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Chapter

Spectral Optimization of Airborne
Multispectral Camera for Land
Cover Classification: Automatic
Feature Selection and Spectral
Band Clustering
Arnaud Le Bris, Nesrine Chehata, Xavier Briottet

and Nicolas Paparoditis

Abstract

Hyperspectral imagery consists of hundreds of contiguous spectral bands. How-
ever, most of them are redundant. Thus a subset of well-chosen bands is generally
sufficient for a specific problem, enabling to design adapted superspectral sensors
dedicated to specific land cover classification. Related both to feature selection and
extraction, spectral optimization identifies the most relevant band subset for spe-
cific applications, involving a band subset relevance score as well as a method to
optimize it. This study first focuses on the choice of such relevance score. Several
criteria are compared through both quantitative and qualitative analyses. To have a
fair comparison, all tested criteria are compared to classic hyperspectral data sets
using the same optimization heuristics: an incremental one to assess the impact of
the number of selected bands and a stochastic one to obtain several possible good
band subsets and to derive band importance measures out of intermediate good
band subsets. Last, a specific approach is proposed to cope with the optimization of
bandwidth. It consists in building a hierarchy of groups of adjacent bands,
according to a score to decide which adjacent bands must be merged, before band
selection is performed at the different levels of this hierarchy.

Keywords: hyperspectral, classification, band selection, spectral optimization,
land cover

1. Introduction

High-dimensional remote sensing imagery, such as hyperspectral (HS) imagery,
generates huge data volumes, consisting of hundreds of contiguous spectral bands.
Several difficulties are caused by this high dimensionality. First, the Hughes phe-
nomenon [1] can occur when classifying such data, even though modern classifiers
such as support vector machines (SVM) and random forests (RF) are less sensitive
to it [2, 3] except when very few training data are available [4]. Second, important
computing times are required to process such high-dimensional data. Third, storing
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data requires huge volumes. Last, displaying high-dimensional imagery can be
necessary, while human vision is limited to three colours [5, 6].

Hyperspectral data consist of hundreds of contiguous spectral bands, but most
of these adjacent bands are highly correlated to each other. Thus a subset of well-
chosen bands is generally sufficient for a specific problem. This enables to design
adapted superspectral sensors dedicated to such specific land cover classification.
Spectral optimization (SO) or optimal band extraction (BE) consists in identifying
the most relevant spectral band subsets for such specific applications. Spectral
optimization is a specific dimensionality reduction (DR). DR aims at reducing data
volume minimizing the loss of useful information and especially of class separabil-
ity. Dimensionality reduction techniques can be separated into feature extraction
(FE) and feature selection (FS) categories.

FE consists in reformulating and summing up original information. Principal
component analysis (PCA), minimum noise fraction (MNF), independent com-
ponent analysis (ICA) and linear discriminant analysis (LDA) are examples of
state-of-the-art feature extraction techniques. On the opposite, FS selects the most
relevant features for a problem. When applied to HS data, it is named band
selection (BS) and compared to FE; it enables to keep the physical meaning of the
selected bands. For instance, in spectroscopy, FS has sometimes been performed
by specialists identifying specific absorption bands or spectrum behaviour
corresponding to a material, and this knowledge has then been used in expert
systems (e.g. [7] for specific minerals, [8] for asbestos, [9] for asphalt or [10] for
urban materials). At the end, SO is at the interplay between FS and FE as it aims at
optimizing both band positions (FS) along the spectrum and width (FE).

This study aims at defining a SO strategy to design superspectral sensors dedi-
cated to specific land cover classification problems. SO and FS are optimization
problems involving both a metric (that is to say a score measuring the relevance of
band subsets) to optimize and an optimization strategy. This study first focuses
on the choice of a FS relevance score suitable for generic optimization heuristics.
Both classification performance and selection stability will be considered. As an
intermediate result, band importance profiles are considered providing hints about
the relevance of the different parts of the spectrum. Once the FS criterion chosen,
this chapter copes with the optimization of bandwidth, applying FS within
a hierarchy of groups of adjacent bands.

2. FS: requirements and state of the art

In the state of the art, FS is often a first step in a specific classification workflow,
while the context of this work is the design of superspectral sensors dedicated to
specific land cover classification problems. Thus the selected band subset must be
as efficient as possible for most classifiers and not only for the used FS criteria.
Thus, their ability to discriminate between classes using selected feature subsets
(that is to say their classification performance) independently from any classifier
has to be considered to assess the FS criteria quality. Furthermore, the stability of
the proposed solutions has also to be considered. Last but not least, in this sensor
design context, constraints about themaximum number of bands to select exist. To
sum it up, a good FS criterion for sensor design has to be parsimonious, making it
possible to select stable band subsets discriminant for most classifiers. Thus, for
a fair analysis, FS criteria must be compared for a same selected band subset size,
and results must be evaluated according to different classifiers. Besides, computing
time was not considered as an important criterion in this specific context of sensor
design, where FS is not a preprocessing in a classification workflow.
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Thus, this study focuses on the comparison of several FS criteria (presented in
Section 2.1) for supervised classification problems (that is to say when classes and
their ground truth are taken into account). To have a fair comparison, all these
criteria will be optimized using the same generic optimization algorithms. It was
here decided to use such generic optimization heuristics, in the context of sensor
design, since such methods enable to easily control the number of bands to select
and to add additional constraint within the band extraction process as in the
second part of the study. The use of generic optimization methods necessarily
excludes of the comparison feature ranking criteria (such as ReliefF [11, 12]) and FS
methods where the score and the optimization method are strongly related to, for
instance, SVM-RFE [13]. All criteria will be tested on several classic hyperspectral
data sets.

2.1 FS: state of the art

Even though hybrid approaches involving several criteria exist [14, 15], FS
methods and criteria are often differentiated between ‘filter’ (independent from
any classifier), ‘wrapper’ (related to the classification performance of a classifier)
and ‘embedded’ (related to the quality of classification models estimated by a
classifier, but not directly to classification accuracy). It is also possible to distinguish
supervised and unsupervised ones, especially for filters, that is to say whether a
notion of classes is taken into account or not. All approaches mentioned below are
summed up in Tables 1 and 2. Nevertheless, it must be kept in mind that hybrid
approaches involving several criteria belonging to these different FS criteria cate-
gories often exist, as, for instance, in [14] or [15], where features are selected based
on a wrapper method, respectively, guided or associated with filter criteria (mutual
information between selected bands and between the ground truth).

2.1.1 Filter

Filter methods compute relevance scores independently from any classifier.
Some filter methods are ranking approaches: features are ranked according to an
individual score of importance. Such individual feature scores can be supervised or

Table 1.
State of the art of feature selection criteria: the criteria that work with the FS criteria evaluation framework
used in this study are underlined.
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unsupervised. For instance, the well-known ReliefF score [11, 12] or scores mea-
suring the correlation between features and ground truth [23] are supervised ones.
However, such individual feature importance measures do not take into account the
correlations between selected features. Thus, a feature subset composed of the n
best features according to such measures is not necessarily an optimal solution, in
the sense that it is not parsimonious.

Other ranking methods are unsupervised: they use importance measures
calculated from a feature extraction technique. For instance, [16] ranks bands
according to a score of importance calculated from PCA decomposition. Correlated
bands are then removed according to a divergence measure. Du et al. and
Hasanlou et al. [17, 19] have a similar approach using ICA instead of PCA. Other

Table 2.
Pros and cons for the different families of FS criteria.
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unsupervised approaches also use results of a PCA selecting the most similar
features to the first PCA [48, 49].

