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Chapter

Determination of Stresses in
Composite Plates with Holes and
Cracks Based on Singular Integral
Equations
Olesia Maksymovych and Adam Podhorecki

Abstract

The problems of determination of stresses at crack in bounded plates with holes
of different shapes under the action of concentrated forces or distributed forces at
its boundary are considered. The study is performed by the singular integral equa-
tion method. They were determined based on the established interdependences
between the Lekhnitskii potentials and the stress and strain. The numerical method
for solving integral equations is developed based on the quadrature method for the
systems of holes and cracks. The eigen solutions of the problem were taken into
account in this method. The research of stresses at cracks in samples which are used
in experimental studies of crack fracture resistance was performed.

Keywords: stress intensity factors (SIF), composite plates, holes, cracks,
crack fracture resistance, BIEM, stress-strain state (SSS)

1. Introduction

The boundary integral equation method (BIEM) is widely used to study the
stress-strain state (SSS) of anisotropic plates with holes [1–3] and cracks [4–9].
The integral equations for anisotropic plates are usually determined based on the
Somigliana identity. Such equations for plates with given stresses at the boundaries
of the plate are hypersingular. At the same time, the same problem for isotropic
plates is reduced to singular integral equations [10, 11], for which simple numerical
algorithms for solving with given precision are obtained.

In [12, 13], the simple dependencies between the Lekhnitskii complex potentials
and stress and strain are obtained. In a simple form based on them and the Cauchy
theorem, the integral equations are written for anisotropic plates with holes [12, 13]
and cracks [14–16]. We will use the established dependencies for the construction
and regularization of integral equations for anisotropic plates with holes and cracks.

For conducting experimental studies of crack fracture resistance on experimen-
tal samples in relation to isotropic materials, theoretical estimates for stresses at
cracks are performed.

For such materials, the stresses in samples of different shapes with cracks under
the action of stretching or compressing concentrated forces are studied in detail
[10]. The experimental samples for the experimental determination of the
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characteristics of crack fracture resistance of various types of materials are made
based on performed studies. We perform similar studies for composite samples.

2. The integral representations for anisotropic plates with holes and
cracks

We consider a plate which is weakened with a system hole with boundaries
L1,…, LJ (j = 1, …, J), and cracks are placed along curves Γk k ¼ 1;…;Kð Þ. The L0 is
the outer boundary of plates. Assume (Figure 1) that a plate is loaded with concen-
trated forces (Xj, Yj), j = 1, ..., M acting at the points (aj, bj); tractions XT;YTð Þ are
applied to the crack edges, which are accepted the same on its opposite edges; and
tractions XL;YLð Þ are applied to the boundaries of the holes and plate.

2.1 Governing equations

Let us start from the Lekhnitskii complex potentials Φ z1ð Þ,Ψ z2ð Þ, where
zj ¼ xþ sjy and sj, j ¼ 1, 2 are roots with positive imaginary part of the characteristic
equation Δ sð Þ ¼ 0 [10]:

where

Δ sð Þ ¼ α11s
4 � 2α16s

3 þ 2α12 þ α66ð Þs2 � 2α26sþ α22 (1)and

αij are elastic compliances which are included in the Hooke’s law [10]:

εx ¼ a11σx þ a12σy þ a16τxy, εy ¼ a12σx þ a22σy þ a26τxy, γxy ¼ a16σx þ a26σy þ a66τxy,

where εx, εy, γxy are strains and σx, σy, τxy are stresses.

Consider an arbitrary path Γ, which belongs to the domain D occupied by the
plate, and select a positive direction of traversal (Figure 2).

Then introduce in consideration the stress vectors q
Γ

!
at the plane tangent to the

curve. The normal to it is located right relative to the selected direction of traversal.

The projections XΓ;YΓð Þ of stress vectors q
Γ

!
and derivatives of displacements u; vð Þ

with respect to an arc coordinate at the curve through Lekhnitskii complex
potentials are determined by the formula [17]:

Figure 1.
Scheme of the problem.
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YΓ ¼ �2Re Φ z1ð Þz01 þΨ z2ð Þz02
� �

, XΓ ¼ 2Re s1Φ z1ð Þz01 þ s2Ψ z2ð Þz02
� �

, (2)

u0 ¼ 2Re p1Φ z1ð Þz01 þ p2Ψ z2ð Þz02
� �

, v0 ¼ 2Re q1Φ z1ð Þz01 þ q2Ψ z2ð Þz02
� �

, (3)

where u0 ¼ du=ds, v0 ¼ dv=ds and z0j ¼ dx=dsþ sjdy=ds, where ds is a differential

of arc at Γ.
The stress vectors q

Γ
zð Þ ¼ XΓ þ iYΓ at path Γ are determined using the formulas

(2) by the formula:

q
Γ
¼ s1 � ið Þz01Φ z1ð Þ þ s1 � ið Þz01 Φ z1ð Þ þ s2 � ið Þz02Ψ z2ð Þ þ s2 � ið Þz02Ψ z2ð Þ: (4)

