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Chapter

Chinese Medicines for Cancer 
Treatment from the Metabolomics 
Perspective
Wei Guo, Hor-Yue Tan, Ning Wang and Yibin Feng

Abstract

Cancer is one of the most prevalent diseases all over the world with poor prog-
nosis and the development of novel therapeutic strategies is still urgently needed. 
The large amount of successful experiences in fighting against cancer-like diseases 
with Chinese medicine has suggested it as a great source of alternative treatments 
to human cancers. Cancer cells have been shown to own a predominantly unique 
metabolic phenotype to facilitate their rapid proliferation. Metabolic reprogram-
ming is a remarkable hallmark of cancer and therapies targeting cancer metabolism 
can be highly specific and effective. Based on the sophisticated study of small mol-
ecule metabolites, metabolomics can provide us valuable information on dynami-
cally metabolic responses of living systems to certain environmental condition. In 
this chapter, we systematically reviewed recent studies on metabolism-targeting 
anticancer therapies based on metabolomics in terms of glucose, lipid, amino acid, 
and nucleotide metabolisms and other altered metabolisms, with special emphasis 
on the potential of metabolic treatment with pure compounds, herb extracts, and 
formulations from Chinese medicines. The trends of future development of metab-
olism-targeting anticancer therapies were also discussed. Overall, the elucidation 
of the underlying molecular mechanism of metabolism-targeting pharmacologic 
therapies will provide us a new insight to develop novel therapeutics for cancer 
treatment.

Keywords: metabolomics, cancer metabolism, adjuvant therapies, Chinese medicines

1. Introduction

Despite all recent improvements in early detection and pleiotropic therapeutics, 
cancer is still the leading cause of death all over the world [1]. It is one of the most 
prevalent diseases with complex risk factors, and the mortality rate is similar to its 
morbidity, which reflects its poor prognosis. It has been projected that approxi-
mately 3.12 million new cases of cancer and a cancer death toll of 2.5 million will 
occur per year in China, which brings a huge burden on society [2]. To date, there 
are three conventional cancer therapies for cancer, including surgical resection, 
chemotherapy, and radiotherapy. However, diverse drawbacks and limitations 
have been observed in these cancer therapies either alone or in combination. For 
example, most cancer patients are not suitable to undergo the surgical resection due 
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to the late diagnosis and other factors. As the major therapies for cancer patients in 
middle and advanced stages, chemotherapy and radiotherapy have been shown to 
present serious side effects and complications, such as myelosuppression, hemato-
logical toxicity, cardiac damage, and liver and kidney dysfunction [1, 3]. Moreover, 
tumor cells have the ability to develop resistance to evade cell death, and the 
therapeutic efficacy of the current chemotherapeutic drugs is significantly reduced 
by the increasingly acquired drug resistance [4]. Therefore, it imminently deserves 
to develop more effective and less toxic adjuvant therapies for cancer prevention 
and treatment.

1.1 Cancer metabolism

It has been reported that cell metabolism has an essential role in the pathologi-
cal progression of cancer and metabolic reprogramming is a remarkable hallmark 
of cancer [5]. Cancer cells have been shown to own a predominantly unique 
metabolic phenotype to facilitate their rapid proliferation, which is dramatically 
different from normal cells. Cancer cells tend to acquire energy via glycolysis 
rather than the much more efficient oxidative phosphorylation pathway even 
in aerobic conditions, which is the famous phenomenon of cancer called the 
“Warburg effect” [6]. Besides the consumption of glucose, cancer cells have 
also been reported to favor glutamine as a preferential fuel [7]. Accumulating 
evidences indicate that mutations in metabolic enzymes can promote the 
development of cancer. For example, mutations in the tricarboxylic acid (TCA) 
cycle enzyme isocitrate dehydrogenase, succinate dehydrogenase, and fumarate 
hydratase can affect the corresponding metabolites a-ketoglutarate, succinate, 
and fumarate. These changes can further affect the 2-oxoglutarate-dependent 
dioxygenases and then result in some cancers, such as paraganglioma and renal 
cell cancer [8–10]. What is more, the drug resistance of cancer cells is also shown 
to be associated with their metabolic alterations [11]. In this perspective, cancer 
metabolism has become a potentially fertile area, and therapies targeting cancer 
metabolism can be highly specific and effective. Nowadays metabolism-targeting 
anticancer therapies are drawing researchers’ great attention and becoming a new 
therapeutics for cancer treatment [12].

1.2 Metabolomics and cancer

As a valuable complement to emerging “omics” science including genomics, 
transcriptomics, and proteomics, metabolomics utilizes leading-edge analytical 
chemistry technologies and advanced computational approaches to characterize 
the small endogenous and exogenous molecule metabolites in various biochemical 
metabolisms from complex biochemical mixtures [13]. Metabolomics can provide 
us a direct readout on dynamically metabolic responses of living systems to certain 
genetic modifications or pathophysiological stimuli [14], which has been exten-
sively adopted in the field of disease diagnosis, pharmacodynamic evaluation, 
therapeutical monitoring, and drug discovery [15]. There are three main analytical 
chemistry platforms in metabolomics research, namely, nuclear magnetic reso-
nance (NMR) spectroscopy, liquid chromatography mass spectrometry (LC-MS), 
and gas chromatography MS (GC/MS). Each platform has its own strengths and 
limitations. There are three main methodological approaches to analyze the small 
metabolites in metabolomics, namely, targeted, untargeted, and stable isotope-
resolved metabolomics (SIRM). Numerous systemic reviews have shown in detail 
how each analytical platform and methodological approach works in metabolomics 
studies [16–20].



3

Chinese Medicines for Cancer Treatment from the Metabolomics Perspective
DOI: http://dx.doi.org/10.5772/intechopen.88924

As mentioned above, cell metabolism has an essential role in the pathological 
progression of cancer, and metabolic reprogramming is a remarkable hallmark 
of cancer. In this context, it would be conducive to employ metabolomics in the 
field of cancer research for exploration of tumorigenesis mechanisms, diagnosis 
and monitoring of tumor, as well as discovery of novel anticancer therapies 
[21–23].

1.3 Chinese medicines and cancer treatment

Due to their various biological activities and low toxicity, natural products 
derived from Chinese medicines are reported to be an excellent source for antican-
cer drugs as a complementary and alternative approach [24]. Chinese medicines 
have evolved with their own unique theoretical system in Asian countries, especially 
China over thousands of years. Chinese medicines are usually divided into pure 
compounds, herb extracts, and formulations. Formulations from Chinese medicines 
are extensively employed in Chinese hospitals for clinical cancer treatment [25]. 
Numerous Chinese herb extracts have been reported to show inhibitory effects 
on cancers [26]. An increasing number of pure compounds derived from Chinese 
medicine herbs have been shown to inhibit the development of cancers through 
various mechanisms [27–30]. Besides, a large number of studies have revealed that 
Chinese medicines in combination with conventional chemotherapy and radio-
therapy could increase the therapeutic efficacy and decrease the serious side effects 
and complications of these therapies [31, 32]. It is convinced that Chinese medicines 
are gaining increasing reputation and credibility as adjuvant therapies for cancer 
prevention and treatment.