Other filter approaches associate a score to feature subsets. In unsupervised case,
[18] also performs a constrained energy minimization to select a set of bands having
minimum correlation between each other. In supervised cases, separability mea-
sures such as Bhattacharyya or Jeffries-Matusita (JM) distances can be used in order
to identify the best feature subsets for separating classes [25–27, 50]. Other separa-
bility measures based on the minimum estimated abundance covariance (related to
the ability of the band subset to correctly unmix several sources) have also been
used as in [47].

High-order statistics from information theory such as divergence, entropy and
mutual information can also be used to select the best feature sets achieving the
minimum redundancy and the maximum relevance, either in unsupervised situa-
tions as in [6, 38] or in supervised ones as in [14, 30, 31, 51, 52]. Martínez-Usó et al.
[38] first clusters ‘correlated’ features and then selects the most representative
feature of each group. Le Moan et al. [6] selects the three bands belonging to three
red, green and blue spectral domains so that their correlation is minimized. In
supervised cases, [14, 30, 31, 51, 53] select the set of bands that are more correlated
to the ground truth and less correlated to each other. The most difficult is then to
balance both criteria.

The orthogonal projection divergence [21] is another way to measure correlation
between bands by the extent to which it is possible to express one band as a linear
combination of the already selected bands. Last, [22] uses support vector clustering
applied to features in order to identify the most relevant ones.

To sum it up, there are many various filter criteria corresponding to different
approaches. Ranking methods according to an individual feature importance score
remain limited, especially the ones only based on a supervised score, since they are
not aware of the dependencies between selected features. Filter approaches associ-
ating a score to feature subsets are more interesting. Supervised and unsupervised
approaches can be distinguished. Unsupervised approaches are interesting, but in a
classification context, there is still a risk to select features that will not be all useful
for the classification problem.

2.1.2 Wrapper

Wrapper relevance score associated with a feature set simply corresponds to its
corresponding classification performance (measured by an accuracy score). Exam-
ples of such scores can be found in [14, 15, 24, 54] using SVM classifier, [36, 39]
maximum likelihood classifier, [37] random forests, [49] spectral angle mapper or
[55] a target detection algorithm.

2.1.3 Embedded

Embedded FS methods are also related to a classifier, but feature selection is
performed using a feature relevance score different from a classification accuracy.
Most of the time, embedded approaches directly select features during the classifier
training step. Several types of embedded FS approaches can be distinguished [45].

Some embedded approaches are regularization based models. A classifier is
trained according to an objective function where a fit-to-data term that minimizes
the classification error is associated with a regularization function, penalizing
models when the number of features increases or forcing model coefficients associ-
ated with some features to be small. Features with the coefficients close to 0 are
eliminated. Examples of some approaches can be found in [29, 56, 57]. They also

5

Spectral Optimization of Airborne Multispectral Camera for Land Cover Classification:…
DOI: http://dx.doi.org/10.5772/intechopen.88507



include the L1-SVM [58] and the least absolute shrinkage and selection operator
(LASSO) FS [41, 57] approaches. Such approaches are fast and efficient. However,
it can be more difficult to adapt them, for instance, to take into account additional
constraints, since FS criterion and optimization method are linked.

Other embedded approaches use the built-in mechanism for feature selection in
the training algorithm of some classifiers. For instance, random forests (RF) [43]
and decision trees can be considered as performing an embedded feature selection,
since, when splitting a tree node, only the most discriminative feature according to
Gini impurity criterion is used among a feature subset randomly selected [43]. This
FS eliminates the less useful features, but there is no guarantee to select a parsimo-
nious feature subset: redundant features can be selected.

Some embedded approaches also provide feature importance measures, such as
random forest classifier [43]. It is processed on samples left out of the bootstrapped
samples and is based on the permutation decrease accuracy: the importance of a
feature is estimated by randomly permuting all its values in these samples for each
tree, as the difference averaged over all the trees between prediction accuracy
before and after permuting this feature. Other embedded approaches providing
feature importance use them in a pruning process that first uses all features to train
a model, before progressively eliminating some of them while maintaining model
performance. SVM-RFE [13] is a well-known embedded approach where the
importance of the different features in a SVM model is considered. Such approach
has been extended to multiple kernel SVM by [42], associating a different kernel to
each feature, estimating the model and then using the weights associated with these
kernels as feature importance measures.

Other approaches do not calculate a score of importance for each feature indi-
vidually, but evaluate the relevance of sets of features. Such scores often measure
the generalization performance of the obtained model. Thus, the FS is not directly
performed during the training step, but uses an intermediate result of the training
step. For instance, [46, 59] use the generalization performance, e.g. the margin of
a SVM classifier, as a separability measure to rank sets of features. The out-of-bag
error rate of a random forest [43] can also be considered as such score. These scores
are calculated for feature subsets and measure the generalization performance of
the model provided by the classifier. Thus, they can be considered as an alternative
between filter separability measures and wrapper scores.

Embedded approaches can also be extended to unmixing methods, as, for
instance, in [60] where band selection is integrated into an endmember and abun-
dance determination algorithm by incorporating band weights and a band sparsity
term into an objective function.

2.1.4 Optimization methods

Another issue for band selection is to determine the best set of features
corresponding to a given criteria. An exhaustive search is often impossible, espe-
cially for wrapper techniques. Therefore, heuristics have been proposed to find a
near-optimal solution without visiting the entire solution space. Optimization
methods can be either specific to a FS method (as for most embedded ones) or
generic. Generic optimization methods can be divided into two groups: sequential
and stochastic.

Several incremental search strategies have been detailed in [28], including the
sequential forward search (SFS) starting from one feature and incrementally adding
another feature making it possible to obtain the best score or on the opposite the
sequential backward search (SBS) starting for all possible features and incremen-
tally removing the worst feature. Variants such as sequential forward floating
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search (SFFS) or sequential backward floating search (SBFS) are proposed in [28].
Serpico and Bruzzone [32] also proposes a variant of these methods called steepest
ascent (SA) algorithms.

Among stochastic optimization strategies used for feature selection, several
algorithms have been used for feature selection, including genetic algorithms
[14, 15, 46, 54, 55], particle swarm optimization (PSO) [24, 47], clonal selection
[39], ant colony [35] or even simulated annealing [27, 61].

In the specific case of hyperspectral data, adjacent bands are often very corre-
lated to each other. Thus, hyperspectral band selection faces the problem of the
clustering of the spectral bands. Band clustering/grouping has sometimes been
performed in association with individual band selection. For instance, [15] first
groups adjacent bands according to conditional mutual information and then
performs band selection with the constraint that only one band can be selected per
cluster. Su et al. [40] performs band clustering applying k-means to band correla-
tion matrix and then iteratively removes the too inhomogeneous clusters and the
bands that are too different from the representative of their cluster. Martínez-
Usó et al. [38] first clusters ‘correlated’ features and then selects the most repre-
sentative feature of each group, according to the mutual information. Chang et al.
[61] performs band clustering using a more global criterion taking specifically
into account the existence of several classes. Simulated annealing is used to maxi-
mise a cost function defined as the sum, over all clusters and over all classes, of
correlation coefficients between bands belonging to a same cluster.

3. Which band selection criterion?

This study is a comparison of FS criteria that can be optimized using generic
optimization heuristics, thus excluding several specific embedded or ranking
approaches. The following FS criteria (listed in Table 3) were evaluated.

