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Abstract

A pregnant woman´s body undergoes profound anatomical and physiological changes 
to accommodate the needs of the maternal-fetal unit required for a successful pregnancy. 
During normal pregnancy, the placenta produces a variant of human growth hormone 
as well as a chorionic somatomammotropin hormone. These are the placental members 
of the human growth hormone gene family and play a crucial role in the regulation of 
maternal and fetal metabolism, as well as in the growth and development of the fetus. For 
this reason, the scope of this chapter is to describe the differences of the biochemical and 
physiological roles of the hormones coded in this locus during pregnancy, the repercus-
sions of their deficiencies, and role in some of the most prevalent pathologies during 
pregnancy affecting either the mother or the fetus and also to describe how pioneering 
sequencing of this locus allowed our laboratory to invent the first companion diagnostics 
test and thus contributed to the dawn of the personalized medicine era.

Keywords: placenta, growth hormone family, HGH physiology, placental variant HGH, 
chorionic somatomammotropin hormone, hormonal deficiencies, companion diagnostics, 
personalized medicine

1. Introduction

The first correlation between growth disorders and the pituitary gland occurred at the begin-

ning of the twentieth century. Human growth hormone (HGH) was later identified as the 
main promoter of postnatal body growth. Its availability as a recombinant drug at the end of 
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The 1980s sparked many investigations aimed at exploring many alleged roles in adult health 

and even in longevity. Likewise, the cloning of its gene and the discovery that it belongs 

to a gene family along with genes for variant or placental HGH (HGH-V) and chorionic 

somatomammotropin hormone (CSH: previously referred as placental lactogen) accelerated 

the understanding of the role of this family in human biology and medicine [1]. Today we 

understand in detail the molecular mechanisms of their functions, either direct or via media-

tors, and the role they play in many physiological and pathological processes, although other 

possible but suspected roles remain unknown. One of the most interesting and fascinating 

functions of this family of hormones is their contribution to fetal health during pregnancy, 

although, surprisingly, normal pregnancies with total or partial absences of one or both of the 

placental hormones have been reported.

2. The HGH family: anatomy, physiology, and homeostasis

In humans, the growth hormone (GH) family includes the pituitary HGH (referred as HGH-

N), the placental HGH (named HGH-V), and the CSH; along with prolactin (PRL; a more 

evolutionarily distant relative) they are collectively referred as somatolactogens. By virtue of 

their similarities, it was proposed that their genes were derived by gene duplication from a 

common ancestor dating from the first vertebrates [2]. Over time the members of this family 

became specialized, developing specific functions: HGH-N has been attributed metabolic and 

Figure 1. The hGH chapter of the human genome encyclopedia. The hGH locus was the first non-highly repetitive DNA 
element to be localized in the human karyotype. It turned out to harbor the five genes here described. Its sequencing 
was a world record back in 1988.
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somatogenic functions after birth, HGH-V has been attributed metabolic and somatogenic 
functions during pregnancy, and CSH is considered a lactogenic hormone. PRL is considered 

a multifunctional hormone [3].

In humans, the hGH locus, which includes hGH and hCSH-type genes, spans approximately 

50 kb of band 24.2 at the long arm of chromosome 17. PRL is coded by a single gene that is 

located on chromosome 6 [4, 5]. The locus´ five genes are arranged in tandem, all in same 
orientations, and exhibit very high sequence and organizational similarities. At the 5′-end of 

the locus is the hGH-N gene, followed by the pseudogene hCSH-L, then hCSH-1, next hGH-V, 

and CSH-2 in the end [5] (Figure 1).

While the hGH-N gene is expressed in the pituitary and yields at least two isoforms (22 and 

20 kilo Daltons), the rest do so in the placenta and are responsible: one (hGH-V) of the placen-

tal variant of HGH or HGH-V and two (hCSH-1 and hCSH-2) for a single mature isoform of 

HCS. The so-called hCSH-L is a pseudogene and thus is postulated to contribute no protein [5].

2.1. Human growth hormone (HGH)

HGH can exert metabolic effects either directly or indirectly through, in the latter case, the 
increase in hepatic production of the insulin-like growth factor 1 (IGF-1). Regarding their 

direct actions, the administration of HGH has been reported to antagonize the action of insu-

lin, thus producing intolerance to carbohydrates in spite of elevated plasma insulin levels.  

In contrast, insulin sensitivity increases during the administration of IGF-1, which exerts 

hypoglycemic effects even with concomitant suppression of insulin secretion. Another impor-

tant direct metabolic effect of HGH is to increase the mobilization and oxidation of fat and 
therefore to reduce total body fat; there is no evidence that IGF-1 acts directly on adipose 

tissue in vivo. The administration of HGH results in the retention of sodium through the 

stimulation of Na-K-ATPase. It is suggested that part of the effects of HGH on tubular func-

tion (e.g., phosphate reabsorption) is mediated through IGF-1 [6].

The administration of HGH increases the circulating levels of IGF-1 through the stimula-

tion of its hepatic synthesis and secretion; it can also improve the synthesis of local IGF-1 in 

peripheral tissues, where it exerts autocrine or paracrine effects [6]. While HGH increases 

lipolysis, as a direct effect on the adipocyte, as well as the oxidation of lipids by increasing 
substrate availability, IGF-1 increases lipid oxidation only when administered chronically, 

most likely as a result of chronic insulinopenia. These metabolic regulators have been tested 

in a variety of catabolic conditions in man, and both hormones have been effective in reducing 
protein loss caused by glucocorticosteroids and in mitigating some of the catabolic effects of 
severe hypogonadism in men [7].

