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resumo 

 

 

O presente trabalho propõe-se a continuar o estudo dos dispositivos de 
memória, iniciado com a predição dos memristors por Leon Chua em 1971, por 
meio do estudo e caracterização dos memcapacitores como dispositivos 
semicondutores de dois terminais, caracterizados pela relação não linear entre 
carga e tensão, que apresentam capacidade de recordar a tensão ou corrente 
que passa pelo dispositivo, graficamente representado em forma de um gráfico 
com características de histerese, aprensentando também capacitância variável 
em função da carga aplicada em seus terminais. 
Aqui, uma caracterização das funções de resposta a uma entrada periódica 
sinusoidal com frequência variável, para três modelos matemáticos de 
sistemas memcapacitivos, é realizada: dado um memcapacitor em  série com 
uma tensão de entrada ac, estuda-se as respectivas funções de histerese 
carga-tensão por meio de simulação em MATLAB.  
Em seguida, é realizada uma classificação das curvas de histerese em função 
da sua geometria, em que a passagem do gráfico no ponto (0,0), de origem 
dos planos, o define como tipo I ou tipo II. 
A análise prossegue com a identificação morfológica da área das curvas de 
histerese obtidas dos primeiro modelo teóricos em causa, variando-se, para 
isso, amplitude e frequência de entradas, de modo a se comparar os outros 
dois modelos restantes com este modelo ideal, ao mesmo tempo em que se 
deseja obter as frequências críticas de cada modelo, ou seja, as frequências e 
amplitudes a partir das quais a memcapacitância torna-se constante, e o 
sistema em causa, linear, fazendo então a curva de histerese degenerar para 
uma reta.  
 
A área do primeiro modelo foi calculada através de um algoritmo que calcula a 
área da curva por meio do Teorema de Green. 
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abstract 

 

The present work aims to continue the study of memory devices, initiated with 
the prediction of the existence of memristors by Leon Chua in 1971, with the 
study and characterization of memcapacitors as a semiconductor two-terminal 
device, characterized by the non-linear relation between charge and voltage, 
which also present the ability to remember the voltage or charge that passes 
through the device, graphically represented by a graphic with hysteresis 
characteristics, also presenting a variable capacitance in function of the charge 
applied in its terminals. 
 
Here, a characterizationof the response functions to a sinusoidal periodic input 
with variable frequency to three mathematical models of memcapacitive 
systems is performed: given a memcapacitor in series with an ac input voltage 
source, the respective hysteresis charge-voltage plots are studied by 
simulations in the MATLAB environment. 
 
Next, a classification of the hysteresis plots in function of its geometry is 
performed, given that the crossing of such graph in the (0.0) point defines it as 
a type I or type II hysteresis loop. 
 
The analysis continues with the morphological identification of the area of the 
hysteresis curve of the first model, by varying amplitude and frequency of the 
input source, in such a way to compare the other models with the ideal one, as 
well as to take the critical frequencis from which the memcapacitance becomes 
constant, and thus the system becomes linear, by making the hysteresis curve 
to become a straight line. 
The area of the first model was taken by calculations with the Green theorem. 
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Chapter One: Introduction 

1.1. Motivation 
The effects of electromagnetism and the human perception of the electromagnetic 
forces are known since the a.C. Greek civilization, by the observations of 
philosophers such as Tales of Miletus, but only since the XVIII century it reached 
the condition of experimental science, by having its laws described by the scientific 
method, through experiments conducted by names such as Benjamin Franklin, 
Charles Coulomb, Alessandro Volta, André-Marie Ampère, Georg Simon Ohm, 
among many others.  

However, the XIX century brought the establishment of a solid and almost complete 
description of the electromagnetic theory, by the four equations assembled and 
postulated by James Clerk Maxwell. His equations demonstrates that electric and 
magnetic forces are two complementary aspects of the electromagnetic theory, and 
the electric and magnetic fields  associated to these forces travel through space in 
the form of waves at a constant  velocity. Because of the completeness of his work, 
many devices were created and the theory encountered acceptance and 
development, in such a way that nowadays it constitutes one of the most advanced 
field of human knowledge. 

The very basis of the electromagnetic theory can be viewed by the definition of the 

four fundamental variables: the current 𝑖, the voltage 𝑣, the charge 𝑞 and the flux 
linkage 𝜑, and their two by two combinations, from six different pairs that can be 
formed from these four variables, which describe the three classes of basic circuit 
elements - resistors, capacitors and inductors. From these fundamental quantities, 
the whole theory lays its foundations and can be further developed (L. Chua, 1971) 
(L. O. Chua, 2012): 

{(𝑖, 𝑞), (𝑣, 𝜑), (𝑣, 𝑖), (𝑣, 𝑞), (𝑖, 𝜑), (𝜑, 𝑞)} (1.1) 
  

The first two of them define the relations: 

𝑖(𝑡) =
𝑑𝑞

𝑑𝑡
 

(1.2) 

 

Which defines current and relates the pair(𝑖, 𝑞); and 

𝑣(𝑡) =
𝑑𝜑

𝑑𝑡
 

(1.3) 

 

Which defines voltage and relates the pair (𝑣, 𝜑), also known as Faraday’s Law. 

Some of the devices described by the electromagnetic theory are described by the 
other three relationships, which define the axiomatic definitions of the common two-
terminal circuit elements used in electronics, the resistor, the capacitor and the 
inductor, with known physical laws and  vastly used in the analog and digital 
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electronics field.  Actually, the understanding and use of these three lumped circuit 
elements are the backbone of all electronic research and industrial applications. 

The linear time-invariant resistor, defined by a relationship between 𝑣 and 𝑖; in other 
words, by a pair (𝑣, 𝑖), expressed by the relation 𝑣(𝑡) = 𝑅𝑖, being R a constant 
quantity measuring the resistance of the resistor; 

The linear-time invariant inductor, defined by the relationship between 𝜑 and 𝑖, or, 
in other words, a variable pair (𝑖, 𝜑), expressed by 𝜑 = 𝐿𝑖; in this case, L is a 
constant quantity measuring the inductor’s inductance; 

Finally, the linear time-invariant capacitor, defined by a relationship between 𝑞 and 
𝑣, or, in other words, a variable pair  (𝑣, 𝑞), expressed by 𝑞 = 𝐶𝑣, having C as a 

constant quantity measuring the capacitor’s capacitance, and relates the pair (𝑣, 𝑞) 
(L. Chua, 1971) (L. O. Chua, 2012). 

In the XX century, however, a researcher named Leon Chua noticed a lack of 
symmetry in Maxwell’s equations, which led to a paper in 1971 where a new 
approach to the field was proposed. Chua noted that, in order to obey a symmetry 
in the treatment of the variables, there must be a missing theoretical model for the 

relationship between 𝜑 𝑎𝑛𝑑 𝑞, the same way the other variables relate to each other.  

The first two pairs (𝑣, 𝜑) 𝑎𝑛𝑑 (𝑖, 𝑞) from the six combinations are already related via 
𝜑(𝑡)𝑎𝑛𝑑 𝑞(𝑡) respectively, and are not constitutive relations because they cannot 
predict the corresponding current i(t) and voltage v(t). However, the last pair 
(𝜑, 𝑞) defines yet another constitutive relation since given any admissible signals 
(𝜑(𝑡), 𝑞(𝑡)), the corresponding (𝑣(𝑡), 𝑖(𝑡)) can be recovered through 𝜑(𝑡) and 𝑞(𝑡). 
From logical consistency, and symmetry considerations, it is necessary to define a 
fourth circuit element via the constitutive relation  

𝑓𝑀(𝜑, 𝑞) = 0 (1.4) 

 

Between the variables 𝜑 𝑎𝑛𝑑 𝑞. This element was postulated and named the 
memristor, acronym for memory resistor. A physical approximation if such an 

element has been fabricated in 2008 as a 𝑇𝑖𝑂2 nano device at HP. 

The common usage of the 𝑖 − 𝑡 or 𝑣 − 𝑡 plane (current or voltage as a function of 
time) by engineers and researchers also led to an overlook in these missing 
relations. Since it was not common to observe the behavior of Lissajous figures of 
magnetic flux, charge, voltage or current, links between these variables remained 
undiscovered. 

