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Chapter

Nonlinear Dynamical Regimes
and Control of Turbulence
through the Complex
Ginzburg-Landau Equation
Joël Bruno Gonpe Tafo, Laurent Nana, Conrad Bertrand Tabi

and Timoléon Crépin Kofané

Abstract

The dynamical behavior of pulse and traveling hole in a one-dimensional system
depending on the boundary conditions, obeying the complex Ginzburg-Landau
(CGL) equation, is studied numerically using parameters near a subcritical bifurca-
tion. In a spatially extended system, the criterion of Benjamin-Feir-Newell (BFN)
instability near the weakly inverted bifurcation is established, and many types of
regimes such as laminar regime, spatiotemporal regime, defect turbulence regimes,
and so on are observed. In finite system by using the homogeneous boundary
conditions, two types of regimes are detected mainly the convective and the
absolute instability. The convectively unstable regime appears below the threshold
of the parameter control, and beyond, the absolute regime is observed. Controlling
such regimes remains a great challenge; many methods such as the nonlinear
diffusion parameter control are used. The unstable traveling hole in the one-
dimensional cubic-quintic CGL equation may be effectively stabilized in the chaotic
regime. In order to stabilize defect turbulence regimes, we use the global time-delay
auto-synchronization control; we also use another method of control which consists
in modifying the nonlinear diffusion term. Finally, we control the unstable regimes
by adding the nonlinear gradient term to the system. We then notice that the
chaotic system becomes stable under strong nonlinearity.

Keywords: Benjamin-Feir-Newell instability, subcritical bifurcation, complex
Ginzburg-Landau equation, unstable traveling hole

1. Introduction

Many complex systems evolve in a non-equilibrium environment. Further out of
the equilibrium [1], these systems tend to display progressively more complicated
dynamics. The non-chaotic patterned state and spatiotemporal chaos are observed
in the system. In the domain of the envelope equations, the quintic complex
Ginzburg-Landau (CGL) equation is appropriate to obtain stable localized solutions
(pulses, holes) [1, 2]. Among physical applications of the quintic CGL equation, one
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can mention binary fluid convection [3], spiral waves in the Couette-Taylor flow
between counterrotating cylinders [4], wave propagation in nonlinear optical fibers
with gain and spectral filtering [5], the oscillatory chemical reaction [6], hydrody-
namic turbulence [7], chemical turbulence [8, 9], and electrical turbulence in the
cardiac muscle [10]. Our work focuses on two types of systems: the spatially
extended system and the finite system. In the case of spatially extended systems, we
use as initial conditions a traveling-hole solution with periodic boundary conditions
[11–15]. All the dynamical regimes obtained during our work are summarized in a
phase diagram. In the case of the finite domain, we use as initial condition a pulse
solution. Wave patterns are described by CGL equation in which the amplitude of
the wave pattern vanishes at the lateral boundaries of the domain in order to
retrieve numerically some coherent structures observed experimentally, in the case
of absolute or convective instabilities [16–18].

Over the past decade, problems of chaos control and synchronization started to
play a central role in the studies of chaotic dynamics [19] in many different areas
such as chemistry [20], laser physics [21], electronic circuits [22], plasma [23], and
mechanical systems. Since the pioneering work of Ott et al. [24] on the control of
low-dimensional chaos in nonlinear systems based on Floquet theory, chaos control
techniques have been well developed [25, 26]. Up to date, many control techniques
have been suggested to control low-dimensional chaos by stabilizing unstable
periodic orbits or fixed points. The realization of chaos control mainly includes
feedback and non-feedback methods, both of which have advantages and disad-
vantages. Pyragas is one of the first to work on a delayed feedback loop called time-
delay auto-synchronization (TDAS) [25]. Another part of our works is to control
turbulence regimes observed, in particular the defect turbulence regime by
employing the methods already successfully used in the cubic case, namely, the
nonlinear diffusion technique [20], the feedback method [27], and the lower-order
complex Ginzburg-Landau (LOCGL) equation [28–31]. The LOCGL equation
which describes a system exhibiting a subcritical bifurcation to traveling waves
must contain a quintic nonlinearity. It is obtained by adding nonlinear terms to the
system. The effects of the nonlinear gradient terms are confirmed by using some
indicators such as the Lyapunov exponent and the energy bifurcation diagram.
Most of the results related to these different aspects are presented in the rest of
this work.

