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Chapter

Fatigue Limit Reliability Analysis
for Notched Material with Some
Kinds of Dense Inhomogeneities
Using Fracture Mechanics
Tatsujiro Miyazaki, Shigeru Hamada and Hiroshi Noguchi

Abstract

This study proposes a quantitative method for predicting fatigue limit reliability
of a notched metal containing inhomogeneities. Since the fatigue fracture origin of
the notched metal cannot be determined in advance because of stress
nonuniformity, randomly distributed particles, and scatter of a matrix, it is difficult
to predict the fatigue limit. The present method utilizes a stress-strength model
incorporating the “statistical hardness characteristics of a matrix under small
indentation loads” and the “statistical hardness characteristics required for
non-propagation of fatigue cracks from microstructural defects”. The notch root is
subdivided into small elements to eliminate the stress nonuniformity. The fatigue
limit reliability is predicted by unifying the survival rates of the elements obtained
by the stress-strength model according to the weakest link model. The method is
applied to notched specimens of aluminum cast alloy JIS AC4B-T6 containing
eutectic Si, Fe compounds and porosity. The fatigue strength reliability at
107 cycles, which corresponds to the fatigue limit reliability, is predicted.
The fatigue limits of notch root radius ρ = 2, 1, 0.3, and 0.1 mm are obtained by
rotating-bending fatigue tests. It is shown that the fatigue limits predicted by the
present method are in good agreement with the experimental ones.

Keywords: metal fatigue, fatigue limit reliability, notch effect,
aluminum cast alloy, inhomogeneity

1. Introduction

Aluminum cast alloys are widely applied, for example, in motor vehicles, ships,
aircraft, machines, and structures, owing to the high cast ability and high specific
strength [1–3]. They can be improved so as to meet specific mechanical properties
by tuning the casting method, the alloying elements, and the cooling and heat
treatment conditions [4–6]. Generally, precipitation hardening, also called age-
hardening, is used to strengthen the aluminum cast alloys, which brings the dense
precipitate of particles such as eutectic Si. The precipitations form fine microstruc-
tures such as dendrites, which significantly improve the mechanical properties.

1



However, the resultant stress concentrations by the precipitations further to fatigue
fracture unfortunately [7–9]. Moreover, the possibility of the fatigue fracture
increases more and more if microstructural flaws such as porosity are created in the
casting process [10–15]. Because the precipitate particles and the microstructural
defects are unique, the fatigue strength of the aluminum cast alloys is obliged to
treat statistically.

Statistical fatigue test methods [16, 17] are standardized to determine the reli-
ability of the fatigue strength. However, because they require many fatigue tests, it
is time-consuming to determine the fatigue strength reliability at 107 stress cycles.
Moreover, because the weakest region which controls the fatigue strength of the
specimen is not known, the present materials cannot be improved rationally.
Hence, a faster, rational method for quantitatively and nondestructively predicting
the effect of inhomogeneities on fatigue strength is necessary for safe and reliable
machine designs and for economical and quick material developments.

Several methods for predicting the fatigue strength at 107 stress cycles, which
are equivalent to the statistically determined fatigue limit of aluminum cast alloys,
have been proposed [18–24]. Through a series of stress analyses and fatigue exper-
iments, Murakami et al. [18–20] clarified the non-propagation limit of a fatigue
crack initiated by a microstructural defect and proposed a simple formula for
predicting the fatigue limit of a plain specimen containing defects [18–20]. The
non-propagation limit of a fatigue crack initiated by microstructural defect is
determined by the defect size and mechanical characteristics of the matrix near the
defect. The maximum defect, which is often estimated by extreme statistics, is
therefore assumed to be the origin of the fatigue fracture. Most of the methods are
based on the assumption that fatigue fracture begins at the maximum defects, and
they often do not consider the interference effects of inhomogeneities and the
scatter of the hardness of the matrix [25]. Because aluminum cast alloys have much
higher densities of inhomogeneities, it is presumed that the interference effect is
not negligible and the maximum inhomogeneity is not in the severest mechanical
state necessarily. Additionally, in the case of a notched specimen, the stress varies
significantly. The most severe mechanical defect should be used for prediction,
even if it is not maximal. Generally, the fatigue limit of a notched specimen of a
homogeneous metal in which microstructural defect is not the origin of the fatigue
fracture consists of the microcrack and macrocrack non-propagation limits [26–32].
This fact is widely used in predicting fatigue limit. However, since microstructural
defects act as crack initiation sites, the fatigue limit of an inhomogeneous metal also
cannot be predicted by these two types of crack non-propagation limits.

In this study, a quantitative method for predicting the fatigue limit reliability of
a notched metal containing inhomogeneous particles is proposed. The present
method is also based on the stress-strength model and is applied to notched speci-
mens of an Al-Si-Cu alloy (JIS AC4B). The inhomogeneous particle in the alloy
comprises eutectic Si and Fe compounds and porosity in the matrix. Rotating-
bending fatigue tests are performed on the notched specimens of AC4B-T6 by
changing notch root radius variously. The validity of the present method is
examined by comparing its numerical prediction with experimental results.