Assume that the vectors X;Yð Þ and u; vð Þ are known at path Γ. Then based on
Eqs. (2) and (3) at Γ one has [12, 15]

Φ z1ð Þ ¼ �v0 þ s1u
0 þ p1X þ q1Y

Δ1z01
, Ψ z2ð Þ ¼ �v0 þ s2u

0 þ p2X þ q2Y

Δ2z02
(5)

where Δj ¼ Δ
0 sj
� �

, j ¼ 1, 2.

2.2 Integral equations for anisotropic bounded plate with holes and cracks

Let us write a general solution of the problem based on [12, 15] through the
Lekhnitskii potentials in the form

Φ z1ð Þ ¼
ð

L

u0Φ1 z1; t1ð Þ þ v0Φ2 z1; t1ð Þ½ �ds

þ
ð

Γ

g01Φ1 z1; t1ð Þ þ g02Φ2 z1; t1ð Þ
� �

dsþΦS z1ð Þ þΦΔ z1ð Þ, (6)

Ψ z2ð Þ ¼
ð

L

u0Ψ1 z2; t2ð Þ þ v0Ψ2 z2; t2ð Þ½ �ds

þ
ð

Γ

g01Ψ1 z2; t2ð Þ þ g02Ψ2 z2; t2ð Þ
� �

dsþ ΨS z2ð Þ þ ΨΔ z2ð Þ,

where L ¼ L0 þ L1 þ…þ LJ, Γ ¼ Γ1 þ Γ2 þ…þ ΓK , s is an arc coordinate, and
ΦΔ z1ð Þ and ΨΔ z2ð Þ are the known functions, which are determined by the following
formulas:

Figure 2.

q
Γ

!
is the stress vector at plane AB.
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ΦΔ z1ð Þ ¼
ð

L

XLΦ3 z1; t1ð Þ þ YLΦ4 z1; t1ð Þ½ �ds,ΨΔ z1ð Þ ¼
ð

L

XLΨ3 z1; t1ð Þ þ YLΨ4 z1; t1ð Þ½ �ds,

(7)

Φj ¼
Aj

t1 � z1
,Ψj ¼

Bj

t2 � z2
, (8)

A1 ¼ � is1
2πΔ1

, A2 ¼
i

2πΔ1
, A3 ¼ � ip1

2πΔ1
, A4 ¼ � iq1

2πΔ1
,

B1 ¼ � is2
2πΔ2

, B2 ¼
i

2πΔ2
, B3 ¼ � ip2

2πΔ2
, B4 ¼ � iq2

2πΔ2
:

Here, u0, v0 are the values of the derivatives of the displacements with respect to
the arc coordinate at the boundary of the plate and holes,
g1 ¼ uþ � u�, g2 ¼ vþ � v� are the displacements discontinuity at the cracks, u�, v�

are limit values of displacements in the approach to the section at the left and the
right relative to the selected direction, and the potentials ΦS,ΨS correspond to the
concentrated forces and have the form [12]:

ΦS z1ð Þ ¼ i

2πΔ1

X

M

j¼1

p1Xj þ q1Y j

� � 1

z1 � z1j
,ΨS z2ð Þ ¼ i

2πΔ2

X

M

j¼1

p2Xj þ q2Y j

� � 1

z2 � z2j
,

(9)

where in zkj ¼ aj þ skbj, j = 1, 2, and k = 1, 2.

Note that when the boundary is traction free, then ΦΔ ¼ ΨΔ ¼ 0.
Let us substitute the potentials (6) into the formulas (4) for projections of stress

vectors determined at the boundaries path L and Γ. Using Plemelj-Sokhotski
formula, we obtain a system of integral equations [12, 15]:

ð

L

u0 sð ÞQ1ðZ;TÞ þ v0 sð ÞQ2ðZ;TÞ½ �ds

þ
ð

Γ

g01 sð ÞQ1ðZ;TÞ þ g02 sð ÞQ2ðZ;TÞ
� �

ds ¼ Q Zð Þ, Z ∈L∪Γ,

(10)

where Q j Z;Tð Þ are stress vectors qL at point Z with coordinates x; yð Þ. L∪Γ, the

stress vector is determined by the formula (4) accordingly through complex
potentials Φj z1; t1ð Þ,Ψj z2; t2ð Þ, j ¼ 1, 2; T is a point with coordinates ξ; ηð Þ, which
belongs to the contour L∪Γ; Q Zð Þ ¼ QL Zð Þ � QS Zð Þ � QΔ Zð Þ with Z ∈L and
Q Zð Þ ¼ QT Zð Þ �QS Zð Þ �QΔ Zð Þ with Z ∈Γ; QL ¼ XL þ iYL; and Qm ¼ Xm þ iYm ,
where Xm ¼ 2Re s1Φm z1ð Þz01 þ s2Ψm z2ð Þz02