Although Chinese medicines have been employed in cancer prevention and 
treatment for a long time, the underlying mechanisms on how they work remain to 
be fully elucidated because of their unique medical system with multicomponent 
nature. In accordance with the holistic perspective of Chinese medicines, metabolo-
mics opens up a unique and novel insight into efficacy evaluation and action mecha-
nism exploration of Chinese medicines as adjuvant therapies for cancer prevention 
and treatment.

Figure 1. 
The typical flowchart of metabolomics studies on antineoplastic Chinese medicines.
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References Pure compound Cancer Study Method Significantly changed 

metabolites or pathways

Main findings

26,700,591 Geranylgeranoic acid Hepatoma HuH-7 cells in vitro UPLC/TOF/MS GGA induced a time-

dependent increase in the 

cellular contents of fructose 

6-phosphate and decrease of 

fructose 1,6-diphosphate

GGA may shift 

HuH-7 cells from 

aerobic glycolysis to 

mitochondrial respiration 

through the immediate 

upregulation of TIGAR 

and SCO2 protein levels

26,160,839 Halofuginone Colorectal cancer HCT116 cells in vitro UPLC-MS/MS, GC/

MS and UPLC/LTQ-

Orbitrap MS

Metabolomics delineated the 

slower rates in both glycolytic 

flux and glucose-derived 

tricarboxylic acid cycle flux

HF regulates Akt/

mTORC1 signaling 

pathway to dampen 

glucose uptake and 

glycolysis in CRC cells

29,589,762 (−)-5-Hydroxy-equol Hepatocellular 

Carcinoma

SMMC-7721 cells in vitro 1H NMR (−)-5-Hydroxy-equol 

treatment significantly 

altered energy and amino acid 

metabolism

Integrated metabolomics 

and further verifications 

may facilitate the 

exploration of the 

anti-HCC mechanisms of 

(−)-5-hydroxy-equol

29,802,724 Nummularic acid (NA) Prostate cancer 

(PCa)

DU-145 and C4-2 cells 

in vitro

ALEX-CIS 

GC–TOF-MS

The metabolism pathways 

related to glycolysis, TCA, 

and glutamine metabolisms 

were changed after NA 

treatment

NA may induce energy 

crisis to inhibit PCa

30,391,728 Magnoline Prostate cancer 22RV1 cells in vitro UPLC-MS Magnoline markedly restored 

the energy metabolism, 

amino acid metabolism, and 

fatty acid metabolism

Cancer cells may result 

in death because of 

insufficient material 

basis to favor their rapid 

proliferation
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References Pure compound Cancer Study Method Significantly changed 

metabolites or pathways

Main findings

28,651,973 1,25-Dihydroxyvitamin 

D3

Prostate cancer LNCaP cells in vitro GC/ MS 1,25(OH)2D3 decreased 

glucose uptake and increased 

citrate/isocitrate due to TCA 

cycle truncation

Re-wiring glucose 

metabolizing pathways, 

and induction of 

a “differentiated” 

metabolic phenotype by 

1,25(OH)2D3, may prove 

clinically beneficial.

26,541,605 Vitamin C Colorectal cancer KRAS and BRAF mutant 

lines and isogenic wild-

type counterparts in vitro

LC-MS/MS High levels of vitamin 

C increased uptake of 

dehydroascorbic acid (DHA) 

and decreased glutathione

These results provide a 

mechanistic rationale for 

exploring the therapeutic 

use of vitamin C for CRCs 

with KRAS or BRAF 

mutations

28,916,726 β-Lapachone Pancreatic ductal 

adenocarcinoma

MiaPaCa2 cells in vitro GC/MS and 1H NMR β-lap treatment was found to 

decrease the NAD-sensitive 

pathways, such as glycolysis 

and TCA cycle

Targeting NQO1 may 

sensitize the treatment 

of β-lap

28,737,429 Diethylstilbestrol Prostate cancer PC3 cells in vitro 1H NMR Lactate, phosphocreatine, and 

GSH were the biomarkers for 

DES treatment

DES upon conjugation 

had a more specific effect 

and less toxicity

28,918,937 Koningic acid Colorectal cancer HCT116 cells in vitro Integrated 

pharmacogenomics 

and LC-HRMS 

metabolomics

Glycolysis was the highest 

scoring pathway only in 

KA-treated cells

KA efficacy is not 

determined by the status 

of individual genes but 

by the quantitative extent 

of the WE, leading to 

a therapeutic window 

in vivo
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30,114,709 Omega-3 polyunsaturated 

fatty acids

Breast cancer MCF7 cells in vitro GC/MS Glycolysis and glutamine 

metabolism pathways were 

markedly reduced when 

treated with the combination 

of Rp and ω-3 PUFAs

ω-3 PUFA could increase 

the anti-breast cancer 

potential of Rp

28,198,625 Curcumin Hepatocarcinoma Serum from DEN-induced 

hepatocarcinogenesis 

model

GC/MS Curcumin attenuated 

metabolic disorders via 

increasing concentration of 

glucose and fructose, and 

decreasing levels of glycine 

and proline

Curcumin exhibited a 

potent liver protective 

agent inhibiting 

chemically induced 

liver injury through 

suppressing liver cellular 

metabolism in the 

prospective application

29,448,205 6,7-Dimethoxy-1,2,3,4-

tetrahydro-iso- quinoline-

3-carboxylic acid

Colorectal 

carcinoma

Serum from DMH-

induced CRC albino 

Wistar rat model in vivo

1H NMR M1 exhibited to reverse 

the perturbed metabolism 

pathways in CRC condition, 

including glycolysis, 

TCA cycle, choline, 

phosphatidylinositol and 

gluconeogenesismetabolisms

M1 has the anti-CRC 

potential via the blockade 

of IL-6/JAK2/STAT3 

oncogenic signaling

27,416,811 Physapubenolide Hepatocellular 

carcinoma

HepG2 cells in vitro and 

tumor tissues and plasma 

from a mouse-xenograft 

model bearing liver 

carcinoma H22 cells in vivo

GC/MS PB disturbed the metabolic 

pattern and significantly 

decreased lactate production

PB exhibits anticancer 

activities through 

suppression of glycolysis 

via the Akt-p53 pathway

30,322,263 Naringenin Lung cancer Serum from the urethane-

induced lung cancer rat 

model in vivo

1H NMR The glycolysis was restored to 

normal levels with co-therapy 

of Gnb and Nar

Co-therapy has the 

superiority over alone 

treatment to improve the 

therapeutic efficacy
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26,859,520 Flexibilide Colon cancer HCT-116 cells in vitro UPLC/Q-TOF MS Flexibilide exhibited 

