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Abstract

This chapter focuses on the statistical modeling of the homogenized monthly ave-
rage temperature data of Lisbon from 1856 to 2008. An exploratory analysis was
performed using linear regression models which indicates the need of considering the
temporal dependency and some flexibility in the trend modeling. In order to incorpo-
rate the properties of the data it was adopted a dynamic linear models with a fixed effect
component. The model was fitted by a two-step procedure which combines the least
squares method and the maximum likelihood estimation in the state space framework.
The results indicated an average increase of the homogenized monthly temperature in
Lisbon in about 0.427°C per century, between 1856 to 2008. Additionally, smoother
predictions of the stochastic slopes indicated that the rise of temperature moderately
changes according to the month, higher linear increases occurred in the winter months
and lower increases occurred in the summer months.

Key Words: Time series analysis, Kalman filter, state space model, temperature data, Lis-
bon
AMS Subject Classification: 60G35, 62M 10, 62M20, 62MO05, 93E10.

1. Introduction

This chapter focuses on the long-term time series of monthly temperatures measured in a
Portuguese meteorological station of Lisbon. The original dataset contains monthly ave-
rages of daily minimum and maximum temperature and their annual means measured at
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Figure 1. Plot of the homogenized long-term monthly temperature data series in Lisbon
from 1856 to 2008. The black line represents the values of the 5-year moving average
series.

Instituto Geofisico do Infante D. Luis (IGIDL), from 1856 to 2008. Several studies of cli-
mate variability have been done by analyzing global environmental data or based on certain
locations. The analysis of Lisbon temperature data was performed by [2] based on a dataset
collected at the Climatological Archive of the Portuguese Meteorological Institute and the
measurements stretch from January 1856-December 1999. The same dataset were previ-
ously considered in the analysis of the evolution of the mean annual temperature in Lisbon
by [3]. The results obtained demonstrated a rise in the monthly temperature records in Lis-
bon, although, with a seasonal pattern. The rise in temperature during the winter months
was higher than in summer. Globally, about this dataset was found a mean increase per
century in the annual temperature of 1.02428°C.

Sometimes there are several databases on the same region, although they may have been
obtained in different locations or resulting from different procedures or methodologies. On
the other hand, the quality of data is an important issue which must be discussed mainly
when the objective is the environmental changes analysis.

High-quality temperature data sets are vital for climate monitoring, and especially the
monitoring of climate change. If a temperature data set is to be used for monitoring climate
change it is important that it be homogeneous; that is, changes in the temperature as shown
in the data set reflect changes in climate, and not changes in the external (non-climatic)
conditions under which the observations are made, [15]. The problem of identification and
correction of non-climatic inhomogeneities at the annual and monthly is a well-explored
problem (see, [10, 14]).

This chapter focuses on a dataset of homogenized monthly temperature data of Lisbon
comprising about 153 years. This dataset was produced by [11] which detected and cor-
rected non-climatic homogeneity breaks in the original dataset. This new data are now avai-
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lable for other studies of climate variability, [12]. Relatively to the Lisbon series, two strong
non-climatic breaks were detected in the temperature series of Lisbon (IGIDL), which were
caused by the changes in the instruments location (1864) and height (1941). These breaks
were corrected in the new series.

The data contain monthly extremes and annual means; 7},;, and 1;,4, are measured
values, temperature range (DRT = Tq2 — Timin) and Ty, are calculated values. In this
chapter it is considered the series of the monthly average temperature computed by

Tmin + Tmax
72 .

Taver =

Figure 1 represents the homogenized long-term monthly temperature data and the 5-
year moving average series.

A preliminary analysis will be done in order to detect climate change points that must
be considered in the statistical modeling. An analysis will be performed using linear regres-
sion modeling which will be considered as a based-model in the time series analysis. The
linear regression model will be adjusted considering two deterministic components: trend
and seasonality. However, it is expected the existence of a moderate temporal correlation
structure, for instance a first order autoregressive process, AR(1), as it is usual in environ-
mental data. To deal with this feature it will be considered dynamic linear models (DLM),
which form the class of the so-called state space models and can be viewed as an extension
of the usual linear regression models. Besides a comprehensive analysis of the data will also
be given attention to the evolution of the temperature in each month, since previous studies
have identified that the evolution is not the same for every month of the year. The modeling
results will be compared with other works of long-term time series of temperatures.

1.1. Regression linear modeling

A preliminar analysis is performed using linear regression modeling. For simplicity, linear
models are largely used as a based-model in time series analysis. Thus, a multiple linear
regression model was adjusted considering two deterministic components: a linear trend of
the type o + 3t and a 12-periodic component, s; = s}, 5, corresponding to the seasonal
coefficients. This model was fitted considering the formulation

Yi=0t+s+as

where ¢t = 1,2, ..., 1836, and such that

12
12 *
O[:E' Siy, Sp = St — &
=1

and a; is the random error. The random term accommodates the data variability which is
not explained by the deterministic components.