� �

, Ym ¼ �2Re Φm z1ð Þz01 þ Ψm z2ð Þz02
� �

and

m ¼ S,Δ:

Using the results [12], we obtained that the unknown functions u0, v0 at the
boundary of each of the holes Lj, j ¼ 0, 1,…, J in representation (6) are defined up to
a summand ~u0 ¼ �ωjdy=ds, ~v

0 ¼ ωjdx=ds, where ωj are arbitrary constants. At
numerical solution of the problem, the constants ωj, j ¼ 0,…, J are to be necessarily
fixed. In addition, to ensure the displacement continuity condition, it is necessary to
impose the following conditions on unknown functions:
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ð

Lj

u0ds ¼ 0,

ð

Lj

v0ds ¼ 0, j ¼ 0,…, J; :

ð

Γj

g01ds ¼ 0,

ð

Γj

g02ds ¼ 0, j ¼ 1,…, K

(11)

Let us consider a problem-solving equation (10) for the case of one hole and a
crack. Let us assume that the contour on which the crack is placed is described
parametrically in the form x ¼ αΓ τð Þ, y ¼ βΓ τð Þ, � 1≤ τ≤ 1, and the equation of the
boundary hole is described in the form x ¼ αL θð Þ, y ¼ βL θð Þ,0≤ θ< 2π.

Let us assume the representation for the displacement discontinuity at the cracks:

g01s
0 ¼ dg1

dτ
¼ UΓ τð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi

1� τ2
p , g02s

0 ¼ dg2
dτ

¼ VΓ τð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi

1� τ2
p :

Let us replace the integrals with Lobatto-type quadrature formulas [15], and the
integrals at the boundaries of the holes replaced by the quadrature of a rectangle,
which, for periodic functions, are Gauss quadrature-type formulas [12]. Then we
obtain the system of equations:

H
X

NO

k¼1

q
1ð Þ
νk U

L
k þ q

2ð Þ
νk V

L
k

� �

þ
X

NΓ

m¼1

Cm q 1ð Þ
νmU

Γ

m þ q 2ð Þ
νmV

Γ

m

� �

¼ qν, ν ¼ 1,…, NO þNΓ � 1,

(12)

where q
jð Þ
νk ¼ Q j Zν;T

L
k

� �

, p jð Þ
νm ¼ Q j Zν;T

Γ

m

� �

, qν ¼ QL Zνð Þ �QS Zνð Þ � QΔ Zνð Þ,
UL

k ¼ u0 xLk ; y
L
k

� �

s0k, V
L
k ¼ v0 xLk ; y

L
k

� �

s0k, U
Γ

m ¼ g01 xΓm; y
Γ

m

� �

s0m, V
Γ

m ¼ g02 xΓm; y
Γ

m

� �

s0m,

xLk ¼ αL θkð Þ, yLk ¼ βL θkð Þ, θk ¼ Hk, ~θn ¼ θn �H=2, H ¼ 2π=NO,

xTm ¼ αΓ τmð Þ, yTm ¼ βΓ τmð Þ, τm ¼ � cos πN m� 1ð Þð Þ, m ¼ 1,…, NΓ; Cm ¼ πN

at m 6¼ 1 andm 6¼ NΓ; C1 ¼ CNΓ
¼ 0, 5πN; πN ¼ π

NΓ�1 ; T
L
k is a point with coordinates

xLk ; y
L
k

� �

, TΓ

m is a point with coordinates xΓm; y
Γ

m

� �

, Zν is a point with coordinates

~xL
ν ;~y

L
ν

� �

with 1≤ ν≤NL, and is a point with coordinates ~xΓ

ν�NL
;~yΓν�NL

� �

with

NL < ν≤NL þNΓ � 1, where ~xL
k ¼ αL ~θk

� �

, ~yLk ¼ βL
~θk
� �

, ~θn ¼ θn �H=2, ~x
Γ

m

¼ αΓ ~τmÞ, ~yΓm ¼ βΓ ~τmÞ,~τm ¼ � cos πN m� 0; 5ð Þ½ �
��

.
We obtain the additional equation of system (12) from condition (11)

X

NΓ

k¼1

Ck UΓ

k þ iVΓ

k

� �

¼ 0: (13)

Analogously to [12], we should remove three equations with 1≤ ν≤NL and add
the following three equations to the received incomplete system:

X

N

k¼1

UL
k ¼ 0,

X

N

k¼1

VL
k ¼ 0, UL

m ¼ 0, 1≤m≤N (14)

The first two equations follow from the displacements continuity conditions (9).
The last equation is obtained when fixing an arbitrary constant ω.