The undiscovered relationship between charge and flux led to the prediction of a 
system which should display memory characteristics, remembering the charge, 
voltage or current that passed through it. It should describe and model several other 
biological and natural systems encountered in nature which show similar behavior. 
Such mathematical system was then called a memristor, from the junction of the 
words memory and resistor, once it should hold properties of a nonlinear resistor 
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with memory. Since then such approach remained an academic curiosity, once no 
physical device was discovered to support the theory. 

In 2008, a group at HP came up with a physical approximation of a memristor device 
and reopened interest for such element. Soon the academic world developed the 
idea of a memristor in several papers describing its operation, physical laws and 
applications, although no real device was yet launched in the market (L. O. Chua, 
2012). 

Among several other memristive characteristics, further described in this work, it 
can be highlighted the memresistance M as a nonlinear charge-dependent variable 
resistance which exhibit hysteretic properties, maintaining the resistance unit. The 
relation between charge and magnetic flux of a memristor degenerates into a 
resistance when the input frequency reaches very high values. 

The idea of a passive device with memristive behavior should be extended for other 
classes of elements with memory based on the characteristics of a capacitor and an 
inductor, thus named, respectively, a memcapacitor and a meminductor (L. O. 
Chua, 2012). The description, characterization, modeling and propotyping of 
memcapacitors and meminductors constitute a new and cutting edge frontier of 
scientific knowledge yet unexploited. 

Generally, the relation between current and voltage defines a memristive system, 
while the relation between charge and voltage specifies a memcapacitive system, 
and the flux-current relation gives rise to a meminductive system. 

There are other ways to define the four basic elements predicted by the 
electromagnetic theory, namely: 

Let |𝛼| 𝑎𝑛𝑑 |𝛽| integers. They define an infinite family of circuit elements by the 
element code  

(𝑣(𝛼), 𝑖(𝛽)) (1.5) 

 

Simply referred as an (𝛼, 𝛽) element. 

A resistor is also defined as the pair  (𝛼, 𝛽) = (0,0) = (𝑣(0), 𝑖(0))  (1.6) 

A capacitor is defined as the pair (𝛼, 𝛽) = (0,−1) =  (𝑣(0), 𝑖(−1))  (1.7) 

An inductor is defined as the pair (𝛼, 𝛽) = (−1,0) = (𝑣(−1), 𝑖(0))  (1.8)  

And a memristor is defined as the pair (𝛼, 𝛽) = (−1,−1) =  (𝑣(−1), 𝑖(−1)) (1.9) 

Two other elements are defined by such relation, namely 

A memcapacitor: (𝛼, 𝛽) = (−1,−2) = (𝑣(−1), 𝑖(−2))    (1.10) 

A Meminductor: (𝛼, 𝛽) = (−2,−1) = (𝑣(−2), 𝑖(−1))    (1.11) 
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For each (𝛼, 𝛽) element, a complexity metric 𝜒 can be associated by the definition 

𝜒 ≜  |𝛼| + |𝛽| (1.12) 

 

This way, (𝛼, 𝛽) = (0,0) ⇒ 𝜒(0,0) =0 is a resistor;    (1.13) 

(𝛼, 𝛽) = (0,−1) ⇒ 𝜒(0,−1) =1 is a capacitor;     (1.14) 

(𝛼, 𝛽) = (−1,0) ⇒ 𝜒(−1,0) =1  is an inductor      (1.15) 

(𝛼, 𝛽) = (−1,−1) ⇒ 𝜒(−1,−1) = 2  is an memristor     (1.16) 

(𝛼, 𝛽) = (−1,−2) ⇒ 𝜒(−1,−2) = 3  is an memcapacitor   (1.17) 

(𝛼, 𝛽) = (−2,−1) ⇒ 𝜒(−2,−1) = 3  is an meminductor   (1.18) 

Where the following notations for voltage and current turns to be necessary: 

𝑣(∝)(𝑡) ≜

{
 
 
 
 
 

 
 
 
 
 

𝑑𝛼𝑣(𝑡)

𝑑𝑡𝛼
, 𝑖𝑓 𝛼 = 1,2, … ,∞

𝑣(𝑡), 𝑖𝑓 𝛼 = 0

∫ 𝑣(𝜏)𝑑𝜏
𝑡

−∞

, 𝑖𝑓 𝛼 = −1

∫ ∫ …
𝜏|𝛼|

−∞

𝑡

−∞

∫ 𝜐(𝜏1)𝑑𝜏1𝑑𝜏2…𝑑𝜏|𝛼|

𝜏2

−∞

, 𝑖𝑓 𝛼 = −2,−3, … , −∞

 

(1.19) 

 

And 

𝑖(𝛽)(𝑡) ≜

{
 
 
 
 
 

 
 
 
 
 

𝑑𝛽𝑖(𝑡)

𝑑𝑡𝛽
, 𝑖𝑓 𝛽 = 1,2, … ,∞

𝑖(𝑡), 𝑖𝑓 𝛽 = 0

∫ 𝑖(𝜏)𝑑𝜏
𝑡

−∞

, 𝑖𝑓 𝛽 = −1

∫ ∫ …
𝜏|𝛽|

−∞

𝑡

−∞

∫ 𝑖(𝜏1)𝑑𝜏1𝑑𝜏2…𝑑𝜏|𝛽|

𝜏2

−∞

, 𝑖𝑓 𝛽 = −2,−3, … , −∞

 

(1.20) 

 

 

Where 𝛼 and 𝛽 are integers. 
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From a mathematical perspective, the larger the complexity metric, the higher is the 
dimension of the state space and the larger is the number of nonlinear differential 
equations and exotic dynamical phenomena that can emerge. 

Figure 1 shows the circuit symbols of memristor, memcapacitor and meminductor. 
The same symbols are used for memristive, memcapacitive and meminductive 
systems.The black thick line represents the asymmetry, or the polarity of the devices 
(Pershin & Ventra, n.d.) 

 

Figure 1 Memory systems devices symbols to be used in circuits (Pershin & Ventra,n.d.) 

 

For all three devices, a convention is used to respect the device’s polarization:  when 
a positive voltage is applied to the upper terminal relatively to the terminal denoted 
by the black thick line, the device enters a state of high resistance, capacitance or 
inductance according to the one considered. Correspondingly, the device enters a 
state of low resistance, capacitance or inductance when a negative voltage is 
applied at the lower terminal (Pershin & Ventra, n.d.). 

If it can be proved that a capacitor with variable capacitance exhibit characteristics 
of a memristive device, such capacitor may be considered a memcapacitor. This is 
achieved by the identification in the memcapacitive device of the three fingerprints 
of a memristive system. 

Once in an ideal capacitor, there is a linear relationship between charge and voltage, 

in the form = 𝐶𝑉 , it is expected the characterization of a memcapacitor to be held 
in a q-v plane, and all the tools to identify it to be applied in such subset. 

In a similar fashion, a mathematical model of a capacitor with capacitance 

dependent on the applied voltage may be written as 𝑞 = 𝐶(𝑣)𝑣. It is expected the 
memcapacitance to degenerate to a linear relationship when forcing the 
memcapacitance to be constant, just as observed in the memresistance. 

The importance of such study is not only academic, but also relies on the many 
applications a memristive and a memcapacitive device may assume in a near future, 
once physical devices are built and available. A memristor can be used in high-
density memories, synapses modeling, sensors, and others. Memcapacitors can 
provide high and variable storage capability device with no need of an external 
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source.  Joint with memcapacitors, such devices may change the way analog 
electronics are handled. 

1.2. General Objectives 
This work has a general purpose to understand and study the memcapacitors as a 
new device derived from previous works on the memristors and to uncover its 
characteristics, contributing to the development of the field.  

1.3. Specific Objectives 
It will be done through the following specific objectives: 

 To study the memcapacitors’ dynamics of operation by documental state-of-
the-art research; 

 To identify the fingerprints that define a memcapacitor device by studying the 
behavior of the hysteretic loop when the frequency of the input signal 
changes; 

 To define the frequency response and perform a frequency characterization 
of memcapacitors; 

 To derive the characteristics of three types of memcapacitors through 
simulations; 

 To derive the area of the characteristic loop of the three described models in 
order to give a fully quantitative characterization of the mathematical 
systems; 

 To compare the two memcapacitive systems described. 
 

