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Abstract

Nanoparticles are being used tremendously in biomedical sciences due to their 
promising chemical and physical properties. Magnetic nanoparticles and quantum 
dot nanocrystals are two of the main nanoparticle types used in the biomedical 
industry. The surface of these nanoparticles is further modified in order to obtain 
biocompatibility and surface functionalization. Magnetic properties, fluorescence, 
nanometer size, and availability of sites to modify its surface for bioconjugation 
provide greater potential to use these nanoparticles in targeted drug delivery tech-
nique and diagnostics. As a result, these nanoparticles create massive developments 
in the industrial operations. In this chapter, an overview of the nanoparticles used 
in drug delivery and diagnostic systems will be discussed. In addition, advantages in 
encapsulation of magnetic and quantum dot nanoparticles for bioconjugation and 
different methods of drug delivery will be addressed.
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1. Introduction

Among many synthetic compounds the general public comes across with, 
in day-to-day life, nanoparticles are considered highly advantageous in various 
applications. Nanoparticles in diagnostics and as drug delivery vehicles are coming 
under the aforementioned beneficial applications in the field of biomedical science. 
Various types of nanoparticles, for instance, gold nanoparticles [1] and iron oxide 
nanoparticles [2], are being used in biomedical operations. Due to its magnetic 
properties and nanometer size, magnetic nanoparticles such as magnetite (Fe3O4) 
[3] and maghemite (γ-Fe2O3) [4, 5] are considered highly beneficial for diagnostics 
and in drug delivery systems. On the other hand, inorganic nanoscale particles with 
semiconductor properties are becoming very popular in such applications. These 
semiconductor nanoparticles, called quantum dot nanoparticles, are equipped with 
extremely favorable characteristics such as high fluorescence and photolumines-
cence. These nanoparticles have been tested to be used in diagnostics [6], and trials 
were carried out at laboratory scale as therapeutics, that is, for drug delivery [7]. At 
the same time, quantum dots are found to be more beneficial over regular chemo-
therapy, radiation, and ionizing radiation imaging [8] which are used in cancer 
diagnosis and treatment.
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2. Nanoparticles used in drug delivery and diagnostic systems

2.1 Magnetic nanoparticles

Magnetic nanoparticles are used widely in a variety of industrial applications in 
environmental remediation [9], data storage [10], electronic device development 
[11], and pharmaceutical industry [12, 13]. Its magnetic properties give a greater 
potential in delivering the drugs at desired sites. The nanoscale size of the particles 
gives the ability to permeate through membranes without the interference of 
biological barriers. Therefore, the so-called properties make magnetic nanoparticles 
an ineluctable component in the development of drug delivery systems.

2.1.1 Properties of magnetic nanoparticles

Several types of magnetic nanoparticles such as iron, nickel, and cobalt based 
are available for industrial applications [14]. Due to the greater potential in surface 
modification and higher magnetic properties, iron oxide nanoparticles are consid-
ered as the best magnetic candidate in the development of drug delivery systems. 
These single-domain iron oxide magnetic nanoparticles are present in three differ-
ent phases, as magnetite, maghemite, and hematite (α-Fe2O3) [15]. These nanopar-
ticles generally demonstrate super-paramagnetic properties at ambient conditions 
even though their physical and chemical properties largely depend on the synthesis 
procedure and particle size [16]. According to the motions and interactions of the 
electrons available in the material, magnetism is divided in to five main classes as 
diamagnetism, paramagnetism, ferrimagnetism, ferromagnetism, and antiferro-
magnetism [17, 18]. Iron oxide nanoparticles fall under ferromagnetic and ferro-
magnetic classes due to their strong collective magnetic interaction [18].

To be used in a biological environment, there are several concerns that the 
magnetic nanoparticles should conquer. Colloidal and chemical stability of these 
particles is the main consideration. The stability of magnetic nanoparticles is 
extremely affected by intrinsic structural properties such as size, morphology, and 
pH of the particles [19].

