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Abstract

Obesity has become a global health issue due to its high prevalence and associ-
ated comorbidities including insulin resistance (IR) and type 2 diabetes mellitus 
(T2DM). Obesity is associated with the expansion of adipose tissues through hyper-
trophy of mature adipocytes and differentiation of local preadipocytes in a process 
known as adipogenesis to store excess triacylglycerols (TAGs). Impairment of 
adipogenesis leads to ectopic fat deposition in skeletal muscles, liver, and kidneys, 
triggering IR in these tissues and increased risk of T2DM. Many factors contribute 
to impaired adipogenesis including obesity-associated mild chronic inflammation, 
oxidative stress, and fatty acid signaling. This review summarizes recent literature 
covering mediators of impaired adipogenesis and underlying molecular pathways.

Keywords: adipogenesis, mediators, inflammation, oxidative stress, fatty acids

1. Obesity-associated metabolic disease

Rapidly changing lifestyle, accompanied by consumption of excess energy in 
the form of a calorie-rich high-fat diet, lower voluntary activity, and increased 
exposure to environmental pollutants, have led to an exponential rise in noncom-
municable metabolic diseases [1]. A key component of chronic metabolic diseases is 
obesity that has become a global health problem associated with a range of comor-
bidities including insulin resistance and type 2 T2DM [2], coronary artery disease 
(CAD) [3], nonalcoholic fatty liver [4], cancers [5], and elevated risk of premature 
death [6, 7].

Adipose tissue is an endocrine organ that responds to obesity by secreting 
elevated quantities of free fatty acids, adipokines, and proinflammatory cytokines, 
triggering IR and risk of T2DM [8]. Obesity is also characterized by increased 
adiposity mediated by enlarged size of mature adipocytes (hypertrophy) and 
elevated number of newly recruited adipocytes (hyperplasia) [9–12]. Adipose tissue 
dysfunction is characterized by adipocyte hypertrophy, mild chronic inflammation, 
and oxidative stress, causing reduced ability to generate new adipocytes from the 
undifferentiated precursors (preadipocytes). The impaired adipogenesis increases 
risk of IR and T2DM by triggering ectopic fat deposition in nonadipose tissues 
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and proinflammatory environment characterized by impaired secretion of various 
adipose-derived adipokines [13].

Obesity also represents an imbalance between the primary site of storing energy 
(the white fat) and the site that is specialized in energy expenditure (the brown fat) 
[14]. White adipocytes store fat in the form of triacylglycerols as a single fat lipid 
droplet that gets readily hydrolyzed by lipases when energy is needed. The resulting 
fatty acids are mobilized to other tissues to undergo fatty acid oxidation as a source 
of energy [15]. The imbalance between lipolysis and lipogenesis plays a crucial role 
in progression of metabolic disease including T2DM and nonalcoholic fatty liver 
disease [16]. The brown fat, on the other hand, uses the energy derived from fatty 
acid oxidation for heat generation [17].

Adipocyte hypertrophy is associated with increased uptake of excess TAGs, 
which triggers fat accumulation within the larger subcutaneous adipose tissue 
(SAT) [18–20]. SAT therefore plays a buffering role as it prohibits progression of 
obesity-associated pathologies [21]. However, the buffering capacity becomes 
limited as impairment of SAT expansion causes IR [22–24] as the excess fat are 
deposited in the visceral adipose tissue (VAT) as well as ectopically in the skeletal 
muscle, liver, kidney, and heart tissues [25]. This is augmented by the infiltration of 
macrophages and activation of the innate immune cells [26], which triggers hyper-
insulinemia that inhibits lipolysis and activates lipoprotein lipase (LPL). This causes 
further hyperinsulinemia, hypertriglyceridemia, increased IR in these tissues [27], 
and risk of T2DM [28].

Although obesity is generally associated with these comorbidities, some obese 
individuals seem to be protected as they maintain insulin sensitivity (IS) and 
show lower hypertension and proatherogenic and inflammatory profiles than 
their equally obese pathogenic counterparts [29–32]. Investigating the underly-
ing causes for this protective phenotype could potentially help obesity-associated 
pathogenicity. Although still unknown, various potential mechanisms were 
proposed to contribute to metabolically healthy obese (MHO) phenotype. These 
include lower visceral and ectopic fat deposition than subcutaneous fat accumula-
tion due to efficient SAT adipogenesis, reduced inflammatory component in the 
adipose tissue, healthy levels of secreted adipokines, and more active lifestyle [33]. 
A genetic component was also suggested to interact with various environmental 
factors, although not yet determined [34]. Interestingly, lean diabetics also exhibit 
larger adipocytes than healthy individuals, perhaps due to impaired differentiation 
of preadipocytes but not a result of different frequencies of stromal vascular cells, 
lipolysis, or levels of inflammatory mediators [35]. Current therapeutic strategies 
focus on treating obesity-associated diseases instead of preventing the underlying 
mechanisms. Therefore, understanding the molecular mediators underlying the 
protective phenotype in MHO individuals could provide critical information to help 
individuals suffering from pathological obesity (PO). In this review, we aimed to 
understand the role of adipogenesis in obesity-associated IR and T2DM by screen-
ing 2317 articles investigating adipogenesis and mediators of impaired adipogenesis 
in PubMed with the aid of Rayyne, a systematic review web application [36].