The system of Eqs. (12)–(14) is generalized in the case of hole and crack system
in the same way as it was done in [12].

5

Determination of Stresses in Composite Plates with Holes and Cracks Based on Singular Integral…
DOI: http://dx.doi.org/10.5772/intechopen.87718



3. Stresses in circular samples with cracks under the action of
concentrated forces

Let us consider the circular composite plate with radius a, which is weakened by
a central crack with the half-length L. The plate is stretched by the concentrated
forces �P applied at points 0;�y0

� �

. Destruction of the plate is happening when the

stress intensity factors (SIFs) reach a certain limit value. Therefore, when we
calculated the limiting loads, we considered the SIF which explicitly takes into
account the length of the cracks. Due to this, we performed calculations of the

relative SIF Ka ¼ KI
ffiffi

a
p

P
ffiffi

π
p with different relative distances α ¼ y0=a, depending on the

half-length of the crack, which is divided into a.
Calculations are made for the composite plates with elastic constants shown in

Table 1.
The results of the calculations for the plate made of an EF material (with a small

degree of anisotropy) with the maximum stiffness in the direction of the OX axis
are shown in Figure 3.

In general, the character of the distribution for an EF material is not significantly
different from that of an isotropic material. It is necessary to increase monotonically
the load for a stable growth of the crack when the distances of forces to a crack are
smaller than 0, 2a. With y0=a ¼ 0, 3, the stable growth of cracks (without jumping)
will occur at L=a>0, 2; with y0=a ¼ 0,4 if L=a>0, 25; and with y0=a ¼ 0, 5 if
L=a>0, 35. At greater distances to forces, after reaching the corresponding level of
values of traction, the circle fractures. For a case where the crack is perpendicular to
the direction with the maximum stiffness of the material, the SIF is slightly
increasing, especially at greater distances to forces.

Material E1 (GPa) E2 (GPa) G12 (GPa) ν21 ν12

LU 10.8 96.0 2.61 0.21 0.024

EF 21 32.8 5.7 0.21 0.134

Table 1.
Elastic constants of LU and EF materials.

Figure 3.
Relative SIF for a circular plate made of an EF material: a direction with maximum stiffness is parallel to the
OX axis.
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For a weakly anisotropic material, the incline of the crack to the main axis of
orthotropy had little effect on the SIF KI, and the SIF KII is practically absent.

The calculations have shown that for the case of placing the crack in parallel to
the direction with the maximum stiffness of the material, the above set of specifics
of the SIF remain unchanged for substantially anisotropic LU-1 material. When the
crack is placed perpendicular to the direction with maximum stiffness, stable crack
growth occurs of small cracks (L=a≤0, 1) when the relative distance to forces is
y0=a<0, 2. Moreover, for these cases, the fracture is spasmodic. In all other cases,
the SIF increases monotonically with increasing crack length. Hence, the plate
fractures completely after reaching forces of critical value.

Testing the developed algorithm is conducted for the case of isotropic plate with
ν ¼ 0,4488 and y0=a ¼ 0, 15;0, 16;0, 18;0, 2. The calculation results of the relative

SIF Ka ¼ KI
ffiffi

a
p

P are shown in Figure 4.
On the right are shown figures from the book [10]. Such calculations were also

performed for the same material, and here the corresponding relative SIF is
represented by dashed lines. It is seen that the results obtained by different methods
coincide.

4. Determination of working intervals of crack lengths at circular
samples

Two types of samples are used in experimental studies of crack fracture resis-
tance [10]. The first is a sample for which the SIF grows monotonically with the
growth of the crack. In the second type, the range of cracks’ lengths is selected in
such a way that the SIF KI is practically constant. Hence, it is varied in this range
from the mean value to the small value (�2–4%). This range of crack lengths is
called working. The samples of the second type are particularly suitable for
conducting experimental studies including a wide range of problems in the area of
destruction. In particular, with the constant force factor (the SIF is constant) in
such samples, the possibility of an effective study of the rate of growth of fatigue
cracks with cyclic loads, the study of crack fracture resistance depending on the
influence of working environment, etc. arises.

Based on the studies in the literature for isotropic material, it has been
established [10] that the range of working lengths is most favorable with α ¼ 0, 18,
although allowed, and α ¼ 0, 16;0, 2, where α ¼ y0=a. With 0< α<0, 2237 the SIF
KI increases from zero to a certain maximum (depending on α), then falls to a

Figure 4.
Relative SIF for isotropic material.
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minimum, and then increases monotonously. With α>0, 2237 the SIF increases
monotonically with the increasing length of the crack. We note that such conclu-
sions are valid for material with a Poisson ratio ν ¼ 0, 4488.