Another function of IGF-1 is to increase myelination by increasing the number of myelinated 

axons and the thickness of myelin sheaths. The latter is by mechanisms involving the stimula-

tion of myelin protein gene expression and by increasing the number of oligodendrocytes [8]. 

For this reason, people with IGF-1 deficiency, caused by a homozygous mutation in the IGF-1 
gene at the 12q22 locus, present, in addition to intra- and extrauterine growth retardation, 

mental retardation and sensorineural deafness [9].
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Some studies have compared the phenotypes of dwarfism manifested in mutant mice lack-

ing the HGH receptor, or IGF-1, or both, and have provided conclusive evidence that HGH 

and IGF-1 promote postnatal growth, both by independent and by common functions, given 

that the delay in the growth of double nullizygotes HGHR/IGF-1 is more severe than that 

observed with any of the mutant classes separately [10].

2.1.1. Physiological regulation

2.1.1.1. Somatomedins

The insulin-like growth factors, IGF-1 and -2, share structural and functional similarities 

with insulin. Together with insulin, they make up a family of phylogenetically conserved 

molecules important in the regulation of both growth and metabolism. IGF-1 and IGF-2 (con-

stitute a small proportion of the total IGFs present in plasma) function predominantly as 

growth regulators. While it is true that the liver is the source of most (75%) of plasma IGF-1, 

it is also synthesized by multiple mesenchymal cell types [11]. As a result, there are two main 

mechanisms of IGF-1 regulation: (1) The IGF-1 that is synthesized in the liver and secreted 

to the blood is under the control of HGH, and (2) autocrine/paracrine IGF-1 synthesized in 

peripheral tissues, such as bone, is controlled by HGH and by factors that are secreted locally 

by the surrounding cell types.

IGF-1 exerts its effects through the activation of the IGF-1 receptor. This receptor is present in 
multiple types of cells and tissues, which probably explains its ability to stimulate balanced 

and symmetric growth [12].

2.1.1.2. HGHRH

The role of a GH-releasing hormone (GHRH) in the regulation of HGH secretion has been 

recognized since the late 1950s, based on several lines of evidence that postulated its exis-

tence. These lines of evidence include that the interruption of the connection between the 

hypothalamus and the pituitary gland leads to a decrease in HGH secretion; that the elec-

trical stimulation of the ventromedial nucleus and the basal hypothalamus stimulates the 

secretion of HGH; and that hypothalamic crude extracts stimulate the release of HGH from 

anterior pituitaries in culture [13]. The cell surface receptor for HGHRH (HGHRH-R) has 

been incompletely characterized. More is known about the post-receptor events triggered by 

HGHRH. The binding of HGHRH to its receptor stimulates the formation of cyclic AMP, 

which stimulates an AMPc-dependent protein kinase located in the secretory granules of the 

pituitary gland, which increases exocytosis of granules and causes the acute release of pre-

formed HGH [13]. HGHRH not only stimulates the release but also stimulates the synthesis of 

HGH. It has been shown that HGHRH can alter the transcription of the hGH gene both in vitro 

and in vivo, with an increase of 2.5 times 30 minutes after the injection of HGHRH [14].

2.1.1.3. Somatostatin

Somatostatin (SST) is one of the oldest peptides in neurobiology. It was originally discovered in 

1972 as part of the hormone-releasing family because of its property to inhibit the secretion of 
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HGH in monolayers of pituitary cells in vitro. Despite its well-known neuroendocrine effects, it 
was quickly shown to inhibit a series of endocrine and exocrine secretions along the neural-gut 

axis including, for example, pancreatic insulin and glucagon or myenteric acid secretions [15].

SST is a cyclic tetradecapeptide synthesized in the hypothalamus, from where it is trans-

ported to the anterior pituitary gland where it is responsible for the pulsatile release of HGH 

and for inhibiting tonically the secretion of HGH and TSH. Several loops of internal feedback, 

sleep, exercise, and chemical agents control and influence the release of SST [16]. SST acts 

through six separate surface receptors (SSTR-1, SSTR-1-2A, SSTR-1-2B, SSTR-1-3, SSTR-1-4, 

SSTR-1-5), members of the family of G protein-coupled receptors, characterized by seven 

transmembrane-helical domains, creating three intra- and extracellular loops. The binding of 

the receptor and the ligand (SST/SSTR) results in specific cellular activities for each receptor, 
or combinations of receptors, and their cellular/tissue localization, although it is known that 

the common effect is a reduction in cyclic adenosine monophosphate (cAMP) and Ca++ with 

activation of protein phosphatases [16].

3.1.1.4. Other important elements of the pathway

There are many elements whose correct functioning is necessary for the hormonal system of 

the HGH family to work properly; among the most important of these, we have the transcrip-

tion factor Pit-l, a member of a POU-domain family of binding factors of DNA; it is a specific 
pituitary factor that binds to and activates the promoters of both hGH and hPRL genes. It has 

also been speculated that Pit-I could play a critical role in the ontogeny of HGH, PRL, and 

thyroid-stimulating hormone (TSH) producing cells [17].