3.1 Compared FS criteria

3.1.1 Filter FS criteria

Filter criteria are independent from any classifier. Only scores assessing the
relevance of feature subsets were considered, excluding filter FS methods
ranking features independently according to an individual feature score
(e.g. ReliefF).

3.1.1.1 Separability

Separability measures are used to identify the feature subsets achieving the
best class distinction. Fisher, Bhattacharyya and Jeffries-Matusita measures
[25–27, 50] are such scores. They were used assuming Gaussian class models.

Let μi
!
and Σi be the mean and covariance matrices of the spectral distribution

of class i. Fisher separability between classes i and j is defined in equation (1)

Fij ¼
ðw
!
� μi
!
�μ
!
j

� ��2

t w
!

Σi þ Σj

� �

w
!  where w

!
¼ Σi þ Σj

� ��1
μ
!
i � μj

!
� �

(1)

Bhattacharyya separability between classes i and j is defined by equation 2.
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Bij ¼
1

8

t

μi
!
�μ
!
j

� �

Σ
�1 μi

!
�μ
!
j

� �

þ 0:5ln
detΣ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detΣidetΣj

p

 !

 where Σ ¼
Σi þ Σj

2
(2)

As Bhattacharyya and Fisher separability measures are defined for binary
problems, their mean overall possible pairs of classes were here used as FS criteria.
To sum it up, the next separability measures were used as FS criteria:

• Mean Fisher (fisher) separability measures calculated over all pairs of classes
(equation 3):

1

nb_pairs_of_classes

X

c�1

i¼1

X

c

j¼iþ1

Fij (3)

• Mean Bhattacharyya (Bdist) separability measures calculated over all pairs of
classes (equation 4):

1

nb_pairs_of_classes

X

c�1

i¼1

X

c

j¼iþ1

Bij (4)

• Jeffries-Matusita measure (jm) defined in equation 5:

JM ¼
X

c�1

i¼1

X

c

j¼iþ1

1� e�Bij
� �

(5)

Table 3.
Selected FS criteria to be compared.
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3.1.1.2 Mutual information

Another FS criterion based on high-order statistics from information theory, e.g.
mutual information (MI), was adapted from [14] and tested: it took into account
both feature-class dependencies and between feature correlations. It is defined in
equation 6.

J Sð Þ ¼
X

f ∈ S

I C; fð Þ �
1

#S

X

f ∈ S

X

s∈ S; s 6¼f

I  f ; sð Þ

H  fð Þ:H sð Þ
(6)

for a feature subset S, where I C; fð Þ is the MI between feature f and classes,
I  f ; sð Þ is the MI between features f and s and H  fð Þ is the entropy of feature f . It is
referred to as mi in Table 3.

3.1.2 Wrapper and embedded FS criteria

Several classifiers were used to define wrapper scores related to their classifica-
tion performances achieved using feature subsets. Only fast classifiers which did
not require an optimization of hyper-parameters were used:

• Maximum likelihood classification (ML): assuming a Gaussian model for the
spectral distribution of classes, mean vectors and covariance matrices are
estimated for each class during the training step. Each new sample is then
labelled by its most probable class according to the model.

• SAM and SID: these classifiers are specific to hyperspectral data. The spectral
angle mapper (SAM) consists in classifying a sample according to the angle
between its spectrum and reference spectra. The spectral information divergence
[62] comes from dissimilarity measures between statistical distributions and
more precisely the Kullback-Leibler measure.

• Support Vector Machine (SVM) [63]: SVM has been intensively used to
classify remote sensing data and especially hyperspectral data [2, 15, 64].
Training a SVM classifier aims at estimating the best frontiers between classes.
Only a one-against-one linear SVM was used here. Indeed, it is fast and enables
to avoid an optimization of hyper-parameters, contrary to other kernels.
Besides, using a linear SVM introduces a constraint to select bands achieving a
linear separation between classes.

• Decision trees (DT) [44].

• Random forests (RF) [43] is a modification of bagging applied with decision
trees. It can achieve a classification accuracy comparable to boosting [43] or
SVM [65]. It does not require assumptions on the distribution of the data, which
is interesting when different types or scales of input features are used. It was
successfully applied to remote sensing data such as multispectral data,
hyperspectral data or multisource data. This ensemble classifier is a combination
of tree predictors built from multiple bootstrapped training samples. For each
node of a tree, a subset of features is randomly selected. Then, the best feature
with regard to Gini impurity measure is used for node splitting. For
classification, each tree gives a unit vote for the most popular class at each input
instance, and the final label is determined by a majority vote of all trees.
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These different classifiers were chosen because their underlying principles were
different from each other. SAM, SID and ML rely on class models, while the others
use inter-class separation models. RF can model even complex class frontiers
remaining quite fast, while linear SVM selects features achieving the most possible
linear separation between classes.

Wrapper FS scores measuring classification performance were considered:

• Kappa coefficient: for all of these classifiers, the Kappa coefficient has been
used as a FS score.

• Classification confidence score: in addition, another FS score taking into
account the classification confidence was also used [66]. Indeed, most
classifiers provide classification confidence indices and a class membership
measuring the degree to which the sample belongs to the different classes
according to the classifier. Let X ¼ xi; yi

� �� �

1≤ i≤ n
be a set of labelled ground

truth samples xi and their associated true label yi. Let m x; cð Þ be the class
membership measuring the probability for x to belong to class c. A possible
feature selection score R taking into account class membership measures and
thus classification confidence can be defined by equation 7:

R Xð Þ ¼
X

n

i¼1

δ yi; c xið Þ
� �

:m xi; c xið Þð Þ (7)

with δ i; jð Þ ¼ �1f if i 6¼ j and 1 otherwise g and c xð Þ the label given to x by the
classifier. Such score measures both the ability to well classify the test samples for a
given feature set and the separability between classes. Indeed, the more the samples
are well classified, the more the score increases. The more the classifier is confident
for well-classified samples, the more the score increases. The more the classifier is
confident for bad-labelled samples, the more the score decreases. This confidence
score was used in our experiments only for RF and linear SVM classifiers.

Embedded FS criteria. The two following criteria measuring the generalization
performance of two classifiers were also tested. They are not pure embedded but
can be considered as intermediate between wrapper and embedded. However,
differentiating them from previous common wrapper scores, they are here referred
to as ‘embedded’ in the sense that they assess the classification performance directly
using a measure calculated directly while training the classifier and not after an
evaluation of the model on a test data set. These scores are:

• The margin of a linear 1-vs-1 SVM classifier (without parameter optimization)
(svm.lin.marg), that is to say the distance between the class frontier and its
support vectors.

• The out-of-bag error [43] of a RF classifier (rf.oob). The out-of-bag samples are
left out of the bootstrapped samples when training the RF.