2. Dynamics of traveling hole in one-dimensional systems near
subcritical bifurcation

2.1 Model description

We consider a subcritical Hopf bifurcation, with a one-dimensional complex
amplitude A x; tð Þ and complex coefficients given by

∂A

∂t
¼ 1þ ic1ð Þ

∂
2A

∂x2
þ μAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4A, (1)

where c1, c3, c5, and μ are real constants. μ is the parameter control, and t and x
represent, respectively, temporal and spatial variables. This equation is a paradig-
matic model for the study of spatiotemporal dynamics [11]. It admits many differ-
ent types of stable pulses [32] and hole-like [17] solutions. We have imposed on the
complex amplitude the following boundary conditions: We consider a system in
which we impose periodic boundary conditions:
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A x; tð Þ ¼ A xþ L; tð Þ, (2)

where L is the length of the domain. These boundary conditions are realized in
different extended systems, where the pattern amplitude vanishes near lateral
boundaries. We have chosen as initial condition a hole solution given by [15]:

A x;0ð Þ ¼ exp i qexxþ π=2ð Þtanh γxð Þ
� �� �

: (3)

The precise form of the initial condition is not important here as long as we have
a one-parameter family of localized phase-gradient peaks. This is because the left
moving and right moving coherent holes for fixed c1, c1, and qex are each unique and
have one unstable mode only. As γ is varied, three possibilities can arise for the time
evolution of the initial peak: evolution toward a defect. The nonzero qex breaks the
left-right symmetry and results in the differing periods of the left and right moving
edge holes [15].

2.2 Results of numerical simulation

The parameters c3,, γ, and qex were fixed at c3 = 0.50, μ ¼ 1, γ ¼ 1:0, and
qex ¼ �0:03. And, we have varied c1 and c5. This variation enabled us to identify, in
the parameter space (c1, c5), zones in which the patterns exhibit different behaviors.
The different asymptotic phases observed are summarized in the state diagram of
Figure 1, where the solid line corresponds to analytical results and represents the
BFN line, while dashed lines are numerical ones. Dashed lines are obtained by
varying c1 and c5 which gave us regions of different regimes. We have identified
plane waves, spatiotemporal intermittency, phase turbulence, and weak turbulence
and defect turbulence regimes.

2.2.1 Plane wave regime

The plane wave regime is a laminar state where no chaos is observed. The plane
wave is localized below the BFN line in a zone called stable zone. The spatial profile

Figure 1.
Phase diagram of an initial traveling hole of the quintic CGLE showing different types of dynamical regimes:
plane wave (PW), spatiotemporal intermittency (STI), phase turbulence (PT), weak turbulence (WT), defect
turbulence (DT). c3 ¼ 0.5, and μ ¼ 1.0.
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of the wave patterns in the plane wave regime is shown in Figure 2. We notice that
by the growing of the time, the regime still stable, and laminar regime is observed.

2.2.2 Spatiotemporal intermittency regime

It consists of space-time regions of stable plane waves separated by localized
objects evolving and interacting in a complex manner [33]. It represents a special
scenario of transition to turbulence in extended systems: it is characterized by the
coexistence of laminar (ordered) and turbulent (disordered) domains that occur
randomly in different places of the system for the same values of the control
parameters [13, 33]. It has been observed in many experiments such as plane
Couette flow, counterrotating Taylor-Couette flow, and Taylor-Dean system. In 1D
extended systems, spatiotemporal intermittency has been observed in rectangular
and annular Rayleigh-Bénard cells at large values of the Rayleigh number [15]. This
spatiotemporal intermittency occurs via a subcritical bifurcation from purely lami-
nar state, and the coexistence of two different stable states can be described phe-
nomenologically using an amplitude equation derived from a Lyapunov function.
We have plotted in Figure 3 the characteristic pattern of a spatiotemporal inter-
mittency in which a global mode coexists with a chaotic attractor: the state consists
of patches of plane waves, which are separated y various holes. Figure 3b and c
shows in detail how a hole generates a phase defect and in turn generates two
daughter holes close-up of the amplitude ∣A∣ and close-up of the complex phase.

2.2.3 Phase turbulence regime

Just above the BFN line, the phase turbulence regime is observed (Figure 4). It
is best defined by the absence of space-time defects. In this regime, the region is a
weakly disordered one in which ∣A x; tð Þ∣ remains away from zero. The absence of
phase singularities implies that the “localwavenumber” given by

ν ¼
1

L

ðL

0
dx∂xΨ x; tð Þ, (4)

where Ψ x; tð Þ is the phase, is a conserved quantity. A global wave number of the
configuration can be defined as k � 2π=L. Chaos is very weak (see Figure 4). So the
global phase difference becomes the constant of the motion and is conserved. This is
corroborated by the flat shoulder of the spatial power spectrum of ∣A x; tð Þ∣ at low

Figure 2.
Space-time plot of the wave amplitude ∣A∣ in the case of the Benjamin-Feir stability for c1 ¼ 2.5, c3 ¼ 2.0,
and c5 ¼ 0.4.
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Figure 3.
Space-time gray-scale plots showing the invasion of a plane wave state by hole-defect chaos: (a) wave
amplitude, ∣A∣ (dark: ∣A∣ ≈ 0), and (b) close-up of c3 ¼ 0.5; c5 ¼ 1.1 showing in detail how a hole generates a
phase defect that, in turn, generates two daughter holes: c1 ¼ 0.59, c3 ¼ 0.5, c5 ¼ 1.1.
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Figure 4.
Phase turbulence regime of ∣A∣, for c1 ¼ 1.5, c3 ¼ 0.5, and c5 ¼ 0.5.
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wavenumbers, reminiscent of the Kuramoto-Sivashinsky equation (KS). The
dynamics is in fact very similar to that of KS, which is not surprising since this
equation was originally derived to describe the phase dynamics of CGL equation
near the BFN line.