Another no less important element is prophet of Pit-1 (PROP-1), which is a transcription fac-

tor capable of binding to the sites in an early promoter of the PIT-1 gene and regulating its 

expression, which is necessary for the development of the pituitary gland and the expression 

of the hormone [18]. Mutations in this gene have been associated with a combined pituitary 

hormone deficiency, as well as deficiencies in luteinizing hormone, follicle-stimulating hor-

mone, HGH, PRL, and thyroid-stimulating hormone [18].

2.2. The growth hormone receptor (GHR)

The cloning of the HGH receptor (HGHR) gene in 1987 opened the door for the study of HGH 

signaling at the molecular level. Its mRNA encodes a protein of 638 amino acids (aa) with 

single extracellular, transmembrane, and cytoplasmic domains [19]. HGHR belongs to the 

transmembrane superfamily of proteins that includes the PRL receptor (PRLR) and a number 

of cytokine receptors [20].

The determination of the structure of HGH bound to the extracellular domain of HGHR has 

led to the model where a single molecule of HGH binds to two molecules of HGHR. This bind-

ing of HGH leading to the HGHR (2)-HGH complex is thought to be sequential. The initial 

step is the binding of HGH to a high-affinity HGHR monomer, whereby a different face of 
HGH is contacted by a second HGHR monomer, stabilizing the HGHR dimer. This binding of 

HGH to its receptor dimer is thought to be an initial and crucial event in the HGH signaling 

[19]. Subsequent to this, a conformational change in the extracellular domain of the receptor 
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is important for signaling. At present, virtually nothing is known about the structure of the 

cytoplasmic domain of the HGHR; a clue to the mystery of the signaling mechanism came with 

the discovery that HGH promotes the tyrosine phosphorylation of receptors and other cellular 

proteins. The current working model of the signal transduction of HGH action is that its bind-

ing to two HGHR monomers increases the affinity of each receptor for JAK2. The dimerization 
brings two JAK2 molecules in proximity so that each JAK2 can phosphorylate the activation 
tyrosine of the other JAK2 molecule, blocking it in an active conformation. This allows the 
activated JAK2 to phosphorylate itself and the cytoplasmic domain of the HGHR in the tyro-

sine residues, in order to activate the signaling pathway required for the specific function of 
the HGH that needs to develop: regulation of gene transcription, metabolic actions, etc. [19].

2.3. The IGF receptor

The components of the IGF system include IGFs (IGF-1 and IGF-2), IGF type 1 (IGF-1R), and 

type 2 (IGF-2R) receptors, a family of six secreted IGF binding proteins (IGFBP) and IGFBP 

proteases [21]. The two IGF receptors are structurally and functionally related. The signal-

ing of the IGF ligand is mediated by IGF-1R, which is a transmembrane glycoprotein with 

tyrosine kinase activity. IGF-2R is a single-chain protein with no kinase activity. IGF-1R binds 

to IGF-1 with up to 20 times higher affinity than with IGF-2, while IGF-2R binds strongly to 
IGF-2 but hardly recognizes IGF- 1. The genes for IGF2 and IGF2R have imprinting, express-

ing themselves in a monoallelic way depending on the parental origin [21].

IGF-1R is activated by two ligands, IGF-1 and IGF-2, and by insulin at supraphysiological 

concentrations [22]. After the binding of IGF-1 to its receptor, it undergoes a conformational 

Figure 2. Molecular mechanism of IGF-1R. The signal transduction elicited by insulin and insulin-like growth factors is 

depicted.
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change that unleashes its tyrosine activity kinase (TK). This autophosphorylates tyrosines 

which act as coupling sites for Shc (a signaling adaptor protein) and IRS-1 or IRS-2 signaling 

proteins. The IRS proteins are phosphorylated by the TK activity of the receptor and then 

binds to the p85 subunit of phosphatidylinositol 3-kinase (PI3K), which is the type A regula-

tory/subunit of the isoforms of class 1 of the PI3K, leading to the activation of protein kinase B 

(PKB) and the stimulation of protein synthesis, as well as the inhibition of apoptosis. The Shc 

signaling protein is also phosphorylated, which allows it to bind to growth factor receptor-

bound protein 2 (Grb-2), leading to the activation of MAP kinase and the stimulation of DNA 

synthesis and cell growth (Figure 2).

The critical importance of this receptor for normal development and physiology is under-

lined by neonatal lethality as a result of its complete absence. Conversely, IGF-2R, also called 

mannose-6-phosphate receptor independent of cations, is less important for growth stimula-

tion but is important for the regulation of IGF-1 and IGF-2 activities, both by sequestration of 

hormones, as by promoting their degradation [23].

IGF-2 is a key regulator of cell growth, survival, migration, and differentiation. Its funda-

mental role in these processes requires strict regulation, both of expression and activity. The 

IGF-1R mediates the actions of IGF-2, and a family of six high-affinity binding proteins of IGF 
(IGFBP-1 to IGFBP-6) regulates the circulating half-life of IGF-2 and its availability to bind to 

IGF-1R. In addition, IGF2-R modulates circulating and tissue levels of IGF-2, directing it to 

lysosomes for degradation [23].