3.2 Assessment approach

It must be kept in mind that study is a comparison of FS criteria and not of
optimization methods. Thus all were optimized using the same optimization heuris-
tics on the same classic hyperspectral data sets (3.3). The proposed workflow
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(Figure 1) includes two steps. The suitable number of bands to select is first estimated
for each data set, thanks to an incremental FS optimization algorithm called sequen-
tial forward floating search (SFFS) [28]. Then, the core comparison of FS criteria was
performed. They were optimized to select this fixed number of bands using a sto-
chastic FS optimization algorithm. A genetic algorithm (GA) (3.2.2) was used. Indeed,
it proved to be efficient and generic enough to be used for all tested criteria. Besides it
can provide valuable intermediate results (3.2.4) to assess FS stability. GA was
launched several times to select this fixed number of bands for all tested FS criteria. It
thus provided several possible band subset solutions. Indeed, performing FS several
times was also a way to benefit from the stochastic nature of GA and thus to explore
more band subset configurations. These different solutions were then quantitatively
evaluated, according to different classifiers, to be able to draw conclusions about their
relevance quite independently from a given classifier (3.2.3). Besides, to perform a
qualitative analysis of the obtained solutions (and especially their stability), band
importance measures were derived from intermediate results provided by this sto-
chastic FS (3.2.2). It enabled to visually identify the parts of the spectrum considered
as important by the FS criterion and to have a qualitative analysis concerning the
stability of the proposed band subset solutions according to the FS criterion.

In practice, for each FS criterion, the GA feature selection process was launched
five times on five limited data sets (100 training and 500 (300 for Indian Pines)
testing samples) randomly selected with replacement among the whole data set. To
sum it up, at the end, 25 ‘optimal’ feature subset solutions were thus obtained for
each criterion and had to be evaluated (Figure 2).

Figure 1.
Assessment process.
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3.2.1 Optimal band subset size using a sequential FS algorithm

Intermediate results of a sequential FS algorithm were used to identify how
many bands must be selected. In our experiments, the sequential forward floating
search (SFFS) algorithm was used [28].

This optimization method provides useful intermediate results. Indeed, it selects
the ‘best’ sets of bands for different band subset sizes, starting from 1. Thus, it
provides for each of them both the selected band subset (that could then be evalu-
ated according to the performance of several classifiers) and the value reached by
the FS score. Therefore, it enables to observe the evolution of FS score and classifi-
cation quality, with the number of selected bands and then to decide how many
bands are necessary to obtain suitable results. Other sequential methods as SVM-
RFE [13] or SFS could also provide such information, but contrary to them, SFFS
has the advantage to question at each step the selected set of bands obtained at the
previous step, which enables possible modifications in the already selected band
subset.

3.2.2 Band subset solutions using a genetic algorithm

Genetic algorithm (GA) is a family of stochastic optimization heuristics simu-
lating the evolution mechanisms on a population of individuals. A score measuring
its adaptation and its aptitude to stay alive is associated with each individual. In FS
context, each individual is a feature subset and the score is the FS score.

Algorithm 1 Genetic algorithm.

It is intended to select less than p bands among a band set B. J is the FS score to
optimize.

Figure 2.
Evaluation of FS criteria using band subsets obtained using a GA optimization.
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Initialization: (t 0) Randomly generate a population G 0ð Þ of N individuals,
i.e. N sets of p bands.
while t< tmax do

//generation loop
t tþ1
Calculate the score of each band subset of the current population.
Keep only the n (n<N) best band subsets of the current population. Let R tð Þ
be this remaining population.
Generate a new population G tð Þ of N individuals from R tð Þ:
for all new individual do

Randomly select 2 parents among R tð Þ.
Obtain a new individual by randomly crossing these 2 parents.
Random mutations occur (randomly replacing a selected band by another
one) in order to avoid to stay in a local optimum.

end for
end while

3.2.2.1 GA-derived importance measures

The GA approach has some advantages for our problem. First, only the best
solution is usually kept, while GA has visited many other candidates. Many of
them have scores quite similar to the score of the best solution: they are almost as
good as the final solution. Therefore, these intermediate results can be used to
determine which bands are often selected in the solutions (see Figure 3) of these
intermediate good band subset populations [67]. Thus, an individual band impor-
tance score I bð Þ (defined in equation 8) is calculated for each band b, measuring the
occurrence at which it has been selected by GA among the different n best sets of
bands obtained for all generations

I bð Þ ¼
X

t

X

R∈L tð Þ

δ b;R tð Þð Þwhere δ b;Rð Þ ¼ 1 if b∈R,0 otherwise: (8)

To increase robustness, GA can be launched several times (i.e. so that different
initializations and mutations occur) and over several training/testing sets randomly
extracted from the whole data set. The proposed importance score is calculated
for each of these results. Finally, the mean of these scores is considered for each
band, giving the importance associated with this band.

3.2.3 Quantitative evaluation

In state of the art, FS is often considered as a first step in a specific
classification workflow. In this context, wrappers are considered as achieving the
best classification performance for a problem while sometimes lacking
generality and being too classifier dependent. However, in our superspectral sensor
design context, selected band subsets must be as efficient as possible for most
classifiers and not only for the used FS criteria. Therefore, selected band subsets
were here evaluated considering their classification quality reached with several
classifiers.

Kappa coefficient was used as classification quality measure for the next
classifiers: ML, RF and 1-vs-1 SVM with a radial basis function (RBF) kernel (with
optimized parameters). It can here be noted that the latter was the only one not
involved previously in a tested FS criterion. Thus, RBF SVM is the only classifier
that is completely independent from all tested FS criteria. To come into details,
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evaluation was performed and averaged on five training/testing sample sets: for
each of them, classifiers were trained using 50 samples per class (in order to be in a
difficult case with few training samples), and results were evaluated on all
remaining ground truth samples. For each FS criterion, all selected band subsets
(obtained for the several launches of the algorithm) were evaluated, and the mean
Kappa coefficient was then computed over all of them (see Figure 2).

3.2.4 Selected band stability

Another evaluation criterion of the FS criteria quality was the stability of
the selected features. As explained in Section 3.2.2, band importance profiles
(Figure 3) can be derived from intermediate results of a GA feature selection. As
the contiguous bands in hyperspectral data are correlated, such band importance
profile should be quite regular and smooth (i.e. not too noisy). The smoothness/
regularity of these profiles is thus related to the stability of the solutions
obtained using a FS criterion. Furthermore, the final optimal solutions provided
by the different launch of GA can also be examined. This analysis remains only
qualitative.

3.3 Data sets

Three state-of-the-art available hyperspectral data sets were used for the
experiments:

• Pavia City Centre scene1: This first data set is a hyperspectral scene
acquired by the ROSIS sensor over the city centre of Pavia with a 1.3 m
spatial resolution. It is a reflectance VNIR hyperspectral image with a

Figure 3.
Each line is a band subset selected in the intermediate results of GA, and each black dot represents a selected
band. Blue histogram represents the importance associated with each band.

1 Pavia data set is provided by Pavia University available at http://www.ehu.eus/ccwintco/index.php?

title=Hyperspectral_Remote_Sensing_Scenes.
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spectral resolution ranging from 460 nm to 860 nm. Noisy bands have
been discarded, and only 102 spectral bands from the original 115 bands
have been kept. It covers an urban area (city centre). Its associated
land cover ground truth consists of nine urban classes (materials and
vegetation).

• Indian Pines scene2: This hyperspectral scene was collected by the AVIRIS
sensor over the Indian Pines test site in North-western Indiana. It is a radiance
VNIR-SWIR hyperspectral image consisting of 220 spectral bands ranging
from 400 to 2500 nm. Its associated ground truth consists of agricultural
classes and other classes concerning perennial vegetation (forest, grass). In our
experiments, only nine classes out of the original were kept. The discarded
classes concerned less than 400 samples, which were considered as too few for
our experiments.

• Salinas scene3: This hyperspectral scene was collected by the AVIRIS sensor
over the Salinas Valley in California at a 3.7 m spatial resolution. It is an at-
sensor radiance VNIR-SWIR hyperspectral image consisting of 224 spectral
bands ranging from 400 to 2500 nm. Its associated ground truth consists of
agricultural classes, that is to say different kinds of culture at different
growing steps.

