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Chapter

Moments of the Discounted
Aggregate Claims with Delay
Inter-Occurrence Distribution and
Dependence Introduced by a FGM
Copula
Franck Adékambi

Abstract

In this chapter, with renewal argument, we derive higher simple moments of the
Discounted Compound Delay Renewal Risk Process (DCDRRP) when introducing
dependence between the inter-occurrence time and the subsequent claim size. To
illustrate our results, we assume that the inter-occurrence time is following a delay-
Poisson process and the claim amounts is following a mixture of Exponential distri-
bution, we then provide numerical results for the first two moments. The depen-
dence structure between the inter-occurrence time and the subsequent claim size is
defined by a Farlie-Gumbel-Morgenstern copula. Assuming that the claim distribu-
tion has finite moments, we obtain a general formula for all the moments of the
DCDRRP process.

Keywords: compound delay-Poisson process, discounted aggregate claims,
moments, FGM copula, constant interest rate

1. Introduction

The classical Poisson model is attractive in the sense that the memoryless prop-
erty of the exponential distribution makes calculations easy. Then the research was
extended to ordinary Sparre-Andersen renewal risk models where the inter-claim
times have other distributions than the exponential distribution. Dickson and Hipp
[1, 2] considered the Erlang-2 distribution, Li and Garrido [3] the Erlang-n distri-
bution, Gerber and Shiu [4] the generalized Erlang-n distribution (a sum of n
independent exponential distributions with different scale parameters) and Li and
Garrido [5] looked into the Coxian class distributions. One difficulty with these
models is that we have to assume that a claim occurs at time 0, which is not the case
in usual setting.

Albrecher and Teugels [6] considered modeling dependence with the use of an
arbitrary copula. In a similar dependence model to Albrecher and Teugels as well,
Asimit and Badescu [7] considered a constant force of interest and heavy tailed
claim amounts.
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Barges et al. [8] followed the idea of Albrecher and Teugels [6] and supposed
that the dependence is introduced by a copula, the Farlie-Gumbel-Morgenstern
(GGM) copula, between a claim inter-arrival time and its subsequent claim amount.

Adékambi and Dziwa [9] and Adékambi [10] provide a direct point of extension
but assuming that the claim counting process to follow an unknown general distri-
bution in a framework of dependence with random force of interest to calculate the
first two moments of the present value of aggregate random cash flows or random
dividends.

The discounted aggregate sum has also been applied in many other fields. For
example, it can be used in health cost modeling, see Govorun and Latouche [11],
Adékambi [12], or in reliability, in civil engineering, see Van Noortwijk and
Frangopol [13].

The delayed or modified renewal risk model solves this problem by assuming that
the time until the first claim has a different distribution than the rest of the inter-
claim times. Not much research has been done for this model at this stage. Among the
first works was Willmot [14] where a mixture of a “generalized equilibrium” distri-
bution and an exponential distribution is considered for the distribution of the time
until the first claim. Special cases of the model include the stationary renewal risk
model and the delayed renewal risk model with the time until the first claim expo-
nentially distributed. Our focus is to extend the work of Bargès et al. [8], Adékambi
and Dziwa [9] and Adékambi [10] by allowing the counting process to follow a delay
renewal risk process and thus derive a recursive formula of the moments of this
subsequent Discounted Compound Delay Poisson Risk Value (DCDPRV).

For example, young performer companies typically have a high growth rate at
the beginning, but as they mature their growth rate may decrease with the increas-
ing scarcity of investment opportunities. That makes dividends dependent on the
economic climate at the dividend occurrence time. Obviously the distribution of
inter-dividends time in times of economic expansion and in times of economic crisis
cannot be identically distributed. So it would be appropriate to use a delayed
renewal model to model the distribution of the inter-dividend time. A delayed
renewal process is just like an ordinary renewal process, except that the first arrival
time is allowed to have a different distribution than the other inter-dividends times.

The chapter is organized as follows: In the second section, we present the model
of the continuous time discounted compound delay-Poisson risk process that we use
and give some notation. In Section 3, we present a general formula for all the
moments of the DCDPRV process. A numerical example of the first two moments
will then follow in Section 4.

2. The model

We use the same model as the one in Bargès et al. [8], where the instantaneous
interest rate δ is constant.

Define our risk model as follows:

i. The number of claims N tð Þ; t≥0f g and Nd tð Þ; t≥0f g form, respectively, an
ordinary and a delayed renewal process and, for k∈N ¼ 1; 2; 3;…f g:

• the positive claim occurrence times are given by Tk,

• the positive claim inter-arrival times are given by τk ¼ Tk � Tk�1, k∈N,
and T0 ¼ 0:

• τkð Þk≥ 2 � τ2 are independent and identically distributed (i.i.d),
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ii. The kth random claim is given by Xk, and

• Xk; k∈Nf g are independent and identically distributed (i.i.d),

• Xk; τk; k∈Nf g are mutually independent; and the higher moments,

μk ¼ E Xk
1

� �

of X1 exist.

iii. The discounted aggregate value at time t ¼ 0 of the claims recorded over the
period 0; t½ � yields, respectively, for the ordinary and the delayed renewal
case:

Z0 tð Þ ¼
X

No tð Þ

k¼1

e�δTkXk, Zd tð Þ ¼
X

Nd tð Þ

k¼1

e�δTkXk, (1)

where Z0 tð Þ ¼ Zd tð Þ ¼ 0 if N0 tð Þ ¼ Nd tð Þ ¼ 0.

2.1 The dependence

We introduce a specific structure of dependence based on the
Farlie-Gumbel-Morgenstern (FGM) copula. The advantage of using the FGM
copula and its generalizations lies in its mathematical manageability. The joint
cumulative distribution function (c.d.f.) of Xi; τið Þ, the ith claim and its
occurrence time is

FXi,τi x; vð Þ ¼ C FXi
xð Þ;Fτi vð Þð Þ

¼ FXi
xð ÞFτi vð Þ þ θFXi

xð ÞFτi vð Þ 1‐FXi
xð Þð Þ 1‐Fτi vð Þð Þ,

(2)

for x; vð Þ∈Rþ
∗R

þ and where FXi xð Þ and Fτi vð Þ are the marginals of Xi and τi
respectively. Recall that the density of the FGM copula is

cFGMθ u; vð Þ ¼ 1þ θ 1‐2uð Þ 1‐2vð Þ, (3)

for u; vð Þ∈ 0; 1½ � ∗ 0; 1½ � so that the joint probability density function (p.d.f.) of
Xi; τið Þ is

fXi,Ti
x; vð Þ ¼ cFGMθ FXi xð Þ;FTi vð Þð ÞfXi

xð ÞfTi
vð Þ

¼ fXi
xð ÞfTi

vð Þ þ θ fXi
xð ÞfTi

vð Þ 1‐2FXi
xð Þð Þ 1‐2FTi

vð Þð Þ
, (4)

where fXi
and f τi are the p.d.f.’s of Xi and τi respectively.

With these hypotheses, we present in Section 3 recursive formula of the
higher moments of this present value risk process, for a constant instantaneous
interest rate.