2. Crack non-propagation limits for predicting fatigue limit of notched
specimen

Generally, when fatigue tests are performed on a notched specimen by changing
the notch root radius ρ for a given notch depth t, the typical relationship between
the fatigue limit σw and ρ is as shown in Figure 1; here, σw0 is the fatigue limit of the
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plain specimen, σw1 is the microcrack non-propagation limit, σw2 is the macrocrack
non-propagation limit, and ρ0 is a material property known as the branch point, the
critical value of which determines whether the non-propagating crack exists along
the notch root [26, 27]. If the notch is sufficiently deep, ρ0 is constant [27].

If ρ>ρ0, σw1 is the fatigue limit [33]. σw1 can be predicted from the mechanical
characteristics of the microstructure. Conversely, if ρ≤ ρ0, σw2 is the fatigue limit
[33]. σw2 is constant and independent of ρ. This means that the σw2 is equal to the
fatigue limit of the cracked specimen as ρ ! 0. That is, the notch can be assumed to
be a crack and σw2 can be predicted by the fracture mechanics.

In the case of metals containing microstructural defects, the non-propagation
limit of the fatigue crack that originates from the microstructural defect may be the
fatigue limit. Because the defect is categorized as a macrocrack, the low macrocrack

Figure 1.
Schematic illustration of fatigue limit of a notched structure without defects.

Nomenclature

t notch depth

ρ notch root radius

ρ0 branch point

ρd limit notch root radius

σw fatigue limit of notched specimen

σw0 fatigue limit of plain specimen

σw1 microcrack non-propagation limit

σw2 long macrocrack non-propagation limit

σwd small macrocrack non-propagation limit
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non-propagation limit is differentiated from σw2. The threshold stress intensity
factor range ΔKth determines whether the fatigue crack originating from the
macrocrack is arrested. The value of ΔKth is an indication of the dependency of the
different crack lengths [20]. In this study, a crack for which ΔKth is constant
irrespective of its length, and which exhibits the small-scale yielding (SSY), is
defined as a long macrocrack. Conversely, a crack for which ΔKth is dependent on
the length, and which exhibits the large-scale yielding (LSY), is defined as a small
macrocrack [33, 34]. The three following types of crack non-propagation limits are
introduced and defined to predict the fatigue limit of a notched specimen of alumi-
num cast alloy [35]:

σw1 : This is the non-propagation limit of a microcrack that is initiated by repeated irreversible plastic

strains in a homogeneous notch stress field without microstructural and structural stress

concentrations

σwd : This is the non-propagation limit of a three-dimensional fatigue crack that originates from

microstructural defects such as nonmetallic inclusions and pits in a homogeneous notch stress

field without other microstructural and structural stress concentrations

σw2 : This is the non-propagation limit of structural long macrocracks such as deep notches with ρ < ρ0

Figure 2 is a schematic illustration of the relationships between ρ and each of
σw1, σwd, and σw2. Further, ρ0 and ρd are, respectively, the branch point and limit
notch root radius, which determines whether the fatigue limit is affected by the
microstructural defects. σw1 and σwd decrease as ρ decreases, whereas σw2 attains a
constant value and becomes independent of ρ. If ρ≥ ρd, σwd is equal to the fatigue
limit σw. If ρ0 < ρ < ρd, σw1 is equal to σw. If ρ≤ ρ0, σw1 and σwd are cut off by σw2, and
σw2 is equal to σw.

Figure 2.
Schematic illustration of fatigue limit of a notched structure with defects.
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Because the hardness is locally scattered and numerous defects are distributed
through the material, the microcrack and defect that determine the fatigue fracture
cannot be determined in advance. In this situation, the probabilities of the arrest of
the microcrack and the fatigue crack originating from the defect are, respectively,
determined by the statistical characteristics of the hardness and the statistical char-
acteristics of the defect. That is, σw1 and σwd are, respectively, described by proba-
bility distributions.

3. Method for predicting fatigue limit reliability of notched metal
containing inhomogeneous particles

Nomenclature

Aj size of jth surface element

A ∗
j size of jth region where the relative first principal stress corresponds to σ ∗

1, j

Anpc, Anpc R, Anpc P region required for the non-propagation of fatigue crack

ffiffiffiffiffiffiffiffiffiffiffiffi

areaP
p

size of surface defect

ffiffiffiffiffiffiffiffiffiffiffiffi

areaP
p

1 lower limit size of small surface crack

ffiffiffiffiffiffiffiffiffiffiffiffi

areaR
p

size of internal defect

F, FP, FR geometric correction factor

Fσw fatigue limit reliability of notched specimen

fHVM1, fHVMS, fHVMR,

fHVMP

HVM distribution

f χ2 χ2 distribution

gP, gR, gS limit hardness

γm stress relaxation effect

HV , HVM Vickers hardness

KIn, KIP, KIR stress intensity factor

Kt stress concentration factor

ΔKw threshold stress intensity factor range

ΔKwLL lower limit value of ΔKw

ΔKwUL upper limit value of ΔKw

MS0
ffiffiffiffiffiffiffiffiffiffiffiffi

areaP
p

0

� �

the number of surface cracks with
ffiffiffiffiffiffiffiffiffiffiffiffi

areaP
p

≥
ffiffiffiffiffiffiffiffiffiffiffiffi

areaP
p

0 in a unit area

MV0 R0ð Þ the number of particles with R≥R0 in a unit volume

Md types of inhomogeneous particles

NV0 the number of particles in a unit volume

nS the number of surface elements

nV the number of solid elements

P, PR indentation load

PV R0ð Þ existence probability of particles with R≥R0

Rc limit size of small interior crack

Sσw survival rate of notched specimen

Sσw1 survival rate of surface element with microcracks
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Sσwd , SσwdI ,SσwdS survival rate of solid element with microstructural defects