An example of the growth regulation function of IGF-2 is the Beckwith-Wiedemann syn-

drome (BWS), which is a pediatric overgrowth disorder with predisposition to form 

embryonic tumors. Individuals with BWS can grow at a higher rate during the second half 

of pregnancy and in the first years of life [24]. BWS results from alterations in the imprint 

control region 1 (ICR1), either by deletion or by DNA methylation. The ICR1 region controls 

the genomic imprint of the H19 gene, a gene that, unlike many others, does not code for a 

protein but rather a noncoding RNA molecule whose function is unknown, although it is 

suspected that it acts as a suppressor of the tumor and of the IGF-2 gene, which has already 

been mentioned previously. This anomaly alters the regulation of both genes; specifically, it 
leads to a loss of the activity of the H19 gene and an increase in the activity of the IGF-2 gene 

in many tissues [25].

3. HGH and IGF-1 during pregnancy

The pregnant woman undergoes profound anatomic and physiologic changes in almost 

every organ system. These adaptations to the pregnant state begin just after conception and 

evolve through delivery, after which they almost completely revert to the nonpregnant state 

over a period of weeks. The purpose of these alterations is to accommodate the needs of the 

maternal-fetal unit.

During pregnancy, pituitary HGH-N synthesis in the mother is suppressed, and HGH-V starts 

to be synthesized by the placenta, becoming the predominant HGH in the pregnant women [26]. 

There is no precise explanation in the literature of the differential actions of HGH-N and HGH-V.  
It is considered that HGH-V plays an essential role for healthy intrauterine development by 
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increasing the levels of IGF-1, favoring its bioavailability for the fetus, and generating an insulin 

resistance through its lower lactogenic effects to ensure a contribution of constant glucose.

The evolution of serum HGH-N in pregnant women has been studied with radioimmunoas-

says (RIA) unreactive to CSH. In such women, serum HGH-N levels progressively decline 

to undetectable levels during the second half of pregnancy, while HGH-V appears in the 

circulation at midpregnancy and increases thereafter up to term [27]. HGH-V is secreted by 

the placenta in a non-pulsatile manner. This continuous secretion appears to have impor-

tant implications for physiological adjustment to gestation and especially in the control of 

maternal IGF-1 levels [5]. The “normal” episodic peak activity of HGH-V in first-trimester 
pregnant women is dramatically changed into a continuous very stable secretion during late 

pregnancy. This change is first observed at 17 weeks of gestation. It is concluded that dur-

ing the second half of pregnancy, serum measurements of HGH reflect a major contribution 
from a non-episodically secreted placental HGH-V and concomitant suppression of pituitary 

HGH-N. This specific signal, i.e., a continuous HGH secretion, may be an important regula-

tor of maternal liver metabolism during pregnancy and is directly involved in the insulin 

resistance of pregnancy [28, 29].

Placental HGH-V is the same length (191 aa) as pituitary HGH-N but contains 13 different aa, 
is more basic, and possesses one glycosylation site. These small differences are thought to be 
responsible for the reduced lactogenic and high somatogenic activities of placental HGH-V 

compared with pituitary HGH-N [5, 30]. In vitro placental HGH-V binds to HGHR with 

similar affinity than pituitary HGH-N. However, placental HGH-V has considerably lower 
affinity than pituitary HGH for lactogenic receptors [5]. CSH and PRL increase maternal food 

intake by induction of central leptin resistance and promotion of maternal beta-cell expansion 

and insulin production to defend against the development of gestational diabetes mellitus. It 

is probable that as a result of the lower affinity of placental HGH-V for lactogenic receptors 
than pituitary HGH-N and the fact that its secretion is not suppressible by high glucose levels, 

pregnancy is a well-known period of susceptibility for the development of diabetes and other 

metabolically alterations. HGH-V is equipotent to pituitary HGH-N as a ligand for circulating 

HGH binding protein and therefore circulates in the maternal circulation as both free and 

bound HGH-V [5].

3.1. Growth hormone-releasing hormone

HGH releasing hormone (HGHRH) is a 44 aa peptide. Its concentration throughout preg-

nancy is similar to that in nonpregnant women despite fluctuations in HGH values, which 
are always higher than in nonpregnant levels [31], thus supporting the idea that HGH val-

ues are higher during pregnancy due to the placental secretion of HGH-V not regulated by 

HGHRH [29].

After delivery, placental HGH-V disappears from maternal serum within an hour. Amniotic 

fluid contains low HGH concentrations; cord serum contains high HGH levels, but not 
because of HGH-V (we assumed that the material responsible for the GH immunoreactiv-

ity in late pregnancy maternal serum was of placental origin, since it rapidly disappeared 

after delivery); thus, it appears to be secreted selectively into the maternal compartment [27]. 
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HGH-V does not appear to have a direct effect on fetal growth as it is secreted only in the 
maternal circulation and is not detected in the fetal blood [5]. Secreted continuously by the 

placenta, it seems to control the synthesis of maternal IGF-1; indeed, maternal IGF-1 levels are 

correlated with placental HGH levels [30]. Its continuous secretion by syncytiotrophoblast 

villous into the maternal compartment may alter maternal metabolism during pregnancy. In 

the maternal liver and other organs, HGH-V strongly stimulates gluconeogenesis, lipolysis, 

and anabolism, thereby increasing nutrient availability for the fetoplacental unit [5]. HGH-V 

acts in vivo as an HGH-N agonist sharing most of its biological properties [27]. HGH-N, 

which is synthesized by the fetal pituitary gland (levels of which rise to a maximum at mid-

gestation) [26], has little or no physiological action on the fetus until the end of pregnancy, 
because of the lack of functional HGH receptors in fetal tissues.