2.2.4 Weak turbulence regime

Beyond the BFN line, we observe that for the parameter equations (c1, c5)
larger, a weak turbulence regime is observed [2] (see Figure 5). Weak turbulence
theory was developed in the 1960s to provide equations which quantitatively
describe the transfer of energy among turbulent, weakly nonlinear, and disper-
sive waves in fluids [34]. The basic or kinetic equations produced by weak
turbulence theory have been applied to analyze energy transfer including internal
and surface waves with small aspect ratios in the atmosphere and ocean [35].
They are also observed in the case of two spatial dimensions [3, 36]. As we
observe in Figure 5, holes move across the system (darker lines in Figure 5),
while the amplitude of wave patterns at their cores changes. A black region along
a gray line indicates amplitude ∣A∣ near zero at the core of the hole. Each hole may
spawn new holes, which in turn contribute to the loss of spatial coherence of the
solution. Figure 6 shows the evolution of one hole of Figure 5 from its creation to
its disappearance.

2.2.5 Defect turbulence

Father away from the BFN line a spatiotemporally disordered regime called
amplitude or defect turbulence is observed (see Figure 7). The behavior in this
region is characterized by defects. The defect turbulence regime is the dynamical
regime wherein the fluctuations of ∣A∣ become dominant over the phase dynamics.

Figure 5.
Weak turbulence regime observed for c1 ¼ 1.5, c3 ¼ 0.5, and c5 ¼ 0.9.
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The complex field experiences therefore large amplitude oscillations which can
(locally and occasionally) cause ∣A∣ to vanish. As a consequence, at all those points
(hereinafter called space-time defects or phase singularities), the global phase of the

field Φ � arctan Im Að Þ
Re Að Þ

h i

shows a singularity.

3. Nonlinear structures of traveling waves in subcritical systems with
finite geometries

3.1 The cubic-quintic complex Ginzburg-Landau equation in a finite domain

The one-dimensional cubic-quintic CGL equation in this case is given by:

∂A

∂t
¼ ν

∂A

∂x
þ 1þ ic1ð Þ

∂
2A

∂x2
þ μAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4A, 0≤ x≤L:

(5)

Figure 6.
(a) Formation and (b) disappearance of a hole between t ¼ 61.5 and t ¼ 64.5 in the numerical simulation of
Figure 5.

Figure 7.
Defect turbulence regime observed for ∣A∣, with c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1.
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This equation describes the envelope of a traveling wave propagating at the
group velocity v toward negative x [18]. L is the length of the domain. This model
equation arises in physics as an amplitude equation, providing a reduced universal
description of weak nonlinear spatiotemporal phenomena in extended continuous
media in the proximity of a subcritical Hopf bifurcation. The homogeneous
boundary conditions are given by:

A x ¼ 0; tð Þ ¼ A x ¼ L; tð Þ ¼ 0: (6)

Figure 8 illustrates the deterministic evolution of wave pattern amplitude for
convective instability and absolute instability regimes. In the case of convective
regime, the wave patterns disappear with the time, while in the case of the absolute
instability, they propagate in the whole system.

3.2 Stability of wave patterns of the 1D cubic-quintic CGLE

Let us note that, in the convective regime, the localized disturbances of the basic
state are growing but step away from the source. This is why we have restricted the
study to the dynamics of pattern for parameters corresponding to the absolute insta-
bility regime. When the criticality parameter μ increases, the linear stability fails, and
the waves can involve into new localized structures. The periodic basic solution loses
its stability, a secondary instability appears, and we can observe new states in the
domain (see Figure 9) [18, 37]. As we can see in Figure 9, for a value the control
parameter μ greater than a critical value μc, secondary structures will appear at the left
boundary of the system and destabilize the system [4, 18]. These secondary structures
create spatiotemporal chaos regime (regimes with defect, holes, etc.) into the system.

3.3 Numerical simulations of the 1D cubic-quintic CGLE

We investigate the effects of the quintic nonlinear dispersion coefficient c5 in
Eq. (5) with the homogeneous boundary conditions. The simulation was started

Figure 8.
Profiles of the amplitude of an initial perturbation at different times for v ¼ 1.0, c1 ¼ 0.45, c3 ¼ 2.0, c5 ¼ 2.0,
and L ¼ 100: in the convective instability (CI) regime with μ = 0.15 (dashed lines) and in the absolute
instability (AI) regime with μ ¼ 0.3 (solid lines).
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from an approximation of a pulse-like solution with a low amplitude. We investi-
gate the effects of the quintic nonlinear coefficient c5 with the homogeneous
Dirichlet boundary conditions. Solving the 1D cubic-quintic CGLE for several
values of c5 in the absolute instability regime leads to bifurcation of the global mode
to new states that are summarized in the phase diagram of Figure 10 for c5 and ε

[�1.5;3.5]. We have found that the threshold of convective-absolute instability is
μα = 0.207. Our phase diagram is obtained only in the absolute instability regime
(μ>μα). For the positive values of c5, global mode regime and chaotic regimes are
observed; they are separated by the line L1. The global mode is a stable regime. The
secondary structures are created by the secondary front which is close to the

Figure 9.
Graph of Re A1ð Þ for c1 ¼ 0.45, c3 ¼ 2.0, c5 ¼ 2.0, L ¼ 100, μ ¼ 1.4, Ω ¼ 1.2, and v ¼ 1.0.