Since at big lengths of cracks L=a>0, 5 the SIF depends little on α, then for the
first type of samples α ¼ 0, 65 is taken.

Based on the obtained results, let us perform a similar study of samples of two
types of composite materials.

For samples of the second type, we perform calculations only for small ratios (at
α � 0, 2). The results of calculations of the SIF in a circular isotropic sample with
ν ¼ 1=3 are shown in Figure 5. Here and further is assumed that the relative value of

the SIF is equal to Ka ¼ KI
ffiffi

a
p

P
ffiffi

π
p and the parameter value α is indicated near the curves.

Figure 5 shows that the range with few changed SIF is necessary to determine in
the vicinity of the lengths of the cracks with L=a � 0, 25.

Similar results for the plate made of an EF material are shown in Figures 6 and 7.
Here two cases are considered: the crack is parallel or perpendicular to the direction
in which the stiffness of the material is maximal.

Figure 5.
Relative SIF for isotropic material.

Figure 6.
Relative SIF for an EF material: the crack is parallel to the direction of greater stiffness of the material.
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From the given data, it is seen that the SIF for an EF material is bigger in the case
when the crack is perpendicular to the direction of maximum stiffness of the
material.

The following conclusions are made based on the data of the calculations: for the
crack that is parallel to the direction of maximum stiffness of the material, the
minimum deviations from the constant SIF (with an error of not more than 2%) are
achieved on the ranges of lengths of cracks with relative dimensions with Δ<0, 21
with α ¼ 0, 24� 0, 26, where Δ ¼ L2 � L1ð Þ=a. The biggest range (Δ ¼ 0, 27) with
SIF values close to constants with an error 2, 1% is achieved with α ¼ 0, 24. For the
crack that is perpendicular to the direction of maximum stiffness of the material,
the range with SIF values close to constants is reduced. Moreover, the distance of
force application needs to be increased. The biggest range (Δ ¼ 0, 27) with SIF
values close to constants with an error 3, 2% is achieved with α ¼ 0, 24.

Let us consider the case of samples of the first type 1. For them, the forces are
selected that are distant from the crack. For isotropic materials, as a rule, α ¼ 0, 65
is taken. The above-obtained results of the calculations show that the same distance
can be chosen for the composite materials with a crack parallel to the principal axes
of the orthotropy.

Figure 7.
Relative SIF for an EF material: the crack is perpendicular to the direction of greater stiffness of the material.

Figure 8.
Relative SIF for a square isotropic sample.

9

Determination of Stresses in Composite Plates with Holes and Cracks Based on Singular Integral…
DOI: http://dx.doi.org/10.5772/intechopen.87718



To compare the effect of a sample shape, similar calculations are made for a
square plate with a crack. The results of calculations for such an isotropic sample
that are similar to the results of calculations for a circle are shown in Figure 8.

The conclusion is made based on the comparison of Figures 5 and 8 that with
small distances of forces from cracks, the shape of the sample has little effect on
the SIF.

Similar results of calculations for LU material are shown in Figure 9 for a
horizontal crack and in Figure 10 for a diagonal crack.

5. Determination of the SSS of samples under the action of the tractions
applied to the hole’s boundary

Let us apply the developed algorithm to study a square plate with a half-side a;
weakened by a central crack with a half-length L (Figure 11), the edges are not
loaded.

Figure 9.
LU material, square sample, horizontal crack.

Figure 10.
LU material, square sample, diagonal crack.
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Two identical circular holes of radius R, the centers of which are located at
points 0;�cð Þ, are created for stretching in a plate. It was assumed that the load was
applied to the boundary of the circular holes. Using [10], we accept that the forces
act normally on the domain θ � θcj j< γ and are given on it in the form

p ¼ P
θ � θcð Þ2

4R sin γ � γ cos γð Þ , (15)

where θ is angle coordinate on each of the holes, θc is angle coordinate of the
middle of the domain, and Р is the principal vector applied to the domain of forces,
which is directed from the center of the hole at an angle θc.

At first, for the purpose of testing the algorithm, the calculations are performed
for the case of a localized load at γ ¼ π=32 and α ¼ c=a ¼ 0, 2;0,4;0, 6, with
θc ¼ π=2 for the upper hole and θc ¼ �π=2 for the lower hole (thus the stretching of

the plate in the direction of the OY axis is considered). The relative SIF Y ¼ KI

P

ffiffiffiffiffiffi

πL
p

for an isotropic material with a Poisson ratio ν ¼ 1=3 at different crack lengths at
R=a ¼ 0, 1 is calculated and given in Table 2.