Growth, prenatal development, and size at birth are normal in animal fetuses of specimens 

subjected to hypophysectomy and HGH deficiency, including human fetuses with mutant 
genes for this and their receptors. However, this pattern is not maintained in the postnatal 
period, in which the individual manifests abnormal development and growth [21]. HGH defi-

ciency does not eliminate the normal increase in IGF-1 induced by pregnancy and does not 

reduce fetal weight [30]. Unlike IGF-2 levels, the levels of HGH-V do not correlate with birth 

weight or placental weight [32].

In humans and mice, mutations or specific deletions of the genes for IGFs, IGF1, and IGF2, as 
well as IGF1R and for its main signaling molecule IRS, lead to a restriction in fetal growth [33]. 

The targeted inactivation of the mouse gene for IGF-2 results in a 40% reduction in fetal growth, 

but postnatal growth remains normal so that alterations in development occur exclusively in 

the prenatal period. On the other hand, the interruption of the IGF-1 gene leads to a similar 

decrease in fetal growth than the alteration of the IGF-2 gene, but it is also characterized by the 

lack of persistent postnatal growth [34]. Most surprising, however, are the phenotypic conse-

quences of the deletion of the gene for the IGF-1 receptor (IGF-1R), which as described above, 

is a transmembrane tyrosine kinase that mediates the growth promotion actions of both IGFs. 

Mice with this suppression have a birth weight that is only 45% of normal and usually die in 

a matter of hours after birth due to respiratory failure as a result of muscle hypoplasia [34].

3.2. Growth hormone replacement therapy during pregnancy

A retrospective study of 25 women with HGH-N deficiency (HGHD), who underwent preg-

nancy without HGH replacement therapy (HGHRT), concluded that unsubstituted HGHD dur-

ing pregnancy is not detrimental to the fetus [35]. Another publication described four HGHD 

women who stopped HGHRT immediately after confirmation of pregnancy and remained 
off treatment throughout the pregnancy while having no pregnancy complications and gave 
birth to healthy babies of normal height and weight [36]. In a case report, physiologic HGHRT 

until there was evidence of sufficient HGH-V production also led to normal pregnancy and a 
healthy fetus [37]. This regimen of maintaining HGHRT during the first trimester, gradually 
decreasing it during the second trimester, and discontinuing it during the third trimester was 

reported to lead to successful outcomes in 12 pregnancies [38]. In addition, replacement with 

HGH-N during pregnancy did not suppress the physiologic increase in HGH-V [32].
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Author Pregnancy outcome Product outcome Hormone level/ molecular characterization

Alexander et al. Normal pregnancy with 

spontaneous labor at 

39 weeks

Normal female infant; 

weighted 3300 g

CSH level < 0.006 mg/l. No molecular analysis

Barbieri et al. Normal pregnancy Normal product CSH absent, confirmed by 
immunoperoxidase technique

Borody and 

Carlton

Normal pregnancy 

(second pregnancy)

Healthy female infant CSH deficiency. No molecular analysis

Bradford and 

Hargreaves

Normal pregnancy 

(primigravida)

Term male infant, 

weighing 3420 g

CSH < 2.0 mg/l. No molecular analysis

Geade et al. Normal pregnancy 

(primigravida). Medical 

induction of labor at term

Male infant weighing 

3740 g

CSH < 1 mg/l. No molecular analysis

Giampietro et al. Normal pregnancy 

(second pregnancy) with 

Cesarean section at 39th 

week for alterations in 

fetal heart rate

Healthy male infant, 

weighing 3060 g, 

51 cm tall, cranial 

circumference of 34 cm.

CSH levels between 0.8 and 1.4 μg/ml. No 

molecular analysis

Hubert et al. Normal pregnancy Normal product CSH levels low. Messenger RNA coding for 

CSH at low abundance

Moshirpur et al. Normal pregnancy Healthy male infant CSH <1 μg/ml. No molecular analysis

Nielsen et al. Normal pregnancy 

(fourth pregnancy). 

Spontaneous delivery

Healthy male infant, 

weighing 3000 g, 53 cm 

tall

CSH <0.025 mg/L. No molecular analysis

Parks et al. Normal pregnancy, with 

spontaneous delivery at 

38 weeks of gestation

Healthy female infant, 

weighing 2650 g, 49 cm 

tall

Isolated partial deficiency of CSH (peak 
CSH levels 1.1 μg/ml). Characterized 

by restriction endonucleases analysis 

(heterozygosity for two different deletions 
involving hCSH genes; the paternal hGH 

locus lacked the hCS-1, hGH-V, and hCS-2 

genes, while the maternal only the hCS-1 

gene)

Sideri et al. Normal pregnancy (third 

pregnancy) with slight 

fetal growth impairment. 

Spontaneous labor at 

38 weeks of gestation

Healthy female infant 

weighting 2600 g (a 

value just below the 

10th centile by normal 

Italian standards)

No CSH could be measured by RIA. PRL 

and HGH levels were within the normal 

limits (137 and 14 ng/ml), and an oral glucose 

tolerance test at 30 weeks was normal

Simon et al. Two normal pregnancies. Patient 1: Healthy 

female infant, weighing 

3640 g

Patient 2: Healthy 

female infant, weighing 

3250 g

DNA was investigated for the integrity of the 

hGH gene cluster by Southern blotting and 
hybridization with an hCSH cDNA probe. 

