
no information available; PAR, photosynthetic active radiation (μmols of photons/m2 s); Php, photoperiod (light/
dark hours); SCGR, specific cell growth rate (μ/day); μ, specific velocity of growth rate; St, strain (race); THC, total
hydrocarbons (% DW, dry weight).
aBlue light λ = 470 nm.
bW/m2.
cEstimated values [54].
dCalculated values from μ, using Ln(2)/μ equation.

Table 1.
Comparison of culture conditions and productivity of hydrocarbons between B. braunii strains at laboratory
scale.
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and hydrocarbon production are the strain, CO2, light, water, nutrients, tempera-
ture, pH, and salinity [53–55, 60] (Table 1). A JET PASTER treatment was used to
do a mechanical cell disruption and removal of the polysaccharides of the B. braunii
colonies, increasing the hydrocarbon extraction up to 82.8%. This treatment did not
affect the photosynthetic function of the cells [56]. On the other hand, a repetitive
nondestructive extraction with heptane was reported as having some advantages
[57]. Also, a continuous growth and extraction column of n-dodecane was reported
recently as an efficient hydrocarbon extraction method without significant loss of
the viability of the cells [58]. Considering these milking procedures and achieving a
10% rate of return, a minimum sales price (MSP) of US$3.20 per liter was calcu-
lated, and a reduction down to US$1.45 per liter was proposed, if hydrocarbon
content increases and extraction procedures become more efficient [59].

There are different open and closed culture systems in photobioreactors (PBR)
[63, 64], but more studies are required at pilot and industrial scale, to reduce
problems by contamination and low yield of biomass and hydrocarbon production
[49]. Table 2 summarizes some data about cell growth and hydrocarbon produc-
tivity using different culture systems.

St System Cultures Biomass HCs Ref

°C PAR CO2 SCGR Xmax Px CNT WHC

GUBIOT JTBB1 Plain (3 L) 25 35 (16 h) 0% 0.112 NIA 13 52.6 6.8 [62]

765 Column
(3 L)

25 150 (24 h) 20% 0.13g NIA 92.4 24.45g 22.6 [64]

Showa (B) PBRa 25-28 282 (15 h) 5–7% NIA 20 1500 22.5 225-340 [68]

NIA PBRb 25 270 (24 h) Mixo-
trophic

NIA 4.55 234 29.7 71.1 [69]

UTEX-LB 572
(A)

Circular
(50 L)

rT Sol r 0% NIA NIA 77.8 19 13.2 [70]

N-836 (B) Rcwy
(80 L)

rT Sol r 0% NIA NIA 40 24 10.8 [70]

LB572 (B) PBRc 20 Sol r 0% 0.04 0.3 15 NIA 2.4 [71]

AP103 Rcwy
(1800 L)

29 Sol r 5 kWh/
m2.day

0% 0.38 NIA 114 11 12.5 [67]

UTEX-LB 572
(A)

PBRd 25 55 (24 h) 1% NIA 96.4 0.71i NIA NIA [72]

FACHB 357 (B) Attchde 25 500 (24 h) 1% NIA 62h 5.5–6.5i 19.43 1.06i [73]

TN101 Rcwy scf rT Sol r 0% NIA NIA 33.8i 22.6 8.2-13i [74]

°C, temperature; CNT, content (% DW dry weight); CO2, % v/v; HCs, hydrocarbons; PAR, photosynthetic active radiation (μmols of
photons/m2 s); PBR, photobioreactor; Php, photoperiod (light/dark hours); Px, biomass productivity (mg/L day); NIA, no information
available; Rcwy, raceway; rT, room temperature; SCGR, specific cell growth rate (μ/day); μ, specific velocity of growth rate; Sol r, solar
radiation; St, strain (race); WHC, weight of hydrocarbons (mg/L day); Xmax, maximum cellular concentration (g/L).
a
“Tickle film” (30.5 � 16.5 in) continuous.

b"Airlift" (10 L).
cPanel (1000 L) outdoor and semicontinuous.
d"Biofilm" (0.275 m2 or 600 mL).
e
“Attached” bioreactor (0.08 m2 or 240 mL).
f(25 m2 or 5000 L) semicontinuous.
gEstimated values [64].
hg/m2.
ig/m2/day; shadow area indicates the highest reported values up to now.