the therapeutic effect 

on colon cancer mainly 

via downregulating PC 

biosynthesis pathway

Flexibilide exhibited 

the therapeutic effect 

on colon cancer mainly 

via down-regulating PC 

biosynthesis pathway

28,296,891 Englerin A Clear cell renal 

carcinoma

A498 cells in vitro LC-MS/MS Englerin A significantly 

reversed lipid metabolism and 

increase ceramides levels

Ceramides may be a 

mediator of some of the 

actions of englerin A

28,948,276 Isoquercitrin Bladder cancer T24 cells in vitro UPLC/Q-TOF MS Isoquercitrin treatment was 

found to regulate lipid and 

anaerobic glycolysis

ISO influenced T24 

bladder cancer cell 

metabolism, and this 

process was mainly 

involved in activating the 

AMPK pathway

28,496,003 Peiminine Colorectal cancer UPLC-MS and GC/MS UPLC-MS and GC/

MS

Peiminine treatment altered 

several metabolites, including 

lignocerate (24:0), oleate 

(18:1n9), glutamine, and 

glucose

Peiminine exerted the 

predominant therapeutic 

effect mainly via the 

metabolic regulation of 

lipids, amino acids, and 

carbohydrates

29,321,577 8u Hepatocellular 

carcinoma

HepG2 cells in vitro UPLC/Q-TOF MS 8u was found to significantly 

inhibit the invasion and 

metastasis of HepG2 cells and 

regulate intracellular lipid 

metabolism

8u could efficiently 

suppress the invasion 

and metastasis of HepG2 

cells by decreasing the 

expression of HSP90α 

protein and inhibiting 

the PI3K/Akt signaling 

pathway
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28,125,641 Genistein and calcitriol Osteosarcoma MG-63 Cells in vitro GC/MS Co-therapy of genistein 

and calcitriol was found to 

regulate lipids and amino 

acids rather than energy 

metabolism

The promotional effects 

of high level of genistein 

on osteosarcoma could 

be decreased by the 

co-treatment of calcitriol

27,533,043 Silibinin Prostate cancer Tumor tissues from 22Rv1 

Xenograft model in vivo

1H-NMR Silibinin treatment did not 

greatly affect glucose uptake 

of PCa tumor but decreased 

the lipid synthesis

These findings further 

support silibinin 

usefulness against PCa 

through inhibiting 

hypoxia-induced 

signaling

26,744,170 Acyclic retinoid Hepatocellular 

carcinoma

Liver tissues from mouse 

DEN-induced HCC model 

in vivo

CE-TOFMS and 

LC-TOFMS

ACR predominantly reversed 

lipogenesis but not glucose 

metabolism by inhibiting 

linoleic acid metabolites

Lipid metabolic 

reprogramming plays 

a critical role in the 

protective effects of ACR 

on HCC

30,871,192 Delta-tocotrienol Non-small cell 

lung cancer

A549 and H1299 cells 

in vitro

1H-NMR Cellular metabolomics 

analysis showed significant 

inhibition in the uptake of 

glutamine, its derivatives 

glutamate and glutathione, 

and some EAAs in both cell 

lines with δT treatment

δT treatment could 

suppress the glutamine 

uptake via suppressing 

glutamine transporters 

and then resulted in the 

induction of apoptosis 

and suppression of cell 

proliferation
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30,068,874 Celastrol Colon cancer HCT116 cells in vitro UPLC/MS Metabolomics analysis found 

celastrol changed the levels 

of lipid markers, carnitine 

and amino acids. Tryptophan 

was further identified as a 

special biomarker by targeted 

metabolite analysis

The suppression of 

IDO expression and 

tryptophan catabolism 

may be part of the 

mechanisms of celastrol 

in its cytotoxic effect 

against HCT116 colon 

cancer cells

27,754,384 Melittin Ovarian cancer A2780 and A2780CR cell 

lines in vitro

LC-MS Melittin treatment of 

cisplatin-sensitive cells 

decreased glutamine, proline, 

and arginine pathways

Melittin might have some 

potential as an adjuvant 

therapy in cancer 

treatment

28,674,386 Chlorogenic acid and 

caffeic acid

Hepatocellular 

carcinoma

Serum from DEN-induced 

HCC model in vivo

16 S rRNA and 

LC-MS, GC/MS-MS, 

GC/MS

Both CaA and ChA treatment 

reverse 28 metabolites

The levels of 

ethanolamine, 

L-methionine, 

L-tyrosine, and bilirubin 

were associated 

with diminished 

Prevotella 9 and 

Lachnospiraceae incertae 

sedis and elevated 

Ruminococcaceae 

UCG-004

29,202,102 Resveratrol, curcumin 

and ursolic acid

Prostate cancer Serum from a mouse 

allograft model of prostate 

cancer in vivo

LC-MS and GC/

MS

Glutamine metabolism was 

regulated by the compound 

combinations

Compared with the 

individual treatment, the 

combined treatment has 

the greater antineoplastic 

property
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29,651,531 Hepatoma SMMC7721 cells in vitro GC/MS and LC/MS GLA treatment diminished 

amino acid metabolism and 

elevated the metabolisms of 

sphingolipid, purine, and 

pyrimidine

GC/MS- and LC/

MS-based metabolomics 

applied to cell culture 

enhanced our current 

understanding of the 

metabolic response to 

GLA treatment and its 

mechanism

26,851,007 Taurine Breast cancer Plasma from 

dimethylbenz[a]

anthracene-induced breast 

carcinogenesis in rats 

in vivo

GC–TOFMS Taurine treatment regulated 

23 differential metabolites, 

which were associated with 

glucose, energy and amino 

acid, as well as nucleic acid 

metabolism

The antitumor activity 

of taurine in rats is 

mediated through altered 

metabolism of breast 

cancer cells

27,374,097 Celastrol Acute 

promyelocytic 

leukemia

HL-60 cells in vitro and 

tumor tissue from mice 

xenograft model in vivo

UPLC-MS Celastrol treatment regulated 

uridine metabolite, which 

further enhances apoptosis

The study firstly 

reveals that uridine 

deficiency contributes to 

mitochondrial apoptosis 

induced by celastrol in 

APL cells

29,787,425 Gamma-tocotrienol Cancer Serum from nonhuman 

primate models in vivo

UPLC/Q-TOF MS GT3 could regulate the 

changed fatty acid beta-

oxidation, amino acid and 

purine catabolism metabolism 

caused by irradiation

This initial assessment 

also highlights the 

utility of metabolomics 

in determining 

underlying physiological 

mechanisms 

responsible for the 

radioprotective efficacy 

of gamma-tocotrienol
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27,335,141 Fisetin Prostate cancer Tumor tissues from 