s2HVM
population of HVM distribution

V j size of jth solid element

λ, ν material constant

μHVM
mean of HVM distribution

σ1, σ1, j first principal stress

σ ∗
1 , σ

∗
1, j relative first principal stress

σym Tm;Zmð Þ,
σzm Tm;Zmð Þ

stress produced by the spherical particle in the infinite body under σz ¼ Zm and

σx ¼ σy ¼ σz ¼ Tm

σm mean stress

σn stress amplitude

χσ1 stress gradient of first principal stress

This section presents a method for predicting the fatigue limit reliability of a
notched specimen with stress concentration factor Kt, notch depth t, and notch root
radius ρ under zero mean stress. The control volume is actually divided into
surface and solid elements so that the stresses applied to the elements can be
assumed to be constant. The fatigue strengths of all the elements are then stochas-
tically evaluated by the stress-strength model on the mesoscale. The fatigue limit
reliability is also predicted by assembling the fatigue strengths using the weakest
link model [25].

3.1 Stress relaxation effect of interference of inhomogeneous particles

Figure 3 is a schematic illustration of the analytical model of a metal containing
inhomogeneous particles. The metal is approximated by a cubic lattice model to
determine the stress relaxation effect of the interference of the particles [36].

3.1.1 Statistical characteristics of inhomogeneous particles

The probability of existence of such particles is given by the following
equation [37]:

Figure 3.
Approximate model of metal with inhomogeneous particles.
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PV R0ð Þ ¼ exp � R0

λ

� �ν� �

: (1)

Here, ν and λ are material constants, R0 is the particle radius, and PV R0ð Þ is the
probability of the existence of particles with radii greater than R0.

The total number of particles in a unit volume is denoted by NV0. The average
number of particles with radii greater than R0 in a unit volume, MV0 R0ð Þ, is given
by the following equation [37]:

MV0 R0ð Þ ¼ NV0 � PV R0ð Þ: (2)

A particle cross-sectioned by the specimen surface is projected onto a plane
perpendicular to the first principal stress. The projected area is then modified as
shown in Figure 4 by considering the mechanics. The modified area is denoted by
areaP. The average number of cross-sectioned particles with areas larger than
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

0 in a unit area, MS0
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

0

� �

, is given by the following equation [12, 24]:

MS0
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

0

� �

¼ λ NV0

ð1

0

t
ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p Γ 1þ 1

ν
;

ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

0

λ θ�

� �ν� ��

þΓ 1þ 1

ν
;

ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

0

λ θþ

� �ν� ��

dt, (3)

θþ ¼ π

2
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p

, (4)

θ� ¼ sin �1t� t
ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p

: (5)

Here, Γ is a gamma function of the second kind.

3.1.2 Average radius and distance

The average particle radius is evaluated by the following equation:

Rm ¼
ð∞

0
R
dPV

R
dR ¼ λ Γ 1þ 1

ν

� �

: (6)

IfNV0 particles are regularly arranged in a unit volume as shown in Figure 3, the
average distance between the particles is evaluated by the following equation:

Figure 4.
Spheroidal particle cut by surface.
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pm ¼ 1

NV0

� �1=3

(7)

3.1.3 Stress relaxation effect

Nisitani [38] proposed a method for approximately solving the interference
problem of notches by superposing simple basic solutions to satisfy the equilibrium
conditions at the stress concentration point.

When the uniform tensile stress at infinity, σz∞ ¼ 1, is applied to an infinite
body, it is supposed that a stress field composed of σz ¼ Zm and σx ¼ σy ¼ σz ¼ Tm

is formed around the particle. Tm and Zm are set to satisfy the equilibrium condition
at point (0, 0, Rm). Because the stress acting on a single particle in the z-direction,
Tm þ Zm, is composed of σz∞ ¼ 1 and the stresses due to the other particles, the
stress equilibrium condition in the z-direction is as follows:

Tm þ Zm ¼ 1þ
X X

i; j; kð Þ 6¼ 0;0;0ð Þ
i, j, k ¼ �∞

∞
X

σzm Tm;Zmð Þjxi, j,k ¼ �ipm
yi, j,k ¼ �jpm

zi, j,k ¼ Rm � kpm

: (8)

Here, σzm Tm;Zmð Þ is the stress in the z-direction at (0, 0, Rm) produced by the
spherical particle located at (ipm, jpm, kpm) in the infinite body under σz ¼ Zm and
σx ¼ σy ¼ σz ¼ Tm.

The stress equilibrium condition in the y-direction is also given by

Tm ¼
X X

i; j; kð Þ 6¼ 0;0;0ð Þ
i, j, k ¼ �∞

∞
X

σym Tm;Zmð Þ
	

	

xi, j,k ¼ �ipm
yi, j,k ¼ �jpm

zi, j,k ¼ Rm � kpm

: (9)

Here, σym Tm;Zmð Þ is the stress in the y-direction at (0, 0, Rm) produced by the
spherical particle located at (ipm, jpm, kpm) in the infinite body under σz ¼ Zm and
σx ¼ σy ¼ σz ¼ Tm.