2. The role of adipogenesis in obesity-associated IR and T2DM

The adipose tissue is a dynamic part of the endocrine system that plays a cru-
cial role in maintaining energy balance and nutritional homeostasis [37]. Mature 
adipocytes constitute the most abundant distinctive cell type in the adipose tissue, 
occupying 90% of its volume [38]. Other components include leukocytes, mac-
rophages, fibroblasts, endothelial cells, and preadipocytes, which constitute the 
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stromal vascular cells (4–6 million cells per gram of adipose tissue, half of which are 
immune cells) [39].

Obesity-induced adipocyte hypertrophy is associated with impaired recruit-
ment and differentiation of preadipocytes. Despite their abundance, preadi-
pocytes fail to undergo terminal differentiation into mature adipocytes via the 
activation of the canonical Wnt signaling [40]. Preadipocytes are produced by 
mesenchymal stem cells (MSCs) under the influence of different signaling mol-
ecules. The mature adipocytes secrete BMP4 that triggers preadipocyte differentia-
tion by inducing the separation of Wnt1 inducible-signaling pathway protein 2 
(WISP2) and zinc finger protein 423 (ZNF423), allowing ZNF423 to translocate 
into the nucleus and activate peroxisome proliferator-activated receptors (PPARγ) 
and downstream cascade including CCAAT/enhancer-binding proteins β (C/
EBPβ), δ, and α [41, 42] (Figure 1).

BMP4 also plays an anti-inflammatory role by reducing tumor necrosis factor-α 
(TNF-α)-mediated proinflammatory cytokine induction in human adipocytes. 
Therefore, BMP4 plays a protective role against IR and T2DM [43]. Subsequently, 
PPARγ and C/EBPα activate preadipocyte differentiation and the expression 
of mature makers such as adiponectin, fatty acid-binding protein 4 (FABP4), 
 glucose transporter type 4 (GLUT4), and LPL. The activation of PPARγ, therefore, 

Figure 1. 
Schematic representation of the role of Wnt signaling in adipogenesis.
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maintains IS and exhibits an anti-inflammatory function, whereas IR causes 
impaired adipogenesis and increased risk of T2DM [44, 45].

Insulin and downstream Akt signaling also play important roles as modulators 
of adipose tissue growth and adipogenesis as insulin activates glucose and free fatty 
acid uptake, inhibits lipolysis, and de novo fatty acid synthesis in adipocytes, and 
induces adipogenesis [46]. The transcription factor nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) has been shown to induce energy 
expenditure and reduce adipose tissue growth, leading to prevention of dietary 
obesity and lowering adipogenesis, inflammation, and IR [47]. The inhibition of 
inhibitor of nuclear factor kappa-B kinase subunit β (IKKβ) in mice lowers high-
fat diet-induced adipogenesis and inflammation and protects from diet-induced 
obesity and IR [48]. MicroRNAs (miRNAs) have been also shown to play an 
important role in adipogenesis, IR, and inflammation as previously reviewed [49].
Tonicity-responsive enhancer-binding protein (TonEBP), a key transcription factor 
involved in cellular adaptation to hypertonic stress, has been suggested to influence 
macrophage activity, adipogenesis, and IS by inhibiting the epigenetic transition of 
PPARγ2 [50]. Protectin DX (PDX), a ω-3 fatty acid-derived proresolution mediator, 
was reported to reduce inflammation and IR via an AMPK-dependent pathway and 
suppress adipogenesis and lipid accumulation during 3T3-L1 differentiation [51].

We have recently shown that higher adipogenic capacity of preadipocytes iso-
lated from SAT and VAT from MHO individuals than PO counterparts may be one 
of the underlying mechanisms for MHO protection due to a greater ability to store 
TAGs in the SAT depot. This process was shown to be influenced by inflammatory 
mediators, oxidative stress, and fatty acid signaling [45, 52–55].