3. Recursive expression for higher moments

It is often easier to calculate the moments of the random variable Zd tð Þ; t≥0f g
than finding its distribution. If the probability generation function of Zd tð Þ; t≥0f g
or its moment generating function (mgf ) exists, it is possible to obtain the
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corresponding distribution by inversion of its mgf. Since, there is relatively
little research devoted to the study of the distribution of the discounted
compound renewal sums. We could then think about another technique other
than the one proposed by the above authors by studying the moments of
Zd tð Þ; t≥0f g.

3.1 Delay renewal case

The mathematical expectation of total claims plays an important role in the
determination of the pure premium, in addition to giving a measure of the central
tendency of its distribution. The moments centered at the average of order 2, 3 and
4 are the other moments usually considered because they usually give a good
indication of the pace of distribution, and these give us respectively a measure of
the dispersion of the distribution around its mean, a measure of the asymmetry and
flattening of the distribution considered.

Moments, whether simple, joined or conditional, may eventually be used to
construct approximations of the distribution of the DCDPRV.

Theorem 3.1
The Laplace transform of the mth moment of Zd tð Þ; t≥0f g is given by:

~πmZd
rð Þ ¼ 1þ

λ2

rþmδ
þ

λ1 � λ2

rþmδþ λ1

� �

~um rð Þ

¼ λ1 1þ
λ2

rþmδ
þ

λ1 � λ2

rþmδþ λ1

� �

�
X

m�1

j¼0

m

j

0

@

1

A

μm�j � θ μ0m�j � μm�j

� �� �

λ1 þmδþ r
þ
2θ μ0m�j � μm�j

� �

2λ1 þmδþ r

8

<

:

9

=

;

~π
j
Zo

rð Þ

(5)

where

~πmZd
rð Þ ¼ ~um rð Þ þ

λ2

mδ
~um rð Þ � Lτ1 m; δ; rð Þ þ

λ1 � λ2

mδþ λ1
~um � Lτ1 mδþ λ1; rð Þ: (6)

Proof
Conditioning on the arrival of the first claim leads to

πmZd
tð Þ ¼ E Zm tð Þ½ �

¼ E E e�δsX1 þ e�δsZo t� sð Þ
� 	m

τ1 ¼ sj
� �� �

¼
X

m�1

j¼0

m

j

0

@

1

A

ð

t

0

 f τ1 sð Þe�mδsE Xm�j τ1 ¼ sj
� �

π
j
Zo

t� sð Þds

þ

ð

t

0

 f τ1 sð Þe�mδsπmZo
t� sð Þds:

(7)
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We have

E Xm�j τ1 ¼ sj
� �

¼

ð

∞

0

xm�jfX τ1¼sj xð Þdx

¼

ð

∞

0

xm�j 1þ θ 1� 2FX xð Þð Þ 1� 2Fτ1 sð Þð Þf gfX xð Þdx

¼ E Xm�j
� �

þ θ

ð

∞

0

xm�j 1� 2FX xð Þð Þ 1� 2Fτ1 sð Þð ÞfX xð Þdx

¼ E Xm�j
� �

þ θ

ð

∞

0

xm�j 2� 2FX xð Þð Þ 1� 2Fτ1 sð Þð ÞfX xð Þdx

� θ

ð

∞

0

xm�j 1� 2Fτ1 sð Þð Þ fX xð Þdx

¼ E Xm�j
� �

1� θ 1� 2Fτ1 sð Þð Þð Þ

þ θ 1� 2Fτ1 sð Þð Þ

ð

∞

0

m� jð Þxm�j 1� Fτ1 sð Þð Þdx:

(8)

We let,

μ0m�j ¼ E X0m�j
h i

¼

ð

∞

0

m� jð Þxm�j�1 1� FX xð Þð Þ2dx

,

ð

∞

0

m� jð Þxm�j�1 1� FX xð Þð Þdx ¼ E Xm�j
� �

,∞

(9)

such that the above equation becomes

E Xm�j τ1 ¼ sj
� �

¼ μm�j þ θ 1� 2Fτ1 sð Þð Þ μ0m�j � μm�j

� �

: (10)

πmZd
tð Þ ¼ E Zm tð Þ½ �

¼ E E e�δsX1 þ e�δsZo t� sð Þ
� 	m

τ1 ¼ sj
� �� �

¼
X

m�1

j¼0

m

j

0

@

1

A

ð

t

0

 f τ1 sð Þe�mδs μm�j þ θ 1� 2Fτ1 sð Þð Þ μ0m�j � μm�j

� �n o

π
j
Zo

t� sð Þds

þ

ð

t

0

 f τ1 sð Þe�mδsπmZo
t� sð Þds:
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Let us
Ð t
0 f τ1 sð Þe�mδsds ¼ Hδ tð Þ,

Ð t
0 f τ2 sð Þe�mδsds ¼ Iδ tð Þ then

πmZd
tð Þ ¼

X

m�1

j¼0

m

j

 !

ð

t

0

 f τ1 sð Þe�mδs μm�j þ θ 1� 2Fτ1 sð Þð Þ μ0m�j � μm�j

� �n o

π
j
Zo

t� sð Þds

þHmδ ∗ π
m
Zo :ð Þ

¼ um þHmδ ∗ um þ Imδ ∗ π
m
Zo :ð Þ

n o

¼ um þHmδ ∗ um þHmδ ∗ Imδ ∗ π
m
Zo :ð Þ

¼ um þHmδ ∗ um þHmδ ∗ Imδ ∗ um þ Imδ ∗ π
m
Zo :ð Þ

n o

¼ um þHmδ ∗ um þ um ∗

X

∞

k¼1

Hmδ ∗ I
δ ∗ kð Þ
m tð Þ ¼ um þ um ∗

X

∞

k¼0

Hmδ ∗ I
δ ∗ kð Þ
m tð Þ

¼ um þ

ð

t

0

um t� sð Þe�mδsdmd sð Þ,

(11)

where um tð Þ ¼
Pm�1

j¼0

m

j

� �

Ð t
0 f τ1 sð Þe�mδs μj þ θ 1� 2Fτ1 sð Þð Þ μ0j � μj

� �n o

π
m�j
Zo

t� sð Þds.
We consider the case where the canonical random variable τ2 has an Exponential

distribution with parameter λ2.0 and τ1 has an Exponential distribution with
parameter λ1.0.