1.4. Structure of the dissertation 
This work is thus organized as follows: 

 The second chapter summarizes the state-of-the art of both memristors and 
memristive systems, as well as it defines the fingerprints to be considered 
when analyzing memory systems and devices; 

 The third chapter fully describes a memcapacitive system and a 
memcapacitor; 

 The fourth chapter describes the three mathematical models used in this 
work; 

 The fifth chapter describes the simulations performed and the results 
achieved; 

 The sixth chapter presents the conclusions and future works to be done. 
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Chapter Two: Memristive Systems 

 

 2.1. Introduction 
A broad definition of memory is the ability to store the state, or the information of 
any system at a given time, and access it at a later time. A memory state is related 
to some dynamical properties of the constituents of condensed matter, namely 
electrons and ions. This way, history-dependent features are related to how 
electrons and/or ions rearrange  their state in a given material under the effect of 
external perturbations (Pershin & Ventra, n.d.). 

Understanding how memory arises in physical systems demands an analysis of the 
properties of materials at the nanoscale. The change of state of electrons and ions 
is not instantaneous, and it generally depends on the past dynamics. This means 
that the resistive, capacitive and/or inductive properties of these systems show time-
dependent features when subject to time-dependent perturbations (Pershin & 
Ventra, n.d.). 

From both formal and practical points of view, the three traditional element relations 
can be generalized to time-dependent and non-linear responses. In addition, all 
responses may depend not only on the traditional circuit variables, such as current, 
charge, voltage or flux, but also on other state variables, which follow their own 
equations of motion and provide memory to the system. The following sections are 
dedicated to describe such memory elements and their relations (Pershin & Ventra, 
n.d.). 

2.2. Systems with Memory 
A memory system is any system encountered in nature that somehow remembers 
past stimulae, thus changing its initial conditions at each new stimulus, showing then 
memory capabilities. As a electromagnetic concept, it was first described  by Chua 
and Kang as a class of device exhibiting similar behaviors, without an explicit 
dependence on electric and magnetic variables (Duarte, Martins, & Alves, 2013).  
Its physical behavior is described by the way their internal resistance, or its 
memristance, varies in time by its state variable. 

Any condensed matter system cannot respond instantaneously to external 
perturbations, especially if nanoscale dimensions systems are considered, where 
the dynamics of a few atoms may affect the whole structure dramatically. As such, 
some degree of memory in the response of the system to external fields is always 
present (Ventra, n.d.) 

This also shows that ideal resistors, capacitors and inductors are just circuit theory 
idealizations of actual properties of real systems, being a good representation of 
such properties only within a range of experimental conditions (e.g., within certain 
intervals of amplitudes and frequencies). 

It also shows that memristive, memcapacitive and meminductive systems are simply 
resistors, capacitors and inductors, respectively, whose memory is made more 
apparent under certain experimental conditions (Ventra, n.d.). 
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Once resistances, capacitances and inductances are simply response functions, all 
other constraints introduced “artificially" in the mathematical, or axiomatic, definition 
of the memory elements have no reason to exist. Such unphysical constraints are 
the finiteness of the responses themselves at all times, with consequent crossing of 
the input-output curve under a periodic drive, and positiveness of the 
memcapacitors’ and meminductors’ response functions at all times (Ventra, n.d.) 

Systems with memory can then be modeled in electric circuits as resistors, 
capacitors and inductors with memory, or memristors, memcapacitors and 
meminductors, respectively, and then used in the electronic industry the same way 
the other lumped circuit elements. Memristive, memcapacitive and meminductive 
systems are classified into current-controlled and voltage-controlled types, which, in 
most cases, is a matter of mathematical or experimental convenience. In particular, 
considering the equations describing a current-controlled memristive system, and 
algebraically solving it with respect to the current i, assuming a unique solution at 
any given time, it is possible to reach the equations of the voltage-controlled 
memristive system. The same happens with the other systems and classifications 
(Pershin & Ventra, n.d.) 

Moreover, memcapacitors and meminductors can store energy in the electric and 
magnetic field, respectively, in addition to information, therefore opening new 
venues in the technologically important area of energy storage, distribution and 
manipulation (Ventra, n.d.) 

The dynamical electrical characteristics of a memory device depend on the history 
the current passing through it and on the current voltage bias, requiring two 
equations: one that relates the voltage applied across the device and the current 
passing through it, and  other explaining an intrinsic property called the state 
variable and how it changes with time (Halawani, Mohammad, Homouz, Al-qutayri, 
& Saleh, 2013). 

It is usually typical in real systems that the response function M depends not just on 
the charge that flows across the system but also on one or more state variables that 
determine the state of the system at any given time. This could be for example the 
position of oxygen vacancies in TiO2 thin films, which determines the resistance of 
the film on a memristor, or the temperature of a thermistor, or the degree of spin 
polarization in certain structures. The set of n possible state variables, related to a 
particular device, of which their time evolution is known is grouped in the symbol x 
via the differential state equation 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑖, 𝑡) 

(2.1) 

 

Commom to all memory devices , where f is a continuous n-dimensional vector 
function (Pershin & Ventra, n.d.) 

Based on the identification of these differential equations’ dynamics it was possible 
to define a complete set of formally  solvable general solutions for evaluating 
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analytically the output response for all types of ideal memory devices and systems 
(Georgiou, Barahona, Yaliraki, & Drakakis, 2013). 

The definitions of memristive, memcapacitive and meminductive systems represent 
an economic way of describing a huge amount of systems, materials and devices 
with memory in an unified, general framework (Ventra, n.d.) 

It is worth stressing that the definition embodied in the above pair of equations is not 
limited only to the input perturbations such as charge, current, voltage and flux. It 
represents any response of a given system to an arbitrary perturbation that induces 
memory in the output (Ventra, n.d.) 

If u(t) and y(t) are any two complementary constitutive circuit variables (current, 
charge, voltage or flux) denoting input and output of the system, respectively, and x 
is an n-dimensional vector of internal state variables, we may then postulate the 
existence of the following nth-order u-controlled memory element as that defined by 
the equations 

𝑦(𝑡) = 𝑔(𝑥, 𝑢, 𝑡)𝑢(𝑡) 
 

(2.2) 

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑡) (2.3) 

 

Where 𝑢(𝑡) and 𝑦(𝑡) are any two input and output variables, namely, current, 
charge, voltage or flux; 𝑔 is a generalized response, x is a set of n state variables 
describing the internal state of the system and f is a continuous n-dimensional vector 
function.  

2.3. Definition of the Fingerprints of a memristive device 
For an element to be a memristive device, a few conditions must be fulfilled, what 
in the state-of-the art subset is called fingerprints. These three signature 
characteristics uniquely classify a device to be a memristor and distinguish them 
from the other non-memristive devices: a hysteresis loop, a double-valued Lissajous 
figure of (𝑣(𝑡), 𝑖(𝑡)) for all times t, the decrease of the hysteresis lobe area with the 
increase of the frequency, and the degeneration of the loop in a linear function with 
high values of the input frequency (Adhikari, Sah, Kim, & Chua, 2013). 

2.3.1. Hysteresis Loop 
The first fingerprint to be considered as a distinctive signature of a memristive device 
is the hysteresis loop, a double-valued Lissajous figure of (𝑣(𝑡), 𝑖(𝑡)) for a t axis, 
understood as a unique periodic steady-state solution of the state equation under 

any periodical bipolar input, where there exist two distinct values of 𝑣  for any value 
of the current 𝑖. 

Hysteresis loops are often associated to memory effects in elements that present 
such property.  In a memory device, it is translated into a resistance which is able 
to “remember” the current or the voltage that has gone through it (Duarte, Martins, 
& Alves, n.d.). 
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Generally, such loops are very frequently reported in experimental papers when the 
response function 𝑔(𝑡) or the function 𝑦(𝑡), or both, are plotted versus 𝑢(𝑡). That 
means to say, in a memcapacitive system, a hysteretic plot can be achieved when 
a periodic charge 𝑞(𝑡) is plotted against a sinusoidal voltage 𝑣(𝑡) instead of 
generating graphs of these variables in function of time. It is then interesting to say 
that a hysteresis loop is an alternative way of viewing and measuring results, in 
opposition to the traditional way electronics engineers visualize their outcomes 

 The shape of the loop is determined by both the device properties and the input 
𝑢(𝑡) applied. In particular, it depends on both amplitude and frequency of the input. 
A pinched hysteresis loop may be “not self-crossing” or “self-crossing”. However, 
the symmetry of the state equations does not always define the type of crossing. 
Until now, papers dedicated to describe memristors behaviors have encountered 
pinched hysteresis loop passing through the origin of the axis, once, according to 

Ohm’s law, for 𝑖(𝑡) = 0 the correspondent value of voltage 𝑣(𝑡) = 0 forces the loop 
to pass at the point (0,0)(Adhikari et al., 2013) (Pershin & Ventra, n.d.). 