3. Mediators of impaired adipogenesis in IR and T2DM

3.1 Inflammatory mediators

3.1.1 Impaired adipogenesis in response to proinflammatory signals

Obesity-associated comorbidities are mediated by chronic mild inflammation 
(Figure 2). Lipid-laden adipocytes produce increased levels of cytokines such as 
Interleukin 6 (IL-6), IL-β, TNF-α, monocyte chemoattractant protein-1 (MCP-1), 
and IL-8 [10, 56, 57] which can inhibit preadipocyte differentiation [21, 45]. The 
impaired adipogenesis is associated with stress of the endoplasmic reticulum (ER) 
and elevated expression of unfolded protein response (UPR), both can exacerbate 
the proinflammatory phenotype of preadipocytes and adipocytes [58]. The effect of 
proinflammatory phenotype varies among various fat depots. VAT is a more inflam-
matory tissue than SAT as it secretes higher levels of proinflammatory cytokines. 
Macrophage infiltration into adipose tissue is regulated through serum resistin and 
leptin in obese individuals with early metabolic dysfunction [59]. The presence 
of macrophages in VAT contributes significantly to this phonotype. The presence 
of macrophages in human SAT, on the other hand, is causally related to impaired 
preadipocyte differentiation, which in turn is associated with systemic IR [60, 61]. 
Adipocyte differentiation, therefore, was shown to be significantly lower in VAT 
than SAT. Macrophage depletion can reduce inflammatory cytokines and trigger 
adiponectin secretion from both SAT and VAT adipocytes, leading to the induction 
of preadipocyte differentiation in SAT, but not VAT. Additionally, a negative corre-
lation between SAT adipogenesis, but not VAT, and systemic IR was observed [62]. 
Chronic systemic inflammation is also associated with elevated lipolysis in white 
adipose tissue and lipogenesis in nonadipose tissues, causing ectopic fat deposition 
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in nonadipose tissues and imbalance in free fatty acid homeostasis and increased 
risk of IR [63].

Among the proinflammatory cytokines, IL-6 is produced by adipocytes, 
activated leukocytes, and endothelial cells [64] in obesity [65–68]. IL-6 shows a 
synergistic effect with other mediators of metabolic disease, collectively contrib-
uting to the progression of other obesity-associated comorbidities such as CAD 
and T2DM [64, 69]. IL-6 impairs the LPL function leading to increased levels of 
circulating fat [69, 70]. Moreover, obesity-associated increase in IL-6 is linked to 
reduced insulin-triggered glucose uptake [60, 61]. Previous reports have indicated 
that insulin treatment improves the glucose transport activity of adipocytes in 
T2DM [21] and lowers IL-6 and TNF-α levels [53]. Although the precise mecha-
nisms of IL-6-associated IR is not well characterized, human adipocytes from IR 
individuals were shown to exhibit significantly higher IL-6 expression levels [45]. 
IL-6 impairs insulin action by inhibiting expression of insulin receptor, insulin 
receptor substrate-1 (IRS-1), and GLUT4 in human preadipocytes as well as 3T3-L1 
adipocytes [45, 71]. Furthermore, IL-6 was shown to reduce IS through decrease in 
adiponectin expression and secretion [72] and via impairment of insulin signaling 
in hepatocytes [73].

Various other cytokines have been shown to impact adipogenesis [74]. The 
proinflammatory cytokines IL-1 β, TNF-α, and MCP1 can also influence the hyper-
plastic expansion of adipose tissue and impair adipogenesis [59]. IL-1β triggers a 
proinflammatory response in human adipose tissues, particularly in VAT depot. 
IL-1β also inhibits insulin signal transduction, leading to impaired IS in adipose tis-
sue [75]. IL-1β and cyclooxygenase-2 (COX-2) play a detrimental role in adipose tis-
sue dysfunction in obesity [76]. With obesity, levels of MCP-1 and TNF-α increase 
in VAT before macrophage infiltration, suggesting a highly proinflammatory 

Figure 2. 
Mediators of impaired adipogenesis in IR and T2DM. Most proinflammatory cytokines as well as some 
anti-inflammatory mediators can impair adipogenesis (1). Similarly, various mediators of oxidative stress can 
impact adipogenesis both positively and negatively depending on their structure (2). Fatty acid signaling plays 
a key role in adipogenesis but at various degrees depending on the composition of the fatty acids (3). Finally, 
various environmental factors can impact adipogenesis mostly negatively (4).
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phenotype of the visceral depot prior to infiltration of immune cells and macro-
phage phenotype switch [77]. Unlike IL-6, IL-1 β, and TNF-α, MCP-1 and MCP-
1-induced protein (MCPIP) were shown to induce adipogenesis. Treatment of 
reactive oxygen species (ROS) inhibitor, apocynin, reduced the MCPIP-triggered 
adipogenesis [78]. Other cytokines involved in adipogenesis include interferon-γ 
(IFN-γ), a central mediator of macrophage function. Compared to obese wild-type 
control animals, obese IFN-γ knockouts exhibit better IS, smaller adipocyte size, 
and lower cytokine expression [79].