That is, we have:

f τ1 tð Þ ¼ λ1e
�λ1t, f τ2 tð Þ ¼ λ2e

�λ2t, Lτ1 λ1; sð Þ ¼

ð

∞

0

e�svf τ1 vð Þdv ¼
λ1

λ1 þ s

� �

, Lτ2 λ2; sð Þ ¼
λ2

λ2 þ s

� �

:

md tð Þ ¼ λ2tþ
λ1 � λ2

λ1
1� eλ1t
� 	

(12)

The mth moment of Zd tð Þ is then given by,

πmZd
tð Þ ¼ um þ

ð

t

0

um t� sð Þe�mδsdmd sð Þ

¼ um þ λ2

ð

t

0

um t� sð Þe�mδsd sð Þ þ λ1 � λ2ð Þ

ð

t

0

um t� sð Þe� mδþλ1ð Þsd sð Þ

¼ um þ
λ2

mδ

ð

t

0

um t� sð Þmδe�mδsd sð Þ þ
λ1 � λ2

mδþ λ1

ð

t

0

um t� sð Þ mδþ λ1ð Þe� mδþλ1ð Þsd sð Þ

(13)

Taking the Laplace transform of the above equation, we get:

~πmZd
rð Þ ¼ ~um rð Þ þ

λ2

mδ
~um rð Þ � Lτ1 mδ; rð Þ þ

λ1 � λ2

mδþ λ1
~um � Lτ1 mδþ λ1; rð Þ (14)

6
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But,

um tð Þ ¼
X

m�1

j¼0

m

j

0

@

1

A

ð

t

0

 f τ1 sð Þe�mδs μj þ θ 1� 2Fτ1 sð Þð Þ μ0j � μj

� �n o

π
m�j
Zo

t� sð Þds

¼
X

m�1

j¼0

m

j

0

@

1

A

ð

t

0

λ1e
�λ1se�mδs μj þ θ 2e�λ1s � 1

� 	

μ0j � μj

� �n o

π
m�j
Zo

t� sð Þds

¼
λ1 μj � θ μ0j � μj

� �� �

λ1 þmδ

X

m�1

j¼0

m

j

0

@

1

A

ð

t

0

λ1 þmδð Þe� λ1þmδð Þsπ
m�j
Zo

t� sð Þds

þ 2θ
λ1 μ0j � μj

� �

2λ1 þmδ

X

m�1

j¼0

m

j

0

@

1

A

ð

t

0

2λ1 þmδð Þe� 2λ1þmδð Þsπ
m�j
Zo

t� sð Þds

(15)

Then the Laplace transform of um tð Þ, at r, will give:

~um rð Þ ¼ λ1
X

m�1

j¼0

m

j

� � μj � θ μ0j � μj

� �� �

λ1 þmδþ r
þ

2θ μ0j � μj

� �

2λ1 þmδþ r

8

<

:

9

=

;

~π
m�j
Zo

rð Þ (16)

Substituting Eq. (14) into Eq. (13), we have:

~πmZd
rð Þ ¼ 1þ

λ2

rþmδ
þ

λ1 � λ2

rþmδþ λ1

� �

~um rð Þ

¼ λ1 1þ
λ2

rþmδ
þ

λ1 � λ2

rþmδþ λ1

� �

X

m�1

j¼0

m

j

0

@

1

A

μj � θ μ0j � μj

� �� �

λ1 þmδþ r
þ

2θ μ0j � μj

� �

2λ1 þmδþ r

8

<

:

9

=

;

~π
m�j
Zo

rð Þ

(17)

Solving the above equation for the ordinary case, where τ2ð Þk≥ 2 � τ2, we have:

~πmZo
rð Þ ¼

λ2μm
r rþ δmþ λ2ð Þ

þ
λ2

rþ δmþ λ2ð Þ

X

m�1

k¼1

Ck
m μk~π

m�kð Þ
Zo

rð Þ

þ θ μ0m � μm
� 	 λ2 rþ δmð Þ

r rþ δmþ λ2ð Þ rþ δmþ 2λ2ð Þ

þ θ
λ2 rþ δmð Þ

rþ δmþ λ2ð Þ rþ δmþ 2λ2ð Þ

X

m�1

k¼1

Ck
m μ0k � μk
� 	

~π
m�kð Þ
Zo

rð Þ

þ
λ2

rþ δmþ λ2ð Þ
~πmZ0

rð Þ

(18)
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Rearranging the above equation, we will get

~πmZo
rð Þ ¼

λ2μm

r rþ δmð Þ
þ

λ2

rþ δmð Þ

X

m�1

k¼1

Ck
m μk~π

m�kð Þ
Zo

rð Þ

þ θ
λ2 μ0m � μm
� 	

r rþ δmþ 2λ2ð Þ
þ θ

λ2

rþ δmþ 2λ2ð Þ

X

m�1

k¼1

Ck
m μ0k � μk
� 	

~π
m�kð Þ
Zo

rð Þ

(19)

Corollary 3.1
The first moment of Zd tð Þ; t≥0f g is given by:

πZd
tð Þ ¼ θλ1 μ01 � μ1

� 	 λ2 þ δ

δþ λ1ð Þ δþ 2λ2ð Þ
þ
λ1 λ2 þ δð Þ

δ δþ λ1ð Þ
μ1

� �

þ θλ1 μ01 � μ1
� 	 λ1 � λ2

λ1 � 2λ2

� �

� λ1 � λ2ð Þμ1

� �

1

δþ λ1
e� δþλ1ð Þt

� θλ1
1

δþ 2λ2

λ2

λ1 � 2λ2
μ01 � μ1
� 	

e� δþ2λ2ð Þt

� 2θλ1
1

δþ 2λ1
μ01 � μ1
� 	

e� δþ2λ1ð Þt �
λ2

δ
μ1e

�δt

(20)

Proof:
From Theorem 3.1, we have:

~πZd
rð Þ ¼

λ1μ1
r rþ δþ λ1ð Þ

þ
λ1

rþ δþ λ1ð Þ
~πZ0 rð Þ

þ θ μ01 � μ1
� 	 λ1 rþ δð Þ

r rþ δþ λ1ð Þ rþ δþ 2λ1ð Þ

(21)

From Bargès et al. [8], we have

~πZo
rð Þ ¼

λ2μ1

r rþ δð Þ
þ θ

λ2 μ01 � μ1
� 	

r rþ δþ 2λ2ð Þ
(22)

Substituting Eq. (22) into Eq. (21), yields

~πZd
rð Þ ¼

λ1μ1
r rþ δþ λ1ð Þ

þ
λ1

rþ δþ λ1ð Þ

λ2μ1
r rþ δð Þ

þ θ
λ2 μ01 � μ1
� 	

r rþ δþ 2λ2ð Þ


 �

þ θλ1 μ01 � μ1
� 	 rþ δð Þ

r rþ δþ λ1ð Þ rþ δþ 2λ1ð Þ

¼
λ1λ2

r rþ δð Þ rþ δþ λ1ð Þ
þ

λ1

r rþ δþ λ1ð Þ


 �

μ1

þ θλ1 μ01 � μ1
� 	 λ2

r rþ δþ λ1ð Þ rþ δþ 2λ2ð Þ
þ

rþ δ

r rþ δþ λ1ð Þ rþ δþ 2λ1ð Þ


 �

(23)

with

λ1

r rþ δþ λ1ð Þ
¼

λ1

δþ λ1ð Þ
:
1

r
�

λ1

δþ λ1ð Þ
:

1

rþ δþ λ1ð Þ
(24)
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λ1λ2

r rþ δð Þ rþ δþ λ1ð Þ
¼

λ1λ2

δ δþ λ1ð Þ
:
1

r
þ

λ2

δþ λ1ð Þ
:

1

rþ δþ λ1ð Þ
�
λ2

δ
:

1

rþ δð Þ
(25)

λ2

r rþ δþ λ1ð Þ rþ δþ 2λ2ð Þ
¼

λ2

δþ λ1ð Þ δþ 2λ2ð Þ

1

r

þ
λ2

λ1 � 2λ2

1

δþ λ1

1

rþ δþ λ1
�

1

δþ 2λ2

1

rþ δþ 2λ2

� 

(26)

rþ δ

r rþ δþ λ1ð Þ rþ δþ 2λ1ð Þ
¼

δ

δþ λ1ð Þ δþ 2λ1ð Þ

1

r

þ
1

δþ λ1

1

rþ δþ λ1
�

2

δþ 2λ1

1

rþ δþ 2λ1

(27)