Figure 10.
Phase diagram in (μ,c5), with c1 ¼ 0.45, c3 ¼ 2.0, c5 ¼ 2.0, L ¼ 100, and v ¼ 1.0. PD and PH stand for
periodic defects and periodic hole regions, respectively.
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downstream boundary. The global mode regime is represented by the phase plots in
Figure 11. This figure demonstrates the selection of the stable waves in the global
mode. It reveals that the wave patterns are decreasing in time and propagate in only
one direction toward the left. The variation of the coefficient c5 leads to bifurcation
of the global mode to new states which is observed in Figure 12. It reveals that the
solution can break up into several disjoint states with different properties separated
by more fronts defined by the location of the states. The regular pattern is
destabilized and gives rise to spatiotemporal turbulent state near the wall x = 0
(space x1), which is followed by a modulated state in space and time (space x2),
while, near the end x = L, the wave pattern remains non-modulated, and the regular
wave train is observed (space x3) [18, 37]. Defect and holes can be detected in the
chaotic space. Defects and holes are local structures that play a crucial role in the
intermediate regime between laminar states and hard chaos. Defects are points in
the space-time diagram where the amplitude of the wave vanishes and the phase is
not defined. In two and higher dimensions, such defects can disappear only via
collisions with other defects and act as long-living seeds for local structures like
spirals [38]. We have noticed that when c5 further increases, the chaotic region

Figure 11.
Space-time variation of the Re(A) for μ ¼ 0.3, c1 ¼ 0.450, c3 ¼ 2.0, c5 ¼ 2.0, L ¼ 100 and ν ¼ 1, showing
global modes.

Figure 12.
Space-time variation of the wave pattern amplitude ∣A∣, for μ ¼ 0.65, c1 ¼ 0.450, c3 ¼ 2.0, c5 ¼ 2.37,
L ¼ 100, and ν ¼ 1, indicating the appearance of the secondary structures.
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propagates into the domain toward the upstream boundary and the system becomes
more and more chaotic. For negative values of c5, the regimes observed are differ-
ent. The domain exhibits global modes, amplitude defects, holes, and spatiotempo-
ral intermittency. Figure 13 reveals that the wave patterns are stable at the first part
of the domain until the three quarter of the domain. Near the upstream boundary,
the news structures are revealed (hole, defects, etc.). The defects appear at regular
time intervals around x = 80, and for this reason we call them time-periodic defects
(PD). The periodic topological defects have been observed, for example, in many
experiences like the miscible fluid convection [39] and the system of Taylor-Dean
[40]. Near the right boundary, holes are observed and also before the PD, around
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Figure 13.
Space-time variation of the wave amplitude ∣A∣, for μ ¼ 0.35, c1 ¼ 0.450, c3 ¼ 2.0, c5 ¼ ?0.2, L ¼ 100, and
ν ¼ 1, denoting coherence structure with PD and PH.

Figure 14.
Space-time variation of the wave pattern amplitude ∣A∣ showing also coherence structures with PD and PH, for
μ ¼ 0.3, c1 ¼ 0.450, c3 ¼ 2.0, c5 ¼ ? 0.25, L ¼ 100, and ν ¼ 1.
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x = 70. Holes which appear near the upstream boundary are regular in time interval,
and we call them periodic holes (PH). Figure 14 is obtained for another value of c5.
It shows a periodic sequence of phase jumps propagating in the advection direction,
i.e., to the left; the wave pattern amplitude is modulated in this region. We notice
that periodic defects and periodic holes are advected toward the upstream bound-
ary. For the increasing values of c5, the space-time of Figure 15 reveals that the
system becomes a more disordered regime and more complex. This space-time
reveals the disordered regimes in the domain and the behavior of the patterns
become more complex. The figure reveals the presence of the core of defects around
x = 85 which are periodic. Before the periodic defects, a disordered regime is
observed. This disordered regime is a spatiotemporal intermittency regime.

4. Controlling spatiotemporal chaos in one-dimensional systems near
subcritical bifurcation

4.1 The dynamical model

The modified cubic-quintic CGLE is given by [20]:

∂A

∂t
¼ 1þ ic1 þ λ

Aj j2

A0j j2
� 1

 ! !

∂
2A

∂x2
þ μAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4A,

(7)

where λ ¼ λr þ iλi is a complex constant. Notice that the term λ
Aj j2

A0j j2
� 1

� �

vanishes

identically for A = A0. The added term also preserves the phase invariance of the

solution of the original cubic-quintic CGLE,A ! Aeiϕ, with ϕ being an arbitrary phase.