3.1.2 Impaired adipogenesis in response to anti-inflammatory signals

Contrary to the notion that inflammation plays a negative role in metabolism, 
some studies suggest that proinflammatory signals in the adipocytes are actually 
needed for functional adipose tissue homeostasis (Figure 2). Indeed, adipose 
tissue inflammation was shown in various animal models of adipose tissue-specific 
reduction of proinflammatory potential to be required as an adaptive response, 
allowing proper storage of excess fat and filtering of gut-derived endotoxins [80]. 
Additionally, various molecules with anti-inflammatory properties were shown to 
influence adipogenesis and risk of IR. Myokines, for example, secreted by skeletal 
muscle cells during exercise such as β-aminoisobutyric acid, can impair adipogene-
sis via activating AMPK signaling pathway and reducing levels of proinflammatory 
cytokines such as TNF-α [81]. Another example is the ubiquitin-editing enzyme 
A20 that impairs IL-6 secretion from adipocytes, leading to modulation of differen-
tiation of MSCs [82]. The overexpression of A20 was also shown to reduce lipo-
genesis and adipogenesis via lowering levels of sterol regulatory element binding 
protein-1c (SREBP-1c) and aP2, causing lower fat accumulation in differentiated 
3T3-L1 cells [83]. A third example is the nonerythropoietic EPO-derived peptide 
that plays an anti-inflammatory and anti-adipogenic roles in high-fat die mice 
with IR [84]. On the other hand, other anti-inflammatory molecules could rescue 
impaired adipogenesis. Glucose-dependent insulinotropic polypeptide (GIP), for 
example, is a potent activator of adipogenesis through modulation of inflamma-
tion in adipose tissue [85]. Additionally, the expression of neuronatin (Nnat), a 
proteolipid involved in neuronal development, in response to inflammation and 
dietary excess, has been suggested to play an important role in adipogenesis through 
lowering oxidative stress and inflammation [86].

3.2 Oxidative stress

Obesity leads to the accumulation of ROS, the hallmark of oxidative stress, 
in the adipose tissue causing impaired adipogenesis and increased risk of IR and 
T2DM. The balance between ROS generation and activation of endogenous anti-
oxidants is crucial for cells undergoing adipogenesis [87] (Figure 2). The oxida-
tive damage and changes in the expression of antioxidant enzymes with age are 
similar between SAT and VAT. However, preadipocytes from SAT are significantly 
more resistant than VAT-derived cells to cell death caused by oxidative stress [88]. 
Interestingly, within SAT and VAT depots, preadipocytes from insulin-sensitive 
obese subjects were more prone to oxidative damage than preadipocytes from equally 
obese insulin-resistant individuals [52, 53]. The depletion of ROS from adipose 
tissue in mice models of oxidative stress was associated with increased adipose tissue 
mass, lower ectopic fat deposition, and enhanced IS. Similarly, ROS accumulation 
limited the expansion of adipose tissue, leading to elevated ectopic fat accumulation 
and increased risk of IR [89]. Elevated ROS within the adipose tissue triggers lipid 
peroxidation [45] and accumulation of reactive aldehydes including the bioactive 
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lipid peroxidation product 4-hydroxynonenal (4-HNE) [90]. Elevated 4-HNE causes 
damage of cell structure and function through the formation of the stable adducts 
4-hydroxyalkenals with proteins, phospholipids, and DNA [91, 92]. Increased 
4-HNE levels have been associated with impaired adipogenesis and IR [53, 93–96]. 
Another marker of oxidative damage is 8-hydroxy-2-deoxyguanosine (8-OHdG) 
which was recently shown to exert anti-inflammatory effects, by reducing TNF-α-
induced IR in vitro. It was also shown to reduce adipose tissue mass in vivo through 
activation of adipose triglyceride lipase and lowering the expression of fatty acid 
synthase [97]. Levels of cholesterol oxidation-derived oxysterols increase in adipose 
tissues of T2DM patients and act as inhibitors of adipogenesis through activation of 
Wnt pathway [98]. Heme oxygenase (HO), a major cytoprotective enzyme, func-
tions upstream of Wnt signaling and lowers lipogenesis and adipogenesis, decreasing 
lipid accumulation and levels of proinflammatory cytokines [99].