Substituting Eqs. (24), (25), (26) and (27) into Eq. (23), yields:

~πZd
rð Þ ¼ μ1

λ1

δþ λ1ð Þ
:
1

r
�

λ1

δþ λ1ð Þ
:

1

rþ δþ λ1ð Þ


 �

þ θ μ01 � μ1
� 	

λ2

δþ λ1ð Þ δþ 2λ2ð Þ

1

r

þ
λ2

λ1 � 2λ2

1

δþ λ1

1

rþ δþ λ1
�

1

δþ 2λ2

1

rþ δþ 2λ2

� 

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

þ θλ1 μ01 � μ1
� 	

δ

δþ λ1ð Þ δþ 2λ1ð Þ

1

r

þ
1

δþ λ1

1

rþ δþ λ1
�

2

δþ 2λ1

1

rþ δþ 2λ1

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

þ μ1
λ1λ2

δ δþ λ1ð Þ
:
1

r
þ

λ2

δþ λ1ð Þ
:

1

rþ δþ λ1ð Þ
�
λ2

δ
:

1

rþ δð Þ


 �

(28)

Rearranging the above equation, will give

πZd
tð Þ ¼ θλ1 μ01 � μ1

� 	 λ2 þ δ

δþ λ1ð Þ δþ 2λ2ð Þ
þ
λ1 λ2 þ δð Þ

δ δþ λ1ð Þ
μ1

� �

1

r

þ θλ1 μ01 � μ1
� 	 λ1 � λ2

λ1 � 2λ2

� �

� λ1 � λ2ð Þμ1

� �

1

δþ λ1

1

rþ δþ λ1

� θλ1
1

δþ 2λ2

λ2

λ1 � 2λ2
μ01 � μ1
� 	 1

rþ δþ 2λ2

� 2θλ1
1

δþ 2λ1
μ01 � μ1
� 	 1

rþ δþ 2λ1
�
λ2

δ
μ1

1

rþ δ

(29)
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Remark 1
If λ1 ¼ λ2 then Eq. (29) becomes

~πZd
rð Þ ¼ θλ μ01 � μ1

� 	 1

δþ 2λ

� �

þ
λ

δ
μ1

� �

1

r

�
1

δþ 2λ
θλ μ01 � μ1
� 	 1

rþ δþ 2λ
�
λ

δ
μ1

1

rþ δð Þ

¼
λ

δ
μ1

1

r
�

1

rþ δ

� 

þ θλ μ01 � μ1
� 	 1

δþ 2λ

� �

1

r
�

1

rþ δþ 2λ

� 

¼
λμ1

r rþ δð Þ
þ

λθ μ01 � μ1
� 	

r rþ δþ 2λð Þ
,

(30)

which is exactly the result of Bargès et al. [8].
The inverse of the Laplace transform in Eq. (29) will give

πZd
tð Þ ¼ θλ1 μ01 � μ1

� 	 λ2 þ δ

δþ λ1ð Þ δþ 2λ2ð Þ
þ
λ1λ2 þ λ1δ

δ δþ λ1ð Þ
μ1

� �

þ θλ1 μ01 � μ1
� 	 λ2

λ1 � 2λ2
þ 1

� �

þ λ2 � λ1ð Þμ1

� �

1

δþ λ1
e� δþλ1ð Þt

� θλ1
1

δþ 2λ2

λ2

λ1 � 2λ2
μ01 � μ1
� 	

e� δþ2λ2ð Þt

� 2θλ1
1

δþ 2λ1
μ01 � μ1
� 	

e� δþ2λ1ð Þt �
λ2

δ
μ1e

�δt

(31)

Remarks 2
If θ ¼ 0 and λ1 6¼ λ2 then

πZd
tð Þ ¼

λ1

δ

λ2 þ δ

δþ λ1

� �

�
λ2

δ
e�δt

� 

μ1 þ
λ2 � λ1

δþ λ1

� �

μ1e
� δþλ1ð Þt

¼ λ2
1� e�δt

δ

� �

μ1 þ λ1 � λ2ð Þ
1� e� δþλ1ð Þt

δþ λ1

� �

μ1

¼ λ2at δj þ λ1 � λ2ð Þat δþλ1j

� �

μ1

(32)

which is exactly the result of Léveillé et al. [15].
If λ1 ¼ λ2 and θ 6¼ 0 then

πZo
tð Þ ¼ θλ μ01 � μ1

� 	 1

δþ 2λ2ð Þ
þ

λ

δ
μ1

� �

� θλ
1

δþ 2λ
μ01 � μ1
� 	

e� δþ2λð Þt �
λ

δ
μ1e

�δt

¼
λ

δ
1� e�δt
� 	

μ1 þ θλ
1� e� δþ2λð Þt

δþ 2λ

� �

μ01 � μ1
� 	

(33)

which is exactly the result of Bargès et al. [8].
If λ1 ¼ λ2 and θ ¼ 0 then

πZo
tð Þ ¼

λ

δ
1� e�δt
� 	

μ1 ¼ λat δj μ1, (34)

which is exactly the result of Léveillé et al. [15].
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Corollary 3.2
The second moment of Zd tð Þ; t≥0f g is given by the following development:
The result in Theorem 3.1 when n ¼ 2 gives:

~π2Zd
rð Þ ¼

2λ1 λ1 � λ2ð Þ

r rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ

1

r
μ2 þ 2μ1~πZo

rð Þ

� �

þ
λ1

rþ 2δþ λ1ð Þ

rþ 2δð Þ rþ 2δþ 2λ2ð Þ

λ2 rþ 2δþ 2λ1ð Þ
þ 1

� �

~π2Z0
rð Þ,

(35)

From Bargès et al. [8], we have.

~πZo
rð Þ ¼

λ2 μ1
r rþ δð Þ

þ θ
λ2 μ01 � μ1
� 	

r rþ δþ 2λ2ð Þ
(36)

and

~π2Zo
rð Þ ¼

λ2μ2
r rþ 2δð Þ

þ θ
λ2 μ02 � μ2
� 	

r rþ 2δþ 2λ2ð Þ

þ
2λ22 μ

2
1

r rþ δð Þ rþ 2δð Þ
þ

2θλ22 μ1 μ01 � μ1
� 	

r rþ δþ 2λ2ð Þ rþ 2δð Þ
þ

2θλ22μ1 μ01 � μ1
� 	

r rþ 2δþ 2λ2ð Þ rþ δð Þ

þ
2θ2λ22 μ01 � μ1

� 	2

r rþ δþ 2λ2ð Þ rþ 2δþ 2λ2ð Þ

(37)

Substituting Eqs. (39) and (40) into Eq. (38), yields:

~π2Zd
rð Þ ¼

2λ1 λ1 � λ2ð Þ

r rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ

1

r
μ2 þ 2μ1

λ2 μ1
r rþ δð Þ

þ θ
λ2 μ01 � μ1
� 	

r rþ δþ 2λ2ð Þ

� �� �

þ
λ1

rþ 2δþ λ1ð Þ

rþ 2δð Þ rþ 2δþ 2λ2ð Þ

λ2 rþ 2δþ 2λ1ð Þ
þ 1

� �

�

λ2μ2
r rþ 2δð Þ

þ θ
λ2 μ02 � μ2
� 	

r rþ 2δþ 2λ2ð Þ

þ
2λ22 μ

2
1

r rþ δð Þ rþ 2δð Þ
þ

2θλ22 μ1 μ01 � μ1
� 	

r rþ δþ 2λ2ð Þ rþ 2δð Þ
þ

2θλ22μ1 μ01 � μ1
� 	

r rþ 2δþ 2λ2ð Þ rþ δð Þ

þ
2θ2λ22 μ01 � μ1

� 	2

r rþ δþ 2λ2ð Þ rþ 2δþ 2λ2ð Þ

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

,

(38)
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and rearranging Eq. (38), will give:

~π2Zd
rð Þ ¼

λ1μ2
r rþ 2δþ λ1ð Þ

þ
2λ1λ2μ21

r rþ δð Þ rþ 2δþ λ1ð Þ
þ

2θλ1λ2μ1 μ01 � μ1
� 	

r rþ δþ 2λ2ð Þ rþ 2δþ λ1ð Þ

þ θλ1 μ02 � μ2
� 	 rþ 2δð Þ

r rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ

þ 2θλ1λ2μ1 μ01 � μ1
� 	 rþ 2δð Þ

r rþ δð Þ rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ

þ 2θ2λ1λ2 μ01 � μ1
� 	2 rþ 2δð Þ

r rþ δþ 2λ2ð Þ rþ 2δþ λ1ð Þ rþ 2δþ 2λ1ð Þ
þ λ1λ2μ2

1

r rþ 2δð Þ rþ 2δþ λ1ð Þ

þ θλ1λ2 μ02 � μ2
� 	 1

r rþ 2δþ 2λ2ð Þ rþ 2δþ λ1ð Þ
þ 2λ1λ

2
2μ

2
1

1

r rþ δð Þ rþ 2δð Þ rþ 2δþ λ1ð Þ

þ 2θλ1λ
2
2μ1 μ01 � μ1
� 	 1

r rþ δþ 2λ2ð Þ rþ 2δð Þ rþ 2δþ λ1ð Þ

þ 2θλ22λ1μ1 μ01 � μ1
� 	 1

r rþ 2δþ 2λ2ð Þ rþ δð Þ rþ 2δþ λ1ð Þ

þ 2θ2λ22λ1 μ01 � μ1
� 	2 1

r rþ δþ 2λ2ð Þ rþ 2δþ 2λ2ð Þ rþ 2δþ λ1ð Þ
,

(39)

which can be simplified to

~π2Zd
rð Þ ¼

γ0

r
þ

γ1

rþ δ
þ

γ2

rþ 2δ
þ

γ3

rþ 2δþ λ1
þ

γ4

rþ δþ 2λ2
þ

γ5

rþ 2δþ 2λ1
þ

γ6

rþ 2δþ 2λ2
,

(40)

with,

γ0 ¼

λ1μ2

2δþ λ1ð Þ
þ

2λ1λ2μ21
δ 2δþ λ1ð Þ

þ
2θλ1λ2μ1 μ01 � μ1

� 	

2δþ λ1ð Þ δþ 2λ2ð Þ
þ

θδλ1 μ02 � μ2
� 	

2δþ λ1ð Þ δþ λ1ð Þ

þ
2θλ1λ2μ1 μ01 � μ1

� 	

2δþ λ1ð Þ δþ λ1ð Þ
þ

2δθ2λ1λ2 μ01 � μ1
� 	2

2δþ λ1ð Þ δþ λ1ð Þ δþ 2λ2ð Þ
þ

λ1λ2μ2

2δ 2δþ λ1ð Þ

þ
θλ1λ2 μ02 � μ2

� 	

2 δþ λ2ð Þ 2δþ λ1ð Þ
þ

λ1λ
2
2μ

2
1

δ2 2δþ λ1ð Þ
þ

θλ1λ
2
2μ1 μ01 � μ1
� 	

δ δþ 2λ2ð Þ 2δþ λ1ð Þ

þ
θλ1λ

2
2μ1 μ01 � μ1
� 	

δ δþ λ2ð Þ 2δþ λ1ð Þ
þ

θ2λ1λ
2
2 μ01 � μ1
� 	2

2 δþ 2λ2ð Þ δþ λ2ð Þ 2δþ λ1ð Þ

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(41)

γ1 ¼ �
2λ1λ2μ21
δ δþ λ1ð Þ

�
2θλ1λ2μ1 μ01 � μ1

� 	

δþ λ1ð Þ δþ 2λ1ð Þ
�

2λ1λ
2
2μ

2
1

δ2 δþ λ1ð Þ
�

2θλ1λ
2
2μ1 μ01 � μ1
� 	

δ δþ 2λ2ð Þ δþ λ1ð Þ

( )

(42)
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γ2 ¼ �
λ2μ2
2δ

þ
λ22μ

2
1

δ2
þ
θλ22μ1 μ01 � μ1

� 	

δ δ� 2λ2ð Þ

( )

(43)

γ3 ¼

�
λ1μ2

2δþ λ1
þ

2λ1λ2μ21
2δþ λ1ð Þ δþ λ1ð Þ

þ
2θλ1λ2μ1 μ01 � μ1

� 	

2δþ λ1ð Þ λ1 þ δ� 2λ2ð Þ
þ
θλ1 μ02 � μ2
� 	

2δþ λ1

�
2θλ1λ2μ1 μ01 � μ1

� 	

2δþ λ1ð Þ δþ λ1ð Þ
�

2θ2λ1λ2 μ01 � μ1
� 	2

2δþ λ1ð Þ λ1 þ δ� 2λ2ð Þ
þ

λ2μ2

2δþ λ1

þ
θλ1λ2 μ02 � μ2

� 	

2δþ λ1ð Þ λ1 � 2λ2ð Þ
�

2λ22μ
2
1

2δþ λ1ð Þ δþ λ1ð Þ
�

2θλ22μ1 μ01 � μ1
� 	

2δþ λ1ð Þ λ1 þ δ� 2λ2ð Þ

þ
2θλ1λ

2
2μ1 μ01 � μ1
� 	

2λ2 � λ1ð Þ δþ λ1ð Þ 2δþ λ1ð Þ
þ

2θ2λ1λ
2
2 μ01 � μ1
� 	2

2δþ λ1ð Þ λ1 þ δ� 2λ2ð Þ 2λ2 � λ1ð Þ

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(44)

γ4 ¼

�2θλ1λ2μ1 μ01 � μ1
� 	

δþ 2λ2ð Þ λ1 þ δ� 2λ2ð Þ
þ

2θ2λ1λ2 μ01 � μ1
� 	2

2λ2 � δð Þ

δþ 2λ2ð Þ λ1 þ δ� 2λ2ð Þ 2λ1 � 2λ2 þ δð Þ

�
2θλ1λ

2
2μ1 μ01 � μ1
� 	

δþ 2λ2ð Þ δ� 2λ2ð Þ λ1 þ δ� 2λ2ð Þ
�

2θ2λ1λ
2
2 μ01 � μ1
� 	2

δ δþ 2λ2ð Þ λ1 þ δ� 2λ2ð Þ

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

(45)