4.2 Numerical simulation

We start by assuming that the system is in a deeply chaotic region, i.e., param-
eters are chosen from defect turbulence area in order to verify the results obtained
from the linear stability analysis. Figure 16 plots the trajectory in phase space, in

Figure 15.
Space-time variation of the wave pattern amplitude ∣A∣, for μ ¼ 0.3, c1 ¼ 0.450, c3 ¼ 2.0, c5 ¼ ?0.6,
L ¼ 100, and ν ¼ 1, displaying spatiotemporal intermittency, defects, and holes.
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Figure 16.
Plot of (k, c1) for c3 ¼ 0.5, c5 ¼ 1.1 with (a) λr ¼ 0.0, et λi ¼ 0.0, (b) λr ¼ 1.0, et λi ¼ 0.0, (c) λr ¼ 2.5, et
λi ¼ 1.1, (d) λr ¼ 3.0, et λi ¼ 1.5, with σ ¼ 0.008, k ¼ 0.85, the dashed lines correspond to the BFN line of the
original cubic-quintic CGLE, the solid lines correspond to the BFN line of the modified cubic-quintic CGLE.
The shadowed region corresponds to the stability region.
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Figure 17.
Transition from chaotic behavior to quasi-periodic state for c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1: When (a) λr ¼ 0 and
λi ¼ 0 (chaos with defects); (b) λr ¼ 2.0 and λi ¼ 0.5 (phase turbulence); (c) (plane wave) λr ¼ 3.2 and
λi ¼ 1.8, with σ ¼ 0.008, k ¼ 0.85, and N ¼ 1200 grid points, leading to the plane wave regime.
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which the system parameters are exemplified as c1 = 2.5, c3 = 0.5, and c5 = 1.1 [15].
The chaotic motion is obvious: the amplitude of variable incidentally drops to zero
to produce defects (see Figure 16a). Now we control spatiotemporal chaos by
performing nonlinear diffusion parameters. As an example, we let λr = 2.0 and
λr = 0.5; the trajectory of system is illustrated in Figure 16b. The real part of system
variable is confined into a finite range, and defect turbulence is no longer being
observed, whereas the chaotic motion is not eliminated completely. For other values
of the diffusion parameter as λr = 3.0 and λr = 1.5, for example, the chaotic motion is
suppressed, and period-doubled states are observed as is illustrated in Figure 16c.
The solution has double periodicity since double loop is observed. For the value of λ
being more larger, the chaotic motion is still suppressed, but the periodic states are
observed. The system is more stable. The double loop is merged into a single loop, as
is shown in Figure 16d. To get also an idea of how the spatiotemporal dynamics of
the system changes in the parameter range of ∣λ∣ between turbulence and uniform
oscillations, we show in Figure 17a a series of space-time plots of asymptotic
dynamical states reached for different values of ∣λ∣. For the increasing values of ∣λ∣,
the transition from defect turbulence to plane wave regime is observed
(Figure 17a–c).

5. Time-delay auto-synchronization control of defect turbulence in
cubic-quintic complex Ginzburg-Landau equation

5.1 Model equation

To control the different turbulence regimes observed in the domain, a global
feedback term can be introduced. The modified cubic-quintic CGL eqiuation is
given by [27, 41, 42].

∂A

∂t
¼ 1þ ic1ð Þ

∂
2A

∂x2
þ μAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4Aþ F, (8)

F tð Þ ¼ αei χ0þωτð ÞA t� τð Þ, (9)

where

A tð Þ ¼
1

L

ðL

0
A x; tð Þdx (10)

denotes the spatial average of A over a one-dimensional medium of length L.
The parameter α describes the feedback strength, and χ0 characterizes a phase shift
between the feedback and the dynamics. ω denotes the frequency of the oscillation
and τ is the delay time. When delay time is short τ< < 1ð Þ, the slowly varying

average amplitude A tð Þ does not significantly change within the delay time, and the
delays in this term could be neglected. We obtain then the following equation:

∂A

∂t
¼ 1þ ic1ð Þ

∂
2A

∂x2
þ μAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4Aþ αeiχA tð Þ, (11)

where χ ¼ χ0 þ ωτ. Eq. (11) does not include any delay. Nonetheless, the delay
time τ plays an important role here, because it determines the effective phase shift χ
in the equation. The variation of τ provides a simple way for changing the phase
shift of the global feedback and thus the feedback effects.
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5.2 Numerical simulation

In this section, we present the results of a numerical study of Eq. (11). We
analyze the stability of the unstable wave patterns observed inside a defect
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Figure 19.
Transition from defect turbulence to spatiotemporal intermittency regime for c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1,
χ ¼ π=6, and μ ¼ 1.0, when (a) α ¼ 8.0, (b) α ¼ 12.0, (c) α ¼ 15.