Conversely, ROS was also shown to enhance adipogenesis by lowering sirtuin 1 
(Sirt1) expression [100, 101]. Heme-induced oxidative stress was shown to inhibit 
Sirt1, leading to increased adipogenesis [102]. The expression of deleted in bladder 
cancer protein 1 (DBC1), another inhibitor of the Sirt1, is reduced with obesity, 
leading to lower adipogenesis and VAT dysfunction [103]. Sirt3 plays a crucial role 
in mitochondrial function. Silencing of Sirt3 can cause adipocyte dysfunction 
which impairs adipogenesis and causes IR [104]. Nonselenocysteine-containing 
phospholipid hydroperoxide glutathione peroxidase (NPGPx) is a sensor of oxida-
tive stress. Lack of NPGPx causes elevation in ROS and promotion of adipogenesis 
through ROS-dependent dimerization of protein kinase A regulatory subunits 
and activation of C/EBPβ [105]. Additional evidence suggesting ROS involvement 
in promotion of adipogenesis comes from antioxidant supplementation experi-
ments where lower levels of ROS resulting from antioxidants contribute to adipose 
tissue dysfunction and IR [106]. Indeed, antioxidant supplementation exhibited 
a negative impact when used before induction of oxidative stress as a result of 
lowering physiological ROS levels because ROS plays a role as second messengers 
in adipogenesis, lipid metabolism, and insulin signaling [107]. For example, the 
supplementation with N-acetylcysteine, a known antioxidant and precursor of 
glutathione, was shown to reduce fat deposition during adipogenic differentia-
tion of mouse fibroblasts [108]. Activation of beta-3 adrenergic receptor (β3-AR) 
enhances ROS accumulation in cultured adipocytes. Antioxidants enhance β3-AR-
triggered mitochondrial ROS production, suggesting that chronic supplementation 
of antioxidants could indeed generate an elevation in oxidative stress associated 
with mitochondrial dysfunction in adipocyte [109]. On the other hand, glutathione 
depletion was shown to inhibit adipogenesis as the result of lowering cell prolifera-
tion during the initial mitotic clonal expansion of the adipocyte differentiation 
process [110].

3.3 Fatty acid signaling

The main role of adipocytes is TAG storage. Although TAGs do not function as 
signaling molecules per se, the lipid intermediates generated during lipogenesis and 
lipolysis influence intracellular insulin signaling and participate in progression of 
IR. These include free fatty acids, diacylglycerols (DAGs), and ceramides [111].

Lipolysis-driven efflux of fatty acids triggers TAG synthesis and causes stress 
of the ER and activation of June kinase pathway in the adipose tissues [112, 113]. 
This leads to an elevation in the levels of both DAGs and ceramides and progression 
of IR in adipocytes [114]. Ceramides were shown to influence lipid-mediated IR in 
muscles. Delta 4-desaturase, sphingolipid 1 (DEGS1) is a desaturase that mediates 
ceramide biosynthetic pathway. Ablation of DEGS1 in preadipocytes prevented 
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adipogenesis and decreased lipid accumulation [115]. There are essential enzymes 
responsible for TAG hydrolysis including hormone-sensitive lipase (HSL), adipose 
triglyceride lipase (ATGL), and monoglyceride lipase (MGL) [116]. ATGL regu-
lates lipolysis by transcription factor specificity protein 1 (Sp1). Insulin-mediated 
transcription of Sp1 is critical for this regulation. In mature adipocytes, PPARγ 
reverses transcriptional repression by Sp1 at the ATGL promoter, leading to stimula-
tion of ATGL mRNA expression. During obesity and IR, the transcription of ATGL 
becomes downregulated. The extent of the downregulation depends on interactions 
between Sp1 and PPARγ [117].

A number of factors influence the function of fatty acids in regulating adipo-
genesis. The number of carbons and the position and number of double bounds are 
crucial determinants of properties of the fatty acids. Changes in fatty acids includ-
ing elongation, desaturation, β-oxidation, peroxidation, and incorporation into 
phospo- and complex lipids can play an essential role in their metabolic function. 
Fatty acids and their metabolites can control protein expression involved in lipid 
and energy metabolism by influencing gene transcription, mRNA processing, 
and posttranslational modifications [118–121]. Most fatty acids activate all three 
members of the PPAR family [122–125]. Polyunsaturated fatty acids (PUFAs), 
except for erucic acid, are more potent stimulators of PPARγ than monounsaturated 
fatty acids (MUFAs) and saturated fatty acids [122–126] (Figure 2). The optimal 
binding affinity is reached with 16–20 carbon-containing compounds. DHA too was 
shown to stimulate PPARs [124]. Various studies have reported the beneficial effects 
of PUFAs on lipid-related human disorders [127–131], which largely depend on the 
structure of the fatty acids and their metabolic properties. PUFAs can inhibit lipo-
genic gene transcription by downregulating the expression SREBPs [132–135] and 
act as antagonists of liver X receptors (LXR) [136, 137] and as agonists for PPARs 
[122–124, 138, 139]. PUFAs, but not saturated or MUFAs, inhibit lipogenic genes by 
downregulating SREBP-1c. PPAR alpha plays an important role in metabolic adapta-
tion to fasting by enhancing mitochondrial and peroxisomal fatty acid oxidation 
and ketogenesis [140]. Dietary PUFAs were also shown to stimulate expression of 
PPARα target genes, induce β-oxidation, and lower plasma TAGs [141–149]. Fatty 
acids can also play a role as modulators of kinase signaling pathways [150–155].