The model’s parameters are estimated by the least squares method. The results of the
overall linear regression model parameters estimation are presented in Table 1. The es-
timate of the global slope associated to time indicates an average rise in temperature of
0.000283°C per month, or equivalently, in 0.339°C per century. The fit is very good with a
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Table 1. Results of the parameters estimation procedure of the overall linear regression
model.

Jan Feb Mar Apr May Jun
10.72 1192 13.67 1536 17.50 20.41
Jul Aug Sep Oct Nov  Dec
22.31 2273 2137 1826 1445 11.58
B S, R?
0.000283 1.150 0.9295

coefficient of determination R? of 92.95% and an estimated standard deviation of residuals
of 1.150°C. However, a more detailed analysis indicates the existence of a moderate tempo-
ral correlation structure, for instance, an autoregressive AR(1) structure, in the residuals as
occurred in [2]. Indeed, the series of residuals has a statistical significant serial correlation
of 1st order of 0.2739.

If the residuals of a linear regression adjustment are correlated, the estimates of the
standard deviations of the coefficients are underestimated and the p-value of the usual t-test
are not corrected. However, the temporal correlation can be considered in the usual linear
regression models if it is allowed that the errors sequence is, for instance, an autoregressive
AR(p) process [1]. In this case, the correlation have impact in the coefficients significance
and not in its estimates.

In the work [2] the linear regression models are largely applied to monthly temperature
data. As a basis model it is adjusted a regression model with two components both for
each month of the year: a linear trend and seasonal coefficients. The linearity of the trend
component was suggested in [2] by a graphical analysis of the 12 time series corresponding
to each month. This option reflects the conclusion that the restriction of a single constant
slope is not suitable for the whole time series. This is also reflected in the time series
analyzed in this chapter (see Figure 2).

Indeed, we fitted a simple linear regression model

Tiy = oy + Bit + a; ¢,

where T; ; represents the monthly mean temperature of month ¢, with ¢ = 1,2,...,12, in
yeart = 1,i+12,...,1824 44 and a; ; represents a sequence of error terms with zero mean,
uncorrelated random variables with a constant variance o2

Figure 3 presents the intercepts and slopes multiplied by a factor 12 x 100 obtained
in the adjustment of 12 linear regression models, one for each month of the year, to the
homogenized long-term monthly temperature data series in Lisbon. The representation of
the intercepts estimates shows the temperature seasonal curve in the year, as expected in
this type of data. However, the slopes’ estimates differ throughout the year. This result is
in agreement with [2], although this chapter has been made with another database.

From the results, the largest average monthly rise in the temperature estimated in the
data homogenized is 0.841°C per century in January. On the other hand, the estimate of
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Figure 3. Plot of the intercepts and slopes multiplied by 12 x 100 to highlight the mean
increase per century, resulting from the fit of 12 linear regression models, one for each
month of the year, to the homogenized long-term monthly temperature data series in Lisbon
from 1856 to 2008.

the slope associated to May is —0.119°C, per century, that is, the months of May have had
a decrease, in average, in monthly temperature. Definitely this type of analysis does not
take into account the temporal correlation, that although lower between years than between
months, is not incorporated in the modeling procedure. For instance, the series of resid-
uals of the linear regressions adjustment show significant first order correlation of 0.117,
0.143, 0.184 and 0.186, respectively to April, May, June and October. Thus, modeling
monthly temperatures must allow different degrees of change in the trend component and
also temporal correlation usually presented in the monthly climatic data.

In this case, as the main goal is to estimate the trend coefficients, we propose the ap-
plication of an extension of the linear regression models. Thus, it is adopted a dynamic
linear approach to deal with the temporal correlation and the stochastic changes associated
to the climatic data without, however, fail to have a simple model to assess possible climate
changes.

2. Dynamic linear model

Dynamic linear models are a useful tool to model phenomenons which have temporal de-
pendence and nedd some stochastic dynamics, [9, 5, 6]. In the case of the homogenized
monthly temperature, the slope will be considered stochastic allowing the existence of tem-
poral correlation of first order. So, the monthly temperature series is modeled by equations

Yi = thi+si+e (D
B = pu+od(Bi1—p) te ()

where Y; is the homogenized monthly temperature variable with ¢ = 1,2, ..., 1836, 5, is
the stochastic slope, the state, following a 1st order autoregressive process, AR(1), with
mean u. The seasonal behavior is represented by the twelve seasonal coefficients such that
S$¢ = Si+12. Random errors e; and €, are uncorrelated white noise sequences such that
E(et) =0, E(gt) = 0, E(e?) = 02, E(e?) = o2, for all t, and E(eye,) = 0, for all k and
T.
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The model (1)—(2) is very versatile since it can accommodate several statistical prop-
erties often presented in environmental data. In fact, the observation equation Eq. 1 can
be seen as a regression model and the dependent variable Y; as a mathematical expectation
equal to

E(Y;) = tE(B,) + st.