prostate cancer xenografts 

in vivo

HPLC/ESI–MS Fisetin treatment was shown 

to downregulate secreted 

and intracellular hyaluronan 

(HA), which conferred 

resistance to prostate 

oncogenesis

Fisetin is an effective, 

nontoxic, potent HA 

synthesis inhibitor

29,978,476 Galactolipid 

1,2-di-O-linolenoyl-

3-O- β-galactopyranosyl-

sn-glycerol

Melanoma Serum from a syngeneic 

mouse model implanted 

with B16 melanoma in vivo

LC-MS/MS dLGG treatment markedly 

elevated 12/15-LOX catalyzed 

oxylipin products in serum

This study shows the 

novel therapeutic effect 

of phytoagent dLGG and 

suggests its potential as 

a therapeutic agent for 

metastatic melanoma

30,668,340 Deoxyelephantopin Melanoma Kidney tissues from 

murine B16 metastatic 

allograft model in vivo

UPLC/ESI-QTOF MS Co-therapy of DET and 

cisplatin could reverse 

the changed urea cycle 

metabolites and hippuric 

acid in renal tissues caused by 

cisplatin

The co-therapy of DET 

and cisplatin could be 

an effective treatment 

with low toxicity for 

melanoma

Table 1. 
Summary of recent metabolomic studies on anticancer therapies of pure compounds from Chinese medicines.
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Increasing excellent reviews have been focused on the application of metabo-
lomics in the metabolic changes and the possible underlying mechanisms behind 
these alterations in the pathogenesis of different kinds of cancer [33–35]. Little 
reviews have been highlighted on the metabolism-based anticancer therapies. Since 
Chinese medicine has been suggested to be a great source of alternative treatments 
to human cancers, in this chapter we systematically reviewed recent studies from 
2015 to March 2019 on metabolism-targeting anticancer therapies based on metabo-
lomics in terms of glucose, lipid, amino acid, and nucleotide metabolisms and other 
altered metabolisms, with special emphasis on the potential of metabolic treatment 
with pure compounds, herb extracts, and formulations from Chinese medicines. 
The typical flowchart of metabolomics studies on antineoplastic Chinese medicines 
is shown in Figure 1. Table 1 summarized the recent metabolomics studies on 
anticancer therapies of pure compounds from Chinese medicines. At the same time, 
the trends of future development of metabolism-targeting anticancer therapies 
were also discussed.

2.  Review on metabolism-targeting Chinese medicine treatment on 
human cancers

2.1 Glucose metabolism

As mentioned above, cancer cells tend to acquire energy via glycolysis rather 
than the much more efficient oxidative phosphorylation pathway even in aerobic 
conditions. Glucose and energy metabolisms play an important role in the tumori-
genesis of cancer and could be the therapeutic targets for cancer treatment. Pure 
compounds, herb extracts, and formulations from Chinese medicines, which target 
glucose and energy metabolisms, are attracting increasing attention for the devel-
opment of anticancer therapies.

Geranylgeranoic acid (GGA), a kind of acyclic diterpenoids, is derived from 
some medicinal herbs such as turmeric. UPLC/TOF/MS-based metabolomics 
analysis was used to study the underlying anticancer mechanism of GGA in 
human hepatoma-derived HuH-7 cells [36]. It was found that GGA may shift the 
energetic state of HuH-7 cells from aerobic glycolysis to mitochondrial respiration, 
which was revealed by a time-dependent augment of fructose 6-phosphate and 
decline of fructose 1,6-diphosphate in HuH-7 cells after GGA treatment. 
Halofuginone (HF) is an active compound derived from the febrifugine which can 
be extracted from the Chinese herb Dichroa febrifuga Lour. Chen and his col-
leagues used the combination of UPLC-MS/MS, GC/MS, and UPLC/LTQ-Orbitrap 
MS metabolomics from HCT116 cells in vitro to study the anti-colorectal cancer 
(CRC) properties of HF [37]. They found the slower rates in the fluxes of both 
glycolytic and glucose-derived TCA cycle after HF treatment mainly via Akt/
mTORC1 signaling pathway. (−)-5-Hydroxy-equol, as an isoflavone derived from 
microbial biotransformation, was shown to exhibit anti-hepatocellular carcinoma 
(HCC) potential. To explore the underlying mechanism, a 1H NMR-based metabo-
lomics of SMMC-7721 cells in vitro was conducted [38]. It was found that 
(−)-5-hydroxy-equol treatment significantly altered energy and amino acid 
metabolisms, which revealed that integrated metabolomics and further verifica-
tions may facilitate the exploration of the anti-HCC mechanisms of 
(−)-5-hydroxy-equol. Nummularic acid (NA) is a triterpenoid isolated from a 
medicinal plant Fraxinus xanthoxyloides. To explore its anticancer potential, a 
ALEX-CIS GC–TOF-MS-based metabolomics analysis of DU-145 and C4-2 cells 
in vitro was performed [39]. It was shown that the metabolism pathways related to 
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glycolysis, TCA, and glutamine metabolisms were changed after NA treatment, 
which suggested NA may induce energy crisis to inhibit prostate cancer. 
Magnoline is the primary compound derived from Cortex Phellodendri amurensis, 
which exhibits significant therapeutic potential for PCa. Sun et al. conducted a 
UPLC-MS metabolomics of 22RV1 cells in vitro on PCa [40]. It was found that 
magnoline markedly restored the energy metabolism, amino acid metabolism, and 
fatty acid metabolism, which revealed that cancer cells may result in death 
because of insufficient material basis to favor their rapid proliferation. 
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), also known as calcitriol, is one of the 
bioactive forms of nutraceutical vitamin D. Recently, its metabolism-modulating 
effects against PCa have been reported [41]. Based on the metabolomics analysis 
of LNCaP cells in vitro, 1,25(OH)2D3 inhibited glucose uptake and increased 
citrate/isocitrate because of TCA cycle truncation. The re-wiring glucose metabo-
lizing pathways by 1,25(OH)2D3 may prove its metabolism-modulating effects 
against PCa. Yun et al. found that high exposed level of vitamin C could selectively 
kill CRC cells harboring KRAS or BRAF mutations [42]. In detail, based on the 
LC-MS/MS metabolomics between KRAS and BRAF mutant lines and isogenic 
wild-type counterparts in vitro, high level of exposure of vitamin C could increase 
uptake of dehydroascorbic acid by GLUT1 transporter and then decrease glutathi-
one, which could inactivate glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH). β-Lapachone (β-lap), as a quinone-containing compound derived from 
the lapacho tree located in South America, is bioactivated by NAD(P)H: quinone 
oxidoreductase 1 (NQO1). Recently, its effects on energy metabolism due to NAD+ 
depletion on pancreatic ductal adenocarcinoma (PDA) have been shown [43]. 
Based on the combined GC/MS and 1H NMR metabolomics analysis of MiaPaCa2 
cells in vitro, β-lap treatment was found to decrease the NAD-sensitive pathways, 
such as glycolysis and TCA cycle, which revealed that targeting NQO1 may 
sensitize the treatment of β-lap. Diethylstilbestrol (DES), as a nonsteroidal 
estrogen, is the pharmacological inhibitor to HIF-1a. Arminan et al. employed 
NMR-based metabolomics of PC3 cells in vitro to explore the metabolic responses 
of PCa cells to hypoxia and the treatment of DES or its polyacetal conjugate 
tert-DES [44]. It was shown that lactate, phosphocreatine, and glutathione were 
the biomarkers for DES treatment. What is more, compared with tert-DES, the 
cell metabolome had a more extensive impact in the free DES treatment, which 
revealed that DES upon conjugation had a more specific effect and less toxicity. 
Koningic acid (KA), as an active natural product derived from the Trichoderma 
fungus, is a selective inhibitor of GAPDH. Recently Liberti et al. employed inte-
grated pharmacogenomics and LC-HRMS metabolomics of HCT116 cells to 
explore the response of KA to CRC [45]. As a result, they found that partial 
GAPDH suppression is more selective for highly glycolytic tumors, underscoring 
the potential of targeting glucose metabolism therapy could be an integral part of 
precision medicine. Rapamycin (Rp) is widely used in the treatment of breast 
cancer. However, its efficacy has been significantly reduced by the increasing drug 
resistance and serious metabolic disorders. Dietary omega-3 polyunsaturated fatty 
acids (ω-3 PUFAs) have been reported to markedly inhibit breast cancer. To 
explore whether combined treatment of Rp and ω-3 PUFAs has better efficacy, a 
GC/MS-based metabolomics of MCF7 cells in vitro was done [46]. It was found 
that glycolysis and glutamine metabolism pathways were markedly reduced when 
treated with the combination of Rp and ω-3 PUFAs, suggesting that ω-3 PUFA 
could increase the anti-breast cancer potential of Rp. Curcumin, as the primary 
bioactive compound from the spice turmeric, was found to be a potent anticancer 
agent [47]. In detail, based on the serum metabolomics analysis, curcumin attenu-
ated the metabolic disorders of diethylnitrosamine (DEN)-induced 
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hepatocarcinogenesis by elevating the levels of glucose and fructose and reducing 
the levels of glycine and proline. 6,7-Dimethoxy-1,2,3,4-tetrahydro-isoquinoline-
3-carboxylic acid (M1) is an isoquinoline alkaloid isolated from Mucuna pruriens 
seeds. To evaluate the anti-CRC effects of M1, 1H NMR-based metabolomics of 
serum from dimethylhydrazine (DMH)-induced CRC albino Wistar rat model 
in vivo was conducted [48]. As a result, M1 exhibited to reverse the perturbed 
metabolism pathways in CRC condition, including glycolysis, TCA cycle, choline, 
and phosphatidylinositol and gluconeogenesis metabolisms. Taken together, this 
study offered that M1 had the anti-CRC potential via the blockade of IL-6/JAK2/
STAT3 oncogenic signaling. Physapubenolide (PB) is a withanolide derived from 
Physalis pubescens. Recently its potential as a promising therapeutic drug has been 
put forward. However, the underlying mechanism of how it works remains to be 
explored. Ma et al. employed GC/MS-based metabolomics of both HepG2 cells 
in vitro and tumor tissues and plasma from a mouse-xenograft model bearing liver 
carcinoma H22 cells in vivo [49]. It was found that PB reversed the disturbed 
metabolic pattern by markedly decreasing the lactate production, suggesting PB 
may exhibit anti-HCC activities through suppression of glycolysis via the Akt-p53 
pathway. Gefitinib (Gnb), as a tyrosine kinase inhibitor, is widely used for the 
treatment of lung cancer. However, the increasing drug resistance and serious 
metabolic disorders have significantly reduced its efficacy. Naringenin (Nar), as 
flavonoid isolated from citrus fruits, has been reported to show antioxidant, 
antimutagenic, and anticarcinogenic activities. To explore whether co-therapy 
through biotin-modified nanoparticles (NPs) of Gnb and Nar, a 1H NMR-based 
metabolomics of serum from the urethane-induced lung cancer rat model in vivo 
was conducted [50]. It was found that the glycolysis was restored to normal levels 
with co-therapy of Gnb and Nar, which showed that co-therapy had the superior-
ity over treatment only to improve the therapeutic efficacy.

