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Chapter

Convex Optimization and Array
Orientation Diversity-Based
Sparse Array Beampattern
Synthesis
Hui Chen and Qun Wan

Abstract

The sparse array pattern synthesis (APS) has many important implications in
some special situations where the weights, size, and cost of antennas are limited. In
this chapter, the APS with a minimum number of elements problem is investigated
from the perspective of sparseness constrained optimization. Firstly, to reduce the
number of antenna elements in the array, the APS problem is formulated as sparse-
ness constrained optimization problem under compressive sensing (CS) framework
and solved by using the reweighted L1-norm minimization algorithm. Besides, to
address left-right radiation pattern ambiguity problem, the proposed algorithm
exploits the array orientation diversity in the sparsity constraint framework. Simu-
lation results demonstrate the proposed method’s validity of achieving the desired
radiation beampattern with the minimum number of antenna elements.

Keywords: array beampattern synthesis, compressive sensing, array orientation
diversity, convex optimization

1. Introduction

The objective of array pattern synthesis (APS) is to find the excitation of an
array to produce a radiation beampattern which is close to the desired one. Dolph-
Chebyshev method [1, 2] can be used to design an optimal pattern with the mini-
mum sidelobe level and desired mainlobe width for a uniform linear array (ULA)
with isotropic elements. While it is more difficult to solve the APS problem for an
array of arbitrary geometric structures.

For nonuniformly spaced arbitrary arrays, there are several algorithms [3–6]
that have been proposed to synthesize beampatterns. The design of thinned narrow-
beam arrays has been well proposed in [3], which first fix element locations by
eliminating the elements pair by pair according to the smallest possible sidelobe on
the given interval and then optimize the weights via linear programming. For APS
problem, which can also be formulated as a quadratic programming problem [4, 5],
the objective function is to minimize the squared errors between the synthesized
pattern and the desired pattern. Besides, additional linear constraints [4] or
weighting functions [7] are also added to the quadratic objective function to mini-
mize the peaks of the synthesis error. The challenge to weighting functions in the
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quadratic programming is that it has to be adjusted in an ad hoc manner. Besides, an
inverse matrix has to be computed at each iteration for updating the weighting
functions, which will result in high computation requirements, especially for large
size of the array. The author of [8] proposed a recursive least squares method to
solve the problem. Another kind of evolutionary algorithm, such as simulated
annealing [9], particle swarm optimization [10], and genetic algorithm [11–13], has
also been used for APS problem optimization.

Recently, second-order cone programming (SOCP) and semi-definite program-
ming (SDP), as convex optimization techniques [14, 15], have been proposed to
solve the APS problem readily by using SOCP solver and SDP solver, respectively.
While a general nonuniform APS problem cannot be directly formulated as a con-
vex problem. An iterative procedure [15] was proposed to optimize the array pat-
tern by solving an SDP problem at each iteration. All the abovementioned
approaches to design an optimal nonuniform array are to construct an objective
function of minimizing the synthesis error or peak error. When the positions of
elements are given, the nonuniformly spaced arrays can be optimized using convex
programming like that for uniformly spaced arrays. While it is impossible to solve
the APS problem by complex programming if the positions of the array elements are
unknown. In addition, to solve the problem of occupying more elements to obtain
the desired beampattern, the authors in [16] proposed a matrix pencil-based non-
iterative synthesis algorithm, which can efficiently save the number of elements in a
very short computation time. Zhang et al. [17] formulated the APS problem as a
sparseness constrained optimization problem and solved the problem by using
Bayesian compressive sensing (BCS) inversion algorithm; the authors in [18] pro-
posed an approach for APS of linear sparse arrays, and then the multitask BCS has
been used to design 2D sparse synthesis problem [19], sparse conformal array
synthesis problem [20–22], and another CS-based sparse array synthesis problem
[23–26].