Figure 18.
Phase diagram of (χ, α) showing different types of dynamical regimes: Defect turbulence (DT), spatiotemporal
intermittency (STI), phase turbulence (PT), standing wave (SW), and plane wave (PW) for c1 ¼ 2.5, c3 ¼
0.5, c5 ¼ 1.1. Phase diagram of (χ, α) showing different types of dynamical regimes: Defect turbulence (DT),
spatiotemporal intermittency (STI), phase turbulence (PT), standing wave (SW), and plane wave (PW) for
c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1, μ ¼ 1.0, μ ¼ 1.0.
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turbulence regime by using global feedback term [27]. We study the effects of the
feedback term on the system. A sufficient strong feedback can suppress spatiotem-
poral chaos and establishes uniform oscillations. We show that for certain values of
the global feedback term and the delay time, the system which initially was chaotic
becomes completely stable. The dynamic regimes observed during the numerical
study are summarized in the state diagram of Figure 18. The five regimes observed
are defect turbulence, spatiotemporal intermittency, phase turbulence, standing
waves, and plane waves. We remark that as the feedback intensity is increased
starting from zero, global oscillations set in, and defect turbulent regimes are
replaced by other interesting regimes until the appearance of the laminar state.

For certain values of α, amplitude defects disappear from some parts of the
system, and thus, an intermittent state is developed. Figure 19 illustrates three
examples of intermittent regimes depending on the values of α and χ in a 1D system
[27, 42]. Figure 19a shows that turbulent bursts which occupy most of the system
and laminar areas are relatively rare, while Figure 19b and c shows the coexistence
between turbulence and laminar state filled with standing wave (see Figure 19b) or
plane waves (see Figure 19c). By further increasing the feedback intensity from the
states of intermittent turbulence, uniform oscillations are observed for the phase
shift in the interval 0 < χ < 3π=4. For appropriate values of α and χ, the domain is
still always turbulent, but the defects disappeared completely. The wave pattern is
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Figure 20.
Phase turbulence regime of wave pattern amplitude |A| obtained for α ¼ 6.0, c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1,
χ ¼7π/4, μ ¼ 1.0.
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Figure 21.
Space-time variation of the wave pattern amplitude |A| obtained for α ¼ 9.0, c1¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1,
χ ¼ 7π/4, μ ¼ 1.0.
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in the phase turbulence regime. It is illustrated in Figure 20. In this regime, the
amplitude is always bounded away from zero. The amplitude A never reaches zero
and remains saturated. We notice that for certain values of α and χ, standing waves,
also called stationary wave, are observed (see Figure 21). Standing waves have been
observed in the model of CO oxidation under intrinsic gas phase coupling [43, 44].

6. Discussion

Let us now introduce to the CGL equation the global time-delay feedback and
study its effects on the system. The new CGL equation with time-delay auto-
synchronization is given by:

∂A

∂t
¼ 1þ ic1ð Þ

∂
2A

∂x2
þ μ� iωð ÞAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4Aþ F, (12)

where F is a feedback term given by

Figure 22.
Space-time variation of the wave pattern amplitude ∣A∣, χ ¼ π=2, c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1, μ ¼ 1.0, and
τ ¼ 1.2 for (a) α ¼ 0.0 showing DT, (b) α ¼ 12.0 showing WT, (c) α ¼ 15 showing PT, and α ¼ 15 showing
PW.
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F tð Þ ¼ αeiχ A t� τð Þ � A tð Þ
� �

, (13)

and

A tð Þ ¼
1

L

ðL

0
A x; tð Þdx, (14)

with the amplitude and frequency given by

A1j j2 ¼
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 μþ α cos χ � Ωτð Þ � cos χð Þ½ �ð Þ
p

� �

, (15)

and

Ω ¼ �ω� A1j j2 c3 � c5 A1j j2
� �

þ α sin χ � Ωτð Þ � sin χð Þ½ �: (16)

A cubic CGL equation with a similar feedback scheme has been investigated
in Refs. [13, 35]. In their work, they have shown how the strongly disordered
state can be stabilized in the system. The initially unstable system undergoes several
transformations successively and become stable; we have in order defect turbu-
lence, phase turbulence, standing wave state, and uniform oscillations. The results
of our numerical study of Eq. (12) are given in Figure 22. This figure shows the
progressive transition from defect turbulence to plane wave state. In the absence of
feedback (see Figure 22a, with α = 0), defect turbulence is observed. For small α,
weak turbulence is observed (see Figure 22b). When the feedback term grows, the
system displays a disordered state of phase turbulence (see Figure 22c), stationary
standing wave patterns (see Figure 22d), and uniform oscillations (see Figure 22e),
respectively.

7. Effects of nonlinear gradient terms on the defect turbulence regime
in weakly dissipative systems

The LOCGL equation which describes a system exhibiting a subcritical bifurca-
tion to traveling waves must contain a quintic nonlinearity; at this order, it is
necessary to include the lower-order nonlinear gradient terms:

At þ VAx ¼ χr þ iχið ÞAþ 1þ ic1ð ÞAxx þ 1� ic3ð Þ Aj j2A�

1� ic5ð Þ Aj j4A� q1 Aj j2Ax � q2 Aj j2xA� q3A
2A ∗

x ,
(17)

with q1 ¼ q1r þ iq1i, q2 ¼ q2r þ iq2i, and q3 ¼ q3r þ iq3i. Here, A x; tð Þ describes
the amplitude of extended spatial patterns. The values q1, q2, and q3 represent
coefficients of nonlinear gradient terms. Two of these nonlinear gradient terms, i.e.,

Aj j2Ax and A2A ∗
x , appear naturally in the asymptotic derivation [30, 31, 45–47].