Arachidonic acid (AA), a polyunsaturated omega-6 fatty acid, is the major 
PUFA that has been implicated in the regulation of adipogenesis. Short exposure of 
3T3-L1 mouse preadipocytes to AA triggers adipocyte differentiation, associated 
with increase in (FABP4/aP2). Calcium, protein kinase C, and ERK play critical 
role in this pathway through which AA induces the expression of adipocyte protein 
2 (aP2) [156]. AA binds to PPAR-γ2 to stimulate GLUT4 expression in HepG2 cell 
line, exhibiting an alternative insulin-independent activation of GLUT4 [157]. AA 
cascade is then controlled by cyclooxygenases enzymes, lipoxygenases, and P450 
epoxygenases. When AA is generated from plasma membrane via phospholipases 
and then metabolized by prostaglandin G/H synthase, different prostaglandins are 
produced, causing opposing effects on adipocyte differentiation. The proadipo-
genic effect of AA is mediated by prostaglandin product (prostacyclin) and is thus 
cyclooxygenase dependent [158–160]. Among prostaglandin classes, 15-deoxy-
Δ12,14-prostaglandin J2 (15-d-PGJ2) was shown to be proadipogenic [161, 162]. On 
the other hand, prostaglandin F2α (PGF2α) was shown to exert anti-adipogenic 
effects in primary preadipocytes [163–165], 1246 cells [164], and 3T3-L1 cells 
[166–168]. The anti-adipogenic effect of PGF2α is mediated through prostaglandin 
F receptor-mediated elevation in intracellular calcium and DNA synthesis [168] 
and activation of MAPK, causing reduction in PPARγ phosphorylation [169]. The 
role of prostaglandin E2 (PGE2), the third main prostaglandin, in adipogenesis is 
controversial as PGE2 exhibits antilipolytic effect in mature adipocytes but shows 
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no effect on preadipocytes [170]. However, it was recently demonstrated that PGE2 
inhibited adipogenesis of 3T3-L1 cells [171, 172]. Epoxyeicosatrienoic acids (EETs), 
AA metabolites, and AA-derived cytochrome P450 (CYP) epoxygenase metabolites 
exert anti-inflammatory effects in the vasculature. The expression of CYP2J, a 
member of P450 subfamily with a role in the bioactivation of AA in extrahepatic 
tissues, inhibits NF-κB and MAPK signaling pathways and activates of PPARγ, thus 
reducing IR and diabetic phenotype [173]. n-3 PUFAs, on the other hand, reduce 
adipose growth and play a role in adipogenesis in various rodent studies [174–183].

Medium-chain fatty acids (MCFAs) (C8–C10) bind the PPARγ ligand binding 
domain in vitro, causing full inhibition of phosphorylation of PPARγ by cyclin-
dependent kinase 5 (cdk5) and reversal of IR in adipose tissue. MCFAs that bind 
PPARγ also inhibit thiazolidinedione-dependent adipogenesis in vitro [184]. On the 
other hand, MUFAs were shown to induce adipogenesis and enhance TAG accumu-
lation in 3T3-L1 mouse preadipocytes. Levels of TAGs were greater in cells treated 
with c-22:1 than c18:1 and c-20:1. Among the c-22:1 fatty acids, c9–22:1 treatment 
showed higher fat accumulation, associated with increased expression of adipo-
genic and lipogenic transcription factors, such as PPARγ and C/EBPα and SREBP-1. 
However, c-20:1 FAs exhibited less effect than c-18:1 and c-22:1 [185]. Alpha-lipoic 
acid (ALA) activates insulin signaling pathway and exerts insulin-like properties in 
adipose and muscle cells. However, 3T3-L1 preadipocytes treated with LA exhibit 
lower insulin-induced differentiation by modulating activity and/or expression of 
various anti-adipogenic transcription factors mainly through activating the MAPK 
pathways that negatively regulate PPARγ and C/EBPα [141]. 10-oxo-12(Z)-octadec-
enoic acid, a linoleic acid metabolite, triggered adipocyte differentiation through 
PPARγ activation and elevated adiponectin secretion and insulin-triggered glucose 
uptake [142]. Dietary n-3 fatty acids showed more effective activation of PPARα in 
the liver of rodents [143–145] than n-6 fatty acids [146]. Figure 3 summarizes the 

Figure 3. 
Adipogenic capacity of various fatty acids in 3T3L-1 cells in the absence or presence of 1 μg/ml insulin in 
differentiation medium (MDI) containing 0.5 mM isobutyl-1-methylxanthine and 1 μM dexamethasone 
in DMEM and 10% FBS. 100 μM palmitic acid (palm), oleic acid (ole), erucic acid, linoleic acid (LA), 
arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 1 μM rosiglitazone 
(rosi) dissolved in DMSO were added when differentiation was induced at day 0 and were present throughout 
the differentiation period (adapted from Madsen et al.) [147].
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effect of various fatty acid species on the proadipogenic capacity of 3T3L-1 cells in 
the presence or absence of insulin (Madsen et al.) [147].