In this chapter, we proposed an array pattern synthesis algorithm [27] by using
reweighted l1-norm minimization [28] and convex optimization [29]. Then we
extended our work to a new version [30] by using reweighted l1-norm minimiza-
tion and array orientation diversity. Merits of the algorithm include the following:
(1) it does not need a thorough search in the multidimensional parameter space, and
(2) it can achieve the same array performance with fewer antenna elements when
the array size is given and thus reduces the array cost significantly. Regarding the

notation of this chapter, �ð ÞT represents the transpose operation of a vector or
matrix, �j j denotes the absolute value operator, and �k k1 and �k k

∞
represent the

l1-norm and l∞-norm of a vector or matrix, respectively. And xd e denotes the
smallest integer not less than x, and diag xð Þ means the diagonal matrix with
the main diagonal elements equaled to the vector x.

2. Nonuniform array pattern synthesis using reweighted l1-norm
minimization

2.1 Problem formulation

Consider a narrowband linear array with M isotropic antennas located at

x1,…, xM ∈R2. Assume that a harmonic plane wave with wavelength λ propagates
across the array with incident direction θ. The M signal outputs si are converted to
the baseband, weighted by the weights wi, and summed. Then the array response
can represented as
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G θð Þ ¼
X

M

i¼1

wi exp j2πxi sin θ=λð Þ ¼ wTa θð Þ (1)

where ϕi ¼ 2πxi sin θ=λ is the phase delay due to propagation, complex weight

vector w ¼ w1;…;wM½ �T ∈CM, and the steering vector a θð Þ.
Let Gd θð Þ be the desired array response at the direction θ. The APS problem is to

find the complex weight vector w such that G θð Þ ¼ Gd θð Þ for all θ∈ �90∘; 90∘½ �. For
the array described above, how well G θð Þ approximates Gd θð Þ can be measured by
using the peak error across θ, i.e.,

min
w

max
θ∈Θ

G θð Þ � Gd θð Þj j (2)

where Θ∈ �90∘; 90∘½ � is a dense set of arrival angles that we are of interest. The
goal of the proposed algorithm is to find both optimal antenna locations and
corresponding weights that approach the desired array pattern as well as possible.

2.2 The proposed algorithm

The APS problem can be formulated as a following estimation problem:

wTa θð Þ ¼ G θð Þ, ∀θ∈Θ (3)

We try to find w in Eq. (3) such that Eq. (2) is satisfied.
The new solution of Eq. (3) can be summarized as follows:

2.2.1 Creating a virtual array

For a given array size, to obtain more elements than those of a conventional
array with λ=2 inter-element spacing, we first create a dense uniformly spaced
linear array with much smaller inter-element spacing than conventional array and
initialize a weight matrix Q as an identity matrix to create a more sparse array in
subsequent processing.

2.2.2 Finding the sparse weight vector

The specified synthesized pattern G θð Þ is produced by a weight vector. The
weight vector can be obtained by solving the following weighted l1-norm minimi-
zation convex problem Eq. (4), which is subject to minimizing the peak of the error
between the synthesized pattern G θð Þ and the desired pattern Gd θð Þ:

Minimize Qwk k1
Subject to G θð Þ �Gd θð Þk k

∞
≤ ε,∀θ∈ �90∘; 90∘½ �

(4)

where ε is the fitting error between the synthesized pattern and desired pattern.
Minimizing Qwk k1 makes the vector Qw sparse, which is useful to create a
nonuniformly spaced array. According to the situation that some weights of the

original weight vector w ¼ w1;w2;…½ �T from Eq. (4) are very small, they can be
deleted without significantly decreasing the array performance. So a sparse weight
vector can be obtained by retuning the small value elements of the original weight
vector, that is, the wi will be retained if wij j= wk k

∞
> η i ¼ 1; 2;…ð Þ, otherwise

wi ¼ 0. The η is a designed threshold whose value should make a trade-off between
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APS performance and convergence rate. Because more elements of the original
weight vector will be pruned if the threshold value η is increased, which make us
probably cannot find the optimal array element positions of the array, correspond-
ingly the array synthesis performance is not optimal for a given array element
number. Conversely, if the threshold value is decreased, less elements of the origi-
nal weight vector will be pruned in each iteration, which increases the algorithm
complexity. So we should make a good balance between APS performance and
convergence rate when setting the value of η.