Patient 1 was found to be homozygous for 

a deletion involving hCSH-1, hGH-V, and 

hCSH-2. Patient 2 was a double heterozygote, 

with one chromosome bearing the same 

deletion as that of patient 1, while in the 

other, only the hCSH-1 gene was missing

Table 1. Comparison of reported pregnancy cases with absence of CSH or very low concentrations in maternal 

plasma [40–51].
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A study describing pregnancies in a large group of patients (173 pregnancies in 144 women 

with HGHD) in 15 countries using the Pfizer International Metabolic Database (KIMS) dem-

onstrates that most patients conceived while receiving HGHRT. Details of HGHRT during 

pregnancy were reported in 170 out of 173 pregnancies. HGHRT was stopped at the begin-

ning of the pregnancy (or had already been stopped before conception) in 81 cases (46.7%), 

partially continued in 42 pregnancies (24.7%), and continued throughout the entire pregnancy 

in 47 pregnancies (27.6%). The practice of partially continuing HGHRT during pregnancy and 

stopping it at the end of the second trimester was observed in nearly half of the countries but 

was more prevalent in Sweden (67% of all pregnancies in that country) and Denmark (55% 

of Danish pregnancies). Most physicians reported making their decisions about whether to 

continue HGHRT in agreement with the patient’s wish. Outcome data were available for 139 

pregnancies (80.3% of cases). In four cases the pregnancy was electively terminated (in three 

cases because of the patient’s wish, in one case because of the doctor’s advice given sev-

eral concomitant diseases and the resulting need for multiple medications); these cases were 

excluded from further analysis. Live birth was observed in 107 pregnancies (79% of all known 

cases), with a total of 118 babies born. No congenital malformations were reported. No live 

births were reported in 28 pregnancies, including two extrauterine pregnancies, one blighted 

ovum (non-evolutive pregnancy), one malformation (severe cystic hygroma in ultrasound, 

which determined pregnancy termination in the second trimester), one stillbirth, and 23 non-

elective abortions. Patients who partially or fully continued HGHRT during the pregnancy 

did not report any miscarriages happening after the first trimester of the pregnancy [39].

There are few reported cases in the literature of pregnancies with the absence of CSH or very 

low concentrations in maternal plasma throughout pregnancy, most of them progressing nor-

mally and resulting in delivery of normal babies, but only in a few cases have had the genetic 

background examined in detail using molecular analysis (Table 1).

4. Role of hGH locus in pioneering personalized medicine

Biotechnology has not only been a great ally in the diagnosis of diseases but has become part 

of the treatment, in the specific case of HGH through the development of HGH and CSH 
recombinant versions. With this, the era of personalized medicine begins, which refers to 

the design and application of prevention, diagnosis, and treatment strategies better adapted 
to the genetic-molecular specificities of each patient and each disease. That is, instead of all 
patients being treated in a similar way, more and more, the treatments will be adapted to 

groups of selected patients defined by molecular markers (Figure 3) [52].

The first step of this personalized medicine is to know the molecular substrate of the diseases 
that we face. The invention of the first companion diagnostic test was to screen for deletions 
in the HGH locus in search of explaining the failure of HGHRT due to immune rejection of 

the biosynthetic version of HGH. Using bioinformatics methods, our laboratory analyzed the 

hGH and hCSH genes. On the basis of the high sequence similarity displayed by these genes, 

we designed an ingenious strategy based on restriction enzyme characterizations that allow 

differentiating each gene’s transcriptional unit. To simplify the gene analyses, gene regions 
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of highest similarities were identified by means of the GENEALIGN program [53, 54]. This 

analysis resulted in the synthesis of a pair of consensus oligonucleotides complementary to 

the extremes of the five genes, allowing their simultaneous amplification by PCR. We chose as 
useful for this purpose what we call diagnostic restriction endonucleases: Acc I for hGH-N (0.9 

and 0.6 kb) and hGH-V (0.8 and 0.7 kb), Dra I for hCSH-L (1.2 and 0.3 kb), Bst EII for hCSH-1 

(1.0 and 0.5 kb), and Pvu II for hCSH-2 (1.1 and 0.4 kb) [53].

To test our bioinformatics-predicted test, we then used recombinant plasmids carrying the genes 

of the locus to confirm the presence of the restriction site for the chosen diagnostic endonuclease 
for each gene. Amplifications and digestion of each gene-carrying plasmid were performed. The 
digested PCR products were separated by 1.5% agarose gel electrophoresis. In all cases, we obtained 

the expected results (Figure 4). Fragments corresponding to the hGH-N gene (0.9 and 0.6 kb) and 

hGH-V gene (0.8 and 0.7 kb) were seen when Acc I was used to digest the amplified products of 

Figure 3. Stratification of patients by molecular diagnosis. Patients apparently with the same disease usually have 
genetic and thus physiological differences that influence their disease prognosis and prediction.