This way, two types of pinched hysteresis loops are found: type I and type II, as 
follows: 

a) Type I Hysteresis Loop 
Considering the case in which the hysteresis loops are well defined for generalized 
response functions 𝑔, meaning 𝑔 ≠ 0 and 𝑔 ≠ ±∞),  in the sense that 𝑦(𝑡) and 𝑔(𝑡) 
are periodic with a period T of the applied ac voltage, the function 𝑦(𝑡) hysteresis 
loop passes through the origin, point where the loop is pinched, and is thus classified 
as type I hysteresis loop. It is the most common type of hysteresis found in 
memristive devices and is characterized typically by a single loop in the response g 

as a function of the input. Figure (2) illustrates this type of hysteresis: 
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b) Type II Hysteresis Loop 

A type II crossing behavior results in a double loop in the response 𝑔 as a function 
of the input. It covers several shapes of loops where they do not cross themselves 
in the origin of the axis, being thus presented in an elliptical form or tangentially 
sliding around the origin. Thus, it can be also called “non-crossing” type. 

 “Non-crossing” loops are very often observed when 𝑔(𝑥, 𝑢) and 𝑓(𝑥, 𝑢) are even 

functions of 𝑢, although this may not be a necessary condition. In the opposite case, 
when 𝑓(𝑥, 𝑢) is an odd function of 𝑢, “self-crossing” behavior of 𝑦 − 𝑢 curves is more 
common (Pershin & Ventra, n.d.). 

In situations when the response function g becomes zero or infinite when 𝑦 = 0 or 
𝑢 = 0, 𝑦 − 𝑢 curves do not pass through the origin. This is the case superlattice 
memcapacitive systems, and the v-i curves of the thermistor, for instance.  

Moreover, in some systems, additional crossing are possible at 𝑢 ≠ 0 as in the case 
of ionic channels. Not self-crossing loops are also observed in the case of 
thermistors and elastic memcapacitive systems (Pershin & Ventra, n.d.). Figure (3) 
illustrates this type of hysteresis plot: 

Figure 3 Type I Hysteresis Loop 

Figure 2 Type I Hysteresis Loop 



  

12 

 

Figure 3 Type II Hysteresis Loop 

For memristive devices and memristors, the hysteresis loop is pinched ate the 
origin(𝑣, 𝑖) = (0,0), for any possible amplitude and frequency of the input sinusoid, 
as well as for any initial condition of the state variables. For memcapacitors and 

meminductors, the (𝑞, 𝑣) plane and the (𝑖, 𝜑) that respectively defines them, may 
present both types of hysteresis behavior. 

2.3.2. Hysteresis lobe area decreases as frequency increases 
The second fingerprint of a memristive device to be considered is the dependence 
of the hysteresis lobe area on the frequency of the periodic excitation signal. The 
absolute value of the lobe area of the pinched hysteresis loop should decrease 
monotonically above a certain critical frequency as the frequency of the periodic 
input voltage v(t) or input current i(t) increases (Adhikari et al., 2013). 

The origin of the pinched hysteresis loop of a memory device is the approximate 

linearity of the state-dependent Ohm’s law, where 𝑣 = 0 if and only if  𝑖 = 0, and 
vice-versa. Thus it can be seen that the hysteresis loop of a memristive device is 
inversely proportional to the excitation frequency. This way, the area of the 
hysteresis lobe, which is a direct consequence of the state variable x(t), is also 

inversely proportional to the excitation frequency 𝜔 (Adhikari et al., 2013). 

2.3.3. Degeneration of the hysteresis curve as frequency rises 
The third fingerprint to be considered is the degeneration of the hysteresis loop to a 
single-valued function at infinite frequency. This property asserts that even though 
the shape of the pinched hysteresis loop depends on the waveform of the periodic 
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excitation voltage v(t), or excitation current i(t), they must all tend to a single-valued 
function through the origin, as the frequency tends to infinity (Adhikari et al., 2013) 

The literature was assertive to state that, from a large range of observed memristive 
systems, if a device exhibits a pinched hysteresis loop, but the hysteresis lobe area 
does not shrink to a single-valued function with increasing frequency of the testing 
periodic input signal beyond its frequency, then it was not a memristive device 
(Adhikari et al., 2013).  However, as stated before, it may not be the case for 
memcapacitive systems. However, the absence of a pinched hysteresis loop does 
not invalidate a memcapacitor to be classified as a memcapacitive device, once 
there are several types of identified hysteresis loops.  

2.4. Are the memelements fundamental circuit elements? 
For a lumped circuit element to be considered fundamental, it must be constructed 
without a finite combination of standard circuit elements that can reproduce the 
dynamical properties. In particular, it should be constructed using solid-state 
materials. Thus, once the behavior of an ideal memristor cannot be simulated by 
any combination of “standard” – namely two- terminal, time-independent, linear or 
non-linear – resistors, capacitors and inductors, it can be said that a memristor is a 
fundamental element (Pershin & Ventra, n.d.). 

However, it is believed that an ideal memcapacitor also cannot be simulated by 
combinations of standard resistors, capacitors and inductors, because in this case 
as well, the lack of time dependence does not allow to retain information on the full 
charge dynamics. For instance, it can be thought that since standard inductors store 
information on the voltage history, through the integral of the voltage on the inductor, 
they could be used to simulate the behavior of memcapacitors. However, if this were 
the case, the resulting circuit would have inductive components and therefore would 
not be an ideal memcapacitor (Pershin & Ventra, n.d.) 

Therefore, it is in this sense that ideal memristors, memcapacitors and 
meminductors are considered as “fundamental” circuit elements for some authors, 
in such a way to name them as the last two the “fifth” and “sixth” circuit elements, 
although some authors prefer to subscribe the notion that there are only three 
fundamental circuit elements, resistors, capacitors and inductors, with or without 
memory. Other authors resist to validate such analysis and remain with the 
traditional classification of considering just the resistor, capacitor and inductor as 
the three fundamental elements  (Pershin & Ventra, n.d.). 

However, the above considerations cannot be extended to memristive, 
memcapacitive and meminductive systems because in that case, the internal state 
variables could have a physical origin which could be simulated by standard 
(possibly non-linear) circuit elements. For instance, some memcapacitive systems 
may be represented by a combination of basic circuit elements (capacitors and non-
linear resistors), or one could envision a combination of non-linear resistors with 
negative differential resistance to retain the history of the voltage or current and thus 
simulate memristive systems. Irrespective, these types of memory elements are still 
of great importance since they provide a complex functionality within a single 
electronic structure (Pershin & Ventra, n.d.). 
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In summary, such a discussion is far beyond the scope of this work and should be 
dealt in appropriate forums, such as conferences and by peer reviews, or let further 
developments in nanotechnology, solid-state physics and microelectronics define 
the path to be considered in such matter. 

This way, it can be summarized the difference between a memory system and a 
memory device: the first is any system which shows characteristics of memory 
retention and behaves as so. It can be, for instance, a biological system, or can be 
noted in a chemical structure. A memory device, on the other way, is an active or 
passive element with memory features, that can be fabricated in a semiconductor 
wafer and included in an analog, digital or mixed circuit in the form of an Integrated 
Circuit or even a discrete device (Pershin & Ventra, n.d.) 

2.5. Memristive Systems and Memristors 
Systems with memory are common in nature, long before the theory of memristors 
were developed. However, a memristor was the first device derived from the 
characteristics of a memristive system by the HP laboratories in 2008, while its 
researchers were attempting to build a new Computer Memory’s architecture. It is 
by definition a nanoscale solid-state two-terminal elements with nonvolatile and 
programmable resistance, and constituted one of the latest technology 
breakthroughs which may have a major impact on integrated circuit industry. 

If this new technology continues to be properly developed, it will cause a revolution 
in the way Integrated Circuits are built and used in the consumer’s industry, as well 
as cause decreasing changes in the way power is consumed nowadays. This fact 
justifies a brief explanation of how such systems are mathematically organized. 