2.2.3 Updating the weight matrix

After obtaining the original weight vector w ¼ w1;w2;…½ �T, the weight matrix Q

is updated as Q ¼ diag w1j j þ δð Þ�p; w2j j þ δð Þ�p; …½ �ð Þ (usually, p is an integer
greater than 1; it was demonstrated experimentally that p ¼ 2 is a better choice for
our APS problem). To ensure that the weight matrix is effectively updated when a
zero-valued component in w, we introduce a parameter δ>0. It is empirically
demonstrated that δ should be set slightly smaller than the expected nonzero mag-
nitudes of w.

2.2.4 Forming the nonuniform array

The sparse weight vector ws is obtained by pruning the original weight vector,
and then the antenna elements corresponding to nonzero-valued indices of ws are
retained to form a nonuniform array with fewer elements.

The above steps (A, B, C) are repeated until the final synthesized array perfor-
mance is satisfactory or the specified maximum number of iterations is attained.

2.2.5 Optimizing the sparse weight vector

After obtaining the array antenna positions by steps (B, C, D), the optimal
weight vector wopt is further obtained by solving following convex optimization
problem, which is to improve the performance of the array beampattern synthe-
sized by the sparse weight vector:

Find wopt

Minimize G θð Þ � Gd θð Þk k
∞
, θ∈ �90∘; 90∘½ �

(5)

2.3 Computer simulation and discussions

Given the array aperture, the objective is to design an array with the
beampattern as shown in Figure 1, where region θj j≤ θs corresponds to the
mainlobe and region θj j≥ θs corresponds to the sidelobe. We set θs ¼ 2:5∘, and the
angle grid of the interval �90∘; 90∘½ � is 1∘. We design a virtual ULA with the array
aperture of 25:5λ having a uniform inter-element spacing of λ=8.

The beampattern of Figure 2 is obtained by using our approach for a 19-element
array, and the optimal beampattern exhibits the maximum sidelobe of �15.46 dB.
The optimal antenna positions and the corresponding weights are displayed in
Table 1. The designs proposed in [3, 17] describe a 25-element and a 29-element
non-ULA with the approximate desired array pattern shown in Figure 2, respec-
tively. The 25-element array beampattern described in [3] by eliminating the ele-
ments pair by pair has a maximum sidelobe�13.75 dB, while the maximum sidelobe
of 29-element array beampattern obtained by the BCS algorithm [17] is �13.165 dB.
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Figure 2.
A “25-element array beampattern obtained by [3] and a 29-element array beampattern obtained by [17]” vs.
“our 19-element array beampattern.”

Element indices Position (λ) Weight value Element indices Position (λ) Weight value

1,19 �10.500 0.2289 6,14 �3.875 0.2677

2,18 �8.625 0.2583 7,13 �2.875 0.2195

3,17 �7.6250 0.2207 8,12 �1.875 0.1813

4,16 �6.750 0.2904 9,11 �1.000 0.2347

5,15 �4.750 0.1567 10 0 0.2427

Table 1.
Our element positions and weights in a 19-element antenna array.

Figure 1.
The desired beampattern.
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The antenna positions and the corresponding weights of the two methods in [3, 17]
are listed in Tables 2 and 3, respectively. Compared with the method in [3], we can
see from Table 1 and Figure 2 that our proposed algorithm saves six elements
without reducing the array performance and the our minimum inter-element spac-
ing of the non-ULA is 0.375λ larger than that of the method of eliminating the
elements pair by pair [3]. Compared with the reference method in [17], our pro-
posed method offers an economization of 10 elements as well as 2.3 dB performance
improvement, and the minimum inter-element spacing of the sparse array designed
by our approach is 0.75λ larger than that of the reference array [17]. We also
emphasize that the reference array [17] has 4.5λ larger array aperture than that of
our array.

The proposed APS algorithm based on convex optimization and reweighted
l1-norm minimization is proven to be effective in reducing array elements,
suppressing the sidelobe, and reducing the aperture. This simple and effective
design method can be extended to solving the 2D array synthesis problem.