Silymarin, extracted from the seeds of milk thistle (Silybum marianum), has 
the anti-inflammation activity. To explore the mechanism of how it suppresses 
inflammation, a combined transcriptional profiling and GC/MS metabolomics 
was conducted on Huh7-TLR3 cells [51]. It was found that the glycolytic, TCA 
cycle, and amino acid metabolism pathways were inhibited after silymarin treat-
ment, which revealed that silymarin may have potential in defining how metabolic 
pathways mediate cellular inflammation. Rhizoma Paridis saponins (RPS) are the 
effective parts of Rhizoma Paridis, which have been found to show strong anti-
hepatocarcinoma activities. However, the anticancer mechanism remains not clear. 
To search for the potential biomarkers for the evaluation of treatment, 1H NMR 
metabolomics was employed to distinguish the serum metabolic profiling of the 
RPS treatment group from that of the model group [52]. As a result, RPS decreased 
the serum levels of lactate, acetate, N-acetyl amino acid, and glutamine, which has 
shown that RPS was a potential anticancer drug by inhibiting the aerobic glycolysis, 
lipogenesis, and glutamine metabolism. As one of the rarest plants, Camellia nitidis-
sima Chi was reported to have various pharmacological activities, including anti-
CRC. However, its anti-CRC efficacies remained to be confirmed due to its complex 
components and underlying complicated mechanisms. To address these issues, Li 
and his colleagues employed 1H NMR-based metabolomics of the intestine, kidney, 
and spleen from azoxymethane/dextran sodium sulfate (AOM/DSS)-induced 
CRC mice model [53]. They found that C. nitidissima Chi extracts could markedly 
suppress AOM/DSS-induced CRC via reversing the disturbed metabolic profiling 
to the normal state. What is more, compared with the water-soluble fraction of 
C. nitidissima Chi, its butanol fraction exhibited a better efficacy. Gnb was widely 
used in the treatment of lung carcinoma (LLC) with increasing drug resistance and 
serious metabolic disorders. Si Jun Zi Tang (SJZ) is a four-herb Chinese medicine 
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formula and has shown potential of anticancer properties. To explore the underly-
ing mechanisms of the co-therapy of Gnb and SJZ, Li et al. conducted an integrated 
network pharmacology and Q-TOF LC/MS-based metabolomics of plasma from 
LLC-bearing mice model in vivo [54]. SJZ was shown to increase the anti-LLC 
effects of Gnb via restoring TCA cycle, linoleic acid metabolism, and tyrosine and 
tryptophan metabolism, revealing that co-therapy of Gnb and SJZ may increase the 
anti-LLC potential of Gnb.

2.2 Lipid metabolism

Besides the glucose and energy metabolisms having an essential role in the 
tumorigenesis process of cancer, it has been also reported that lipid metabolism 
such as de novo lipogenesis regulates the synthesis of cellular membranes and the 
important signaling molecules of rapidly proliferating tumor cells [55]. Targeting 
the lipid metabolism could be a novel therapeutics for cancer treatment. Here the 
recent metabolomics studies of pure compounds, herb extracts, and formulations 
from Chinese medicines, which target lipid metabolism, have been reviewed.