When the state process {/3; } is stationary with mean p, thatis |¢| < 1, it is possible to show
some properties. Indeed, if E(f;) = p, then E(Y;) = ut + s¢. Furthermore, if {f;} is
stationary, then

o? , 02 9
13 3
var = and var(Y;) =t + of.

Since the model has a state space representation it allows obtaining forecast or other
predictions of interest (filtered or smoother predictions). In this context, the aim of filtering
is to find the expected value of the state vector, 3;, conditional on the information available
at time ¢, that is

B = E(Bi|Y1, Ya, ..., Vo).

The aim of smoothing is to take into account the information made available after time
t, that is, the mean of the distribution of 3;, conditional on all the sample, denoted by

Bﬂn = E(ﬁt‘ylv ceey Yn)

and is known as a smoother prediction. When the goal is to obtain one-step forecasts to the
state or to the observed variable, then the forecast predictions are stated as

Bii1 = BE(Bi|Y1, ..., Yic1) and Yy 1 = E(Y;|Y1, ..., Yisa).

Since the state process is unobserved, both forecasts and filtered predictions are ob-
tained through the Kalman filter algorithm, while the smoother predictions are computed
through the Kalman smoother equations.

Usually, both Kalman filter and smoother are derived based on the assumption that the
disturbances e; and ; and the initial state vector 31| are normally distributed. Considering
this assumption and all parameters are known, the mean of the conditional distribution of
B¢ is an optimal predictor of 3; in the sense that it minimises the mean square error (MSE).
However, when the normality assumption is dropped, there is no longer any guarantee that
both Kalman filter and Kalman smoother will give the conditional mean of the state, [8].
The Kalman filter algorithm and the Kalman smoother predictions, and their MSE, can be
found in [13].

The adjustment of the model implies the estimation of parameters

2 2
0= {M7 b, Ocy0¢y 51552, -4y 512}-

Usually, in the context of the Gaussian state space models, parameters are estimated
through the EM-algorithm combining two steps: the expectation (E) step and the maxi-
mization (M) step, [13]. The EM algorithm is an iterative method for finding maximum
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likelihood estimates. However, the iterative equations of this algorithm must be modified
to the specific model (1)-(2). When normality is not guaranteed or is not appropriate, other
estimation approaches can be adopted as the distribution-free estimators ([4, 7]).

Since the model considered in this chapter is the usual state space model added with a
fixed component, the seasonal coefficients, the parameters estimation is performed through
a two-step procedure which applies the least squares method for the fixed effects, ©; =
{s1, s2, ..., 512}, and the EM algorithm to estimate the parameters associated to the usual
state state model Oy = {u, ¢, 02, 02},

So, the two-step procedure consists on the following algorithm:

1. Initiate the fixed effects parameters, @)51), with the least squares estimates from the

based-model (presented in Table 1);

2. Compute residuals 7775711) =Y — §§1),

3. Consider ?]t(ﬂll) =Y — §§1) and obtain the maximum likelihood estimates of ©2, @)S),

through the observation equation

7/7\75 11) = th+e

4. Reconstruct ©(1) = (:)gl) U @gl);
5. Compute the residuals 77;5(2) =Y, —t 5t|t ¥

6. Consider ©() = (?)g” U (:)g) the estimates in the iteration ¢.

(a) Compute (:)(iH) by the least square method considering the regression model
( ) _

(b) Compute the residuals nt(zfr R §£Z+1),

~(i+1) —Y, — /8\£1+1)

(c) Consider M1 and obtain the maximum likelihood estimates of

O, 9; ), through the observation equation

_(i+1
77§,Z1+) = thte

(d) Reconstruct O(+1) = @)giﬂ) U C:)(Hl)'

(e) Compute the residuals ﬁgz; ) = =Y, —tf8 tf:ll ;

(f) If O+ verifies a convergence condition, for instance ||©(+1) @ <,

then stop the iterative process, else return to 6. a).