Element indices Position (λ) Weight value Element indices Position (λ) Weight value

1,25 �12.0 0.2100 8,18 �4.5 0.1924

2,24 �8.5 0.2605 9,17 �3.5 0.2296

3,23 �8.0 0.2276 10,16 �2.0 0.2282

4,22 �7.5 0.2554 11,15 �1.5 0.0876

5,21 �7.0 0.2103 12,14 �0.5 0.1143

6,20 �6.0 0.200 13 0 0.2084

7,19 �5.0 0.2037

Table 2.
Element positions and weights obtained in a 25-element array [3].

Element indices Position (λ) Weight value

1,2 �1.375, �0.500 0.0876, 0.1178

3,4 0.375, 0.500 0.0532, 0.1025

5,6 1.250, 1.375 0.0497, 0.1844

7,8 2.125, 4.375 0.1895, 0.1086

9,10 4.500, 5.250 0.0778, 0.2679

11,12 6.125, 7.000 0.2440, 0.1098

13,14 7.125, 8.125 0.0643, 0.2400

15,16 8.875, 10.125 0.1953, 0.2249

17,18 11.000, 11.750 0.2297, 0.0720

19,20 12.000, 12.750 0.1480, 0.1810

21,22 13.750, 13.875 0.0761, 0.0554

23,24 14.875, 15.750 0.0840, 0.1833

25,26 16.625, 16.750 0.1860, 0.0516

27,28 17.375, 19.625 0.1625, 0.0745

29 24.125 0.0317

Table 3.
Element positions and weights obtained by the BCS inversion algorithm [17].
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3. Beampattern synthesis using reweighted l1-norm minimization and
array orientation diversity

To address left-right radiation pattern ambiguity problem, we allow exploitation
of the array orientation diversity in the CS framework.

3.1 Problem formulation

We assume that transmit signals and the array are coplanar, so the antenna array
synthesis problem can be described as follows:

min DMð Þ s:t: min
Rαi;dαif g α ¼ 1, :…,D

i ¼ 1, :…,M

Fd θð Þ � F θð Þk kl2

8

>

>

<

>

>

:

9

>

>

=

>

>

;

≤ ξ (6)

where F θð Þ ¼
PD

α¼1

PM
i Rαie

jkdαi cos θ�θαð Þ, Fd θð Þ is the desired radiation pattern,M
is the number of identical antenna elements in each linear array, Rαi is the excitation
coefficient of the ith element located at dαi in the αth array, k is the wavenumber in
the free space, and D array orientations θα α ¼ 1;…;Dð Þ. The objective of the prob-
lem is to synthesize the desired radiation pattern Fd θð Þ with the minimum number
of elements under a small tolerance error ξ. For one linear array at orientation θα to
the incident plane wave from the bearing θ, the array factor is given by

Fα θð Þ ¼
X

M

i

Rαie
jkdαi cos θ�θαð Þ (7)

Suppose that all the antenna elements in each array orientation θα α ¼ 1;…;Dð Þ
are symmetrically distributed within a range of �ds to ds along the array orientation
θα, respectively, the combination pattern of all the linear orientation arrays can be
written as

F θð Þ ¼
X

D

α¼1

Fα θð Þ (8)

In order to solve Eqs. (7) and (8), we can assume that all the antenna elements
are equally spaced from�ds to ds with a small inter-element spacing Δd. Although it
is supposed that there is one element at each position, not each antenna element is
necessarily radiating waves or excited with current. All the antenna elements can be
in two states: “on” states (when the element is in the supposed position or has an
excitation) and “off” state (when there is no element in the supposed position or
without an excitation). Through discretization, Eq. (8) can be written in a matrix
form:

F θð Þ½ �h�1 ¼ H½ �h�n r½ �n�1 (9)

where h is the number of sampled antenna radiation pattern, n ¼ D 2ds
Δd

� �

, the

sensing radiation pattern at different angles is contained in vector

F ¼ F θ1ð Þ F θ2ð Þ⋯ F θhð Þ½ �T, overcomplete dictionary H is an h� n matrix whose

i; lð Þth element is Hil ¼ ejkdαi cos θl�θαð Þ, l∈ α� 1ð Þ n
D þ 1; nD α

� �

for α∈ 1;…;Df g, and

h≪ n. r is an excitation vector, Rαi ¼ 0 means the antenna in the lth position of the
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αth array is absent from the supposed position, and the solution of sparse excitation
vector r can be casted as the following convex optimization problem:

min rk k1
subject to F‐Hrk k

∞
≤ ξ

(10)

In Eq. (10) the smallest number of nonzero elements in the excitation vector r
can be obtained readily by using existing software package, such as CVX [31].