2.5.1. Memristive Systems 

a) Current-Controlled Memristive Systems 
From (2.2) and (2.3), an nth-order current-controlled memristive system is described 
by  

 𝑣(𝑡) = 𝑅𝑀(𝑥, 𝑖, 𝑡)𝑖(𝑡) 
 

𝑥̇ = 𝑓(𝑥, 𝑖, 𝑡) 

(2.4) 
 
(2.5) 
 

Where x is a vector 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑁} representing n internal state variables, 

𝑣(𝑡) and 𝑖(𝑡) denote the voltage and current across the device, and R is a scalar 
called the memristance, with the physical units of ohm, and needs to be solved 
together with equation (2.4) for the state variables dynamics. 

b) Voltage-controlled Memristive Systems 
From (2.2) and (2.3), an nth-order voltage-controlled memristive system is described 
by  

𝑖(𝑡) = 𝐺𝑀(𝑥, 𝑣, 𝑡)𝑣(𝑡) (2.6) 
 

𝑥̇ = 𝑓(𝑥, 𝑣, 𝑡) (2.7) 
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Where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) are states variables which do not depend on any external 
voltages or currents, and G is called the memductance (for memory conductance), 
with units of Siemens. 

2.5.2. Ideal Memristors 

a) Charge-controlled memristor 
The equation of the voltage for a charge-controlled memristor is a particular case of 
(2.4) and (2.5) when M depends only on charge, and, by an axiomatic approach, 
can be derived as follows: 

𝜑 = 𝑓(𝑞) 
 

(2.8) 

𝑑𝜑

𝑑𝑡
=
𝑑𝑓(𝑞)

𝑑𝑡
 

(2.9) 

 

𝑑𝜑

𝑑𝑡
=
𝑑𝑓(𝑞)

𝑑𝑞

𝑑𝑞

𝑑𝑡
 

 

(2.10) 

𝑣 = 𝑀(𝑞)𝑖(𝑡) (2.11) 

 

𝑣(𝑡) = 𝑀 [∫ 𝑖(𝜏)𝑑𝜏
𝑡

−∞

] 𝑖(𝑡) 
(2.12) 

 

Where 

𝑀(𝑞) =
𝑑𝜑

𝑑𝑞
 

(2.13) 

 

𝑀(𝑞) =

𝑑𝜑(𝑡)
𝑑𝑡

𝑑𝑞(𝑡)
𝑑𝑡

=
𝑣𝑀(𝑡)

𝑖(𝑡)
 

(2.14) 

 

Is called the incremental memristance, in units of ohm. The charge is related to the 

current via time derivative 𝑖 = 𝑑𝑞 𝑑𝑡⁄ . It represents the ideal memristor 
(Massimiliano, Ventra, Pershin, & Chua, 2009) 

b) Flux-controlled memristor  
Let the axiomatic definition of a flux-controlled memristor be: 

𝑞 = 𝑓(𝜑) 
 

(2.15) 

𝑑𝑞

𝑑𝑡
=
𝑑𝑓(𝜑)

𝑑𝑡
 

 

(2.16) 



  

16 

𝑑𝑞

𝑑𝑡
=
𝑑𝑓

𝑑𝜑

𝑑𝜑

𝑑𝑡
 

 

(2.17) 

𝑖(𝑡) = 𝑊(𝜑)𝑣(𝑡) (2.18) 

 

Where 

𝑊(𝜑) ≡
𝑑𝑞(𝜑)

𝑑𝜑
 

 

(2.19) 

𝑊(𝜑) =

𝑑𝑞
𝑑𝑡
𝑑𝜑
𝑑𝑡

=
𝑖(𝑡)

𝑣(𝑡)
 

(2.20) 

  
Is the incremental memductance in accordance to its conductance unit. 

𝑖(𝑡) = 𝑊𝑀 [∫ 𝑣(𝜏)𝑑𝜏
𝑡

−∞

] 𝑣(𝑡) 
(2.21) 

 

Equations (2.12) and (2.21) explicit the memory features of a memristor: the 
dependency of past values of current and voltage, respectively, in a cumulative way, 
taking also in consideration the initial values of these variables in the 
characterization of the device. 

The value of the memductance, at any time t0 depends respectively upon the time 

integral of the memristor current from 𝑡 = −∞ to 𝑡 = 𝑡0 Hence, while the memristor 
behaves like an ordinary resistor at a given instant of time t0, its resistance depends 
on the complete past history of the memristor current. Such argument is also valid 
for the memristor memductance, once it is dependent of the time integral of its 

voltage from 𝑡 = −∞ to 𝑡 = 𝑡0. This means that the memristor’s conductance 
depends on the history of the memristor voltage. 

This is the argument that justifies the name memory resistor of this new device. 

Once the memristor voltage v(t) or current i(t) is specified, the memristor behaves 
like a linear time-varying resistor. In the very special case where the memristor ϕ-q 
curve is a straight line, we obtain M(q)=R or W(ϕ)=G, and the memristor reduces to 
a linear time-invariant resistor, as already predicted if considering the fingerprints a 
memristor obeys (L. Chua, 1971) 
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Figure 4 A typical memristor hysteresis loop, where it is explicit the dependence of loop area with 
increase of frequency. 

2.6. Properties of memristors and memristive systems  
Among the several relevant properties in the identification of memristors and 
memristive systems, the most important one is the appearance of a “pinched 
hysteretic loop” in the current-voltage characteristics of these systems when subject 
to a periodic input. This is a consequence from equations (2.11) and (2.18), which 

states 𝑣(𝑡) = 0 when 𝑖(𝑡) = 0, and the other way around. In addition, if the state 
equation has a unique solution at any given time, and if the voltage or current is 
periodic, then during each period the I-V curve is a simple loop passing through the 
origin: there may be at most two values of the current given a voltage v, for a voltage-
controlled device, or two values of the voltage for a given current i, for a current-
controlled system (Pershin &Diventra). 

Memristive resistances have the property to degenerate into normal resistances as 
the amplitude of the input sinusoid decreases. Peak amplitude, which is the 
amplitude where the loop has maximum area of the device depends strongly on 
device dimensions and physical properties.  This characteristic is generally 
dependent on the device physical parameters, but also on the amplitude and 
frequency stimulating signals (Duarte et al., 2013). 

The memristor model presented by the HP labs in 2008 is made of a thin TiO2 layer 
sandwiched between two nanowire platinum electrodes with certain length ‘D’ and 
internal state variable ‘w’ that represents the length of the doped region.  

An external bias voltage modulates the length w due to charge dopant drifting, thus 
changing the device’s total resistivity. If the dopant region w extends to full length 
D, the total resistivity of the device will be dominated by low resistive region and 
corresponding resistance is called Ron. Similarly, with opposite polarity undoped 
region extends to full length of the device, hence, the resistivity of the device is 
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dominated by higher resistive region which leads to off state resistance Roff 
(Shrivastava & Singh, 2013). 

 

Figure 5 a) Physical structure of a memristor and b) equivalent circuit (Shrivastava, Singh) 

Moreover, when subject to a periodic stimulus, a memristive system typically 
behaves as a linear resistor in the limit of infinite frequency, and as a non-linear 
resistor in the limit of zero frequency . In another words, a memristor obeys the third 
fingerprint of a memory device (Pershin & Diventra). 

These last two properties are easily explained. Irrespective of the physical 
mechanisms that define the state of the system, at very low frequencies the system 
has enough time to adjust its value of resistance to the instantaneous value of the 
voltage (or current), so that the device behaves as a non-linear resistor. On the other 
hand, at very high frequencies, there is not enough time for any kind of resistance 
change during a period of oscillations of the control parameter, so that the device 
operates as a usual (typical linear) resistor (Pershin & Diventra). 

2.7. Memristors Applications 
It is expected the memristor to be applied as a logic port inside an IC. The memristor 
is commonly considered  as an AC element, but its DC response shows spike-like 
dynamics that can be used to make simple logic circuits used with a novel sequential 
logic approach (Gale & Costello, 2013). Generally, memristors are able to perform 
logic operations as well as storage of information. The off-to-on resistance ratio for 
memristor provides adequate noise margin to separate the on versus off states 
(Tetzlaff, Ronald, Bruening, n.d.) (Halawani et al., 2013).  