Flexibilide is a natural compound derived from the soft coral Sinularia flexi-
bilis with tumor inhibitory effects. To clarify the pharmacological mechanism, a 
UPLC/Q-TOF MS-based metabolomics of HCT-116 cells in vitro on colon cancer 
was conducted [56]. It was found that flexibilide treatment greatly elevated 
lysophosphatidylcholine (LysoPC) and diminished phosphocholine and phospha-
tidylcholine (PC), revealing that flexibilide exhibited the therapeutic effect on 
colon cancer mainly via downregulating PC biosynthesis pathway. Englerin A is 
a guaiane sesquiterpene derived from the plant Phyllanthus engleri with potential 
antineoplastic property. To uncover the therapeutic role of englerin A on clear cell 
renal carcinoma, Batova et al. conducted a LC-MS/MS-based metabolomics of A498 
cells in vitro [57]. It was found that englerin A significantly reversed lipid metabo-
lism and increased ceramide levels. Then the increasing ceramides inhibited renal 
carcinoma cells. Isoquercitrin is a kind of flavonoid derived from various plants, 
such as Psidium guajava and Fagopyrum tataricum. It has potential antitumor activi-
ties. To decipher its therapeutic role in bladder cancer, a UPLC/Q-TOF MS-based 
metabolomics of T24 cells in vitro was conducted [58]. Isoquercitrin treatment was 
found to regulate lipid and anaerobic glycolysis via activating the AMPK pathway. 
Peiminine is an active substance derived from the bulbs of Fritillaria thunbergii 
with potential antineoplastic property against CRC. To investigate the molecular 
mechanisms of how it worked, a combined UPLC-MS- and GC/MS-based metabo-
lomics of HCT-116 cells in vitro was used [59]. Peiminine treatment altered several 
metabolites, including lignocerate (24:0), oleate (18:1n9), glutamine, and glucose, 
indicating peiminine exerted the predominant therapeutic effect mainly via the 
metabolic regulation of lipids, amino acids, and carbohydrates. 8u is an acridine 
derivative with potential antiproliferative activity against cancer. To explore its 
therapeutic effects on HCC, a combined proteomics and UPLC/Q-TOF MS-based 
metabolomics of HepG2 cells in vitro was used [60]. 8u was found to significantly 
inhibit the invasion and metastasis of HepG2 cells and regulate intracellular lipid 
metabolism mainly via suppressing the PI3K/Akt signaling pathway. Genistein is 
a kind of isoflavone with antineoplastic property. However, high concentration of 
genistein shows promotional role in cancer. Calcitriol (1α,25(OH)2 vitamin D3) 
is a primary bioactive hormonal form of vitamin D3. It also shows the antitumor 
effect. To explore the synergism effects of co-therapy of genistein and calcitriol on 
osteosarcoma, a GC/MS-based metabolomics of MG-63 cells in vitro was conducted 
[61]. Co-therapy of genistein and calcitriol was found to regulate lipids and amino 
acids rather than energy metabolism. Taken together, the promotional effects of 
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high level of genistein on osteosarcoma could be decreased by the co-treatment of 
calcitriol. Silibinin, as a kind of natural flavonoid, is derived from the milk thistle 
(Silybum marianum) seeds with strong hepatoprotective activity. To clarify the 
pharmacological mechanism of how silibinin exerted antineoplastic property, a 
1H-NMR-based metabolomics of tumor tissues from 22Rv1 xenograft model in vivo 
was used [62]. Silibinin treatment did not greatly affect glucose uptake of PCa 
tumor but decreased the lipid synthesis via suppressing hypoxia-induced signaling. 
Acyclic retinoid (ACR), as a synthetic vitamin A-like compound, exhibits antineo-
plastic property against HCC. To decipher the molecular mechanisms, comprehen-
sive cationic and lipophilic metabolomics of liver tissues from mouse DEN-induced 
HCC model in vivo was conducted by CE-TOFMS and LC-TOFMS [63]. ACR 
predominantly reversed lipogenesis but not glucose metabolism by inhibiting 
linoleic acid metabolites, revealing lipid metabolic reprogramming played a critical 
role in the protective effects of ACR on HCC.

Soft coral, Sinularia sp., is reported to show potential antineoplastic property. 
To decipher the molecular mechanisms, a MS-based metabolomics of Hep 3B cells 
in vitro was conducted [64]. It was found that the Bornean Sinularia sp. extract 
could regulate the sphingolipids and ceramide, revealing that the regulation 
of dysregulated lipids may account for the antineoplastic property of Bornean 
Sinularia sp. against HCC. Forsythiae Fructus (FAE), as the dry fruit of Forsythia 
suspensa (Thunb.) Vahl. of Oleaceae family, shows potential anticancer properties. 
To characterize in detail the action mechanism, Bao et al. conducted a UPLC/Q-TOF 
MS-based metabolomics of serum from B16-F10 melanoma-bearing mice model 
in vivo [65]. Aqueous extract of FAE was found to restore the disturbed metabolic 
profile by increasing several LysoPCs in glycerophospholipid metabolisms, reveal-
ing that the regulation of glycerophospholipid metabolisms may have an essential 
role in the antineoplastic property of FAE. Nutmeg is a seed of the fruit of Myristica 
fragrans with antimicrobial and anticancer activities. To explore the role of its 
antimicrobial activity in cancer protection, a UPLC/ESI-QTOF-MS-based metabo-
lomics of serum from colon cancer model was investigated [66]. Nutmeg extract 
treatment was found to regulate lipid metabolism by decreasing four uremic toxins 
generated from the gut microbiota, revealing that the regulation of lipid metabo-
lism and gut microbiota may be an effective therapy for colon cancer treatment. 
Volatile oil is extracted from Saussurea lappa Decne (VOSL), and costunolide and 
dehydrocostus lactone (Cos–Dehy), accounting for almost 75% of VOSL by weight, 
are the primary active chemical compositions of VOSL. It has been reported that 
they all can suppress the MCF-7cells in vitro. To characterize in detail the action 
mechanism of how they worked, a combined GC × GC–TOF/MS and UPLC/Q-TOF 
MS metabolomics of serum and urine from MCF-7 xenograft mice in vivo was 
conducted [67]. It was revealed that both VOSL and Cos–Dehy could relieve meta-
bolic disturbance by decreasing glycolysis and steroid hormone metabolism and 
increasing unsaturated fatty acids metabolism, suggesting that VOSL is a potential 
therapeutics against breast cancer. Shuihonghuazi formula (SHHZF) is a famous 
formula which has been widely used clinically for the treatment of liver cancer. 
To explore its action mechanism, a DEN-induced HCC rat model was built, and a 
HPLC/ESI-TOF-MS-based metabolomics of plasma from this model was conducted 
[68]. SHHZF was found to elevate the levels of arachidonic acid-like substances and 
the shift of phosphatidylethanolamine (PE) to PC, revealing the reversion of the 
disturbed fatty acid and bile acid metabolism played an important role in the thera-
peutic effects of SHHZF on HCC. Qi-Yu-San-Long Decoction (QYSLD) is a classic 
formula, which has been widely used clinically for LLC treatment. To characterize 
in detail the action mechanism of how it works, a UPLC/Q-TOF MS-based metabo-
lomics was conducted [69]. Lewis LLC mice model was firstly built, and plasma 
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was collected for metabolomics analysis. QYSLD was found to regulate sphingolipid 
metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, 
fatty acid degradation, and steroid hormone biosynthesis. Rhizoma Curcumae and 
Rhizoma Sparganii (RCRS) is a famous Chinese medicine drug pair to treat hystero-
myoma. To investigate the molecular mechanisms of how this drug pair works on 
hysteromyoma, a UPLC/Q-TOF MS-based metabolomics was conducted using the 
serum and urine from hysteromyoma rat model [70]. RCRS treatment characterized 
16 and 18 potential biomarkers from serum and urine, respectively, which were 
associated with glyoxylate, dicarboxylate, and linoleic acid metabolisms.