Lipidomics studies were performed to investigate differences between SAT and 
VAT depots. These studies have shown evidence of depot-specific enrichment of 
certain species of TAGs, glycerophospholipids, and sphingolipids and specific cor-
relations between certain lipid species and body mass index, inflammation, and IS 
[148, 149]. We have recently shown in human SAT and omental (OM) adipose tissue 
biopsies from 64 obese individuals a number of TAGs that changed with increased 
risk IR and T2DM including C46:4, C48:5, C48:4, C38:1, C50:3, C40:2, C56:3, C56:4, 
C56:7, and C58:7. Enrichment analysis showed C12:0 fatty acid to be associated with 
TAGs that are least abundant in T2DM. Our data also indicated that C18:3 was pres-
ent in both depleted and enriched TAGs in T2DM [55]. Secretion of interleukin IL-6 
was found to be significantly lower after treatment with C18:2, C22:6, and C16:0 
through blocking NF-κB and activating PPARγ [186]. Our data also showed positive 
correlations between C56:4 and C57:4, both containing C18:2 and C16:0, with SC 
adipogenic capacity. OM adipogenic capacity was associated with C49:1, C38:0, 
and C56:2, containing C16:0, C18:1, and C14:0 [55]. Table 1 summarizes a list of 

Metabolic 

trait

R
2 Importance TAG MW Fatty acid 

composition

Fatty acid identities

SC 

adipogenic

0.9 0.16 C58:10 926.8 C18:2, C18:2, 

C22:6

Linoleic acid, linoleic 

acid, docosahexaenoic 

acid

0.16 C56:4 910.8 C18:1, C18:2, 

C20:1

Oleic acid, linoleic acid, 

gadoleic acid

0.14 C57:4 924.7 C22:0, C19:4, 

C16:0

Behenic acid, C19:4, 

palmitic acid

0.09 C40:1 692.7 C18:1, C16:0, 

C6:0

Oleic acid, palmitic 

acid, caproic acid

0.08 C60:1 970.8 C24:0, 

C24:0, C18:1

Lignoceric acid, oleic 

acid

0.22 C38:1 664.7 C18:1, C16:0, 

C4:0

Oleic acid, palmitic 

acid, butyric acid

OM 

adipogenic

1 0.18 C48:1 804.8 C18:0, C16:1, 

C14:0

Stearic acid, palmitoleic 

acid, myristic acid

0.14 C49:1 818.7 C18:1, C17:0, 

C14:0

Oleic acid, 

heptadecanoic acid, 

myristic acid

0.11 C56:1 916.8 C18:0, C18:0, 

C20:1

Stearic acid, stearic 

acid, gadoleic

0.09 C54:0 890.8 C18:0, C18:0, 

C18:0

Stearic acid, stearic acid

0.06 C38:0 666.7 C10:0, 

C14:0, C14:0

Capric acid, myristic 

acid

0.05 C56:2 914.8 C18:1, C18:1, 

C20:0

Oleic acid, oleic acid, 

arachidic acid

0.04 C51:1 846.7 C18:1, C15:0, 

C18:0

Oleic acid, 

pentadecanoic acid, 

stearic acid

Table 1. 
List of TAGs associated with IR, SC, and OM adipogenic capacity.
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TAGs associated with SAT and OM adipogenic capacity. These fatty acids were 
reported to stimulate adipogenesis in rodents [187–191] and potentially in human 
preadipocytes.

4. Environmental factors

Various types of environmental factors were shown to influence adipogenesis. 
These include environmental pollutants. Among the environmental pollutants, 
polybrominated diphenyl ethers (PBDEs) represent a widely used type of flame 
retardants in commercial products and a main source of environmental contami-
nants. PBDEs accumulate in adipose tissue, potentially changing its endocrine 
function causing elevation in the risk of IR. We have previously shown that specific 
congeners of PBDEs (28, 47, 99, and 153) were predominant in VAT from obese 
individuals and that PBDEs 99, 28, and 47 were elevated in obese IR compared to 
obese IS. Treatment of human VAT-derived preadipocytes from obese IS individuals 
with PBDE28 inhibited insulin signaling and reduced adipogenesis [54]. In addition 
to PBDEs, evidence linking accumulation of other persistent organic pollutants 
(POPs) and risk of IR and T2DM was previously described [54, 192]. Additionally, 
the association between inorganic arsenic exposure and the risk of T2DM and 
obesity was previously reported [193]. Arsenic-induced T2DM is suggested to be 
mediated by inflammation, oxidative stress, and apoptosis, playing a significant 
role in the pathogenesis of obesity. Arsenic inhibits adipogenesis and enhances 
lipolysis, leading to obesity. Other reports have suggested that arsenic may induce 
lipodystrophy [193]. Another evidence suggests that uremic toxin-treated 3T3-L1 
cells and MSC-derived adipocytes exhibit impaired adipogenesis and apoptosis 
through activation of the Na/K-ATPase/ROS amplification cycle [194]. Other types 
of environmental pollutants include organotins, widely used antifouling biocides 
for ships and fishing nets, play a role as endocrine disruptors as they bind to PPARγ/
RXRα, induce adipogenesis, and repress inflammatory genes in different mamma-
lian cells [195].