Memristors are also predicted to be used as a non-volatile memory with zero 
leakage current, it can be applied as a replacement for SRAM. With total compability 
with CMOS technology, a hybrid CMOS-memristor memory circuit would enhance 
the memory design, providing years of storage with zero leakage current and 
smaller area, thus minimizing the overall energy consumption of the system. 
(Halawani et al., 2013) (Elgabra et al., 2012) (Adhikari et al., 2013) (Halawani et al., 
2013). 
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It is well known that CMOS-based memories are reaching Moore’s law upper limits, 
thus it is a challenger for an IC designer to meet the increasing demand for faster, 
smaller, and less energy consuming memory, as well as CMOS’ physical limits in 
achieving higher densities and lower power consumption. Memristors, however, 
may provide smaller size, higher utilization, and less power to operate. These are 
properties that can be exploited in applications with the potential of improving the 
performance, such as current computer memories or reconfigurable circuits and 
prolonging the life of CMOS technology. Actually, there is a strong possibility that 
the memristor may replace the CMOS technology in a near future (Elgabra, Farhat, 
Hosani, Homouz, & Mohammad, 2012) (Halawani et al., 2013) (Elgabra et al., 2012) 
(Georgiou et al., 2013) 

Memristors have been compared to both neurons and synapses and have widely 
been anticipated as a useful route towards neuromorphic, or brain-like computing 
due to the its ability to hold a memory or state, by enabling the hardware 
implementation of large-scale neuromorphic circuits where they will be acting as the 
synapse in a network of neurons, emulating brain-like learning and computation 
(Gale & Costello, 2013) (Georgiou et al., 2013). 

 They can be used in future analog, digital, and mixed signal circuits as a new family 
of nano- scale nonvolatile memory devices, once they may replace Flash, DRAM, 
and SRAM in the near term. Significant industrial applications as nano-scale 
neuromorphic chips that would significantly outperform current neural networks. 
(Tetzlaff, Ronald, Bruening, n.d.) (Rose, 2010). 

Memristors can be used to model the adaptative behaviour of unicellular organisms, 
such as amoebas, by introducing the concept of learning circuits, namely LC circuits 
with memristive elements, which can recognize input waveforms patterns and thus 
adapt to the incoming signal (Di Ventra, Pershin, & Chua, 2009) 

In conclusion, driven by the potential impact of memristors, the research activity in 
the field has mainly focused on fabrication processes and applications of memristive 
devices. Unlike other conventional circuit elements, there is no established circuit 
theory for studying memristors as individual elements or as part of larger networks 
in which memristors may be combined with other circuit components (Georgiou et 
al., 2013) 
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Chapter Three: Memcapacitors 
 

3.1. Introduction  
Memcapacitive and meminductive systems are two recently postulated classes of 
circuit elements with memory derived and extendend from the class of memristive 
systems. They are special cases of (2.2) and (2.3), where their two defining 
constitutive variables are charge and voltage for the memcapacitance,  and current 
and flux for the meminductance Their main characteristic is a hysteresis loop – 
which may or may not pass through the origin – in their constitutive variables when 
driven by a periodic input, and show decrease in hysteresis area with increasing 
frequency of the input sinusoid (DiVentra et al., 2009) 

One of the main advantages from the arise of memcapacitors and meminductors in 
contrast to traditional capacitors and inductors is the fact that these new devices are 
passive ones that can store energy at the same time they hold the property to 
“remember” input signals.  

A memcapacitor obeys the relation 𝑞 = 𝐶𝑣, bein C a non-constant capacitance, and 
the hysteresis loop appears when plotting the C-v relation, being v the input 
parameter of the system. The memcapacitor may hold the capacitance due to a first 
voltage input until a different voltage value is applied or until the decay time of the 
memcapacitor is reached. If this dependence is nonlinear then there exists a 
switching threshold for the capacitance state and the device can be considered as 
a non-volatile programmable capacitor which retain a memory of past conditions 
may be a solid state memory device with high storage density, no power 
requirements for long term data retention, and fast access times (Martinez & Ventra, 
n.d.) (“Patent - Two Terminal Memcapacitor Device.pdf,” n.d.)(Lehtonen et al., 2013)  
(“Patent - Two Terminal Memcapacitor Device.pdf,” n.d.) . 

As a memristive system device, a memcapacitor is completely described by a 
system of two equations, one of them relating the state of the system, by a 
differential equation, while the other describes the memcapacitance of the device. 

3.2. Constitutive relations of memcapacitive systems and memcapacitors 
Memcapacitive systems and memcapacitors can be defined in two ways: voltage-
controlled, when values of the voltage across the memcapacitor controls the device, 
and charge-controlled, when values of charge controls it. This definitions, however, 
are merely didactic. 

3.2.1. Memcapacitive Systems’ constitutive relations 
In this section, a mathematical description of the memcapacitive systems is 
presented. 

a) Voltage-Controlled Memcapacitive System 
A voltage-controlled memcapacitive system is defined axiomatically by the nonlinear 
constitutive relation  

𝜎 = 𝜎(𝜑) (3.1) 
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Where 

𝜎 = ∫ 𝑞(𝜏)𝑑𝜏
𝑡

−∞

 
(3.2) 

 

Which, combined with equations (2.2) and (2.3), form: 

𝑞(𝑡) = 𝐶𝑀(𝑥, 𝑉𝐶 , 𝑡)𝑉𝐶(𝑡) 
 

(3.3) 

𝑥̇ = 𝑓(𝑥, 𝑉𝐶 , 𝑡)  (3.4) 
 

Where 𝑞(𝑡) is the charge on the capacitor at time t, 𝑉𝐶(𝑡) is the voltage 

across the memcapacitor, and 𝐶𝑀(𝑥, 𝑉𝐶 , 𝑡) is the memcapacitance which 
depends on the state of the system and can vary in time, defined as 
 

𝐶𝑀(𝜑(𝑡)) =
𝑞(𝑡)

𝑑𝜑
𝑑𝑡

=
𝑞(𝑡)

𝑉𝐶(𝑡)
 

(3.5) 

 

From equation (3.3) it follows that 𝑉𝑐 = 0 ⇒ 𝑞(𝑡) = 0, but 𝐼 = 0 ⇏ 𝑞 = 0, and 
thus it can be mathematically justified that this device stores energy. 
 

b) Charge-controlled memcapacitive system 
A charge-controlled memcapacitive system is defined axiomatically by the nonlinear 
constitutive relation  

𝜑 = 𝜑̂(𝜎) (3.6) 

 

Where 

𝜑 = ∫ 𝑣(𝜏)𝑑𝜏
𝑡

−∞

 
(3.7) 

 

Which, combined with equations (2.2) and (2.3) yields: 

𝑉𝑐(𝑡) = 𝐷𝑀(𝑥, 𝑞, 𝑡)𝑞(𝑡) 
 

(3.8) 

𝑥̇ = 𝑓(𝑥, 𝑞, 𝑡) (3.9) 

 

Where 𝑞(𝑡) is the charge on the capacitor at time t is, 𝑉𝑐(𝑡) is the applied voltage. 

𝐷𝑀 is an inverse memcapacitance, which depends on the state of the system and 
can vary in time, according to the equation 
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𝐷𝑀(𝜎) =
𝑑𝜑

𝑑𝜎
=

𝑣(𝑡)
𝑑𝑡
𝑞(𝑡)
𝑑𝑡

=
𝑣(𝑡)

𝑞(𝑡)
 

(3.10) 

 

In the above two equations, the lower integration limit (initial moment of time) may 

be selected as −∞ 𝑜𝑟 0 𝑖𝑓 ∫ 𝑉𝐶(𝜏)𝑑𝜏 = 0
0

−∞
  and ∫ 𝑞(𝜏)𝑑𝜏 = 0

0

−∞
  (Pershin & Ventra, 

n.d.) 

3.2.2. Memcapacitors’ constitutive relations 
Memcapacitors are a special case of memcapacitive systems when the capacitance 
depends only on the full history of the voltage or charge across the system. In the 
future, they can be brought to market as a physical device to be used in electronic 
systems. In this section their constitutive relations are mathematically modeled. 

a) Voltage-controlled memcapacitors 
A voltage-controlled memcapacitor is defined by the following equation, derived 
from (3.3) and (3.4): 

𝑞(𝑡) = 𝐶𝑀 [∫ 𝑉𝐶(𝜏)𝑑𝜏
𝑡

𝑡0

] 𝑉𝐶(𝑡) 
(3.11) 

 

 

𝑞(𝑡) = 𝐶𝑀(𝜑)𝑉𝐶(𝑡) (3.12) 

 

The voltage-controlled memcapacitor charge and current are derived from a 
memcapacitive device, mathematically from equations (3.11) and (3.12) as follows: 

q(t) =
dσ(φ)

dt
=
dσ(φ)

dφ

dφ

dt
= CM(φ)v(t) 

(3.13) 

 

i(t) =
d

dt
(CM(φ)VC(t))     

(3.14) 

 

where 

CM(φ) =
dσ(φ)

dφ
  

(3.15) 

 

b) Charge-controlled memcapacitors 
Also called TIQ-controlled memcapacitor, a memcapacitor controlled by charge is 
defined axiomatically by the nonlinear constitutive relations  
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𝑉𝐶(𝑡) = 𝐷𝑀 [∫ 𝑞(𝜏)𝑑𝜏
𝑡

𝑡0

] 𝑞(𝑡) 
(3.16) 

  
  

𝑉𝐶(𝑡) = 𝐷𝑀(𝜎)𝑞(𝑡) (3.17) 
 

 
 

 Where q(t) is the charge on the capacitor at time t, Vc(t) is the applied voltage and 

DM is an inverse memcapacitance which depends on the state of the system and 
can vary in time. The relationships between these two constitutive variables are 
displayed as hysteretic loops (Martinez & Ventra, n.d.) (Lehtonen et al., 2013) 
(Wang, Fitch, Iu, & Qi, 2012). 