Since we take the periodic boundary conditions, the convective term VAx may be
transformed away by going into a moving frame of reference. Also, the parameter
χ ¼ χr þ iχi, which is proportional to the distance from criticality, can be taken as
real, since the imaginary part can be transformed away by a simple transformation.

The aim is to see the impact of these nonlinear gradient terms on a defect
turbulence regime. We use the indicators such as the Lyapunov exponent and the
energy bifurcation diagram to confirm the nature of the regime.
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7.1 Numerical simulations

7.1.1 Dynamical indicators

We will essentially characterize the different types of dynamical behavior of the
system by the energy function Q and the largest Lyapunov exponent λmax. The first
one is defined by

Q tð Þ ¼
1

2L

ðL

�L
A x; tð Þj j2dx, (18)

which is frequently used to characterize non-regular dynamics in optics [48],
localized patterns in fluids, and other physical systems, respectively [49]. The one-
dimensional system is assumed to be of length 2L. In order to check more dynamical
behaviors of the system and provide a more quantitative aspect of the dynamics, we
calculate the largest Lyapunov exponent defined by [50, 51].

λmax ¼ lim
t!∞

1

t
ln

∥∣δA x; tð Þ∥∣

∥∣δA x;0ð Þ∥∣

	 
� �

, with kδA x; tð Þk ¼

ðx¼L

x¼�L
δA x; tð Þj j2dx


 �1=2

,

(19)

where δA is a small perturbation such as A ¼ A0 þ δA and A0 is the initial value

of the amplitude wave. Here, δA x;0ð Þ ¼ 10�4A0, and δA satisfies the linearized
evolution equation

∂δA

∂t
¼ J � δA, (20)

where J is the Jacobian matrix. The largest Lyapunov exponent is the dynamical
invariant most easily and accurately estimated from experimental time series. This
method has been extensively used for many different dynamical systems to quan-
tify chaos [30]. The value λmax can be positive or negative. Complex behaviors such
as chaos and spatiotemporal chaos are confirmed by positive λmax. On the other
hand, periodic or quasi-periodic solutions and non-chaotic attractors are character-
ized by negative λmax.

7.1.2 Numerical results

We will present here some of data obtained for systems with the presence of the
nonlinear gradient terms. The results are summarized in Figures 23–28. In particu-
lar, we study the influence of the nonlinear gradient terms in the defect turbulence
regime. Figure 23 shows the wave patterns and the energy as a function of time
corresponding to the laminar regime. We notice that the system that was initially
chaotic becomes completely stable by the presence of the nonlinear gradient terms.
The chaos has been eliminated. By changing the values of nonlinear gradient terms,
the dynamics of the system also change; it is confirmed by Figures 24 and 25 which
represent the oscillating patterns. The corresponding largest Lyapunov exponent is
zero.

The plot observed in Figure 24 is the running waves. They are quasi-periodic
states; they move in one direction with constant speed, according to its initial
condition; and this is the so-called oriental symmetry breaking. A double periodicity
in time and in space is observed. In Figure 25, we have another type of the
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oscillating patterns in a color-coded space-time plot (see Figure 25a). After a tran-
sient time, the waves propagate uniformly, with a well-defined wave number and
constant amplitude. We note also the presence of an attractor into the system which
annihilate the wave patterns (see Figure 25b). The drop observed near x ¼ 0
expresses the fact that the initial condition is a hole. Figures 26–28 show the largest
Lyapunov exponent λmax and the bifurcation diagram of the pattern state as a func-
tion of the control parameter χr for Eq. (17). They allow us to see clearly how the

Figure 24.
(a) Running wave regime, for χ ¼ 0.6 q1 ¼ 0.5 þ 0.9i, q2 ¼ 0.6 þ 0.6i, q3 ¼ 0.9 þ 0.9i, and (b) phase
portrait of running waves.

Figure 25.
Oscillating regime in system, for χ ¼ 0.6 q1 ¼1.5 þ 0.5i, q2 ¼ 0.6 þ 0.6i, q3 ¼ 1.5 þ 0.9i: (a) space-time plot
of ∣A∣ propagating in one dimension and (b) phase portrait of wave patterns.

Figure 23.
(a) Laminar regime and (b) pattern energy Q, as function of time for q1 ¼ 1.5 þ 0.5i, q2 ¼ q3 ¼ 1.5 þ 1.5i.
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system changes its dynamical behavior with the presence of the nonlinear gradient
terms. Figure 26a, which express the case without the nonlinear gradient terms, is
obtained by taking repeatedly the maximum value of the energy function Qmax in a

Figure 26.
(a) Bifurcation diagram of Qmax and (b) largest Lyapunov exponent λmax as function of χr, without nonlinear
gradient terms.