2.1.2 Synthesis of magnetic nanoparticles

Synthesis of iron oxide nanoparticles can be conducted in different procedures 
using physical, chemical, or biological methods [18]. Chemical methods such as 
coprecipitation, hydrothermal reactions, thermal decomposition, microemulsion, 
sol-gel reactions, aerosol/vapor phase method, and electrochemical method are 
the principal preparation procedures. These procedures have the ability to control 
particle size, surface chemistry, and composition. Most simple, efficient, and 
cost-effective methods among these procedures are coprecipitation and thermal 
decomposition, which are also used widely due to the same reasons. In coprecipita-
tion, metal oxide particles are synthesized using a solution of the metal salt. In the 
synthesis of iron oxide nanoparticles, aqueous Fe3+ and Fe2+ are coprecipitated by 
addition of a base, preferably, sodium hydroxide or ammonium [18].

2.1.3 Biomedical applications

As a result of its nanometer size, as small as 3 nm [20], magnetic nanoparticles 
can reach the biological entities according to the interest. Cells with 10–100 μm size, 
proteins as large as 5–50 nm or even genes which can be 2 nm wide and 10–100 nm 
long, or viruses with size ranging from 20 to 450 nm can be targeted using these 
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magnetic nanoparticles [21]. The property of magnetism, where these nanoparticles 
can be manipulated by an external magnetic field, enhances its utility by providing 
the ability to get these nanoparticles to where they are required. Magnetic nanopar-
ticles are used in various applications in the aspects of biomedicine and biology. 
Magnetic separation has been of greater advantage in biological research, where 
magnetic nanoparticles are labeled to desired biological substances. These have 
proven superior sensitivity in cell sorting especially in immuno-magnetic selec-
tion of rare tumor cells in blood [22]. Moreover, these magnetic nanoparticles are 
used in a vast number of biological operations such as targeted drug delivery [23], 
hyperthermia [24], magnetic resonance imaging (MRI) [25], rapid diagnostics [26], 
tissue engineering [27], magnetic particle imaging (MPI) [28], etc.

2.2 Quantum dot nanoparticles

Quantum dot nanocrystals are semiconductor nanomaterials with intrinsic 
chemical and physical properties. These have unique semiconductor energy levels 
that can be adopted by simply changing size, shape, and charge potential [29]. In 
quantum dot nanoparticles, excitons are confined in all three dimensions. Quantum 
confinement is a property of semiconductors where the diameter of the nanopar-
ticle approaches that of the Bohr exciton radius. These nanoparticles have particular 
optical and electronic properties such as size-tunable absorption bands and emis-
sion colors due to the quantum confinement effect [30]. Quantum dot particles 
are artificially synthesized from II to IV and III to V elements such as Cd, Te, Se, 
Zn, etc. [31]. These are nanoscale structures typically with a diameter of 2–10 nm, 
which make them a more reliable and influential candidate in most of the industrial 
applications. Due to its small diameter, the surface atom to core atom ratio is high 
[32]. When the surface atom to core atom ratio increases, the properties of surface 
atoms dominate the properties of the whole particle. The semiconductor lattice of 
quantum dots is terminating on the surface, and therefore, the surface atoms show 
a different chemical behavior than the core atoms [33]. This ultimately makes the 
quantum dots more beneficial in industrial and biomedical operations.

2.2.1 Properties of quantum dot nanoparticles

These nanocrystals display fluorescence and produce distinctive colors which 
can be determined by the nanocrystal particle size. Fluorescence is a form of 
luminescence, where a substance absorbs light or other electromagnetic radiation 
and emits light of a longer wavelength than the absorbed light [34]. In general, 
luminescence is defined as the emission of photons from the excited electronic 
state. In contrast, when the atoms of the material absorb energy, these atoms are in 
the excited state. These excited atoms release absorbed energy as photons, which 
ultimately discharge light [35]. These quantum dot nanoparticles exhibit extraordi-
nary photoluminescence with increased brightness and stability [36, 37].

As presented in Figure 1, there are several types of quantum dots as core type 
[38], core-shell type [39], and alloyed type (bimetallic) [40], which are classified 
based on their composition and structure. Core-type quantum dots contain single 
component inorganic core and can be chalcogenides of metals such as PbS, CdTe, 
CdSe, etc. [38]. These can be further modified with another layer around the core 
using many substances, according to the application’s requirement. Typically, 
in biomedical applications, these core structures are stabilized with an organic 
layer around the core in order to obtain a hydrophobic or hydrophilic surface. The 
electroluminescent and photoluminescent properties of these core-type quantum 
dots can be refined by basically altering the crystal size [12].
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Core-shell-type quantum dots, such as CdTe/CdSe [41], CdSe/ZnS [42], CdSe/
CdS, etc., are comprised of an inorganic core and an inorganic shell, generally a 
higher bandgap semiconductor around the core. Core-shell structures of quantum 
dots are more effective and have an intense brightness, as a result of the diminished 
chemical damage that can be happened to the fluorescence core. It is believed that 
inorganic core-shell quantum dots are more robust than organically passivated 
core-type quantum dots [43].