Figure 4. Diagnostic test for the hGH locus. Bioinformatics prediction and confirmation in the laboratory of the 
PCR + restriction enzymes test to differentiate each of the five genes constituents of the hGH locus. The gene-specific 
digestion patterns predicted in silico when amplifying all genes by a simple consensus primers PCR and then subjecting 

the pentagenic amplicon to “diagnostic” restriction enzymes were confirmed using cloned versions of all the gene 
members of this gene family.
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plasmids containing hGH-N and hGH-V genes, respectively. Likewise, fragments of 1.2 and 0.3 kb 

were generated with Dra I upon digestion of the PCR product of recombinant plasmid carrying 

the hCSH-L gene. The digestion of the amplified product derived from the hCSH-1 gene-carrying 

plasmid with Bst EII gave bands of 1.0 and 0.5 kb. Finally, the digestion with Pvu II of the ampli-

fied product of the cloned gene hCSH-2 gave bands of 1.1 and 0.4 kb. No unexplained additional 

fragments were observed in both amplifications and cutting reactions, which reflects the specific-

ity of the PCR and of the cuts with the chosen so-called diagnostic restriction endonucleases [53].

4.1. Application of the diagnostic test

4.1.1. A case of absence of CSH and HGH-V

In a pregnancy reported without HCS and HGH-V production, which was complicated by 

severe growth retardation of the fetus and mild preeclampsia and cardiotocogram abnormali-

ties, the patient was given betamethasone, and Cesarean section was performed in week 35. 

A male baby was delivered with an Apgar score of 7/1, 10/5 and umbilical artery pH of 7.3, 

weight was 1270 g, and he measured 40 cm (the 10th percentile for weight for Danish male 

reference material at this gestational age is 2100 grams). Placenta weight was 250 g and was 

macroscopically normal. The umbilical cord contained only one artery. A thorough examina-

tion of the baby by a neonatologist revealed no physical abnormalities. The boy thrived; the 

only problem being a tendency to low blood sugar the first days, the lowest being 1.2 mM. He 
was discharged 26 days after delivery. Pediatric examination at discharge and 6 months later 

revealed no malformations or other problems [54].

Using the PCR method described before, the genes at the hGH multigene family were inves-

tigated in DNA isolated from the placenta of this case. We found that the placenta, and thus 

the baby, had two different DNA deletions along the 3′ half of the gene cluster, both of which 

eliminated the two active hCSH genes (hCSH-1 and hCSH-2) and the placental hGH gene 

(hGH-V). The locus retained the pituitary hGH-N gene as well as the placental hCSH-L pseu-

dogene (see Figure 5). The absence of CSH in this patient was caused by deletion of both cop-

ies in each chromosome of the active hCSH genes (hCSH-1 and hCSH-2) in the placenta and, 

thus, in the child’s genome. Both parents were heterozygous for the gene’s deletion, lacking 

one copy of the three 3′ cluster genes: hCSH-1, hGH-V, and hCSH-2. In the first instance, the 
baby appeared to be a homozygote for deletion including the 3′ end of the hGH locus, but the 

PCR analysis revealed that the baby was, in fact, a double heterozygote for these deletions. 

Each chromosome lacks a different portion of the 3′ end of the hGH locus: one deletion begins 

between hCSH-L and hCSH-1 genes and the other beginning at the first exon of the hCSH-1 

gene [54]. In the few previous reports where the molecular background for complete absence 

or very low levels of CSH have been examined [55], the cause has also been the deletion of 

hCSH-1, hGH-V, and hCSH-2 genes or only of the last two genes, and in some cases both types 

of hCSH gene deletion have been found [49].

4.1.2. Cases of children treated with recombinant HGH to treat their severe growth retardation

Genomic DNA samples of 10 patients clinically diagnosed with isolated HGH deficiency 
(IGHD) were analyzed with our new diagnostic method, to establish if the hGH-N gene was 

absent and thus was the causal factor for this condition. Amplification products of all patients 

The Role of the Human Growth Hormone Gene Family in Pregnancy
http://dx.doi.org/10.5772/intechopen.89011

103



Figure 5. Molecular characterization of a case lacking CSH. Amplification by PCR with our consensus pair of primers 
capable of amplifying the five genes in the hGH locus, followed by digestion with “diagnostic” restriction enzymes, 

allowed to precise which genes were absent from the genome of the baby in this case of the complete absence of HGH-V 

and of CSH.

were digested with Acc I, which is specific for the hGH-N gene (0.9 and 0.6 kb) and for the 

hGH-V gene (0.8 and 0.7 kb) genes. This indicated to us that the former gene was absent in 

this child and, thus, the cause of this patient’s disease, classifying her condition as IGHD type 

IA. Moreover, the pediatrician confirmed to us that this particular patient was not responding 
to the HGHRT [53] (Figure 6).

4.2. Anti-recombinant growth hormone antibodies

Pituitary HGH has been the preferred treatment for growth retardation in children since its 

efficacy was first reported 40 years ago. This treatment was discontinued in most countries 
in 1985 following the deaths from Creutzfeldt-Jakob disease of four patients who received 
the hormone recovered from cadavers in the period of 1965 through 1975. Application of 

recombinant (r) DNA technology has made the production of unlimited supplies of proteins 

possible, including HGH that has important therapeutic uses. But, the immunogenicity of 

commercially available rHGH is a matter of great concern. The adjuvant effects of unrelated 
contaminants associated with rHGH by disulfide, ionic and/or hydrophobic links, as well as 
the changes in the intrinsic primary and secondary structure, may occur during the produc-

tion and/or recovery of the hormone and lead to potential immunogenicity. The main concern 

with anti-HGH antibodies could be their ability to neutralize circulating rHGH and inhibiting 

its growth-promoting effect. In a study evaluating 47 children treated with rHGH for up to 6 
months, serum samples were examined for specific antibodies against it by ELISA, resulting 
in four patients positive for serum antibodies against the hormone [56]. Fortunately, new 