Tm and Zm are obtained by solving the simultaneous linear Eqs. (8) and (9). In
this study, the stress relaxation effect γm of the interference of the particles is
assumed to be

γm ¼ Tm þ Zm: (10)

3.1.4 Characteristics of elastic stress field near notch root

If the notch is sufficiently deep, a unique stress field determined by the maxi-
mum stress and ρ is formed near the notch root [27]. The first principal stress
normalized by the maximum stress at the notch root is denoted by σ ∗

1 . Figure 5
shows a contour map of σ ∗

1 ¼ 0:4; 1½ � near the notch root in a semi-infinite plate
under tensile stress [35]. The value of σ ∗

1 is independent of the notch shape [27]. If
the notch root is divided as shown in Figure 5, the length of the notch edge and size
of j-th region in which the relative first principal stress is σ ∗

1, j are denoted by l ∗j and

A ∗
j ( j ¼ 1,⋯), respectively. The values of l ∗j and A ∗

j are given in Table 1 [35].

To predict the fatigue limit reliability, the control volume is set at the notch root
and divided into surface and solid elements. The sizes of the solid and surface

8
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elements are denoted by V j and Aj ( j ¼ 1,⋯), respectively. In the case of a typical
notch, as in the notched specimen, the control volume can be divided as shown in
Figure 5. For example, when a circular bar with a circumferential notch is divided,
V j and Aj are approximated as follows [35]:

V j ffi A ∗
j � average diameter of j th regionð Þ � π, (11)

Aj ffi l ∗j � average diameter of j th regionð Þ � π: (12)

3.2 Fatigue survival rate of surface element containing microcracks

3.2.1 Statistical characteristics of Vickers hardness

The authors proposed a virtual small cell model for predicting the statistical
characteristics of the Vickers hardness in a small region [25, 35]. If the population of
the virtual small cells is described by an arbitrary distribution of the mean μ and
variance s2, the statistical characteristics of the Vickers hardness can be described by
the normal distribution of the mean μ and the variance s2=nc, based on the central
limit theory, where nc is the number of virtual small cells in the indentation area.

If m1 Vickers hardness values are measured in this way using an indentation
load P, their statistical characteristics are described by the following normal
distribution [25, 35]:

Figure 5.
Contour map of relative first principal stress σ ∗

1 ¼ 0:4; 1½ � near the notch root.

j 1 2 3 4 5 6

σ ∗
1, j 1–0.95 0.95–0.9 0.9–0.8 0.8–0.7 0.7–0.6 0.6–0.5

l ∗j =ρ 0.463 0.216 0.361 0.358 0.402 0.496

A ∗
j =ρ 0.0083 0.0181 0.0703 0.144 0.296 0.657

Table 1.
Area of isostress near the notch root.
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fHVM1 HVMð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πs2HVM1

q exp � HVM � μHVM1

� �2

2s2HVM1

( )

: (13)

Here, HVM is the Vickers hardness of the matrix that does not contain micro-
structural defects, μHVM1 is the sample mean, and s2HVM1 is the sample variance.

Based on the central limit theorem, the relationship between the sample mean
μHVM1 and the population mean μHVM0 is μHVM1 ¼ μHVM0. Further, the relationship

between the sample variance s2HVM1 and the population variance s2HVM0 is described by

the χ2 distribution with the freedom degree of n ¼ m1 � 1 [25, 35]:

f χ2 χ2
� �

¼ 1

2Γ n=2ð Þ
χ2

2

� �
n
2�1

exp � χ2

2

� �

(14)

Γ tð Þ ¼
ð∞

0
xt�1e�xdx, χ2 ¼ m1

s2HVM1

s2HVM0

(15)

3.2.2 Fatigue survival rate of surface element containing microcracks

The microcrack non-propagation limit σw0 is determined by the average charac-
teristics of the material properties around the microcrack. σw0 can be empirically
predicted by the following equations [20, 26]:

σw0jσm¼0 ¼ 1:6 HVM, (16)

σw1jσm¼0 ¼
σw0jσm¼0

Kt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4:5ε0jσm¼0=ρ
q ¼ f HVM; ρ; σm ¼ 0;Ktð Þ: (17)

(σw0, σw1, and σm are in MPa, HVM is in kgf/mm2, and ρ and ε0 are in mm.)
If the stress relaxation effect γm is considered, γm σ1, j is applied to j-th surface

element. Because fatigue fracture occurs when γm σ1, j=Kt is greater than σw1, the

limit hardness gS σ1, j
� �

that determines the occurrence is given by the following
equation:

gS ¼ f�1 HVM; ρ; σm ¼ 0;Ktð Þ
	

	

σw1¼γm σ1, j=Kt
: (18)

Here, f�1 is a function obtained by solving Eq. (18) on HVM.
It is supposed that Anpc S exhibits the microcrack non-propagation limit charac-

teristics in Eqs. (16) and (17). If HVM of the matrix is greater than gS in Anpc S,
fatigue fracture will not occur in Anpc S. Therefore, the probability Sσw10, j that
fatigue fracture does not occur in Anpc S below σ1, j is given by [25, 35]

Sσw10, j ¼
ð∞

gS

fHVMS hvmð Þdhvm: (19)

Here, fHVMS is the normal distribution of μHVMS and s2HVMS.