γ5 ¼ �
θλ1 μ02 � μ2
� 	

δþ λ1
þ
2θλ1λ2μ1 μ01 � μ1

� 	

δþ λ1ð Þ δþ 2λ1ð Þ
�

2θ2λ1λ2 μ01 � μ1
� 	2

δþ λ1ð Þ 2λ1 � δ� 2λ2ð Þ

( )

(46)

γ6 ¼ �
θλ1λ2 μ02 � μ2

� 	

2 δþ λ2ð Þ λ1 � 2λ2ð Þ
þ

θλ1λ
2
2μ1 μ01 � μ1
� 	

δþ λ2ð Þ δþ 2λ2ð Þ λ1 � 2λ2ð Þ
þ

θ2λ1λ
2
2 μ01 � μ1
� 	2

δ δþ λ2ð Þ λ1 � 2λ2ð Þ

(47)

Remark 2
When

λ1 ¼ λ2

~π2Zd
rð Þ ¼

2λ2μ2
r rþ δð Þ rþ 2δð Þ

þ
2θλ2μ1 μ01 � μ1

� 	

r rþ δþ 2λð Þ rþ 2δð Þ

þ
λμ2

r rþ 2δð Þ
þ

θλ μ02 � μ2
� 	

r rþ 2δþ 2λð Þ

2θλ2μ1 μ01 � μ1
� 	

r rþ δð Þ rþ 2δþ 2λð Þ
þ

2θ2λ2 μ01 � μ1
� 	2

r rþ δþ 2λð Þ rþ 2δþ 2λð Þ
,

(48)

which is exactly the result of Bargès et al. [8].
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The Laplace transform in Eq. (49), is a combination of terms of the form:

~g rð Þ ¼
1

r α1 þ rð Þ α2 þ rð Þ… αn þ rð Þ
, (49)

with g a function defined for all non-negative real numbers. As described in the
proof of Theorem 1.1 in Baeumer [16], each of these terms can be expressed as a
combinations of partial fraction such as ~g rð Þ ¼ γ0

1
r þ γ1

1
α1þr þ…þ γn

1
αnþr where.

γ0 ¼ 1
α1…αn

, for i ¼ 1,…, n, γi ¼ � 1
αi

Q

j¼1, j 6¼i
1

αj�αi
.

Since the inverse Laplace transform of 1
αiþr is e�αit, it is easy to invert ~g and

obtain

g tð Þ ¼ γ0 þ γ1e
�α1t þ γ2e

�α2t þ…þ γne
�αnt: (50)

Using Eq. (49) in Eq. (53), it results that

π2Zd
tð Þ ¼ γ0 þ γ1e

�δt þ γ2e
�2δt þ γ3e

� 2δþλ1ð Þt þ γ4e
� δþ2λ2ð Þt þ γ5e

� 2δþ2λ1ð Þt þ γ6e
� 2δþ2λ2ð Þt, t≥0,

(51)

where γið Þi∈ 0;1;2;…;6f g are given by equation Eq. (50).

Remarks
If θ ¼ 0 then

γθ¼0
0 ¼

λ1μ2
2δþ λ1

þ
2λ1λ2μ21

δ 2δþ λ1ð Þ
þ

λ1λ2μ2
2δ 2δþ λ1ð Þ

þ
λ1λ

2
2μ

2
1

δ2 2δþ λ1ð Þ

¼
λ1

2δþ λ1

2δþ λ2

2δ

� �

μ2 þ
λ1λ2

δ 2δþ λ1ð Þ

2δþ λ2

δ

� �

μ21

¼
λ1 2δþ λ2ð Þ

2δ 2δþ λ1ð Þ
μ2 þ

2λ2μ21
δ


 �

,

(52)

γθ¼0
1 ¼ �

2λ1λ2μ21
δ δþ λ1ð Þ

�
2λ1λ

2
2μ

2
1

δ2 δþ λ1ð Þ
¼ �

2λ1λ2μ21
δ δþ λ1ð Þ

1þ
λ2

δ

� �

, γθ¼0
2 ¼

λ22μ
2
1

δ2
�
λ2μ2

2δ
(53)

γθ¼0
3 ¼ �

λ1μ2

2δþ λ1
þ

2λ1λ2μ21
2δþ λ1ð Þ δþ λ1ð Þ

þ
λ2μ2

2δþ λ1
�

2λ22μ
2
1

2δþ λ1ð Þ δþ λ1ð Þ

¼
λ2 � λ1ð Þμ2
2δþ λ1

þ
2λ2 λ1 � λ2ð Þμ21
2δþ λ1ð Þ δþ λ1ð Þ

,

(54)

γθ¼0
4 ¼ γθ¼0

5 ¼ γθ¼0
6 : (55)

14

Probability, Combinatorics and Control



Then,

π2Zd
tð Þ ¼

λ1 2δþ λ2ð Þ

2δ 2δþ λ1ð Þ
μ2 þ

2λ2μ21
δ


 �

�
2λ1λ2μ21
δ δþ λ1ð Þ

1þ
λ2

δ

� �

e�δt

þ
λ22μ

2
1

δ2
�
λ2μ2
2δ

� �

e�2δt þ
1

2δþ λ1
λ2 � λ1ð Þμ2 þ

2λ2 λ1 � λ2ð Þμ21
2δþ λ1ð Þ δþ λ1ð Þ

� �

e� 2δþλ1ð Þt

¼
λ1 2δþ λ2ð Þ

2δ 2δþ λ1ð Þ
�

λ2

2δ
e�2δt þ

λ2 � λ1ð Þ

2δþ λ1
e� 2δþλ1ð Þt

� �

μ2

þ
λ2λ1 2δþ λ2ð Þ

δ2 2δþ λ1ð Þ
�

2λ1λ2
δ δþ λ1ð Þ

1þ
λ2

δ

� �

e�δt þ
λ22

δ2
e�2δt þ

2λ2 λ1 � λ2ð Þ

2δþ λ1ð Þ δþ λ1ð Þ
e� 2δþλ1ð Þt

� �

μ21

¼
λ1 2δþ λ2ð Þ

2δ 2δþ λ1ð Þ
�

λ2

2δ
1� 2δat 2δj

� 	

þ
λ2 � λ1ð Þ

2δþ λ1
1� 2δþ λ1ð Þat 2δþλ1j

� 	

� �

μ2

þ
λ2λ1 2δþ λ2ð Þ

δ2 2δþ λ1ð Þ
�

2λ1λ2
δ δþ λ1ð Þ

1þ
λ2

δ

� �

e�δt þ 2
λ22

δ2
e�2δt �

λ22

δ2
e�2δt

� �

μ21

þ
2λ2 λ1 � λ2ð Þ

δ δþ λ1ð Þ
�
2λ2 λ1 � λ2ð Þ

δ 2δþ λ1ð Þ


 �

μ21e
� 2δþλ1ð Þt

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� 	

μ2

þ
λ2λ1 2δþ λ2ð Þ

δ2 2δþ λ1ð Þ
�

2λ1λ2
δ δþ λ1ð Þ

1þ
λ2

δ

� �

e�δt þ 2
λ22

δ2
e�2δt �

λ22

δ2
1� 2δat 2δj

� 	

� �

μ21

þ
2λ2 λ1 � λ2ð Þ

δ δþ λ1ð Þ
e� 2δþλ1ð Þtμ21 �

2λ2 λ1 � λ2ð Þ 1� 2δþ λ1ð Þat 2δþλ1j

� 	

μ21

δ 2δþ λ1ð Þ

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� 	

μ2 þ
2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� 	

μ21

� eδt
2λ1λ2

δ δþ λ1ð Þ
1þ

λ2

δ

� �

� 2
λ22

δ2
e�δt þ

2λ2 λ1 � λ2ð Þ

δ δþ λ1ð Þ
e� δþλ1ð Þt


 �

(56)