3.4 Results and discussion

3.4.1 Optimal number of bands using SFFS

An optimal number of bands to select was identified using SFFS incremental FS
method, starting from one selected band and incrementing the band subset until a
maximal number of bands. Indeed, this maximum number of bands was fixed to 20
considering the superspectral sensor design application, for which the number of
possible spectral bands is limited. In practice, the influence of the number of
selected bands on the FS score and on the classification performance (measured by
Kappa and the F-score of the worst classified class) for a RBF SVM classifier using
the best selected band subset was considered. The optimal number of bands was
chosen as the one from which these scores virtually no longer increase. Results
obtained using several FS scores were also considered to make this decision, and at
the end, the number of bands to select is a trade-off between several FS criteria.

For Pavia data set, the influence of the number of selected bands on the FS score
and on the classification performance (measured by Kappa and the F-score of the
worst classified class) for a RBF SVM classifier using the best selected band subset
can be seen in Figure 4. The different quality indices no longer evolve a lot from
five bands, except the minimal F-score increasing slightly up to seven bands. Sim-
ilar results were obtained using several FS criteria, even though some differences
exist. For instance, the quality indices increased slower for jm than for rf.conf in
Figure 4. Thus seven bands were selected for Pavia data set for further
experiments.

2 Indian Pines data set is provided by Purdue University and available at https://engineering.purdue.ed

u/�biehl/MultiSpec/hyperspectral.html.
3 Salinas data set was downloaded from http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_

Remote_Sensing_Scenes.
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The same kind of results was obtained for Salinas, and seven bands were also
selected for this data set in further experiments.

For Indian Pines, obtained results are slightly different as shown in Figure 5.
The FS score increases fastly until seven bands are selected. Then, it remains quite
constant for rf.conf but continues to very slightly increase for jm. The same
phenomenon can be observed for classification accuracies reached by a RBF SVM
classifier using the selected band subsets. For rf.conf FS criterion, a maximum is
reached around 10–11 selected bands, while for jm, a stage is reached for these
values followed by a new slight increase.

However, it must be kept in mind that this data set is more difficult than the
other ones. Indeed, on the one hand, it offers less training/testing samples (and thus
an increased risk of over-fitting). On the other hand, classes are more difficult to
distinguish to each other, and raw classification results (that is to say without any
regularization post-processing step) remain noisy. Thus 10 bands were selected in
further experiments for Indian Pines data set.

3.4.2 Comparison of FS criteria

GA optimization heuristic was then launched to select 7 bands for Pavia, 10
bands for Indian Pines and 7 bands for Salinas. For each FS score, several feature
subset solutions were proposed using GA. Their classification quality rate (Kappa)
(averaged over all of them) using several classifiers is presented in Figure 6. At the
first glance, most of the time, Kappa coefficients reached using features selected
according to different FS scores are correlated over the different classifiers (RBF
SVM, RF and ML) used for evaluation. Indeed, if a FS score leads to the best
classification for a classifier, it will also generally be the best for the other classifiers.
Thus the relevance of score appeared to be quite independent from the classifier
used at validation step.

Figure 4.
Pavia test site: influence of the number of selected bands on the feature selection score (left) and on classification
performance (using the best band subset with a RBF SVM classifier) (right with kappa coefficient for the blue
line and F-score of the worst classified class for the red line). Two FS criteria tested: rf.conf (top) and jm
(bottom).
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It can also be noticed from Figure 6 that the best FS scores lead to quite
equivalent classification quality. This is clearly visible for Pavia and to a less extent
for Salinas. On the opposite, results are more contrasted on Indian Pines. This might
be due to the fact that Indian Pines is a more difficult data set, with a stronger intra-
class variability and inter-class similarity, whereas Pavia is a quite simple data set
with few well-distinguished classes. These results will now be discussed for each
category of FS criteria. Band importance provided by GA will also be considered.

3.4.2.1 Comparison of wrapper criteria

It can be seen from Figure 6 that the FS scores sam.K and sid.K are less good than
the other wrapper scores. This phenomenon appears strongly for Indian Pines and
Salinas and is also a light trend for Pavia. The fact that it is more striking on Indian
Pines scene can be related to the important intra-class variability of this data set.

The other wrapper scores relying on Kappa coefficient as a measure of classifi-
cation performance lead to quite equivalent quantitative results. However, band
importance profiles (Figures 7 and 8) provide other additional information. For
instance, for Pavia data set (Figure 7), the FS score svm.lin.K tends to select the first
bands (around band 5) of the spectrum, even though these bands are quite noisy.
ml.K score performs very well considering classification performance but tends to
be very sensitive to a probable atmospheric artefact, paying a lot of importance to
bands from band 80 to band 85 and especially to band 82. This part of the spectrum
corresponds to an atmospheric correction artefact, and not to a true discriminant
phenomenon. This trend to select bands corresponding to this artefact is also
observed for other FS scores.

Using classification confidence-based FS scores instead of classic classification
accuracy scores tends to improve results. This trend can be observed in Figure 6
both for RF and SVM: using rf.conf instead of rf.K or using svm.lin.conf instead of

Figure 5.
Indian Pines test site: Influence of the number of selected bands on the feature selection score (left) and on
classification performance (using the best band subset with a RBF SVM classifier) (right with kappa coefficient
for the blue line and F-score of the worst classified class for the red line). Two FS criteria tested: rf.conf (top)
and jm (bottom).
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svm.conf tends to slightly improve classification quality. Considering band impor-
tance profiles obtained for Pavia (Figure 7), using rf.conf instead of rf.K avoids to
select the noisy bands around band five. Band importance profiles obtained using rf.
conf also seem to be slightly more regular than using rf.K both for Pavia (Figure 7)

Figure 6.
Mean kappa coefficients obtained by classifiers RBF kernel SVM (red), RF (blue) and ML (yellow) using band
subsets selected using the different FS criteria for the three data sets. From (a-c): Pavia, Indian Pines and
Salinas.

Figure 7.
Pavia test site: band importance profiles obtained using several FS criteria: (a) ml.K, (b) svm.lin.K, (c) rf.K
and (d) rf.conf.
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and Indian Pines (Figure 8). Thus, using a confidence-based FS score tends to
regularize feature importances and thus to stabilize feature selection.

3.4.2.2 Comparison of wrapper and embedded criteria

Classification qualities reached using both tested embedded criteria (svm.lin.
marg and rf.oob) appeared to be generally less good than using the wrapper scores
associated with these two classifiers. This is especially clear for svm.lin.marg, which
is the worst FS score, for all classifiers used at evaluation step.

Even though it performs quite well, feature subsets selected using rf.oob lead
generally to worse classification performance than using the best wrapper scores,
and especially rf.K and rf.conf, also associated to random forests.

3.4.2.3 Comparison of wrapper and filter criteria

Considering classification quality (Figure 6), mutual information (mi) leads to
different results for the various data sets: on Pavia data set, feature subsets selected
according to this FS score enable to reach classification performance as good as
the best wrapper scores, while on Indian Pines data set, obtained results are among
the worst. Band importance profiles (Figures 9 and 10) obtained using mi are also
very different from those obtained for the other FS scores: they tend to neglect wide
parts of the spectrum. This is especially striking for Indian Pines data set, where
bands from 30 to 100 are not considered as important, contrary to other FS scores.