The fatigue survival rate Sσw1, j of jth surface element containing microcracks is
given by the following equation [25, 35]:

Sσw1, j ¼
ð∞

0
f χ2 � Sσw10, j

� �

Aj
Anpc Sdχ2: (20)
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If fatigue fracture does not occur in all the surface elements, the notched speci-
men would not be broken by the microcrack. Therefore, the fatigue survival rate of
a surface element containing microcracks, Sσw1 , is obtained by multiplying the
fatigue survival rates of all the surface elements as follows [25, 35]:

Sσw1 ¼
Y

nS

j¼1

Sσw1, j: (21)

Here, nS is the number of surface elements.

3.3 Fatigue survival rate of surface element containing microstructural defects

The authors [25] proposed a method for predicting the reliability of the small
macrocrack non-propagation limit for a nonzero stress gradient using the “statisti-
cal hardness characteristics of a matrix under small indentation loads” and the
“statistical hardness characteristics required for non-propagation of fatigue cracks
originating from microstructural defects in a material” [25]. The stress relaxation
effect was introduced into the method to make it applicable to a metal containing
dense inhomogeneous particles.

σwd is divided into two crack non-propagation limits, namely, the non-
propagation limit σwdI of the small crack originating from the interior defect and the
non-propagation limit σwdS of the small crack originating from the surface defect.

3.3.1 Fatigue survival rate of solid element containing interior microstructural defects

Because the fatigue crack that originates from a defect propagates on the plane
perpendicular to the first principal radial stress, a spherical particle of radius R is
projected onto this plane and assumed to be a penny-shaped crack. If the projected
area is denoted by areaR, its square root is related to R as follows:

ffiffiffiffiffiffiffiffiffiffiffiffi

areaR
p ¼

ffiffiffi

π
p

R: (22)

The stress intensity factor KIR of the small interior crack is given by [20, 35]

KIR ¼ 0:5 FR γm σ1, j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
ffiffiffiffiffiffiffiffiffiffiffiffi

areaR
pq

, (23)

FR ¼ 4

π5=4
1� 2

ffiffiffi

π
p � 4

3 π

� �
ffiffiffiffiffiffiffiffiffiffiffiffi

areaR
p

ρ

� �

: (24)

Moreover, the threshold stress intensity factor range ΔKw of the small surface
defect of size

ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

in the metal with Vickers hardness HVM is given by the
following equation [33, 34]:

ΔKwjσm¼0 ¼ 2αβ
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p 1=3

ln 2β=HVM þ 1ð Þ , (25)

α ¼ 3:3� 10�3and β ¼ 120.
(ΔKw is in MPa

ffiffiffiffiffi

m
p

, HVM is in kgf/mm2, and
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

is in μm).
The limit hardness that determines whether the fatigue crack originating from

the interior microstructural crack is arrested, gR σ1, j;
ffiffiffiffiffiffiffiffiffiffiffiffi

areaR
p� �

, is given based on the
relationship

ffiffiffiffiffiffiffiffiffiffiffiffi

areaR
p ¼ 1:7

ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

by the following equation [25, 35]:
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gR ¼ 240= exp
1:56� 240

FRγm σ1, j
ffiffiffiffiffiffiffiffiffiffiffiffi

areaR
p 1=6

 !

� 1

( )

(26)

(σ1, j is in MPa, gR is in kgf/mm2, and
ffiffiffiffiffiffiffiffiffiffiffiffi

areaR
p

is in μm.)
The relationship between μHVMR and μHVM0 can be expressed as follows [25, 35]:

μHVMR ¼ μHVM0 ¼ μHVM1: (27)

Moreover, the relationship between s2HVMR and s2HVM0 can be expressed as follows

[25, 35]:

Anpc R � s2HVMR ¼ AHVM0 � s2HVM0: (28)

Here, AHVM0 ¼ P=μHVM0, Anpc R ¼ PR=gR, and PR are the loads used to create the
indentation for obtaining the Vickers hardness gR and the indentation area Anpc R.

The fatigue survival rate of j-th solid element containing interior defects, S mð Þ
σwdI, j

,

is given by the following equation [25, 35]:

S
mð Þ
σwdI, j

¼
ð∞

0
f χ2 exp �

ðRc

∞

ðgR

0
p

mð Þ
dI

dM
mð Þ
V, j

dR
fHVMRdhvm

 !

dR

( )

dχ2: (29)

If the fatigue fracture does not occur in all the solid elements, the notched speci-
men would not be broken by the small interior defect. Therefore, the fatigue survival

rate S mð Þ
σwdI

of a solid element containing interior microstructural defects is obtained by

multiplying the fatigue survival rates of all the solid elements as follows [25, 35]:

S mð Þ
σwdI

¼
Y

nV

j¼1

S
mð Þ
σwdI, j

: (30)

Here, nV is the number of solid elements.

3.3.2 Fatigue survival rate of surface element containing surface microstructural cracks

The stress intensity factor KIP of a small surface crack of size
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

is given by
the following equation [20, 35]:

KIP ¼ 0:65 FR γm σ1, j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
ffiffiffiffiffiffiffiffiffiffiffi

areaP
pq

, (31)

FP ¼ 0:968� 1:021

ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

ρ
: (32)

Further, the limit hardness gP σ1, j;
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p� �

that determines whether the small
surface crack is arrested is given by the following equation [25, 35]:

gP ¼ 240= exp
1:43� 240

FR γm σ1, j
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p 1=6

 !