The inverse memcapacitance DM at the operating point Q can be derived from the 
constitutive relations as follows: 

 𝐷𝑀(𝜎) =
𝑑𝜑

𝑑𝜎
|
𝑄
 (3.18) 

  
Differentiating both sides of (3.18) yields the voltage-charge relations 

 

𝑑𝜑

𝑑𝑡
= 𝑣(𝑡) =

𝑑𝜑̂(𝜎)

𝑑𝜎

𝑑𝜎

𝑑𝑡
= 𝐷𝑀(𝜎)𝑞(𝑡) 

(3.19) 

 

The same way, the current relation of a memcapacitor is defined as 

 

𝑞(𝑡) =
𝑣(𝑡)

𝐷𝑀(𝜑)
 

 

𝑖(𝑡) =
𝑑

𝑑𝑡
(
𝑣(𝑡)

𝐷𝑀(𝜑)
) 

(3.20) 

 

The energy added and removed from a capacitor is defined as  

𝑈𝑐 = ∫ 𝑉𝑐(𝜏)𝑖(𝜏)
𝑡

0

𝑑𝜏 ≥ 0 
(3.21) 

 

Plotting Uc versus time becomes clear that the solid-state memcapacitor operates 
as a dissipative device since the amount of added energy is on average larger than 
the amount of removed energy, resulting in positive values of Uc at all times 
(Martinez & Ventra, n.d.). 
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3.3. Properties of Memcapacitors and Memcapacitive Systems  
The first property to be considered is that memcapacitors and memcapacitive 
systems form both types of hysteresis loops when the charge that passes through 
its terminals are plotted against the input voltage. A pinched hysteresis loop may 

occur because the definition 𝑞 = 𝐶(𝑥)𝑣 imposes the graph to pass though the origin 
when both values of q and v are null. However, type II hysteresis plots may describe 
memcapacitive systems for specific mathematical models to be considered, as this 
present work will further demonstrate. 

The hysteresis shrinks at higher frequencies, and this is the second fingerprint of a 
memory device, related to the fact that at high frequencies the internal degrees of 
freedom of a system with memory do not have enough time to respond to the 
external perturbation. Similarly, with increasing frequency, a decrease in 
capacitance hysteresis as well as in the rate of energy dissipation has been 
observed in theoretical works. (Martinez-Rincon, Di Ventra, & Pershin, 2010) 

It follows from equation (3.3) or (3.8) that, in general, the charge is zero whenever 

the voltage is zero. In this case 𝑞 = 0 does not imply 𝑖 = 0, and vice-versa, and thus 
a memcapacitive system can store energy, which can be both added to and 
removed from the system. However, unlike memristive systems, in the present case 
relation 3.21 does not always hold. This implies that equations (3.3) and (3.4) or 
equations (3.8) and (3.9) for the memcapacitive systems may, in principle, describe 
both active and passive devices. In a pinched hysteresis loop, the areas of each 
lobe give the energies  

𝑈1 = ∫ 𝑉𝐶(𝑞)𝑑𝑞
𝑇/2

0

 
(3.22) 

 

And  

𝑈2 = ∫ 𝑉𝐶(𝑞)𝑑𝑞
𝑇

𝑇/2

 
(3.23) 

 

Added to or removed from the system, respectively, when the integral runs over half 
of the period. The memcapacitive system can then be (Pershin & Ventra, n.d.) 

Nondissipative, when 𝑈1 + 𝑈2 = 0 
 

(3.24) 

Dissipative, when 𝑈1 + 𝑈2 > 0 (3.25) 

 

And  

Active, when 𝑈1 + 𝑈2 < 0 (3.26) 

 

A memcapacitive system can be dissipative in two different ways where a practical 
realization of memory capacitance is taken into account. The simplest one is via a 
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geometrical change of the system, where a variation in its structural shape like in 
nanoelectromechanical systems can be used as an example. Alternatively, 
quantum-mechanical properties of the free carriers and bound charges of the 
materials composing the capacitor can be analised, giving rise, for instance, to a 
history-dependent permittivity ε(t). In either case, inelastic (dissipative) effects may 
be involved in changing the capacitance of the system upon application of the 
external charge or voltage control parameter. These dissipative processes release 
energy in the form of heating of the materials composing the capacitor (Pershin & 
Ventra, n.d.) 

On the other hand, an active device may be realized when energy is needed from 
sources that control the state variable dynamics, in order to vary the capacitance. 
This energy is different from the control parameter, such as, for example, in the form 
of elastic energy or provided by a power source that controls the permittivity of the 
system via a polarization field. This energy can then be released in the circuit thus 
amplifying the current (Pershin & Ventra, n.d.). 

Memcapacitive systems share with memristive systems the property that they 
typically behave as linear elements in the limit of infinite frequency, and as non-
linear elements in the limit of zero frequency, assuming that equations (3.3) and 
(3.8) admit a steady-state solution. This characterizes the third fingerprint of a 
memory device, as already predicted once the system shows memory features. The 
origin of this behavior rests again on the system’s ability to adjust to a slow change 
in bias for low frequencies, and its inability to respond to extremely high frequency 
oscillations (Pershin & Ventra, n.d.) 

In addition, considering that the state equation (3.3) has only a unique solution at 
any given time 𝑡 ≥ 𝑡0, and if 𝑉𝐶(𝑡) is periodic, the 𝑞 − 𝑉𝐶 curve is a simple loop during 
a period. That means, there may be at most two values of the charge q for a given 

voltage 𝑉𝐶, for a voltage-controlled device, or two values of the voltage 𝑉𝐶 for a given 
charge q, for a charge-controlled system. This loop is also anti-symmetric with 

respect to the origin, if, for the case of equations (3.3) and (3.8), 𝐶(𝑥, 𝑉𝐶 , 𝑡) =
𝐶(𝑥,−𝑉𝐶 , 𝑡) and 𝑓(𝑥, 𝑉𝐶 , 𝑡) = 𝑓(𝑥,−𝑉𝐶 , 𝑡)  (Pershin & Ventra, n.d.). 

In summary, the existence of a pinched hysteresis curve has always been declared 
as a signature of memristive systems, but as more development is achieved in 
memristive devices as well as more research about other classes of memory 
systems and devices appears, such as the present one about memcapacitors, it 
becomes very clear that a pinched hysteresis loop is neither necessary nor 
physically important to characterize a system with memory. The pinched hysteresis 
curve is simply a typical feature that may or may not be present in all devices’ 
curves. Several research nowadays report O-shaped hysteresis curves in solid-
state memcapacitive systems (Ventra, n.d.) 

Therefore, from a physical point of view, the input and output signals have to be 
bound functions of time, but as far as the response functions are concerned, at any 
given time the input u(t) may be zero, while the output y(t) remains finite. From Eq. 
(1.2) it is obvious that the response function is infinite at that particular instant. 
Therefore, unlike what has been always assumed for memristive systems, there is 
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no need to artificially enforce the response function to be finite in a memcapacitor 
system (Ventra, n.d.) 

In addition, if the response function can acquire an infinite value at certain times, 
then it is not necessary that memristive, memcapacitive and meminductive systems 
to show “pinched" hysteresis loops: at the time when u is zero, the response g may 
be infinite, and therefore y is finite. Conversely, we may have situations in which at 
some time the response function is zero, the output y is zero, but the input is finite 
(Ventra, n.d.) 