The values of relative SIF YS obtained by another method in [10] for the case
of stretching by concentrated forces (i.e., with γ ! 0) are given in the same table.

Figure 11.
Scheme of the sample.

L=a Y YS Y YS Y YS

α = 0.2 α = 0.4 α = 0.6

0.1 0.175 0.177 0.248 0.247 0.271 0.270

0.2 0.721 1.720 0.583 0.581 0.568 0.565

0.3 1.164 1.159 0.958 0.953 0.894 0.888

0.4 1.503 1.495 1.323 1.314 1.237 1.227

0.5 1.819 1.805 1.675 1.663 1.588 1.575

0.6 2.156 2.131 2.034 2.015 1.954 1.935

0.7 2.552 2.505 2.438 2.406 2.367 2.334

0.8 3.112 2.995 2.999 2.917 2.937 2.854

0.9 4.279 — 4.178 — 4.131 —

Table 2.
Relative SIFs for a square sample, isotropy.
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As you can see, the results for these cases were close, with the exception of the
values L=a ¼ 0, 8. Some differences in them are due to different localizations of
applied tractions.

The results of the calculations of SIF are given in Table 3 for the case
R ! 0, γ ¼ 0, that is, the case is considered when forces are applied at the center of
the holes and more smoothly applied efforts (at γ ¼ π=8).

The results for a circular sample with γ ¼ π=8 are shown (Figure 12) in the same
table.

The following conclusions are made based on Tables 2 and 3: SIF does not differ
significantly in the case of distributed loads with different degrees of localization,
SIF increases somewhat with the growth of the domain of action of tractions, and
SIFs are bigger at small crack lengths at point action of tractions (at R ! 0) and at
all lengths with α>0, 6. SIFs in a circular sample are bigger than in a square one
under the same load conditions.

Similar results for a square sample made from a LU material are given in
Table 4. Here, the relative SIFs Ka in which the crack length is explicitly taken into

γ¼π=8 R!0, γ ¼ 0 γ ¼ π=8 (circle)

L=a α = 0.2 0.4 0.6 α = 0.2 0.4 0.6 α = 0.2 0.4 0.6

0.1 0.186 0.254 0.275 0.727 0.462 0.366 0.2069 0.2637 0.2767

0.2 0.732 0.593 0.576 1.073 0.851 0.717 0.7563 0.6096 0.5786

0.3 1.172 0.969 0.905 1.278 1.167 1.049 1.1914 0.9910 0.9101

0.4 1.510 1.335 1.250 1.489 1.452 1.370 1.5415 1.3678 1.2655

0.5 1.827 1.689 1.605 1.742 1.744 1.694 1.8964 1.7516 1.6483

0.6 2.167 2.050 1.974 2.048 2.067 2.039 2.3113 2.1770 2.0811

0.7 2.569 2.459 2.391 2.436 2.459 2.440 2.8332 2.6963 2.6106

0.8 3.139 3.029 2.971 3.008 3.027 3.011 3.5616 3.4216 3.3492

0.9 4.322 4.225 4.181 4.214 4.225 4.209 4.8896 4.7662 4.7132

Table 3.
Relative SIFs for a square and circular sample, isotropy.

Figure 12.
Circular sample with holes and a crack.
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account and the case where the crack is parallel to the direction of bigger stiffness
(data on the left) and is perpendicular to it (data on the right) are given.

Similar results for a circular sample for the same material are given in Table 5.

6. Determination of the SSS of samples loaded with concentrated forces
at the boundary (compression test)

The methods of studied crack fracture resistance based on sample compression
in experimental practice are widely used.

The direct application of the abovementioned variant of the method of integral
equations for the case when the concentrated forces act on the boundary of the
domain is associated with significant errors, because unknown functions in the
vicinity of the points of application of forces have a singularity. Due to this, it is
necessary to separate a singular part in the solution for a more precise solution of
this type of task.

LU (Ох) LU (Оу)

L=a α = 0.2 0.4 0.6 α = 0.2 0.4 0.6

0.1 0.2338 0.2633 0.2764 0.4182 0.478 0.538

0.2 0.5187 0.4276 0.4059 1.0504 1.0073 0.9911

0.3 0.5952 0.5259 0.4978 1.1416 1.1306 1.1327

0.4 0.6202 0.5791 0.5595 1.2268 1.2138 1.2163

0.5 0.6409 0.6158 0.6046 1.33 1.3094 1.31

0.6 0.6711 0.6539 0.6479 1.4615 1.4313 1.4304

0.7 0.7252 0.7117 0.7085 1.6257 1.5829 1.5809

0.8 0.8392 0.8284 0.8267 1.7876 1.7411 1.7386

0.9 1.1482 1.1419 1.1409 1.9405 1.8846 1.8831

Table 4.
Relative SIFs Ka for square sample, LU material.