Alloyed quantum dots are synthesized by alloying two semiconductors with 
different bandgap energies. This type emits colors by just altering the composition 
rather than changing the crystallite size as a result of both homogenous and gradi-
ent internal structures [44].

2.2.2 Synthesis of quantum dots

Among several methods utilized to synthesis quantum dots, hydrothermal 
synthesis [45, 46], and organometallic synthesis [47, 48] are the mainly used two 
techniques. Other methods, for instance, polyol-hydrolysis [49], electron beam 
irradiation [50], microwave-assisted aqueous synthesis [51], photochemical 
synthesis [52], UV irradiation [53], and chemical precipitation [54], are also less 
commonly used for quantum dot synthesis. CdTe quantum dots are highly used 
in biomedical applications compared to other types of quantum dots. Generally, 
CdTe quantum dots demonstrate inferior biocompatibility and stability in biologi-
cal systems. Therefore, methods have developed to modify the surface of CdTe 
quantum dots during synthesis by capping the quantum dots using different sta-
bilizers such as trioctylphosphine (TOP)/trioctylphosphine oxide (TOPO) [55], 
etc. Particularly, quantum dots which are capped with stabilizers containing thiol 
groups [56] make the quantum dots highly biocompatible and more stable inside 
biological environment [57, 58]. The CdTe quantum dots, which are synthesized in 
aqueous medium using thioglycolic acid [59], cysteine [60], and glutathione [61], 
provide high luminescence, stability, and surface functionalization to conjugate 
biomolecules.

2.2.3 Biomedical application

Recently, quantum dots are used in many biotechnological appliances [6, 62]. 
These fluorescent nanocrystals are utilized in many immunofluorescence assays 
[63], tissue engineering [64], DNA array technology [65], and other cell biology 
techniques [66] where fluorescence measurements are occupied. Single-molecule 
level studies of living cells [67] and targeted drug delivery for cancer treatment 
[68] are some other applications in medicine. There are many advantages of using 

Figure 1. 
Types of quantum dots used in drug delivery [44].
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quantum dots in biotechnology. As the fluorescence of quantum dots is intense 
than other conventional dyes classically used in immuno-labeling and staining of 
proteins, quantum dots are currently being used in immunoassays as fluorophores 
[69] and in immuno-staining of cells [70], DNA [71], etc.

3.  Advantages and advances in encapsulation of nanoparticles for 
bioconjugation

Bare nanoparticles often show undesirable properties in biological systems. 
These nanoparticles are often hydrophobic or hydrophilic, susceptible to oxidation 
and agglomeration. The main concern with magnetic nanoparticles is that they may 
fail to exhibit their super-paramagnetic properties inside or when conjugated to 
biological systems. This reduction of magnetism occurs as a consequence of their 
high chemical reactivity and extraordinary surface energy [16]. With the inten-
tion of maintaining nanoparticles in the colloidal condition during storage and 
to increase their constancy and biocompatibility, bare nanoparticles are further 
modified. Generally, surface modification is performed using polymers or surfac-
tants which are hefty or charged molecules compared to the nanoparticles. These 
modifications provide several advantages such as increased physical and chemical 
stability. Therefore, the agglomeration and oxidation which are the most problem-
atic concerns in biomedical applications can be minimized or limited. Ultimately, 
these modifications make the nanoparticles biocompatible with enhanced surface 
activity. Following modifications, with the use of functional groups available on the 
surface of nanoparticles, targeted biomolecules can be anchored on nanoparticles 
[72]. Magnetic nanoparticles acquire higher surface energy due to its tremendous 
specific surface area of exposed atoms on its surface [73].