When the convergence condition is hold the parameter vector © is estimated by eli+1),
Approximated standard deviations can be compute in each step by the usual procedures.
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Table 2. Estimates and approximated 95% confidence intervals of the parameters of the
dynamic linear model.

parameter estimate lower bound upper bound
I 3.555E-04 3.499E-04 3.611E-04
0] 0.978 0.977 0.978
o? 1.162E-08 1.145E-08 1.179E-08
o? 1.142 1.140 1.144
Jan 10.636 10.470 10.801
Feb 11.838 11.672 12.004
Mar 13.597 13.431 13.762
Apr 15.283 15.118 15.449
May 17.426 17.260 17.592
Jun 20.340 20.174 20.506
Jul 22.242 22.076 22.407
Aug 22.658 22.492 22.824
Sep 21.291 21.126 21.457
Oct 18.182 18.016 18.348
Nov 14.379 14.213 14.545
Dec 11.500 11.334 11.666
In Log -2796.41

3. Results

Table 2 presents the estimates and the approximated 95% confidence intervals of the param-
eters of the model (1)—(2) and Figure 4 represents both the homogenized long-term monthly
temperature data series in Lisbon and smooth predictions from 1856 to 2008.

The autoregressive estimate verifies the stationary condition, |g/5| < 1, of the state
process {@}, although close to 1. This model has a coefficient of determination of
corr®(Yy, Yy—1) = 93.40%.

The model verifies the assumption of normality which was checked by the residuals dis-
tribution, 7y = Y; — i;;f\t—l- Indeed, Figure 5 shows the histogram and the Q-Q normal plot
of residuals 7);. Additionally, the normal distribution is not rejected for both Kolmogorov-
Smirnov and Shapiro-Wilk tests (with p-values equal to 0.200 and 0.458, respectively).
The proposed model incorporates a significant part of the temporal correlation identify in
the overall regression model. Indeed, the first order correlation of residuals decreases from
0.2739 to 0.1574.

As the state process {(;} represents a stochastic slope of a global linear trend, the
estimate of p is the global average of the linear trend and it has a special interpretation
in this context. Attempting that data are monthly observed, the estimate of p indicates
an average rise of the homogenized monthly temperature in Lisbon in about 0.0003555°C
per month, or equivalently, in 0.427°C per century, between 1856 to 2008. With 95% of
confidence, this value is within the confidence interval of [0.41987,0.43328], that is, the
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Figure 4. Plot of the both the homogenized long-term monthly temperature data series in
Lisbon and smooth predictions from 1856 to 2008.
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Figure 5. Histogram (left) and normal Q-Q plot of residuals from the adjustment of the
dynamic linear model.

slope process has a statistically significant average.

Notice that the initial overall regression model had estimate the century rise temperature
in about 0.339°C, that is, the adjustment of the dynamic linear model updates the global rise
of the temperature in 26%.

The analysis of Kalman smoother predictions of the state process, Bﬂn, is relevant to
investigate the behavior of the trend’s slope in a more small time scale. Indeed, these
predictions indicates an accurate prediction of the local linear trend in each month take into
account all sample. Figure 6 represents the smoother predictions of the stochastic slope,
3““. This plot suggests that there is a structural break around the year of 1889. So an
analysis of these predictions must be taking into account this fact and future research must
studies this phenomenon.

Since the proposed model allows different slopes for each month, the global averages
of the Bﬂn for each month of the year were computed to investigate a possible pattern in
the rise of the homogenized temperature over the year. So, Figure 7 shows the monthly
averages of the smoother predictions of slopes for each month of the year converted into a
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Figure 6. Plot of the smoother predictions of the stochastic slope 3, B\ﬂn-

century, in the last century (1909 to 2008).

Results show that in the last century the homogenized temperature in Lisbon has risen
in all months of the year. However, there is an annual pattern: greater rises were estimated
in the winter months whereas smaller rises were verified in the summer months. The major
average rise of temperature is in January and the lower is in June. So, in the last century the
winter months were being less cold with a greater monthly rate than the summer months
were being more hot.

4. Conclusion

The analysis performed in this chapter shows that dynamic linear models are suitable to
model temperature series and they allow to obtain pertinent findings in term of climate
change point of view. On the one hand, the main advantage of DLM is its structure which
allows incorporating both temporal correlation presented in environmental data and an in-
trinsic stochastic behavior of this type of data. One the other hand, the flexibility of DLM
enables also to consider fixed effects which usually are treated by the regression linear mod-
eling approach. At the same time, the DLM has associated both the Kalman filter and the
Kalman smoother to obtain accurate predictions and forecasts.

Data analyzed in this chapter are a long-term series of monthly temperature in Lisbon
in a considerable time window. This allowed to fit the proposed model and its statistical
validation.

Globally, this model estimates the average increase of the homogenized monthly tem-
perature in Lisbon in about 0.427°C per century, between 1856 to 2008. However, temper-
ature rise was not the same in all the months of the year. Indeed, the highest growth rates
were obtained in the winter months while the lower growth rates, although quite signifi-
cants, were estimated in the summer months.
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Figure 7. Plot of the century monthly average rise of the homogenized temperature in the
last century of the sample.
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