LU (Ох) LU (Оу)

L=a α = 0.2 0.4 0.6 α = 0.2 0.4 0.6

0.1 0.2363 0.2679 0.2806 0.4192 0.4799 0.5407

0.2 0.5269 0.4369 0.4138 1.0594 1.0163 0.9995

0.3 0.6108 0.5418 0.5112 1.1602 1.1477 1.1466

0.4 0.6467 0.605 0.5814 1.2588 1.2422 1.2389

0.5 0.683 0.6558 0.6396 1.3795 1.3531 1.3459

0.6 0.7341 0.7131 0.702 1.5354 1.4974 1.4888

0.7 0.8131 0.7948 0.7879 1.7482 1.6965 1.6905

0.8 0.9524 0.9376 0.9342 2.0507 1.9973 1.9977

0.9 1.2791 1.2726 1.2704 2.592 2.528 2.5346

Table 5.
Relative SIFs for a circular sample, LU material.
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6.1 Determining a singular part of the solution of this problem

Let us consider a point of the plate boundary z0, in which the concentrated force
(X, Y) is applied. A singular part of the solution (of Lekhnitskii potentials) will be
the same as in the half-plane, whose boundary is tangent to the plate at the point of
action of the concentrated force. Let us mark this angle through φ and potentials for
the half-plane through Φ0 z1ð Þ,Ψ0 z2ð Þ.

Let us consider at first a half-plane y<0, which is loaded with force (X, Y) at an
arbitrary point x0 on the boundary. The Lekhnitskii potentials for this half-plane
will be [17]

Φ0 ¼ A0

z1 � x0
,Ψ0 ¼ B0

z2 � x0
,

where

A0 ¼ � X þ s2Y

2πi s1 � s2ð Þ , B
0 ¼ X þ s1Y

2πi s1 � s2ð Þ :

It can be shown [17] that the half-plane also corresponds to the Φ0,Ψ0 poten-
tials, whose boundary passes through the point x0;0ð Þ and is inclined at an arbitrary
angle under the action of the same force. Let us consider a semicircle with the center
at point x0;0ð Þ of radius ρ0, which belongs to the half-plane. It is easy to show that
the principal vector of all forces applied to the arc of the semicircle is equal to
�X;�Yð Þ. This proves that the case of loading by the concentrated force of the half-
plane corresponds to the potentials Φ0,Ψ0.

Let us now consider a bounded plate occupying the domain D. The self-balanced

concentrated forces Xj;Y j

� �

, j ¼ 1;…; Jð Þ: are applied to the boundary of this
domain at points zj ¼ xj þ iyj. Let us represent the complex potentials in the form

Φ z1ð Þ ¼ Φ0 z1ð Þ þΦΔ z1ð Þ,Ψ z1ð Þ ¼ Ψ0 z1ð Þ þ ΨΔ z1ð Þ, (16)

Φ0 z1ð Þ ¼
X

J

j¼1

A0
j

z1 � z1j
,Ψ0 z2ð Þ ¼

X

J

j¼1

B0
j

z2 � z2j
,

where z1j ¼ xj þ s1yj, z2j ¼ xj þ s2yj. Here the coefficients A0
j, B

0
j are determined

based on expressions for A0, B0 by the substitution of X and Y on Xj and Y j,
respectively. By substituting formulas (16) into boundary conditions, we obtain the
boundary problem for obtaining the introduced complex potentials at x; yð Þ∈L:

1þ is1ð Þz01ΦΔ z1ð Þ þ 1þ is1ð Þz01 ΦΔ z1ð Þþ
þ 1þ is2ð Þz02ΨΔ z2ð Þ þ 1þ is2ð Þz02ΨΔ z2ð Þ ¼ �i X þ iYð Þ0,

(17)

where L is the boundary of domain D:

i X þ iYð Þ0 ¼ 1þ is1ð Þz01Φ0 z1ð Þ þ 1þ is1ð Þz01Φ0 z1ð Þ þ 1þ is2ð Þz02Ψ0 z2ð Þ þ 1þ is2ð Þz02Ψ0 z2ð Þ:

It is easy to show that the right-hand side of formula (17) is a continuous and
limited function, and therefore the introduced complex potentials with an index Δ

are continuous and limited in the vicinity of the points of application of forces. In
this regard, the above-developed numerical algorithm based on BIEM can be used to
determine these potentials.
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6.2 Calculation of the SIF for a rectangular sample with compression

Let us consider a square plate with half-side a, which contains a diagonal central
vertical crack with half-length L. The crack fracture resistance of such a sample is
determined based on compression by force R applied in vertical direction. The tips
of the angles, in the vicinity of which forces are applied, can be cut off. Due to this,
a sample is considered whose tops have coordinates

z1 ¼ c, z2 ¼ icþ zp, z3 ¼ icþ zm, z4, z5 ¼ z3 z6 ¼ z2 ,

where in c ¼
ffiffiffi

2
p

a, zp ¼ h� ih, zm ¼ �h� ih, h is the height of the cut triangle
and а is the half-side of the square.