Simply, modification of magnetic nanoparticles can be achieved by surface 
coating of the nanoparticle with either organic or inorganic materials. Inorganic 
materials include silica [74] and carbon [74]. Silica is a widely used compound for 
surface modification of iron oxide nanoparticles. As a result of its low cytotoxic-
ity, silica modified nanoparticles are considered as an excellent combination to 
be used in biological applications. Silica coatings provide reduced agglomeration 
along with enhanced stability which ultimately ensures biocompatible-modified 
magnetic nanoparticles [75]. Organic material coating involves the addition of 
the material on to the nanoparticle, and the surface structure of the nanoparticle 
is totally undisturbed. There are many organic materials used for this strategy. 
Some of them are dextran [76], chitosan [77], alginate [78], and polymers such as 
polyethylene glycol (PEG) [79], polyvinyl alcohol (PVA) [80], and polyvinylpyr-
rolidone (PVP) [81].

4. Different methods of drug delivery

In drug delivery systems and diagnostics, nanotechnology has become a leader 
in the current decade. Since the 1980s there has been a considerable number of 
research on using nanotechnology in drug delivery systems [82, 83]. Due to its 
unique properties, such as smaller nanoscale size, magnetism, and fluorescence, 
nanotechnology-based drug delivery systems have defeated the problems and 
barriers of drug therapy in the pharmaceutical industry. Studies demonstrate 
many nanoparticulate drug careers, namely, liposomes [84], microemulsions [85], 
nano-suspensions [86], and nanoparticles [87]. These can be administrated through 
parenteral, tablets, capsules (as hard gelatin or soft gelatin), and as oral liquid [88]. 
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These nanoparticles are extraordinary carriers for drug delivery for cancer treat-
ment since they are not uptaken by phagocytosis by the immune system due to its 
nanoscale size [89].

Nanotechnology-based drug delivery has now come into a point where it has 
developed a smart drug delivery system. The theory behind smart drug delivery 
technique is, when the nanoparticle system is provoked by biological, chemical, 
or physical stimuli (biomolecules, pH, light, temperature, etc.), physicochemical 
properties of nanoparticle system change rapidly [90]. These smart drug delivery 
systems can be programmed to release drugs according to the stimuli, and the flow 
rate of drug release can be regulated according to the environmental condition. It 
can also predict the drugs required and switch on and off the release of drugs [91]. 
These advances have made the system more effective and have reduced the toxicity 
and side effects of the nanoparticulate drug admonition.

4.1 Types of drug delivery

There are several drug delivery methods such as oral method [92], injection-
based method [93], transdermal delivery [94], pulmonary drug delivery [95], and 
carrier-based method [96].

In oral drug delivery, formulations used in oral drug administration range from 
simple tablets to modified control release tablets. This involves the use of various 
polymers and hydrogel-based formulations [92]. Injection-based drug delivery 
provides fast systemic effects bypassing first pass metabolism. Using this method, 
the drugs can be administered in unconscious or comatose patients, and drugs hav-
ing short half-life can also be infused continuously [93]. Pulmonary drug delivery 
involves the administration of drugs by inhalation through the mouth or nose. The 
alveolar epithelial gets contacted with the drugs, and this provides a good surface 
especially for lipid-soluble drugs [95]. In transdermal drug administration, adhe-
sive patches containing the drugs are applied on the skin. The drugs pass the skin 
surface by diffusion and enter the systemic circulation by percutaneous absorption 
[94]. Carrier-based drug delivery is a novel method which has been experimenting 
over decades in order to escalate the efficiency and diminish the detrimental side 
effects of carrier systems. This method serves improved selectivity, effectiveness, 
and safety of drug administration [96].

4.1.1 Carrier-based drug delivery systems

Carrier-based drug delivery system utilizes several carriers such as liposomes, 
microemulsions, micellar systems, aquasomes, and nanoparticles.

Liposomes are drug carriers with a spherical structure, constructed from one 
or several amphiphilic phospholipids and cholesterols. Using liposomes as vehicles 
in drug delivery provides various conveniences compared to other systems. These 
carriers are created as small structures (80–100 nm), with bilayers of phospholipids 
and cholesterols with an aqueous interior. As a result, lipophilic drugs can be encap-
sulated in the lipid bilayer and hydrophilic drugs in the aqueous interior [85]. Using 
liposomes are considered as a low-toxic method with minimal side effects, and the 
drug can be applied without deteriorating its performance [84].