3.2 The proposed algorithm

In this subsection, the new solution of Eq. (6) can be summarized as follows:

3.2.1 Initializing a virtual array and a weight matrix

To place more antenna elements than those of a conventional array with the
same array size, we first create D virtual linear orientation arrays with much smaller
interspacing λ=16 (in general, the inter-element spacing of the conventional ULA is
λ=2). Using the reweighted l1-norm minimization in the following step, we set a
DM�DM dimension weight matrix Q as a unit matrix.

3.2.2 Finding the sparse weight vector

Let F θð Þ be a synthesized beampattern by using a weight vector, and the weight
vector can be obtained by solving the following weighted l1-norm minimization
convex problem which is to try to minimize the peak value of the error between the
synthesized pattern and the desired pattern:

Minimize Qwk k1
Subject to F θð Þ � Fd θð Þk k

∞
≤ ζ, ∀θ∈ �180∘; 180∘½ �

(11)

where ζ is the fitting error between the synthesized pattern and the desired one.
Minimizing Qwk k1 makes the vector Qw sparse, which is useful to create D

nonuniformly spaced linear orientation arrays. Here, let the weight vector w ¼

w1;w2;…½ �T obtained from Eq. (11) be the original weight vector for convenience.
The weighted l1-norm minimization will make some weights of the original weight
vector be very small, so they can be adjusted to zero without significantly reducing
the array performance. That is, if the absolute value of an element from the original
weight vector is smaller than a threshold which is set according to the array perfor-
mance requirement, the element will be assigned zero; otherwise, the element will
be retained. Thus the sparse weight vector ws is obtained.

3.2.3 Updating the weight matrix

After obtaining the original weight vector w ¼ w1;w2;…½ �T from step (2), the
weight matrix Q is updated according to Q ¼ diag w1j j þ δð Þ�p, w2j j þ δð Þ�p, …½ �ð Þ
in each iteration; usually, p is an integer greater than 1, while it was demonstrated
experimentally that p ¼ 2 is a better choice for our APS problem. To ensure regular
update Q especially for zero-valued components in w, we bring in the parameter
δ>0 which should be set slightly smaller than the expected nonzero magnitudes of
w. Reweighted l1 minimization can improve the signal reconstruction performance.

8
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3.2.4 Creating the nonuniform arrays

After obtaining the sparse weight vector ws from step (4), the antenna elements
corresponding to nonzero-valued indices of the sparse weight vector are retained to
create D sparse linear arrays with different orientations.

Repeat steps (2, 3, and 4) until the synthesized array beampattern performance
is satisfactory or the specified maximum number of iterations or minimum antenna
number is attained.

3.2.5 Finding the optimal weight vector

After optimizing the antenna element positions by the above steps, we introduce
convex optimization to obtain the optimal weight vector which can further improve
the performance of the array beampattern synthesized by the sparse weight vector:

Find wopt

Minimize F θð Þ � Fd θð Þk k
∞
, θ∈ �90∘; 90∘½ �

(12)

The optimal sparse weight vector wopt can be obtained from Eq. (12) readily.

3.3 Computer simulations and discussion

The objective is to design an array with the desired beampattern for given the
array physical size, as shown in Figure 1, where region θj j≤ θs belongs to the
mainlobe and region θj j≥ θs corresponds to the sidelobe. We set θs ¼ 2:3∘, and the
angle grid for the search area �180∘; 180∘½ � is 2∘, that is, we take a “dense set” of
�180∘; 180∘½ � with the angles sampled at 2∘ from �180∘ to 180∘ (Figure 3).