2.3 Amino acid metabolism

As mentioned above, besides the consumption of glucose, cancer cells have also 
been reported to favor glutamine as a preferential fuel. Glutamine metabolism has 
an essential role in the pathological progression of cancer and could be a potential 
therapeutic option for cancer. Besides the key metabolite glutamine, it has been 
reported many other amino acids also play an essential role in cancer.

Delta-tocotrienol (δT) is one of the isomers of vitamin E with antineoplastic 
property. To explore underlying action mechanism, a 1H-NMR-based metabo-
lomics of A549 and H1299 cells in vitro was used [71]. In detail, δT treatment 
could suppress the glutamine uptake via suppressing glutamine transporters and 
then resulted in the induction of apoptosis and suppression of cell proliferation. 
Celastrol is a bioactive compound derived from Trypterygium wilfordii HOOK F. 
with potential antineoplastic property. To explore underlying action mechanism 
involved in its anti-colon cancer activity, a UPLC/MS-based metabolomics of 
HCT116 cells in vitro was conducted [72]. Metabolomics analysis found celastrol 
changed the levels of lipid markers, carnitine, and amino acids. Tryptophan was 
further identified as special biomarker by targeted metabolite analysis. Melittin, as 
a cytotoxic peptide isolated from bee venom, was shown to sensitize the response 
of ovarian cancer cells to cisplatin treatment. To explore an underlying action 
mechanism, a LC-MS metabolomics of A2780 and A2780CR cell lines in vitro was 
employed [73]. It was found that melittin treatment of cisplatin-sensitive cells 
decreased glutamine, proline, and arginine pathways. Chlorogenic acid (ChA) and 
caffeic acid (CaA), both as a kind of polyphenol, have shown anti-HCC activities. 
To decipher the molecular mechanisms, a combined 16S rRNA and metabolomics 
was conducted [74]. It was found that both CaA and ChA treatments reverse 
28 metabolites. In detail, the levels of ethanolamine, L-methionine, L-tyrosine, 
and bilirubin were associated with diminished Prevotella 9 and Lachnospiraceae 
incertae sedis and elevated Rumincoccaceae UCG-004. Lodi et al. used untargeted 
metabolomics and metabolic flux analysis to investigate the synergistic effects 
of resveratrol, curcumin, and ursolic acid [75]. It was found that compared with 
the individual treatment, the combined treatment had the greater antineoplastic 
property. Mechanically, glutamine metabolism was regulated by the compound 
combinations.

Polyphenols are characterized as a hydroalcoholic chestnut shell extract. Sorice 
et al. used 1H-NMR-based metabolomics of HepG2 cells in vitro to study the 
anti-HCC activity of polyphenols extracted from chestnut shell (PECS) [76]. PECS 
was found to regulate the levels of some amino acids. Annonaceous acetogenins 
(ACGs) are a group of C35 or C37 secondary metabolites isolated from plants in 
Annonaceae. To explore underlying action mechanism of the anti-HCC activity of 
ACGs, a UPLC-ESI-Q-TOF-MS-based metabolomics of SMMC 7721 cells in vitro 
was conducted [77]. ACG treatment could regulate the metabolisms of sphingo-
lipid, arginine, glutathione, and proline, which further reversed the resistance of 
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SMMC 7721 cells to adriamycin. Hedyotis diffusa is a famous Chinese herbal medi-
cine with antineoplastic property. To predict the potential underlying mechanism, 
a 1H NMR-based metabolomics was conducted to use plasma and urine from rats 
bearing Walker 256 tumor [78]. Hedyotis diffusa treatment was found to reverse 
lactate, acetate, choline, 3-hydroxybutyrate, and L-glutamine in plasma as well as 
creatinine, L-aspartate, N-acetyl-L-aspartate, and ornithine in urine. Wang et al. 
developed a combined gut microbiota and metabolomics analysis to investigate the 
anti-CRC activity of American ginseng [79]. By GC/TOF-MS-based metabolomics, 
American ginseng was found to regulate the metabolisms of carbohydrates, lipids, 
and amino acids. By the 16S rRNA data analysis, American ginseng was found to 
inhibit the changes of microbiome community caused by azoxymethane/dextran 
sulfate sodium. Kushen injection (CKI) is a famous Chinese medicine prepara-
tion and widely used for treating multiple kinds of solid tumors. To evaluate the 
anti-HCC mechanisms of CKI, a combined network analysis and 1H-NMR-based 
metabolomics were used [80]. Network pharmacology analysis found the primary 
active compounds, the potential targets, and pathways associated with the anti-
HCC effects of CKI, which was further validated by metabolomics. Metabolomics 
analysis validated the primary pathways associated with the anti-HCC effects of 
CKI were amino acid metabolism and glycometabolism.

2.4 Nucleotide metabolism

To support the rapid proliferation of cancer cells, nucleic acid synthesis is shown 
to be accelerated. Accordingly, the anticancer therapy targeting nucleotide metabo-
lism has obtained numerous attentions. Here the recent metabolomics studies of 
Chinese medicines targeting nucleotide metabolism have been reviewed.

Glaucocalyxin A (GLA) is an ent-kaurene diterpenoid derived from Rabdosia 
japonica and has shown to have antineoplastic property. To explore underlying 
action mechanism underlying the anti-HCC activity of GLA, a combined GC/
MS- and LC/MS-based metabolomics was conducted using SMMC7721 cells in vitro 
[81]. It was found GLA treatment diminished amino acid metabolism and elevated 
the metabolisms of sphingolipid, purine, and pyrimidine. Taurine, as the most 
abundant free amino acid, has the antineoplastic property against breast cancer. 
To elucidate the mechanisms underlying the therapeutic benefits of taurine against 
breast cancer, a GC–TOF-MS-based metabolomics of plasma from dimethylbenz[a]
anthracene-induced breast carcinogenesis in rats was conducted [82]. It was found 
that taurine treatment regulated 23 differential metabolites, which were associated 
with glucose, energy and amino acid, as well as nucleic acid metabolisms. Celastrol 
is a bioactive compound derived from Trypterygium wilfordii HOOK F. with poten-
tial antineoplastic property. To explore underlying action mechanism involved in 
its anti-acute promyelocytic leukemia activity, a UPLC-MS-based metabolomics 
of HL-60 cells in vitro and tumor tissue from mice xenograft model in vivo was 
conducted [83]. It was found that celastrol treatment regulated uridine metabolite, 
which further enhanced apoptosis. The development of radioprotector to reduce 
the serious side effects and complications caused by radiotherapy is important. 
Gamma-tocotrienol (GT3) is one of the isomers of vitamin E with antineoplas-
tic property. To explore the radioprotective mechanism of GT3, a UPLC-QTF 
MS-based metabolomics of serum from nonhuman primate models in vivo was 
conducted [84]. It was found that GT3 could regulate the changed fatty acid beta-
oxidation and amino acid and purine catabolism metabolisms caused by irradiation.