The other tested filter FS scores are separability measures. They perform very
well considering classification quality (Figure 6): they lead to classification results
as good or better than those obtained using the best wrapper FS scores. In
particular, the Jeffries-Matusita separability distance (jm) appears to be one of
the best FS scores.

However, considering band importance profiles obtained for Pavia (Figure 9)
using jm, it tends to strongly focus on a part of the spectrum (bands 80 to 85)
concerned by artefacts caused by atmospheric corrections. This phenomenon also

Figure 8.
Indian Pines test site: band importance profiles obtained using several FS criteria: (a) ml.K, (b) svm.lin.K,
(c) rf.K and (d) rf.conf.
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occurred for bdist and fisher and, as explained above, was also observed for some
wrapper FS scores.

Furthermore, band importance profiles obtained using jm FS score seem
slightly more noisy or more difficult to interpret than using the best wrapper
FS scores (rf.K,rf.conf).

3.4.3 Conclusion

FS score comparison. Some wrapper, embedded and filter FS scores were tested
and evaluated on several data sets:

• svm.lin.marg appears clearly as the worst of them, performing poorly on all
data sets.

• Other ones (sam.K, sid.K and im) perform quite good on simple data sets but
poorly on the most difficult one (Indian Pines).

• Most perform well, leading to good classification performance. The best FS
scores are filter separability measures or wrapper FS scores. However some
slight trends can be observed:

◦ Filter separability scores tend to lead to slightly better classification results
than wrapper scores. Especially jm often appears as the best FS score
according to quantitative analysis. However, considering band importance
profiles, it tends to lead to less regular profiles and thus to less stable
solutions than some wrapper scores. Besides they appear to be sensitive to
an atmospheric correction artifact for Pavia data set.

Figure 9.
Pavia test site. Band importance profiles obtained using several FS criteria: (a) JM distance and (b) mutual
information.

Figure 10.
Indian Pines test site. Band importance profiles obtained using several FS criteria: (a) JM distance and
(b) mutual information.
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◦ Confidence-based wrapper scores taking into account classification
confidence (rf.conf or svm.lin.conf) perform better than classic wrapper
scores expressed as a simple classification “hard label” error rate. This
trend could be observed both in quantitative (classification performance)
and qualitative (band importance profiles) analyses. Indeed, taking into
account classification confidence tends to regularize feature importances
and provide more stable feature subsets.

At the end, the most interesting FS scores are rf.conf for wrappers and jm for
filters, since they lead to the best quantitative results. rf.conf seems to provide more
stable results than jm, considering its more regularized band importance profile.
Besides it is more robust to some artefacts (e.g. atmospheric correction artefact for
Pavia). However, even though computing times were not discussed in this study, it
must be added that FS selection using filter separability measures (such as jm) is
faster than using wrapper scores such as rf.conf.

Thematic comments. Conclusions about interesting spectrum parts can be
drawn using the importance profiles provided by the different FS criteria:

• Optimized spectral configurations are different from one FS criterion to
another. Indeed, some parts of the spectrum are identified as important by
most FS criteria, but other ones correspond to a clear disagreement.

• Spectrum parts considered as important can often be understood considering
the spectra of classes. Indeed, they can correspond to almost constant
spectrum parts located before or after a strong variation of spectra of some
classes. They can also correspond to intersections between the spectra of
several classes.

• For Indian Pines and Salinas scenes, no precaution was taken to handle noisy
bands corresponding to the main atmospheric absorption windows. However,
importance measures associated with these bands were very weak for most
FS criteria (except the worse of them). Such observation can be considered as
an additional quality criterion for the tested FS scores.

• Band importance profiles obtained for Indian Pines are often more difficult
to analyse than for Pavia. Nevertheless, some common trends could be
observed, especially in the SWIR domain, where some blobs along the
spectrum are visible for most FS criteria and might correspond approximately
to the locations of some spectral bands of the WorldView-3 satellite.

4. Exploring bandwidth and extracting optimal spectral bands using
hierarchical band merging

Works in the previous section were dedicated to the identification of a FS score.
It was used for band selection, that is to say to select a subset of original bands out
of a hyperspectral data set (without optimizing their weights). This section will
focus on band extraction and will consider band subsets composed of spectral bands
with different spectral widths. Indeed, optimizing spectral width is important to
design a spectral sensor, as having wider bands is a way to limit signal noise while
having too wide bands can also lead to a loss a useful information.

21

Spectral Optimization of Airborne Multispectral Camera for Land Cover Classification:…
DOI: http://dx.doi.org/10.5772/intechopen.88507



4.1 Band grouping and band extraction: state of the art and proposed strategy

4.1.1 State of the art

Band grouping and clustering. In the specific case of hyperspectral data, adjacent
bands are often very correlated to each other. Thus, band selection encounters the
question of the clustering of the spectral bands of a hyperspectral data set. This can
be a way to limit the band selection solution space. Band clustering/grouping has
sometimes been performed in association with individual band selection. For
instance, [15] first groups adjacent bands according to conditional mutual informa-
tion and then performs band selection with the constraint that only one band can be
selected per cluster. Su et al. [40] performs band clustering applying k-means to
band correlation matrix and then iteratively removes the too inhomogeneous clus-
ters and the bands too different from the representative of the cluster to which they
belong. Martínez-Usó et al. [38] first clusters ‘correlated’ features and then selects
the most representative feature of each group, according to mutual information.
Chang et al. [61] performs band clustering using a more global criterion taking
specifically into account the existence of several classes: simulated annealing is used
to maximise a cost function defined as the sum, over all clusters and over all classes,
of the sum of correlation coefficients between bands belonging to a same cluster.
Bigdeli et al. and Prasad et al. [68, 69] perform band clustering, but not for band
extraction: a multiple SVM classifier is defined, training one SVM classifier per
cluster. Bigdeli et al. [68] has compared several band clustering/grouping methods,
including k-means applied to the correlation matrix or an approach considering the
local minima of mutual information between adjacent bands as cluster borders.
Prasad and Bruce [69] proposes another band grouping strategy, starting from the
first band of the spectrum and progressively growing it with adjacent bands until a
stopping condition based on mutual information is reached.

Band extraction. Specific band grouping approaches have been proposed for
spectral optimization. De Backer et al. [27] defines spectral bands by Gaussian
windows along the spectrum and proposes a band extraction optimizing score based
on a separability criterion (Bhattacharyya error bound) thanks to a simulated
annealing. [70] merges bands according to a criteria based on mutual information.
Jensen and Solberg [71] merges adjacent bands decomposing some reference spectra
of several classes into piece-wise constant functions. Wiersma and Landgrebe [34]
defines optimal band subsets using an analytical model considering spectra recon-
struction errors. Serpico and Moser [50] proposes an adaptation of his steepest
ascent algorithm to band extraction, also optimizing a JM separability measure.
Minet et al. [55] applies genetic algorithms to define the most appropriate spectral
bands for target detection. Last, some studies have also studied the impact of
spectral resolution [72], without selecting an optimal band subset.

4.1.2 Proposed approach

The approach proposed in this study consists in first building a hierarchy of
groups of adjacent bands. Then, band selection is performed at the different levels
of this hierarchy.