π2Zd
tð Þ ¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� 	

μ2 þ
2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� 	

μ21

� eδt
2λ1λ2

δ δþ λ1ð Þ
1þ

λ2

δ

� �

� 2
λ22

δ2
e�δt þ

2λ2 λ1 � λ2ð Þ

δ δþ λ1ð Þ
e� δþλ1ð Þt


 �

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� 	

μ2 þ
2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� 	

μ21

� eδt
2λ1λ2

δ δþ λ1ð Þ
1þ

λ2

δ

� �

� 2
λ22

δ2
1� δat 2δj
� 	

þ
2λ2 λ1 � λ2ð Þ

δ δþ λ1ð Þ
1� δþ λ1ð Þat δþλ1j

� 	


 �

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� 	

μ2 þ
2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� 	

μ21

�
2λ2
δ

eδt λ2at δj þ λ1 � λ2ð Þat δþλ1j

� 	� �

¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� 	

μ2

þ
2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j � eδt λ2at δj þ λ1 � λ2ð Þat δþλ1j

� 	� �� 	

μ21:

(57)

To finally have:

π2Zd
tð Þ ¼ λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j

� 	

μ2

þ
2λ2
δ

λ2at 2δj þ λ1 � λ2ð Þat 2δþλ1j � eδt λ2at δj þ λ1 � λ2ð Þat δþλ1j

� 	� �� 	

μ21,
(58)
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which is exactly the result of Léveillé et al.[15].
If λ1 ¼ λ2 then

γ
λ1¼λ2
0 ¼

λμ2
2δ

þ
λ2μ21

δ2
þ

θλ2

δ δþ λð Þ
þ

θλ2

δ δþ 2λð Þ

� �

μ1 μ01 � μ1
� 	

þ
θλ μ02 � μ2
� 	

2 δþ λð Þ

þ
θ2λ2 μ01 � μ1

� 	2

δþ λð Þ δþ 2λð Þ
,

(59)

γ
λ1¼λ2
1 ¼ �

2λ2μ21
δ2

�
2θλ2μ1 μ01�μ1ð Þ

δ δþ2λð Þ , γλ1¼λ2
2 ¼ � λμ2

2δ þ
λ2μ21
δ2

þ
θλ2μ1 μ01�μ1ð Þ

δ δ�2λð Þ ,γλ1¼λ2
3 ¼ 0 (60)

γ
λ1¼λ2
4 ¼ �

2θλ2μ1 μ01 � μ1
� 	

δþ 2λð Þ δ� 2λð Þ
�
2θ2λ2 μ01 � μ1

� 	2

δ δþ 2λð Þ
, (61)

γ
λ1¼λ2
5 ¼ �

θλ μ02 � μ2
� 	

δþ λ
þ
2θλ2μ1 μ01 � μ1

� 	

δþ λð Þ δþ 2λð Þ
þ
2θ2λ2 μ01 � μ1

� 	2

δ δþ λð Þ
, (62)

γ
λ1¼λ2
6 ¼

θλ μ02 � μ2
� 	

2 δþ λð Þ
�

θλ2μ1 μ01 � μ1
� 	

δþ λð Þ δþ 2λð Þ
�
θ2λ2 μ01 � μ1

� 	2

δ δþ λð Þ
: (63)

Then,

π2Zd
tð Þ ¼ λμ2

1

δ
�
e�δt

2δ

� �

þ θλ μ02 � μ2
� 	 1

2λþ 2δ
�
e� 2λþ2δð Þt

2λþ 2δ

� �

þ 2λ2μ21
1

2δ2
�
e�δt

δ2
þ
e�2δt

2δ2

� �

þ 2θλ2μ1 μ01 � μ1
� 	 1

2δ 2λþ δð Þ
�

e� 2λþδð Þt

2λþ δð Þ �2λþ δð Þ
þ

e�2δt

2δ �2λþ δð Þ

� �

þ 2θλ2μ1 μ01 � μ1
� 	 1

δ 2λþ 2δð Þ
�

e�δt

δ 2λþ δð Þ
þ

e� 2λþ2δð Þt

2λþ 2δð Þ 2λþ δð Þ

� �

þ 2θ2λ2 μ01 � μ1
� 	2 1

2λþ δð Þ 2λþ 2δð Þ
�

e� 2λþδð Þt

δ 2λþ δð Þ
þ

e� 2λþ2δð Þt

δ 2λþ 2δð Þ

� �

(64)

which is exactly the result of Bargès et al. [8].
If λ1 ¼ λ2 and θ ¼ 0 then

π2Zo
tð Þ ¼ λat 2δj μ2 þ λat 2δj μ1

� 	2
, (65)

which is exactly the result of Léveillé et al. [15].
Remark 3.1
Noting for i ¼ 1, 2,…, m,j ¼ 1, 2,…, m, p ¼ 0, 1 and k∈N� 0f g

ηk i; j; pð Þ ¼

i

j

� �

θpλk E Xj
� �� 	1�p

E X0j
h i

� E Xj
� �

� �p

rþ p� 2λþ iδð Þk
: (66)
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We can rewrite ~πZo
rð Þ and ~π2Zo

rð Þ as

~πZo
rð Þ ¼

1

r
ηk 1; 1;0ð Þ þ ηk 1; 1; 1ð Þ½ �, (67)

~π2Zo
rð Þ ¼

1

r
ηk 2; 2;0ð Þ þ ηk 2; 2; 1ð Þ þ ηk 2; 1;0ð Þ þ ηk 2; 1; 1ð Þð Þ ηk 1; 1;0ð Þ þ ηk 1; 1; 1ð Þð Þ½ �

¼
1

r

ηk 2; 2;0ð Þ þ ηk 2; 2; 1ð Þ þ ηk 2; 1;0ð Þηk 1; 1;0ð Þ þ ηk 2; 1;0ð Þηk 1; 1; 1ð Þ

þ ηk 2; 1; 1ð Þηk 1; 1;0ð Þ þ ηk 2; 1; 1ð Þηk 1; 1; 1ð Þ

" #

(68)

The term ~πmZo
rð Þ can also be expressed using

~πmZo
rð Þ ¼

1

r

X

m

i¼1

i1; j1; p1
� 	

… in; jn; pn
� 	

∈℘m,nηk in; jn; pn
� 	

�…� ηk i1; j1; p1
� 	

, (69)

where

℘m,n ¼
i1; j1; p1
� 	

,…, in; jn; pn
� 	

: i1 ¼ m, i1 þ…þ in ¼ m� 1þ n, i1.…. in,

j1 ¼ m� 1þ n, j1 þ…þ jn ¼ m, j1.…. jn, p∈ 0; 1f g

( )

, (70)

and

~πmZd
rð Þ ¼

2λ1 λ1 � λ2ð Þ

r rþmδþ λ1ð Þ rþmδþ 2λ1ð Þ

1

r
μm þ

X

m�1

k¼1

Ck
mE Xk

1

� �

~π
m�kð Þ
Zo

rð Þ

 !