The calculations are performed at h ¼ c=8; moreover, all tops are rounded by the
arcs of the circle of the radius a=10 (the shape of the sample—Figure 13).

Calculation of the relative SIF Ka ¼ KI
ffiffi

a
p

P
ffiffi

π
p for isotopic material and composites of

EF and LU with different directions of the orthotropic axis are given in Table 6.
The angle between the crack and the direction with the maximum stiffness of the
material is indicated in brackets.

The table shows a significant effect on the SIF of the placement of the crack
relative to the axis with the maximum stiffness of the material. In particular, for

Figure 13.
Sample view.

L=a Isotr. EF (90°) EF (0°) LU (90°) LU (0°)

0.1 0.0824 0.0579 0.0727 0.0226 0.0743

0.2 0.1203 0.085 0.1073 0.0332 0.1182

0.3 0.1557 0.1106 0.1407 0.0434 0.1663

0.4 0.1927 0.1384 0.1776 0.0547 0.2217

0.5 0.2354 0.1709 0.2208 0.068 0.2865

0.6 0.2889 0.2107 0.2737 0.0846 0.3643

0.7 0.3544 0.2609 0.3406 0.1059 0.4609

0.8 0.4418 0.3273 0.4301 0.1343 0.5872

Table 6.
Relative SIF Ka when compressing a sample with a diagonal crack.
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cracks parallel to the maximum stiffness direction, the SIFs appeared to be signifi-
cantly larger than those returned for 90°. The difference between the SIFs for these
two directions is increasing for a substantially anisotropic LU material.

Table 7 shows the results of calculations for the case of stretching the same
sample with a horizontal crack (Figure 14).

Based on the comparison of data from Tables 6 and 7, it follows that, unlike the
case of compression, the SIF with stretching is larger for cracks that are perpendic-
ular to the direction with maximum stiffness of the material.

7. Conclusions

An algorithm for calculating stresses at cracks in bounded plate with holes of
various shapes due to concentrated forces or distributed forces at its boundary has

L=a Isotr. EF (0°) EF (90°) LU (0°) LU (90°)

0.1 0.2585 0.2886 0.3499 0.2956 0.7572

0.2 0.3696 0.4065 0.4874 0.4114 0.9247

0.3 0.4617 0.4963 0.5884 0.4936 1.0104

0.4 0.5494 0.5752 0.6766 0.5594 1.1008

0.5 0.641 0.6534 0.7668 0.6185 1.2159

0.6 0.7434 0.7397 0.8705 0.6789 1.364

0.7 0.8641 0.842 0.9973 0.7472 1.5542

0.8 1.0129 0.9704 1.1585 0.8319 1.8021

Table 7.
Relative SIFs when stretching a sample with a diagonal crack.

Figure 14.
Sample view.
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developed. The solution of integral equations is performed by quadrature Gauss-
type formulas for regular and singular integrals.

The research of stresses at cracks in the samples which are used in experimental
studies of crack fracture resistance was performed.

The calculation of the stresses at cracks in samples of various forms is
performed, in which ones’ experimental research are performed. To study the crack
fracture resistance of composite samples, the optimal distances from the central
crack to the forces at which the SIF increases monotonously with increasing crack
length are determined. In particular, for square samples with a half-side a, forces
should be placed at a distance of 0.6a–0.7a from the crack. For the experimental
study of the growth rate of fatigue cracks, there are definite ranges of lengths of
cracks for which SIFs are practically constant values. At the same time, the dis-
tances are determined at which it is expedient to apply forces. The problem for
studying samples with cracks with compression is considered.

List of symbols with explanations

s is an arc coordinate.
ν is a Poisson ratio.
εx, εy, γxy are strains.

σx, σy, τxy are stresses.
αij are elastic compliances which are included in the Hooke’s law.
Φ z1ð Þ,Ψ z2ð Þ are Lekhnitskii complex potentials.
ΦS,ΨS are the potentials which correspond to the concentrated forces.
u0, v0 are the values of the derivatives of the displacements with respect to the arc

coordinate at the boundary of the plate and holes.
u�, v� are limit values of displacements in the approach to the section at the left

and the right relative to the selected direction.

q
Γ

!
is the stress vector q

Γ
zð Þ ¼ XΓ þ iYΓ at path Γ.

KI, KII are the stress intensity factors (SIFs).
Ka, Y,YS are the relative SIFs.
Р is the principal vector.
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