Thus, it is here intended to use the hierarchy of groups of adjacent bands as a
constraint for band extraction and a way to limit the number of possible combina-
tions, contrary to some existing band extraction approaches such as [50] that
extract optimal bands according to JM information using an adapted optimization
method or [55] that directly use a genetic algorithm to optimize a wrapper score.
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4.2 Hierarchical band merging

The first step of the proposed approach consists in building a hierarchy of groups
of adjacent bands that are then merged. Even though it is here intended to be used
to select an optimal band subset, this hierarchy of merged bands can also be a way
to explore several band configurations with varying spectral resolution, that is to
say with contiguous bands with different bandwidth.

4.2.1 Proposed algorithm

Notations. Let B ¼ λif g0≤ i≤ nbands be the (ordered) set of original bands. Let

H ¼ H ið Þ
� �

0≤ i< nlevels
be the hierarchy of merged bands. H ið Þ ¼ H

ið Þ
j

n o

1≤ j≤ ni
is the

ith level of this hierarchy of merged bands. It is composed of ni merged bands, that
is to say ni ordered groups of adjacent bands from B.

Thus, each H
ið Þ
j is defined as a spectral domain:

H
ið Þ
j ¼ H

ið Þ
j :λmin;H

ið Þ
j :λmax

h i

Thus, the merged band B1⊕B2 obtained when merging two such adjacent
merged bands B1 and B2 is B1⊕B2 ¼ B1:λmin;B2:λmax½ �.

Let J :ð Þ be the score that has to be optimized during the band merging process.
The proposed hierarchical band merging approach is a bottom-up one. The

algorithm is defined below:

Initialization: H 0ð Þ ¼ B (that is to say that each merged band of the first level of
the hierarchy only contains one individual original band).

Band merging: create level l + 1 from level l:
Find the pair of adjacent bands at level l that will optimize the score if they are

merged: find k̂ ¼ argminkJ T H lð Þ
; k

� �� �

with

T H lð Þ
; k

� �

¼ H
lð Þ
0 ;…;H

lð Þ
k�1;H

lð Þ
k ⊕H

lð Þ
kþ1;H

lð Þ
kþ2;…;H lð Þ

nl

h i

Þ.

Then H lþ1ð Þ ¼ T H lð Þ
; k̂

� �

.

A table Llþ1
l is defined to link the different merged bands at consecutive hierar-

chy levels:

for 1≤ j≤ k̂, Llþ1
l H

lð Þ
j

� �

¼ H
lþ1ð Þ
j

Llþ1
l Hk̂

lð Þ
� �

¼ Hk̂ lþ1ð Þ

Llþ1
l Hk̂

lð Þ
þ 1

� �

¼ Hk̂ lþ1ð Þ

for k̂ þ 2≤ j≤ nl, L
lþ1
l H

lð Þ
j

� �

¼ H
lþ1ð Þ
j�1 .

At the end, the value of a pixel in a merged band is defined as the mean of its
values over the different bands it contains.

4.2.2 Band merging criteria

Several optimization scores J were examined. (In the algorithm described
in Section 4.2.1, this score is aimed to be minimized.) They can be either
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supervised or unsupervised, depending whether classes are considered or not at
this step.

4.2.2.1 Correlation between bands

Between band correlation (either the classic normalized correlation coefficient
or mutual information) (see Figure 11) measures the dependence between bands.
So a first band merging criterion intends to merge adjacent bands considering how
they are correlated to each other. Thus, it tries to obtain consistent groups of
adjacent correlated bands.

Such measure inspired from [61] can be defined by the next function in
equation 9 (intended to be minimized):

J H lð Þ
� �

¼
X

nl

i¼1

X

H
lð Þ
i

:λmax

b1¼H
lð Þ
i

:λmin

X

H
lð Þ
i

:λmax

b2¼H
lð Þ
i

:λmin

1� c b1; b2ð Þð Þ (9)

where c b1; b2ð Þ is the correlation score between bands b1 and b2.

4.2.2.2 Spectra approximation error

Band merging can also use the method as described in [71] to decompose some
reference spectra of several classes into piece-wise constant functions (Figure 12).
Adjacent bands are then merged trying to minimize the reconstruction error
between the original and the piece-wise constant reconstructed spectra.

Such measure is defined by the next function (see equation 10) for a set sj1≤ j≤ ns

of ns spectra:

J H lð Þ
� �

¼
X

ns

j¼1

X

nl

i¼1

X

H
lð Þ
i

:λmax

b¼H
lð Þ
i

:λmin

∣sj bð Þ �mean sj;H
lð Þ
i

� �

∣ (10)

where mean sj;H
lð Þ
i

� �

denotes the mean of spectra sj over spectral domain H
lð Þ
i .

Figure 11.
Examples of groups of bands superimposed on the band correlation matrix (for Pavia data set).
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4.2.2.3 Separability

Another criterion to merge adjacent band is their contribution to separability
between classes. Possible separability measures are the Bhattacharyya distance
(B-distance) or the Jeffries-Matusita distance [25, 50] already used as FS score in 3.

At a level of the band merging hierarchy, the best set of merged bands is the one
that maximizes class separability. So a possible criterion J (to minimize) for band
merging can be defined by equation 11 as

J H lð Þ
� �

¼ �JM H lð Þ
� �

(11)

4.2.3 Results

Figure 13 shows results on Pavia data set for the three criteria described in the
previous section. The separability-based criterion tends to lead to more different
results than the other ones. The different criteria do not consider the same parts of
the spectrum as having to be kept at fine resolution. For instance, correlation or
spectra reconstruction criteria tend to fast merge bands between number 30 and 32,
while separability tends to preserve them at fine resolution. On the opposite, sepa-
rability tends to fast merge some bands in the red-edge domain, while the other
criteria keep this domain at fine resolution. This can be understood considering the
underlying criteria; indeed adjacent bands are not very correlated to each other in
this domain, and the slope of spectra is strong for vegetation classes; thus they
cannot be merged easily according to correlation or spectra approximation error
band merging criteria. On the opposite, the only interesting information for classi-
fication (e.g. for class separability) is the fact there is a slope there and thus the
values of the bands before and after this domain. Thus, merging these red-edge
bands will have a little impact on class separability.

As the hierarchy of merged bands can also be a way to explore several band
configurations with varying contiguous bands with different spectral resolution, the
different band configurations corresponding to the different levels were evaluated
using a classification quality measure. Thus, for each level, a classification was
performed using a support vector machine (SVM) classifier with a radial basis
function (rbf) kernel and evaluated. Its Kappa coefficient was considered.

Such results are presented on Figure 14. It can be seen that some spectral config-
urations made it possible to obtain better results than at original spectral resolution.
Configurations obtained using the correlation coefficient are generally less good than
for the two other criteria. Except for Pavia, the spectra piece-wise approximation

Figure 12.
On the left, examples of merged bands superimposed on the original reference spectra. On the right, piece-wise
constant reconstructed spectra for these merged bands (Pavia data set).
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Figure 13.
Hierarchies of merged bands obtained for different criteria for Pavia data set: Spectra piece-wise approximation
error (top), between band correlation (middle) and class separability (bottom). X-axis corresponds to the band
numbers/wavelengths. y-axis corresponds to the level in the band merging hierarchy (bottom, finest level with
original bands; top, only a single merged band). Vertical black lines are the limits between merged bands: the
lower the hierarchy, the more the merged bands are. Reference spectra of the classes are displayed in colour.
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error merging criterion tends to lead to the best results. But for Pavia, the classifica-
tion Kappa reached using the different criteria remained very similar.