Table 2.
Comparison of culture conditions and productivity of hydrocarbons between strains of B. braunii in bioreactors.
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3.2 Lipids

B. braunii also produces saturated and monounsaturated fatty acids, especially
palmitic (16:0) and oleic (18:1), as well as triacylglycerols (TAGs). The percentages
of total lipids as saturated, monounsaturated, and polyunsaturated fatty acids in dry
biomass are around 44.97, 9.85, 79.61, and 10.54%, respectively [64, 75]. Studies
in vitro and in vivo showed that these fatty acids effectively improve the absorption
of lipophilic drugs like flurbiprofen, through the skin [76].

B. braunii stores TAGs and saturated fatty acids in the lag phase as an adaptation
to stress conditions but most are synthesized during the stationary phase. Although
highest content of these acids is intracellular, B. braunii secretes oily drops in small
quantities observed on the surface of the cell apex [64].

The yield and lipid composition depends on the strain, the culture system used,
growth conditions and cell aging, as well as nitrogen, phosphorus, and micronutri-
ent concentrations (Table 3).

St System TRT Biomass Lipids Ref.

SCGR XMax Px CNT Yld. Prod.

UTEX
572 (A)

EF (125
mL)

0.04 mM NO3 0.09 0.16 NIA 63 NIA 0.009 [77]

0.37 mM NO3 0.185 0.38 NIA 36 0.19 0.019

KMITL
2 (n.d.)

EF (1 L) 86 mg/L NO3 NIA 0.48 NIA 39.42 0.19 NIA [78]

222 mg/L PO4 NIA 0.86 NIA 54.69 0.47 NIA

444 mg/L PO4 NIA 1.91 NIA 23.23a 0.45 NIA

27 mg/L Fe NIA 0.22 NIA 34.93 0.08 NIA

KMITL
2 (n.d.)

Outdoor
oval pond
(150 L)

0.17 g/L NO3 0.045 4.84 NIA 35.24 NIA 0.016 [79]

2.5 g/L NO3 0.049 5.62 NIA 38.60 NIA 0.0189

LB572
(A)

FBR
column
(625 mL)

0083 g/L PO4 and 0.1 g/
L SO4

NIA NIA 0.296 64.96 NIA 0.19 [80]

0058 g/L PO4 and 0.09
g/L SO4

NIA NIA 0.304 59.56 NIA 0.18

TRG EF (250
mL)

Photoaut. (CO2) 0.093 1.14 NIA 25.1 NIA 0.0241 [81]

Heterot. (gluc 5 g/L) 0.115 1.75 NIA 29.3 NIA 0.0467

Mixot. (gluc 5 g/L +
CO2)

0.195 2.46 NIA 37.5 NIA 0.0645

IBL-
C117

EF (1 L) Chu (0.75�) 0.13 0.9 0.12 47.1 NIA NIA [82]

Chu (1.0�) 0.13 0.7 0.1 46 NIA NIA

Chu (2.0�) 0.11 1 0.15 41.3 NIA NIA

LB572
(A)

EF (1 L) Chu (0.75�) 0.15 1.3 0.18 20.2 NIA NIA [82]

Chu (1.0�) 0.16 1.4 0.2 22.5 NIA NIA

Chu (2.0�) 0.17 1.5 0.22 11 NIA NIA

2441
(A)

FBR Airlift
(2 L)

(N:P = 1:1) in Chu NIA 4.963 0.173 33.7 NIA NIA [83]

(N:P = 3:3) in Chu NIA 3.857 0.215 34.6 NIA NIA

(N:P = 6:6) in Chu NIA 3.987 0.223 32.1 NIA NIA
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3.3 Pigments

Algae pigments have been reported to have antioxidant, anticancer, anti-
inflammatory, antiobesity, and antiangiogenic properties and function as
neuroprotectives [85]. So, they could replace synthetic dyes in food, cosmetic,
nutraceutical, and pharmaceutical products [86].