Red kidney bean, also named as Phaseolus vulgaris L., possesses antineoplastic 
property. To evaluate its anti-melanoma activity, a combined network pharmacol-
ogy and LC-MS-based metabolomics analysis was conducted using B16-F10 cells 
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in vitro [85]. It was found that the kernel of red kidney bean (RKBC) extract treat-
ment markedly elevated cellular level of cGMP. Network pharmacology analysis 
showed that quercetin might act as the main effective ingredient of RKBC extract. 
Ku-jin tea (KJT) is a famous beverage derived from the leaves of the plant Acer 
tataricum subsp. ginnala with antineoplastic property. A UPLC/Q-TOF MS-based 
metabolomics of urine from azoxymethane-induced precancerous colorectal lesion 
model in rats was conducted to investigate molecular modes of inhibitory effects of 
KJT against CRC [86]. It was found that KJT treatment modulated amino acid and 
purine metabolisms, which accounted for the chemopreventive effects of KJT.

2.5 Other related metabolisms

Except for the anticancer therapies of Chinese medicine targeting the changed 
metabolisms mentioned above, there are also some other related metabolisms 
which are the targets by Chinese medicine. Fisetin is a kind of plant flavonoid with 
antineoplastic property. A HPLC/ESI-MS-based metabolomics of tumor tissues 
from PCa xenografts in vivo was conducted to explore its therapeutic benefit for 
PCa [87]. Fisetin treatment was shown to downregulate secreted and intracellular 
hyaluronan (HA), which conferred resistance to prostate oncogenesis. Yang et al. 
developed a LC-MS/MS-based metabolomics to study the bioefficacy of a plant 
galactolipid 1,2-di-O-α-linolenoyl-3-O-β-D- galactopyranosyl-sn-glycerol (dLGG) 
against melanoma [88]. dLGG treatment markedly elevated 12/15-LOX catalyzed 
oxylipin products in serum, revealing the novel therapeutic mechanism of phytoag-
ent dLGG against melanoma. Derived from the medicinal plant Elephantopus scaber, 
deoxyelephantopin (DET) is a germacranolide sesquiterpene lactone with antineo-
plastic property. To study whether the co-therapy of DET and cisplatin could reduce 
the cisplatin-induced nephrotoxicity, a UPLC/ESI-QTOF MS-based metabolomics 
of kidney tissues from murine B16 metastatic allograft model in vivo was conducted 
[89]. It was shown that co-therapy of DET and cisplatin could reverse the changed 
urea cycle metabolites and hippuric acid in renal tissues caused by cisplatin, reveal-
ing that the co-therapy of DET and cisplatin could be an effective treatment with 
low toxicity for melanoma.

Liu et al. developed a UHPLC-MS/MS-based targeted metabolomics to evaluate 
the efficacy of anticancer drugs, including a traditional Chinese medicine injection 
Aidi injections and fluorouracil [90]. It was found that with the progression of 
squamous cell carcinoma of the lung, the levels of 1,3-diaminopropane, cadaver-
ine, and N-acetylputrescine altered. The two-drug treatment alone or co-therapy 
reversed the levels of 1,3-diaminopropane, cadaverine, and N-acetylputrescine. The 
team also used this metabolomics method to evaluate the efficacy of Aidi injections 
on CRC [91]. It was found that Aidi injection treatment could reverse polyamine 
metabolism, especially agmatine and putrescine, revealing that plasma polyamine 
could be a biomarker for both early diagnosis and medical treatment of CRC.

3. Current perspectives and future challenges

In accordance with the holistic perspective of Chinese medicines, metabolomics 
can help to explain the underlying mechanisms of the anticancer effects of Chinese 
medicines or the reversion of the drug resistance of chemotherapy and radiotherapy. 
It can also help to rapidly compare the anticancer effects of multiple compounds 
from Chinese medicines and act as a quick preliminary platform to screen the most 
dominant compound related to anticancer bioactivity. Based on the metabolomics 
analyses of modern studies of Chinese medicines with antineoplastic properties, 
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the potential of metabolic treatment with pure compounds, herb extracts, and 
formulations from Chinese medicines is gaining numerous attentions. However, 
many challenges still exist in the metabolomics study of antineoplastic Chinese 
medicines, and there is still a long way for the wide application of metabolomics of 
Chinese medicines into the treatment of cancer. Firstly, it is critical to make good 
experimental design before starting the experiment, such as the choices of samples, 
analytical platforms, and methodological approaches. Secondly, it is quite essential 
for researchers to develop metabolomics, such as the development of data excavation 
and the identification and quantification of more metabolites. Thirdly, it is impor-
tant for us to validate the results from metabolomics studies with more mechanical 
biological experiments. Fourthly, as no one single technology could achieve a com-
prehensive result, it is strongly suggested to combine metabolomics with some other 
advanced technologies for better investigation of the action mechanisms of antineo-
plastic Chinese medicines, such as other “omics” technologies, network pharmacol-
ogy, and gut microbiome analyses. Last but not least, more attentions will be drawn 
to personalized treatment based on metabolomics. It has been reported that because 
of the interaction between genes and environment (polypharmacy, gut microbiota, 
xenobiotics), not all patients present the same response to drug treatment [92]. 
Personalized treatment has been put forward and of great importance nowadays. 
Although pharmacogenomics is still the only means in terms of personalized treat-
ment, its limitation of ignoring the environmental influences has been increasingly 
recognized. As an alternative and complementary manner, pharmacometabolomics 
is an emerging “omics” and has been proposed for personalized treatment [16]. As 
the results of both genetic and environmental influences, pharmacometabolomics 
can help to understand individual phenotypic variations in drug responses by 
providing individual metabolic signatures of both gene-derived endogenous and 
environment-derived exogenous metabolites [93]. Pharmacometabolomics will offer 
an intriguingly avenue for personalized treatment in the future.

4. Conclusions

In this chapter, we systematically reviewed recent studies on metabolism-target-
ing anticancer therapies based on metabolomics in terms of glucose, lipid, amino 
acid, and nucleotide metabolisms and other altered metabolisms, with special 
emphasis on the potential of metabolic treatment with pure compounds, herb 
extracts, and formulations from Chinese medicines. The trends of future develop-
ment of metabolism-targeting anticancer therapies were also discussed. Hopefully, 
we expect that through the systematic review on the recent metabolomics studies 
targeting Chinese medicine treatment on human cancers, more attention will be 
drawn to the promising candidates from the resourceful Chinese medicine as effec-
tive neoadjuvant therapies for cancer treatment clinically.
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