5. Conclusion

The pathology of obesity-associated IR and T2DM involves ectopic fat deposi-
tion in response to elevated energy intake and poor fat storage. The latter is due 
to impaired adipogenesis as newly recruited preadipocytes become unable to 
differentiate into fully functional adipocytes. This review presents several factors 
that influence adipogenesis in pathological obesity including inflammatory media-
tors, oxidative stress, fatty acid signaling, and other environmental factors. Most 
proinflammatory cytokines such as IL-6, IL-1β, TNF-α, IL-8, and IFNγ as well as 
some anti-inflammatory mediators including β-aminoisobutyric acid, A20 enzyme, 
and EPO have been shown to impair adipogenesis, leading to adipocyte hypertro-
phy, ectopic fat accumulation, and increased risk of IR and T2DM. However, basal 
level of adipose tissue inflammation has been shown to be required for normal 
adipogenesis and functional adipose tissue homeostasis. Similarly, various media-
tors of oxidative stress were shown to impact adipogenesis positively such as lipid 
peroxidation product 4-HNE and negatively such as the marker of oxidative damage 
8-OHdG. Targeting lipid peroxidation products was shown to reverse impairment 
of adipogenesis and sustain IS. However, complete depletion of oxidative stress 
could also lead to impairment of adipogenesis as basal oxidative stress was shown 
to be required for normal adipogenesis. Fatty acid signaling also plays a very 
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important role in adipogenesis as various fatty acid species such as PUFAs, MUFAs, 
and MCFAs were shown to regulate preadipocyte differentiation at various degrees 
depending on their composition. Finally, various environmental factors were 
suggested to impact adipogenesis, mainly through triggering inflammation and 
oxidative stress, leading to impairment of adipogenesis and increased risk of IR.
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Abbreviations

COX-2 cyclooxygenase-2
15-d-PGJ2 15-deoxy-Δ12,14-prostaglandin J2
4-HNE 4-hydroxynonenal
8-OHdG 8-hydroxy-2-deoxyguanosine
AA arachidonic acid
ATGL adipose triglyceride lipase
BMP4 bone morphogenetic protein 4
C/EBP CCAAT/enhancer-binding protein
CAD Coronary artery disease
cdk5 cyclin-dependent kinase 5
DAGs diacylglycerols
DBC1 deleted in bladder cancer protein 1
DHA docosahexaenoic acid
DMEM  dexamethasone
DMSO  dimethyl sulfoxide
EETs epoxyeicosatrienoic acids
EPA eicosapentaenoic acid
EPO nonerythropoietic derived peptide
ER endoplasmic reticulum
FABP4 fatty acid-binding protein 4
GIP glucose-dependent insulinotropic polypeptide
HSL hormone-sensitive lipase
IFN-γ interferon-γ

IKKβ inhibitor of nuclear factor kappa-B kinase subunit β
IL-6 interleukin 6
IR insulin resistance
IS insulin sensitive
LA linoleic acid
LPL lipoprotein lipase
LXR liver X receptors
MCFAs medium chain fatty acids
MCP-1 monocyte chemoattractant protein-1
MCPIP Mcp-1-induced protein
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MDI insulin in differentiation medium
MGL monoglyceride lipase
MHO metabolically healthy obese
miRNAs microRNAs
MUFAs monounsaturated fatty acids
NF-kappa-B nuclear factor kappa-light-chain enhancer of activated B cells
Nnat neurontin
NPGPx nonselenocysteine-containing phospholipid hydroperoxide gluta-

thione peroxidase
Ole oleic acid
OM omental adipose tissue
Palm palmitic acid
PBDEs diphenyl ethers
PDX protectin DX
PGE2 prostaglandin E2
PGF2α prostaglandin F2α

PO pathological obesity
POPs organic pollutants
PPAR peroxisome proliferator-activated receptors
PUFAs polyunsaturated fatty acids
ROS reactive oxygen species
Rosi rosiglitazone
SAT subcutaneous adipose tissue
Sirt1 sirtuin 1
Sp1 transcription factor specificity protein 1
SREBP-1c sterol regulatory element binding protein 1C
T2DM type 2 diabetes
TAGs triacylglycerolsTNF-α tumor necrosis factor-α

TonEBP tonicity-responsive enhancer-binding protein
UPR unfolded protein response
VAT visceral adipose tissue
WISP2 inducible-signaling pathway protein 2
ZNF423 zinc finger protein 423
β3-AR beta-3 adrenergic receptor
MSCs mesenchymal stem cells
Ap2 adipocyte protein 2
CYP cytochrome P450
ALA alpha-lipoic acid
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