� 1

( )

: (33)

(σ1, j is in MPa, gP is in kgf/mm2, and
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

is in μm.)
The fatigue survival rate of j-th surface element containing surface microstruc-

tural cracks, S
mð Þ
σwdS, j

, is given by
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S
mð Þ
σwdS, j

¼
ð∞

0
f χ2 exp �

ð

ffiffiffiffiffiffiffiffi

areaP
p

c

∞

ðgP

0
p

mð Þ
dS

dM
mð Þ
S, j

d
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p fHVMPdhvm

 !

d
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

( )

dχ2 (34)

The fatigue survival rate S mð Þ
σwdS

of a surface element containing surface micro-

structural cracks is obtained by multiplying the fatigue survival rates of all the
surface elements as follows [25, 35]:

S mð Þ
σwdS

¼
Y

nS

j¼1

S
mð Þ
σwdS, j

: (35)

3.3.3 Fatigue survival rate of element with microstructural defects

The fatigue survival rate S mð Þ
σwd

of an element containing microstructural defects is

obtained by multiplying S mð Þ
σwdI

and S mð Þ
σwdS

as follows [25, 35]:

S mð Þ
σwd

¼ S mð Þ
σwdI

� S mð Þ
σwdS

: (36)

Because the material contains Md types of inhomogeneous particles, the fatigue
survival rate Sσwd is given by the following equation:

Sσwd ¼
Y

Md

m¼1

S mð Þ
σwd

: (37)

3.4 Prediction of long macrocrack non-propagation limit σw2

σw2 of the notched specimen with ρ≤ ρ0 is equal to the fatigue limit of the
cracked specimen obtained by ρ ! 0. ΔKwUL is the upper limit of ΔKw and is
constant regardless of the crack length. σw2jσm¼0 can be obtained as follows [35]:

σw2jσm¼0 ¼
ΔKwULjσm¼0

2F
ffiffiffiffiffi

πt
p : (38)

3.5 Prediction of fatigue limit reliability

The probability that fatigue fracture is caused by microcracks or microstructural
defects is obtained by the complementary event defined by the product of Sσw1 and
Sσwd . Because the fatigue limit of a notched specimen, σw cannot be lower than σw2,
and its fatigue limit reliability Fσw is obtained as follows [35]:

Fσw ¼
0 σw ≤ σw2ð Þ

1� Sσw1 � Sσwd σw>σw2ð Þ

�

(39)

4. Fatigue experiment

4.1 Material, shape of specimen, and experimental procedure

The material used for the experiment was Al-Si-Cu alloy (JIS AC4B). The age-
hardened aluminum cast alloy is identified as AC4B-T6. Table 2 shows its mechan-
ical properties.
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Figure 6 shows the configurations of the specimens. The notch depth t and
opening angle θ were set at 0.5 mm and 60°, respectively. The notch root radii ρ
were set at 2, 1, 0.3, and 0.1 mm, respectively. All the specimens were machined;
polished with fine emery paper, alumina (3 μm), and diamond paste (1 μm); and
also chemically polished. Rotating-bending fatigue tests were carried out according
to JIS Z2274 and the earlier studies [27–31] under stress amplitude σa ¼ 60–110 MPa
and frequency f ¼ 50 Hz. An Ono-type rotating-bending fatigue machine of a
capacity 15 Nm was used for the tests. The nominal stress σn used for the analyses of
the experimental results was the stress at the minimum cross section, where the
diameter d was 5 mm. The fatigue life Nf was defined as the total number of stress

cycles to failure.

4.2 Experimental results

Figure 7 shows S-N curves obtained from the results of the tests. Figure 8 shows
optical micrographs of a specimen when ρ = 0.1 mm for σw = 90 MPa. Fatigue limit
σw ¼ 105 when ρ ¼ 2 mm. σw = 95 when ρ ¼ 1 and 0:3 mm. σw = 90 when
ρ = 0.1 mm. Since the non-propagating macrocrack was not observed at the fatigue

E σ0:2 σB δ HV HVM

9.8 N, 30 sec 29.4 mN, 30 sec

74 292 349 1.5 152 92

E: Young’s modulus (GPa) σ0:2 : 0.2% proof stress (MPa)

σB : ultimate tensile strength (MPa) δ: elongation (%)

HV : Vickers hardness of matrix with inhomogeneous particles (kgf/mm2)

HVM: Vickers hardness of matrix without inhomogeneous particles (kgf/mm2)

Table 2.
Mechanical properties.

Figure 6.
Specimen configuration.
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limit when ρ ¼ 1 and 2 mm, it can be said that the microcrack non-propagating limit
σw1 or the small macrocrack non-propagating limit σwd appears as the fatigue limit.
When ρ = 0.1 mm for σw = 90 MPa and ρ = 0.3 mm for σw = 95 MPa, the non-
propagating macrocracks were observed along the notch root. Therefore, the long
macrocrack non-propagating limit σw2 = 90 MPa.

5. Examination of validity of prediction method

5.1 Notch sensitivity to crack initiation limit in age-hardened aluminum alloy

Figure 9 shows the relationship between Ktσw1=σw0 and ρ using early fatigue
data of previous studies [28–30]. ε0 values of the curves are shown in Figure 10.
When ε0 values were approximated with the lines by the least squares method, the
following equation was obtained:

Figure 7.
S�N curve.