Figure 27.
(a) Bifurcation diagram of Qmax and (b) largest Lyapunov exponent λmax as function of χr, with
q1 ¼ 0.1 þ 0.1i, q2 ¼ 0.2 þ 0.2i, and q3 ¼ 0.3 þ 0.3i.
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given time interval at different times (well after the transient is dead); this is done for
very many different values of the control parameter χr. As can be seen, the system is
briefly stable, and then, the instability is present in the whole system. In fact, if there
is a uniqueQmax, then the system is stationary or periodic, while for finite continuous
distribution of Qmax values, the behavior is either quasi-periodic or chaotic.

The Lyapunov exponent shown in Figure 26b indicates the dynamical behavior
of the system and confirms the results. Figure 27 is obtained for increasing values of
the nonlinear gradient terms. We observe several transitions between regular and
chaotic states. In particular, there is a small stability part of the system in the range
χr ∈ 0:0;0:3ð Þ. Beyond the point χr ¼ 0:44, the system becomes stable again until
the value χr ¼ 0:55, with another bifurcation point at χr ¼ 0:6. On the other hand,
the transition from regular to chaotic wave patterns is flat. In the plot of the
Lyapunov exponent (see Figure 27b), the chaotic motions identified are validated
by the positive values of λmax, while the stable region corresponds to the negative
values of λmax. For the large value of the nonlinear gradient terms, the system
becomes more and more stable as is seen in Figure 28.

8. Conclusion

The numerical investigation of the 1D quintic CGL equation in such systems
represents a big topic in the understanding of many physical systems with pattern
formation. Concerning the extended system, we have summarized in a phase dia-
gram all the regimes that have been observed. On the phase diagram, we have the
BFN line that divides the regions in two regions: the stable zone which contains
laminar state and spatiotemporal intermittency regime and the unstable zone with

Figure 28.
(a) Bifurcation diagram of Qmax and (b) largest Lyapunov exponent λmax as function of χr, with
q1 ¼ 0.7 þ 0.7i.
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chaotic regimes as phase turbulence, weak turbulence, and defect turbulence [49].
For the case of finite system, we have described from the 1D cubic-quintic CGL
equation the effects of the boundaries on the waves traveling in a preferred direc-
tion. We have used the homogeneous boundary conditions, and the waves were
nonlinear dissipative waves. We have studied the nature of convective or absolute
instabilities of wave patterns. In our simulations, we have found new states that
were similar from those obtained in the cubic CGL equation with homogeneous
boundary conditions or with the Neumann boundary conditions. The presence of
the quintic term has a large influence in the wave pattern. All the dynamic regimes
observed have been summarized in a state diagram. The regimes as the global mode
regime, turbulence regime observed in the secondary structures, and spatiotempo-
ral intermittency regimes have been detected, but their shape and behavior are
different depending on the sign of c5. Such defects, holes, and spatiotemporal
intermittency regime have been observed in the spiral wave pattern in the
counterrotating Couette-Taylor system, in the Taylor-Dean system, and in
Rayleigh-Bénard convection. These results were different from those that used
periodic boundary conditions. The numerical investigation of the 1D cubic-quintic
CGL equation with homogeneous boundary conditions for different values of the
control parameters represents a big topic in the understanding of many physical
systems with pattern formation. One of the great challenges is to control these
instabilities. We have used three types of control. Many significant technological
applications, such as mixing, optical fiber manufacture, and chemical reaction could
crucially benefit from the control of instabilities leading to complex spatiotemporal
dynamics. Firstly, we have proposed a method based on a nonlinear diffusion
parameter control which lies to the modified cubic-quintic CGL equation in the
extended system. In the first time, we have briefly presented the model equation of
cubic-quintic CGL equation and summarized the dynamic regimes observed in the
phase diagram of BFN. This method is based on the modification of the nonlinear
coefficient term with the preservation of the intrinsic phase invariance of the
original equation. By using hole solutions as initial conditions, we have simulated
the modified cubic-quintic CGL equation. Then, spatiotemporal chaos regimes
obtained with the original cubic-quintic CGL equation have been stabilized by using
a nonlinear diffusion term. The results show that, the defect turbulence regime
which is initially observed, become progressively stable by modifying the values of
the nonlinear diffusion term, i.e., at the end, plane wave regime is observed. Then,
by using another type of control called time-delay auto-synchronization, which
consists in adding the feedback term to the CGL equation, the results were excellent.
We have noticed by this method that one can control or avoid the spatiotemporal
chaos observed into the system. The last method control used is the adding of the
nonlinear gradient terms to the CGL equation called the lowest-order CGL equation.
By considering also the wave patterns in the chaotic regions in particular in a defect
turbulence regime, it was shown that the presence of the nonlinear gradient terms
changes the dynamical behavior of the system; the chaos can disappear progressively
in the domain. The fact that the nonlinear gradient terms can stabilize the system
leads us to conclude that they can be considered as the stabilizing terms.
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