Microemulsions are a thermodynamically stable mixture of two immiscible 
liquids consisting of two phases called dispersed and continuous phase. These mix-
tures are typically stabilized with a surfactant and may have droplets with a size of 
5–100 nm length [85]. Similar to emulsions, microemulsions can also be constructed 
as water in oil or oil in water. In drug administration, dispersed or continuous 
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phases are determined by the hydrophilicity of the drug. Microemulsions provide 
increased solubility and stability of drugs enhancing high absorption rate through 
biological membranes.

Composed of copolymers and amphiphilic macromolecules with distinct 
hydrophobic and hydrophilic properties, polymer micelles form nanoscopic 
supramolecular core-shell structures. These structures show different types of 
morphologies, such as spheres, rods, vesicles, tubules, and lamellae. Core-shell 
structure of these particles grants a number of positive factors to be used in drug 
delivery applications [85]. As a result of the copolymers used in the formation of 
the micelles, the half-life of the system is expanded. Another consideration is that 
water-insoluble drugs can be solubilized by encapsulating the drug within the 
core structure. Due to its nanoscopic size, the permeability is intensified making it 
convenient for injections [97].

Aquasomes are spherical particles with 60–300 nm in size. These are used as 
vehicles for drug delivery as well as to deliver antigens to evoke antigen-specific 
immune responses [85]. These nanoparticles are comprised of a nanocrystalline 
core, which is responsible for the structural stability, and an oligomer coating, 
which protects the system from dehydration. As shown in Figure 2, the drugs or 
biomolecules of interest are adsorbed on the oligomeric coating of the aquasomes, 
making them conducive for drug delivery [98].

Nanoparticles are solid colloidal particles with 1–1000 nm size [18]. Currently, 
a number of different types of nanoparticles along with various macromolecules 
are used for drug delivery. Nanoparticles in different structures are produced 
depending on their configuration and utility such as nanotubes [99], nanowires 
[100], nanoshells [101], quantum dots [102], nanopores, nanobots [103], nano-
erythrocytes [104], etc. Drugs or biomolecules are attached to the nanoparticles by 
adsorption, covalent attachment, or entrapment [18]. To be included in the drug 
development process, utilization of potentially toxic compounds or organic solvents 
in the nanoparticle synthesis procedure is inadvisable [44]. The components used 
in synthesis should ideally be biodegradable and safe for in vivo use. Further, these 
complexes should not induce immunological responses, and also, these should be 
stable under storage conditions [105]. In drug delivery, magnetic nanoparticles 
are being used in several approaches. The first approach is localized drug delivery, 
where the magnetic nanoparticles attached to the appropriate drug and adminis-
tered systemically. When the magnetic field is applied on the required site of the 
body, these drug-containing magnetic nanoparticles will accumulate on the dis-
eased site, and the drugs will be released for treatment [106]. The second approach 
is the usage of an alternate magnetic field to generate heat by magnetic nanoparti-
cles which are conjugated to drugs via thermos-liable linker molecules [107]. These 
magnetic nanoparticles have the ability to generate heat when an alternate magnetic 
field is focused on a diseased site. Thus, under the alternate magnetic field, these 
thermos-liable linkers get cleaved, releasing the drugs [108].

Figure 2. 
Preparation of aquasomes [98].
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5. Conclusion

Recent advances of nanotechnology which is used in biomedical science have 
given a great opportunity for the consumers to utilize the technology in a very 
efficient manner. Special focus on smart drug delivery technique which provides 
utmost advantages can prove this statement without hesitation. Nanoparticles, 
being considered as highly useful components in drug delivery, therapeutics, and 
diagnostics, can also affect its users negatively as a result of its inherent toxicity and 
inferior levels of biocompatibility. Even though different types of nanoparticles 
show diverse levels of toxicities, current appliances have made precautions to 
minimize its toxic effect and increase biocompatibility, by encapsulation. Magnetic 
nanoparticles and quantum dot nanoparticles, as discussed in this chapter, are used 
widely in the aforementioned applications with modified surface fabrications. 
The future prospects of nanotechnology in biomedical applications could lead to a 
highly sophisticated user-friendly technology where smarter appliances will reach 
consumers with the least challenges which they encounter in the present systems.
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