Figure 8.
Optical micrograph of non-propagating crack under notch root.
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ε0jσm¼0 ¼ 5:0� 10�4 HB � 0:0164, (40)

ρ≥0:5, 97≤HB ≤ 207:

(ε0 and ρ are in mm, and HB is in kgf/mm2.)
Once σw1 has been predicted, HVM can be used instead of HB.

Figure 9.
Relation between Ktσw1=σw0 and 1=ρ.

Figure 10.
Relation between ε0 and HB.
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5.2 ΔKwUL of age-hardened aluminum alloy

Figure 11 shows the values of ΔKwUL obtained from the early fatigue data of σw2
for different Al-Si-X alloys, where X is a transition element [28, 29, 31]. An
approximation of ΔKwUL obtained from the lines by the least squares method was
used to derive the following equation:

ΔKwULjσm¼0 ¼ ΔKwLL þ 0:03 HB, (41)

40≤HB ≤ 100:

(ΔKwUL and ΔKwLL are in MPa
ffiffiffiffiffi

m
p

, and HBis in kgf/mm2.)
Here, ΔKwLL is the lower limit of ΔKw and ΔKwLL = 0.5 MPa

ffiffiffiffiffi

m
p

for the Al-Si-X
alloys.

5.3 Evaluation of statistical characteristics of inhomogeneous particles

The present aluminum cast alloy AC4B-T6 contains three main types of
inhomogeneous particles, namely, eutectic Si and Fe compounds and porosity.
Surrounding an irregular cross section with a smooth convex curve as shown in
Figure 12, the area is defined as areaA. The values of r are obtained from areaA
by the following equation [12, 37]:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

areaA
p

ffiffiffi

π
p : (42)

Figure 13 shows the measured MA0 values of eutectic Si and Fe compounds and
porosity. The relationship between MV0 and MA0 is as follows [12, 37]:

Figure 11.
Relation between ΔKwUL and HB.
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MA0 r0ð Þ ¼ 2

ðr0

∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2
p dMV0

dR
dR: (43)

Here, MA0 r0ð Þ is the number of cross-sectional particles in a unit area for which
r≥ r0 on a unit area. Considering the assumption that MV0 R0ð Þ is given by Eqs. (1)
and (2), the asymptotic characteristics of Eq. (42) are expressed by the following
equation [12, 37]:

MA0 r0ð Þ ffi
ffiffiffiffiffi

2π

ν

r

λ
r0
λ


 �1�ν
2
NV0 exp � r0

λ


 �νn o

: (44)

The line of Eq. (44) is drawn to best fit the MA0 values obtained by Eq. (43) to

determine the values of NV0, ν, and λ.
Figure 14 shows the values of MV0 for porosity, Fe compounds, and eutectic

Si. Figure 15 shows the values of MS0 for the porosity, Fe compounds, and
eutectic Si.

Figure 12.
Definition of areaA.

Figure 13.
MA0 of porosity and eutectic Si and Fe compounds.
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5.4 Evaluation of statistical characteristics of Vickers hardness of matrix
without inhomogeneous particles

In this study, the Vickers hardness was measured at the position of 2.5–3.0 mm
from the center on the circular cross section obtained by cutting the specimen grip
under indentation load P ¼ 29:4 mN in consideration with the stress distribution at

Figure 14.
Relation between MV0 and R.

Figure 15.
Relation between MS0 and

ffiffiffiffiffiffiffiffiffiffiffiffi

areaP
p

.
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the notch root. Figure 16 shows the results plotted on a normal probability paper.
The sample mean μHVM1 and sample variance s2HVM1 were 91.8 kgf/mm2 and

486.0 (kgf/mm2)2, respectively.

5.5 Evaluation of γm value

Because the values of Rm=pm for the eutectic Si were much greater than those of
the Fe compounds and porosity, as shown in Table 3, γm was calculated using only
the eutectic Si. The eutectic Si was assumed to be a rigid body [7], and the following
values were used for the calculation: EM = 68 GPa, EI = 105 GPa, and νM = νI = 0.3
[35]. Using Rm=pm = 0.192, γm was determined to be 1.055.

5.6 Evaluation of Anpc S, Anpc R, and Anpc P values

5.6.1 Evaluation of Anpc S value

Because a microcrack often grows radially, it is approximated by the
semielliptical crack shown in Figure 17.

Anpc S in Eq. (20) can also be roughly evaluated. The approximation of the
microcrack by the semielliptical macrocrack is such that the crack non-propagation

Figure 16.
Evaluation of Vickers hardness of matrix from normal probability paper.