4.3 Band selection within the hierarchy

4.3.1 Greedy algorithm

To optimize spectral configuration for a limited number of merged bands, a
greedy approach was first used: it performed band selection at the different levels
of the hierarchy of merged bands, paying no attention at results obtained at the
previous level. Thus a set of merged bands was selected at each level of
the hierarchy.

The feature selection (FS) score to optimize was the JM separability measure.
It was optimized at each level of the hierarchy using an SFFS incremental optimi-
zation heuristic [28].

4.3.1.1 Results

Obtained results on Pavia data set are presented on Figure 15: five merged bands
(as in [67]) were selected at each level of the hierarchy of merged bands. The
positions of the selected merged bands do not change a lot when climbing the
hierarchy, except when reaching the lowest spectral resolution configurations. At
some levels of the hierarchy, the position of some selected merged bands can also
move and then come back to its initial position when climbing the hierarchy.

Thus, it can be possible to use the selected bands at a level l to initialize the
algorithm at the next level lþ 1. This modified method will be presented in
Section 4.3.2.

Figure 14.
Kappa (in %) reached by a rbf SVM for the different band configurations of the hierarchy (x-axis = number of
merged bands in the spectral configuration corresponding to the hierarchy level): for Pavia (top), Indian Pines
(middle) and Salinas (bottom) data sets.
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Figure 15.
Pavia data set: selected bands at the different levels of the hierarchy using the greedy approach for hierarchies of
merged bands obtained using different band merging criteria: spectra piece-wise approximation error (top),
between band correlation (middle) and class separability (bottom); x-axis corresponds to the band numbers/
wavelengths; y-axis corresponds to the level in the band merging hierarchy (bottom—finest level with original
bands; and top—only a single merged band).
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The merged band subsets selected at the different levels of the hierarchy were
evaluated according to a classification quality measure. As in the previous section,
the Kappa coefficient reached by a rbf SVM was considered. Results for Pavia and
Indian Pines data sets can be seen in Figure 16. At each level of the hierarchy, 5
bands were selected for Pavia, and 10 bands for Indian Pines. It can be seen that
these accuracies remain very close to each other whatever the band merging crite-
rion used, and no band merging criterion tends to really be better than the other
ones. Results obtained using merged bands are generally better than using the
original bands.

4.3.2 Taking into account the band merging hierarchy during selection

4.3.2.1 Proposed algorithm

The previous merged band selection approach is greedy and computing time
expensive. So an adaptation of the SFFS heuristic was proposed to directly take into
account the band merging hierarchy in the band selection process. As for the
hierarchical band merging algorithm, a bottom-up approach was chosen. Contrary
to the greedy approach, this one uses the band subset selected at the previous lower
level when performing band selection at a new level of the hierarchy of merged
bands. This algorithm is described below:

Figure 16.
Kappa (in %) reached for rbf SVM classification for merged band subsets selected at the different levels of the
hierarchy for Pavia and Indian Pines data sets using the greedy FS algorithm (x-axis = number of merged bands
in the spectral configuration corresponding to the hierarchy level).
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Let S lð Þ ¼ fS
lð Þ
i g1≤ i≤ p be the set of selected merged bands at level l of the

hierarchy. (NB: the same number p of bands is selected at each level of the hierarchy.)
Initialization: standard SFFS band selection algorithm is applied to the base

level H 0ð Þ of the hierarchy.
Iterations over the levels of the hierarchy:

Generate S lþ1ð Þ from S lð Þ:

S lþ1ð Þ  fLlþ1
l S

lð Þ
i

� �

g1≤ i≤ p

Remove possible duplications from S lþ1ð Þ.

if #S lþ1ð Þ
< p,

find

s ¼ argmaxb∈H lþ1ð Þ S lþ1ð Þ J S lþ1ð Þ∪b
� �

S lþ1ð Þ  fS lþ1ð Þ; sg

endif

Question S lþ1ð Þ: find band s∈ S lþ1ð Þ such that S lþ1ð Þ\ sf g maximizes FS score, i.e.

s ¼ argmaxz∈ S lþ1ð Þ J S lþ1ð Þ\ sf g
� �

.

S lþ1ð Þ  S lþ1ð Þ\fsg

Then apply classic SFFS algorithm until #S lþ1ð Þ ¼ p.

4.3.2.2 Results

Obtained results on Pavia scene for the band merging criterion ‘spectra piece-
wise approximation error’ are presented in Figure 17: five merged bands were
selected at each level of the hierarchy, starting from an initial solution obtained at
the bottom level of the hierarchy.

As for previous experiments, obtained results were evaluated both for Pavia
(5 selected bands) and Indian Pines (10 selected bands) data sets. Kappa reached for
rbf SVM classification for merged band subsets selected at the different levels of the
hierarchy (built for band merging criterion ‘spectra piece-wise approximation

Figure 17.
Pavia data set: Selected bands at the different levels of the hierarchy using the proposed hierarchy aware
algorithm for a hierarchy of merged bands obtained using spectra piece-wise approximation error band merging
criteria.
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error’) can be seen both for the greedy FS algorithm and for the hierarchy aware
one in Figure 18: obtained results remain very close, whatever the optimization
algorithm.

Both algorithms lead to equivalent results considering classification performance
(see Table 4), while the proposed hierarchy aware algorithm is really faster.

5. Conclusion

Hyperspectral imagery consists of hundreds of contiguous spectral bands, but
only a subset of well-chosen bands is generally sufficient for a specific classification

Figure 18.
Kappa (in %) reached for rbf SVM classification for merged band subsets selected at the different levels of the
hierarchy (built for band merging criterion ‘spectra piece-wise approximation error’) for Pavia and Indian
Pines data sets, using the hierarchy aware band selection algorithm.

Table 4.
Computing times and best kappa coefficients reached on Pavia (for a 5-band subset) and Indian Pines
(for a 10-band subset) data sets for band merging criterion ‘spectra piece-wise approximation error’.
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problem. So it is possible to design superspectral sensors dedicated to specific land
cover classification tasks. This chapter presented a spectral optimization strategy to
identify the most relevant spectral band subset for such sensor, optimizing both
band position and width. Spectral optimization involves a band subset relevance
score as well as a method to optimize it.

This study first focused on the definition of this relevance score. Several filter,
wrapper and embedded scores compatible with generic optimization heuristics
were compared, and both their classification performance and selection stability
were considered for band selection problem. At the end, most of them brought good
results. Jeffries-Matusita distance score tended to lead to slightly better quantitative
classification results than the best wrapper scores but also being less stable. Wrap-
per scores taking into account classification confidence performed better than clas-
sic wrapper scores expressed as a simple classification “hard label” error rate. For
instance, a random forest confidence-based score was identified as one of the best
criteria, considering both quantitative and qualitative analyses. As an intermediate
result of this FS criteria comparison, a method to create band importance profiles
according to the different criteria was proposed providing visual hints about the
relevance of the different parts of the spectrum. Then the study focused on the
optimization of bandwidth, which is important in a spectral sensor design context,
as having wider bands is a way to limit signal noise while having too wide bands can
also lead to a loss a useful information. A strategy consisting in building a hierarchy
of groups of adjacent bands before applying band selection at the different levels of
this hierarchy using an adaptation of an incremental algorithm for this problem.
This band grouping strategy enabled to limit the problem’s combinatory while
considering relevant band subsets composed of spectral bands with different spec-
tral widths. It was also a way to consider several possible solutions and evaluate
their impact.

To conclude, algorithms proposed in this study were applied to design a sensor
dedicated to classify urban materials [20, 33].
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