Carotenoid pigments are unsaturated hydrocarbons, while xanthophylls have
one or more functional groups containing oxygen such as lutein, canthaxanthin, and
astaxanthin [85–87].

Carotenoids abound in races B and L, lutein being the main pigment (22–29%),
followed by others as β-carotene, echinenone, 3-OH echinenone, canthaxanthin,
violaxanthin, loroxanthin, and neoxanthin. Transition to stationary phase causes a
color change in B. braunii from green to brown, reddish orange, and pale yellow
by accumulation of carotenoids and a decrease of intracellular pigments [88]. Can-
thaxanthin (46%) and echinenone (20–28%) are predominant in the
stationary phase in response to nitrogen deficiency [36]. The BOT-20 strain showed a
dark red color during growth because of the accumulated echinenone of about 30.5%
dry weight and 630 mg/L production, but with few hydrocarbons (8%) [89].

Adonixanthin was detected in race L during the stationary phase [90], and
botryoxanthin A, botryoxanthin B, and braunixanthin 1 and 2 were detected in race
B [37, 38, 91]. The 2-azahypoxanthine (AHX) similar to the phytohormone induced
the accumulation of secondary carotenoids like botryoxanthin A and braunixanthin
1 and decreased the content of botryococcenes during the stationary phase [92],
imitating a lack of nitrogen condition without inhibiting the growth.

In race A, lutein (79–84%) is the main carotenoid followed by β-carotene (1.75–
2.14%), violaxanthin (6–9%), astaxanthin (3–8%), and zeaxanthin (0.32–0.78%).
In salinity and high light intensity conditions, the lutein increases [53, 93]. All of
these compounds shown antioxidant properties and inhibitory effect against lipid
peroxidation in vitro and in vivo and activated antioxidant enzymes such as catalase
[94, 95].

3.4 Polysaccharides

The aqueous extracts of B. braunii (strain LB 572) reduce the skin dehydration,
stimulate collagen synthesis, promote the differentiation of adipocytes, and

St System TRT Biomass Lipids Ref.

SCGR XMax Px CNT Yld. Prod.

BOT22
(B)

Biofilm
bioreac.

Nitrocell. Memb. (diam.
25 mm and pore size

0.45 μm)

NIA 3.12a 0.42b NIA 0.83a NIA [84]

BOT84
(L)

NIA 10.04a 3.8b NIA 1.11a NIA

BOT7
(S)

NIA 13.6a 0.99b NIA 0.83a NIA

CNT, content (% DW dry weight); Chu, Chu media for microalgae [8]; EF, Erlenmeyer flask; FBR, photobioreactor;
N:P, proportion of nitrogen: phosphate; Px, biomass productivity (g/L day); NIA, no information available; Prod.,
productivity (g/L day); Rcwy, raceway; SCGR, specific cell growth rate (μ/day); μ, specific velocity of growth rate; St,
strain (race); TRT, treatment; Yld., yield (g/L); Xmax, maximum cellular concentration (g/L).
amg/cm2.
bmg/cm2/day.

Table 3.
Comparison of crop conditions and lipid productivity in B. braunii.
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promote antioxidant and anti-inflammatory activities [96]. The extracellular poly-
saccharides (exopolysaccharides, EPS) constitute most of the organic material of
high molecular weight released to the environment by microalgae and other micro-
organisms. They have antioxidant, immunomodulatory, antibacterial, antiviral,
anticarcinogenic, and antihypocholesterolemic effects [97]. They are used as thick-
eners, emulsifiers, bioflocculants, stabilizers, and gelling agents in foods and cos-
metics; are soluble in water; and modify the rheological properties of solutions
increasing their viscosity to form gels [1, 98].

The ECM and the fibrillar pod are composed of mucilaginous polysaccharides
[20], and other detected EPS are fucose, glucose, mannose, rhamnose, uronic
acids, and unusual sugars such as 3-O-methyl fucose, 3-O-methyl rhamnose, and
6-O-methyl hexose [1]. Galactose is involved in the innate and adaptive immune
system [99]. L-Arabinose is used as food additive for its sweet taste and poor
absorption in humans [100] and is an antiglycemic agent by selective inhibition of
invertases, reducing the glycemic response after sucrose ingestion [101]. Uronic
acid is a chelating agent to remove metal ions. Fucose has high commercial
value for its anticancer properties and for chemical synthesis of flavoring
agents [1, 55].