Inhomogeneous particle NV0 [1/mm3] ν λ [μm] Rm [μm] pm [μm]

Eutectic Si 8.73 � 106 1.6 1.04 0.932 4.86

Fe compound 2.20 � 107 0.5 0.10 0.200 3.57

Porosity (R≥ 105μm) 1.20 � 102 0.3 0.180 0.167 21.5

(R < 105μm) 1.00 � 105 0.3 0.0180

Table 3.
Parameters of particle size distribution.
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limits are equal. If the macrocrack is located near the notch root of radius ρ and it is
sufficiently small, its non-propagation limit σwdS is given by the following equation:

σwdS ¼
1:43 HVM þ 120ð Þ
FP

ffiffiffiffiffiffiffiffiffiffiffi

areaP
p 1=6

, (45)

FP ¼ 0:968� 1:021� 10�3

ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

ρ
: (46)

(σwdS is in MPa, HVM is in kgf/mm2,
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

is in μm, and ρ is in mm.)
Conversely, when the macrocrack is sufficiently large, ΔKw is greater than

ΔKwUL. The macrocrack is thus treated as being large, and its non-propagation limit
is categorized as σw2, which is given by the following equation:

σw2 ¼
13:0 HVM þ 16:7ð Þ

FP
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p 1=2

: (47)

(σw2 is in MPa, HVM is in kgf/mm2, and
ffiffiffiffiffiffiffiffiffiffiffi

areaP
p

: in μm.)
FP is approximated to be 1. Because the average Vickers hardness of the matrix of

the present AC4B-T6 is about 91.8 kgf/mm2, the microcrack non-propagation limit
σw0 was estimated to be 160MPa using Eq. (17). The non-propagating crack length of
the present AC4B-T6 for ρ = 20 mm was about 60 μm when σn = 120 MPa. From
these experimental results, the lnpc 0 of the present study was assumed to be 70 μm.

lnpc was set to achieve b=l = 0.4. Using c = 2.5 mm, lnpc 0 = 70 μm is equivalent to
ffiffiffiffiffiffiffiffiffi

area
p

npc 0 of 39.2 μm. Figure 18 shows the relationship between lnpc and 1=ρ.

5.6.2 Evaluation of Anpc R and Anpc P values

Anpc R is a function of PR and gR; Anpc P is a function of PP and gP. Because gR and
gP can be calculated using Eqs. (26) and (33), respectively, only PR and PP need to

Figure 17.
Schematic illustration of the microcrack.
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be further examined. In this study, it is assumed that PP = 0.3 kgf. Considering the
difficulty in evaluating PR, it is also assumed that PR ¼ PP.

5.7 Comparison and examination of predicted and experimental results

The fatigue limit reliability of the notched specimen shown in Figure 6 was
predicted by the present method. The region in which the first principal stress is
within the range of σ ∗

1 ¼ σ1=σmax = [0.95, 1] at the center of the specimen was
adopted as the control volume. In this case, the region was ring-like.

When HB = 152 kgf/mm2 is used, the ΔKwUL = 5.06 MPa
ffiffiffiffiffi

m
p

is predicted from
Eq. (41). Because the value of ξ for the present specimen is 0.167 (i.e., using
d = 5 mm and t = 0.5 mm, as in Section 4.1), F is 0.754 [39]. In this case, the
predicted value of σw2 is 84.7 MPa. Considering that the experimentally determined
value of σw2 is 90 MPa, the prediction is confirmed to be good.

Figure 19 shows the fatigue limit reliability Fσw . The thick solid line represents
the case of ρ = 2 mm, whereas the thin solid line represents the case of ρ = 0.3 mm.
The value of Fσw for ρ = 0.3 mm suddenly changes from 0 to 1 when σw = 84.7 MPa,
which is due to σw1 and σwd being cut off by σw2. In other words, the inhomogeneous
particles have almost no effect on the fatigue limit reliability in terms of initiating a
fatigue crack. Instead, the eutectic Si actually strengthens the matrix.

Figure 20 shows the relationship between σw and 1=ρ. The solid line represents
50% reliability, the broken line represents 90% reliability, the single-dotted chain
line represents 99% reliability, and the open marks represent the experimental
results. Because the fatigue limit obtained by the ordinary fatigue test is equivalent
to 50% fatigue limit reliability, the solid line agrees well with the open marks. The
little differences between the open marks of ρ = 0.3 and 0.1 mm and the solid line
can be attributed to the fact that ΔKwUL of the present AC4B-T6 was unknown and

Figure 18.
Relation between lnpc and 1=ρ.
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the corresponding value for the of Al-Si-X alloy was used for predicting σw2. It is
expected that an even better prediction accuracy would be achieved by using the
true ΔKwUL: Nevertheless, σw was well predicted, which validated the proposed
method for notched AC4B-T6 specimens.

Figure 19.
Fatigue limit reliability Fσw .

Figure 20.
Relation between σw and 1=ρ.
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6. Conclusions

This study proposed a nondestructive method for predicting the fatigue limit
reliability of notched specimens of a metal containing inhomogeneous particles
densely. The method was applied to aluminum cast alloy JIS-AC4B-T6. Rotating-
bending fatigue tests were performed on the notched specimens of AC4B-T6 with
notch root radius ρ = 2, 1, 0.3, and 0.1 in order to examine the validity of the present
method. Since the non-propagating macrocracks were observed along the notch
root, the long macrocrack non-propagating limit σw2 appears as the fatigue limit
when ρ = 0.1 and 0.3 mm. On the other hand, since the non-propagating
macrocrack was not observed when ρ ¼ 1 and 2 mm, it can be said that the
microcrack non-propagating limit σw1 or the small macrocrack non-propagating
limit σwd appears as the fatigue limit. The fatigue limits predicted by the present
method were in good agreement with the experimental ones.

The method is not only convenient for use in predicting fatigue strength reli-
ability for the reliable design of machine and structures, but it is also time effective
and can be applied to the economic development of materials.
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