To show the performance of our beampattern synthesis, we will consider two
cases, same element number array and same beampattern performance, since all
formulated problems in Eqs. (6), (10), (11), and (12) are convex, so we adopt the
optimization toolbox to solve the formulated problems.

Figure 3.
Desired beampattern.
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Figure 4.
A 19-element array performance obtained by BCS inversion algorithm [17] and our method with increasing
array orientation diversity. (a) 1 array orientation, (b) 2 array orientations, (c) 3 array orientations, and (d)
4 array orientation.

Figure 5.
Element positions and excitation amplitudes in a 19-element one-array orientation.
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3.3.1 Same element number array with array orientation diversity

In this section, we analyzed the influence of the array orientation diversity on
the beampattern synthesis by simulation results. We initialize four virtual ULAs
(named Array 1, Array 2, Array 3, Array 4, with orientation �10∘,0∘, 10∘, 20∘,
respectively) with each subarray aperture of 25λ owning a uniform interspacing λ=8.

Besides, we initialize Q as a unit matrix and choose δ ¼ 10�4 and p ¼ 2 in our
simulations. Figure 4 shows a 19-element beampattern synthesis performance in
four cases with one-, two-, three-, and four-array orientations. From Figure 4, we
can see that our proposed method and BCS algorithm can improve performance
with increasing array orientation diversity (from 1 to 4); the optimal antenna
positions and the corresponding excitation amplitudes of the four cases are
displayed in Figures 5–8, respectively. Note that for the four cases of Figures 5–8,
the required normalized radiated energies of BCS approach [17] are correspond-
ingly bigger than that of our proposed method.

Figure 6.
Element positions and excitation amplitudes in a 19-element two-array orientation.

Figure 7.
Element positions and excitation amplitudes in a 19-element three-array orientation.
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Figure 8.
Element positions and excitation amplitudes in a 19-element four-array orientation antenna.

Figure 9.
Optimal beampattern of different element number array by using “BCS inversion algorithm [17]” vs. “our
method.” (a) 1 array orientation, (b) 2 array orientations, (c) 3 array orientations, and (d) 4 array
orientations.
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3.3.2 Approximate beampattern performance with array orientation diversity

To demonstrate another advantage of array orientation diversity, we examine
the beampattern synthesis of an 18-element array, 11-element array, 10-element
array, and 10-element array correspondingly with one orientation, two orienta-
tions, three orientations, and four orientations using BCS algorithm and our
method, respectively. The optimal beampatterns exhibit maximal sidelobes of
�7.72, �8.01, �7.59, and �7.88 dB, respectively, which are shown in Figure 9.
Figures 10–13 provide all the corresponding antenna positions and excitation
amplitudes for all the four cases mentioned above. Obviously, given the array size,
using orientation diversity can economize seven (or eight) elements without
reducing the array performance. But more diversity is not always better enough, as
shown in Figures 11–13. Besides, the excitation amplitudes in Figures 10–13 show
that our proposed method needs less radiation energy for all four cases.

Figure 10.
Element positions and excitation amplitudes in an 18-element one-array orientation antenna.

Figure 11.
Element positions and excitation amplitudes in an 11-element two-array orientation antenna.
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The proposed APS algorithm based on reweighted l1-norm minimization and
array orientation diversity is demonstrated to be effective in reducing array ele-
ments, suppressing the sidelobe, and reducing the energy consumption to some
extent.

4. Conclusions

This chapter focuses on the APS problem with sparse antenna array, which has
practical applications, especially for massive antenna array. By using array

Figure 12.
Element positions and excitation amplitudes in a 9-element three-array orientation antenna.

Figure 13.
Element positions and excitation amplitudes in a 10-element four-array orientation antenna.
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orientation diversity and solving reweightedl1-norm minimization convex optimi-
zation problem, the proposed APS algorithm shows the superiority in reducing
array elements, suppressing the sidelobe, and reducing the energy consumption to
some extent, and the robustness of the proposed design tool in real-life application
will also be considered in our further work.
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