preparations have shown lower immunogenicity profile with no safety concerns [57].
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In a study of four patients with gene defects in the GH axis, the results showed that HGH 

substitution may be effective at the beginning, but development of HGH-Ab often occurs, 
resulting in a HGH-resistant state with sequelae similar to GHIS (HG insensitivity syn-

drome). One patient [58] developed high-affinity and high-avidity blocking of HGH-Ab 
during the first year of pituitary-derived human GH (pit-GH) treatment. Even plasmapher-

esis and immune modulating treatment to induce tolerance analogous to previous treatment 

regimes in hemophiliac patients with blocking antibodies did not result in HGH responsive-

ness, and HGH-Ab reappeared shortly thereafter [59]. The HGH growth response, even 

in patients with the identical genetic defect, may differ and is not clearly related to the 
presence of antibodies [60]. Factors contributing to immune response are complex and 

cannot be clearly demonstrated. Epidemiology and risk factors of HGH-Ab development 
have not been studied in depth, but analogous to hemophilia, there are various aspects that 

might be deduced: On a superior level, immune processes of self−/non-self-discrimination, 

i.e., the likelihood that antibodies will be formed appears to be influenced by the age at 
first antigen contact, the HLA haplotype, and other immune response genes. In particular, 
epitopes giving rise to antibody formation may differ and lead to various effects which 
are dependent on steric conformation changes or potency of complement activation [61]. 

Patients with genetic HGH defects who are exposed to exogenous rHGH will therefore gen-

erate different amounts of HGH-Ab with different affinities, thus compromising HGH bind-

ing to the receptor or HGHBP/HGHR (GH binding protein and GH receptor) dimerization 

kinetics [62]. In patients with different HGHR mutations, the extent of height deficit varies 
substantially and may be correlated with the presence or absence of HGHBP in plasma, 

although clear genotype–phenotype associations do not exist, thus suggesting an influence 
of additional genes or environmental factors [63–66]. The clinical outcome of treatment with 

Figure 6. A genetic test to identify HGH-deficient patients that would not respond to replacement therapy from 
those that would. Bioinformatics analyses of the sequences of the five genes of the hGH locus allowed us to design a 

simple polymerase chain reaction with just one pair of consensus primers to amplify them. Digestion of the mixture of 

amplicons with Acc 1 restriction enzyme should render a ladder of four digestion bands: The first and last bands are 
digestion products of the gene responsible, in the hypophysis, for the synthesis of HGH (hGH-N), while the second and 

third bands are evidence of the presence of the placental gene counterpart (hGH-V) [52].
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rHGH in patients with IGHD IA is quite variable. The amount and the affinity of GH-Ab 
modulated by genetic disposition for immune reactions may determine the overall response 

to HGH therapy [62].

5. Summary

During the prenatal period, the product has a very rapid development, for which it needs an 

adequate supply of nutrients by the mother. To date, many factors involved in this growth 

have been described. However, one of the most important without a doubt is the somatogenic 

and lactogenic hormones (collectively referred to as somatolactogens). Being the intrauterine 

period essential to define the health of the product throughout its extrauterine life, it is logi-
cal to think that there are biological mechanisms in nature that were evolving to assure the 

nutrient supply through the placenta. Many data point to the fact that HGH-V is one of these 

biological mechanisms.

During pregnancy, the expression of pituitary HGH is suppressed, and placental HGH 

becomes the predominant form of HGH in the mother [26]. This change in HGH production 

indicates that there must be some difference in their functions and surely have implications in 
the normal evolution of pregnancy. One of these differences is that HGH-V is secreted by the 
placenta in a non-pulsatile manner. This continuous secretion seems to have important impli-

cations in the physiological adjustment to gestation and especially in the control of maternal 

IGF-1 levels [5].

The lower affinity of HGH-V for the lactogenic receptors and the fact that its secretion is not 
suppressed by the high levels of blood glucose prevent glucose from being picked up by the 

mother’s tissues and thus being available to the fetus. However, these effects also cause the 
pregnancy to be a period of susceptibility to the development of diabetes and other meta-

bolic disorders, as is well known. HGH-V does not have a direct effect on fetal growth since 
it is secreted selectively into the maternal compartment and is not detected in fetal blood 

[27]. The effect on fetal growth apparently occurs indirectly through the IGF-1 maternal. 
HGH-V is secreted continuously by the placenta and that seems to control the synthesis of 

maternal IGF-1. This is supported by the fact that maternal IGF-1 levels are correlated with 

HGH-V levels. In addition, it binds to the hepatic receptors of HGH with a higher potency 

than HGH-N [27].

Unlike HGH-N, HGH-V does not increase the transcription of genes from the other compo-

nents of the IGF system [IGF-2, IGF-2R, IGF-1R, a family of six IGF binding proteins (IGFBPs), 

and IGFBP proteases]. Therefore, during pregnancy, when HGH-V takes control over HGH-

N, there is a greater amount of free IGF-1 available, which may be one of the reasons for the 

evolutionary divergence of the hGH locus for the creation of two GHs that will act in different 
periods of life.

Besides being the hGH locus a wonderful model to investigate gene spatial and temporal 

expression control, its world-record sequencing and pioneer translation into the first compan-

ion diagnostic ever invented, inaugurated the era of personalized medicine.
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