Some B. braunii (UC 58) strains produce 4.0–4.5 g/L EPS with few hydrocarbons
(5%). The EPS amount varies with the strain, race, physiological conditions, and
culture. Strains of A and B races can produce up to 250 mg/L EPS, and race L up to 1
g/L plus glucose [1].

Greater EPS production correlates with minor growth by N deficiency. Urea
and ammonia decrease the pH, as well as EPS production. Optimal conditions for
EPS production were nitrate (8 mM) and between 25 and 30°C. Out of these
temperatures, the EPS polymerization decreased significantly [1, 102]. Light/dark
(16:8) photoperiod produced more hydrocarbons, but continuous light with
agitation increased EPS until 1.6 and 0.7 g/L in LB 572 and SAG-30 strains,
respectively [103]. EPS production increased (2–3 g/L) in low salinity levels
(17–85 mM) as osmoprotectants [53]. High salinity and low N content in D
medium induced EPS production (0.549 � 0.044 g/L) in comparison to the BG11
medium (0.336 � 0.009 g/L), but biomass was higher in BG11 (1.019 � 0.051 g/L)
than in D (0.953 � 0.056 g/L) [104]. Modification of culture conditions could be
used to increase EPS production, to facilitate the removal, and to increase hydro-
carbon recovery. With Botryococcus braunii CCALA 778 (race A), a light:dark cycle
at 26°C resulted in an increased production of EPS, and a milking procedure for
these polysaccharides has been proposed [105, 106]. EPS can be used as thickening
or gelling agents [107].

3.5 Other biopolymers

Algenanes are aliphatic, nonhydrolyzable, and insoluble biopolymers found in
the ECM at 9 and 10% dry weight of race A and B, respectively. Due to their high
resistance to degradation, they are attributed to the good preservation of colonies in
sedimentary rocks [108].

Another reported biopolymer was the polyhydroxybutyrate (PHB), a biode-
gradable plastic with a yield of about 20% of the dry weight [109]. PHB is a
polyester with thermoplastic and biodegradable properties, and it's a carbon and
energy storage compound. For its similar physical properties to polypropylene and
polystyrene, it is of commercial interest [110]. Under pH 7.5, 40°C, and with 60%
wastewater as culture medium, a maximum yield of 247 � 0.42 mg/L PHB was
reported [111].
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B. braunii (UTEX 572) was used to produce intra- and extracellular Ag
nanoparticles (AgNPs) with antimicrobial properties, and analysis suggested that
the exopolysaccharides were the possible reducing and capping agents [112].

4. Conclusions

Although B. braunii has been considered mainly as a good source of biofuels by
the possibility to convert its hydrocarbons into currently used fuels, without the
necessity of engine modifications, it produces many other high-value derivatives
that can be exploited for their promising attractive profits. Besides, along the
photosynthetic process, this alga converts 3% of solar energy into hydrocarbons
[1] and can reduce CO2 emissions up to 1.5 � 105 tons/year [113]. There are
several reports about modifications of the culture conditions through vitamin
addition, affecting the yield of several derivatives like biomass, hydrocarbon,
and carbohydrate in Botryococcus braunii KMITL 5 [114]; however, those are from
not clearly recognized strains and should be carefully taken. With B. braunii race
A, B, or L, the main challenge is to accelerate the doubling rate because,
depending on the race, it varies between 2 and 10 days. This results in easy
contamination with faster growing microorganisms in open ponds used for
industrial production, or a high cost of sterile conditions in closed bioreactors.
In spite of these disadvantages, we consider that B. braunii is an excellent model
of biorefinery. Other strategies to use B. braunii as biorefinery and bioreactor are
being developed like the immobilization in polyester [115] or bioharvesting with
Aspergillus sp. [116].
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