þ
λ1

rþmδþ λ1ð Þ

rþmδð Þ rþmδþ 2λ2ð Þ

λ2 rþmδþ 2λ1ð Þ
þ 1

� �

~πmZ0
rð Þ,

(71)

4. Application

4.1 First two moments

For the numerical illustration, suppose that X � pExp β1 ¼
1
80

� 	

þ

1� pð ÞExp β2 ¼
1

200

� 	

, the inter-claim time distribution parameters λ1 ¼ 2; 4 and

λ2 ¼ 1, the interest rate δ ¼ 3% (Tables 1–4). We use three different values for the

copula parameter θ ¼ �1;0; 1, p ¼ 1=3 and fix the time t ¼ 1; 10; 100. The mth
moment of X is

μm ¼ p m!
βm1

þ 1� pð Þ m!
βm2

and μ0m ¼
Ð

∞

0

mxm�1 1� FX xð Þð Þ2dx ¼ μm ¼ p m!
2β1ð Þm

þ

1� pð Þ m!
2β2ð Þm

. (72)

θ t ¼ 1 t ¼ 10 t ¼ 100

�1 482.3375 4450 16,428

0 438.1057 4407.1 16,385

1 393.874 4364.2 16,342

Table 1.
E Zd tð Þ½ � for λ1 ¼ 1, λ2 ¼ 10, δ ¼ 3%.
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4.2 Premium calculation

From the results in Section 4.1, we can compute the premium related to the risk
of an insurance portfolio represented by G tð Þ, depending on the premium calcula-
tion principles adopted by the insurance company. The loaded premium Zd tð Þ
consists in the sum of the pure premium E Zd tð Þ½ �, the expected value of the costs
related to the portfolio, and a loading for the risk M tð Þ as

G tð Þ ¼ E Zd tð Þ½ � þM tð Þ (73)

The loading for the risk differs according to the premium calculation principles.

4.2.1 The expected value principle

Denote by θ.0 the safety loading. The expected value principle defines the
loaded premium as:

G tð Þ ¼ E Zd tð Þ½ � þ θE Zd tð Þ½ �, (74)

where M tð Þ ¼ θE Zd tð Þ½ �.

4.2.2 The variance principle

Denote by θ.0 the safety loading. The variance principle defines the loaded
premium as:

θ t ¼ 1 t ¼ 10 t ¼ 100

�1 34027.1 29756.44 7954.606

0 24061.85 21053.72 5731.564

1 366.1484 1035.491 1545.671

Table 4.
Std Zd tð Þ½ � for λ1 ¼ 5, λ2 ¼ 10, δ ¼ 3%.

θ t ¼ 1 t ¼ 10 t ¼ 100

�1 33900.85 29646.71 7928.481

0 23972.65 20976.12 5711.548

1 359.8795 1036.223 1542.412

Table 3.
Std Zd tð Þ½ � for λ1 ¼ 1, λ2 ¼ 10, δ ¼ 3%.

θ t ¼ 1 t ¼ 10 t ¼ 100

�1 597.1633 4578.7 16,557

0 554.5237 4535.5 16,513

1 511.8841 4492.3 16,470

Table 2.
E Zd tð Þ½ � for λ1 ¼ 5, λ2 ¼ 10, δ ¼ 3%.
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G tð Þ ¼ E Zd tð Þ½ � þ θVar Zd tð Þ½ �, (75)

where M tð Þ ¼ θVar Zd tð Þ½ �.

4.2.3 The standard deviation principle

Denote by θ.0 the safety loading. The standard deviation principle defines the
loaded premium as:

G tð Þ ¼ E Zd tð Þ½ � þ θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Zd tð Þ½ �
p

, (76)

where M tð Þ ¼ θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Zd tð Þ½ �
p

.

4.2.4 The quantile principle

The standard deviation principle defines the loaded premium as:

G tð Þ ¼ F�1
Zd tð Þ 1� εð Þ, (77)

where ε is smallest (for example: ε ¼ 0:5%, 1%, 2:5%, 5%Þ.
In this case, the safety loading M tð Þ is given by

M tð Þ ¼ F�1
Zd tð Þ 1� εð Þ � E Zd tð Þ½ � (78)

The principles of standard deviation and variance only require partial informa-
tion on the distribution of the random variable, Zd tð Þ, i.e., its expectation and its
variance.

Often, the actuary only has this information for different reasons (time con-
straints, information …).

If the actuary has more information about the random variable, Zd tð Þ i.e., he
knows the form of FZd tð Þ, then he can apply the quantile principle.

But he does not know much about FZd tð Þ, then he can approximate the distribu-

tion of Zd tð Þ using the matching moments technique.

5. Conclusion

We have derived exact expressions for all the moments of the DCDPRV process
using renewal arguments, again disproving the popular belief that renewal tech-
niques cannot be applied in the presence of economic factors. Our results, for the
DCDPRV process, are consistent: (i) with the results of Léveillé et al. [15] for
θ ¼ 0, λ1 6¼ λ2 and for θ ¼ 0, λ1 ¼ λ2, (ii) with the results of Bargès et al. [8] for
θ 6¼ 0, λ1 ¼ λ2.

Within this framework, further research is needed to get exact expressions (or
approximations) of certain functional of the Zd tð Þ; t≥0f g process, as stop-loss pre-
miums and ruin probabilities.

Our models have applications in reinsurance, house insurance and car insurance.
They can also be used in evaluation of health programs, finance, and other areas.

For example, consider the case of a male currently aged 25 who is starting a
defined contribution (DC) pension plan and is planning to retire in, say, 40 years at
the age of 65. He anticipates that when he reaches that age he will convert his
accumulated pension fund into a life annuity in order to hedge his own longevity
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risk and avoid outliving his own financial resources. The value of his retirement
income will depend not only on the value of his pension fund, but also on the price
of annuities at the time. Other things being equal, this means that his retirement
income prospects will be affected by the distribution on future annuity value: the
greater the dispersion of that distribution, the riskier his retirement income will be.
For the assessment of the accumulated pension fund and its variability our models
can be used. We can suppose that this man makes a deposit to a bank account, and
that the time between successive deposits follows a renewal process and the force of
interest is stochastic. Our model allows us to calculate the accumulated pension
fund and its variability at the age of 65.

Another possible application is in reliability, to model the net present value of
aggregate equipment failures costs until its total breakdown. A piece of equipment
is deemed to be beyond repair when the repair time exceeds a predetermined gap.
Of course, another possible definition of total breakdown is when the cost of repair
exceeds a predetermined gap. But, since the cost of repair is defined per unit time,
the two definitions are somewhat equivalent.
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