 As an example of such, a metallic system driven into a superconducting state has 
its dynamics reverted to the metallic state, but following a different path. This system 
has memory but its characteristics curve will not pass through the origin.  

Another important property refers to the sign of the response function g at any given 
time. For memristive systems, the condition of passivity implies that the resistance 
is always non-negative at all times, once a negative resistance can only be 
considered from an active element. However, such a condition does not preclude a 
change of sign of the capacitance at certain times. This can be physically 
understood in the way permittivity in a memcapacitive system lags behind the 
voltage applied to the system. In that case, at the instants of time when the voltage 
changes sign, the dielectric cannot fully screen this field. This under-screening effect 
results in the “wrong" sign of charges on the capacitor plates compared to the 
direction of the field, and therefore in a negative capacitance. Similar considerations 
can be made when the material between the plates over-screens" the field at certain 
instants of time (Ventra, n.d.) 

3.4. Physical limitations of  memelements  
This section focuses on the physical limitations of memcapacitors. Although not yet 
implemented, research done so far can predict the drawbacks a future device may 
face. In order to take such limitations into consideration, it is important to note that 
non-volatile information storage without energy barriers that separate distinct 
memory states is impossible. Usually, for stability of the stored information over 
times much longer than any practical reading time, an energy barrier much larger 
than kT is required, where k is the Boltzmann constant, and T is the temperature of 
the environment. The models of ideal memelements do miss such barriers. 
Therefore, in all these cases, even very small input signals – applied for a sufficient 
time - can change the system state. This implies a high sensitivity of ideal 
memelements to fluctuations in the input variable. Being unprotected against 
fluctuations, internal states exhibit diffusive dynamics (similar to Brownian motion) 
causing the state degradation, a phenomenon that can be named as stochastic 
catastrophe (Ventra, n.d.) 

In particular, the intrinsic thermal agitation of electrons inside any voltage-controlled 
memelement is responsible for the Johnson-Nyquist noise, or voltage fluctuations, 
which are present regardless of any applied voltage, and even in systems that are 
not connected to any circuit at all. The thermal voltage fluctuations thus act as an 
internal degradation mechanism in such devices, which in the absence of any 
energy barrier to protect the state of the system, leads to a diffusive loss of 
information (Ventra, n.d.) 
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Moreover, the logical (and hence physical) irreversibility of any computing machine 
imposes a minimal heat generation condition on any memory device. This minimal 
heat generation is of order kT per machine cycle, and is known as Landauer 
principle. Considering the switching of a memelement at constant temperature and 
pressure, the relevant thermodynamic potential is the Gibbs free energy, which 
should involve energy barriers between different information states and 
corresponding heat dissipation. However, the memelements’ equations do not 
involve any restrictions on minimal switching energy, and thus violates Landauer's 
principle. In fact, this is simply another consequence of not having energy barriers 
between different memory states in any ideal memelement model. Although 
Landauer's principle was formulated for digital computing, the same physical 
constraints apply also to analog computing as well, such as the one that can be 
performed with memory elements. 

3.5. Examples of memcapacitive systems 
Although a memcapacitor has not yet been implemented, various systems exist in 
nature that exhibit a memcapacitive behavior, including vanadium dioxide 
metamaterials, nanoscale capacitors with interface traps or embedded 
nanocrystals, and elastic capacitors. Memcapacitive effects may also accompany 
memristive effects in nanostructures, since in many of them the morphology of 
conducting regions changes in time (Martinez-Rincon et al., 2010) (D. B. Strukov, 
et al, Nature, 453, 80 (2008).) 

Under the term capacitor, a general electronic device capable of storing charge and 
energy is understood. Such a device normally includes a couple of external metal 
plates having negligible resistance and a dielectric medium between the plates. In 
capacitors, memory effects can originate from changes in the geometry and/or 
permittivity. 

Under geometrical mechanisms of memcapacitance, situations when geometrical 
morphology of the plates changes in time (e.g., their relative distance and/or shape) 
can occur. In permittivity-related mechanisms, dielectric properties of the material 
between the plates provide the memory. Three most probable permittivity-related 
mechanisms can be then identifyed: delayed-response mechanism, when dielectric 
permittivity dynamics involves a time delay, permittivity-switching mechanism, when 
the dielectric constant changes its value under the external input (but the response 
is fast), and spontaneously-polarized medium mechanism, in which a 
spontaneously-polarized material (ferroelectric) is used in the capacitor structure. 

It is further illustrated physical systems demonstrating these different mechanisms 
of memcapacitance. Known mathematical models of some of these systems are 
also presented.  

3.5.1. An elastic memcapacitive system 
A simple electro-mechanical device with memory, an elastic capacitor, can be 
viewed and modeled as an elastic memcapacitive system, once it can be viewed as 
a parallel-plate capacitor with an elastically suspended upper plate and a fixed lower 
plate as shown in figure (5). When a charge is added to the plates, the separation 
between them changes as oppositely-charged plates attract each other. The 
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dynamics of the system depends on initial conditions and time-dependent fields thus 
providing a memory mechanism.  

 

Figure 6 elastic memcapacitive system connected to a voltage source V(t) 

 

The internal state variable y of the elastic memcapacitive system is the displacement 
of the upper plate from its equilibrium uncharged position d0, under the action of a 
Couloumb interaction of oppositely charged plates. Mathematically, the charge 
dynamics on the elastic memcapacitive system is described by a parallel-plate 
capacitor model with variable separation between the plates 

𝑞 =
𝐶0

1 +
𝑦
𝑑0

𝑉𝐶 
(3.27) 

 

Where 𝐶0 is the equilibrium capacitance at q=0, and the dynamics of y is given by 
the classical harmonic oscillator equation includind damping and driving terms: 

𝑑2𝑦

𝑑𝑡2
+ 𝛾

𝑑𝑦

𝑑𝑡
+ 𝜔0

2𝑦 +
𝑞2

2𝜀0𝑚𝑆
= 0 

(3.28) 

 

Here, 𝛾 is a damping coefficient representing dissipation of the elastic 

excitations,𝜔0 = √𝑘 𝑚⁄  ,  k is the spring constant, m is the upper plate’s mass, S is 

the plate´s area. It follows from equations above that the elastic memcapacitive 
system is a second-order charge-controlled memcapacitive system. It is dissipative 

when 𝛾 > 0 and non-dissipative when 𝛾 = 0.  

Previously, the model of elastic memcapacitive system was used in studies of lipid 
bilayers and to explain electrical breakdown of biological membranes. From the 
memory elements standpoint, the elastic memcapacitive system is an important 
example of passive memcapacitive device. 

Simulations of the elastic memcapacitive system presented in scientific literature 
show that the upper plate oscillates when a single voltage pulse is applied to the 
elastic memcapacitive system, and such oscillations last for an extended period of 
time keeping the memory about the pulse. In the equation of motion for the state 
variable (3.28), the driving force is proportional to q2, so the hysteresis q-V curves 
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of the elastic memcapacitive system do not self-intersect at (0,0). They are then of 
type II, similar to the I-V curves of thermistor for a memristive system. 

Once Memcapacitive systems have a hysteretic loop that may or may not be 
pinched, in the case of elastic memcapacitive system, the interaction force is 
attractive and does not depend on the separation between the plates. 

3.5.2. Micro- and nano-electro-mechanical systems 
Micro-electro-mechanical system (MEMS) and nano-electro-mechanical system 
(NEMS) capacitors are variable capacitors whose operation is based on an interplay 
of mechanical and electrical properties of micro- and nano-size systems. Such 
elements are key components in many radio-frequency applications such as tunable 
filters, impedance matching circuits and voltage-controlled oscillators. In addition, 
these structures, on the nanoscale, are considered for memory applications and 
sensitive measurements. Normally, capacitors built from these systems utilize a 
diaphragm-based, a microbridge-based or a cantilever-based structure fabricated 
via micromachining. 

Figure 40 shows an experimental image of a memcapacitive system constructed 
from MEMS and measured capacitance as a function of voltage. The capacitance 
curve shows a well defined hysteresis which is a manifestation of memory effects in 
the structure. Memory effects are related to displacement of a top capacitor plate 
that can be considered to be suspended by a spring. Next, a model of elastic 
memcapacitive system that can be used to describe the capacitor features of the 
MEM system shown in figure (7) is considered. 
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Figure 7 image of a two-state memcapacitive system constructed from MEMSm and its 
capacitance as a function of applied voltage. 

3.5.3.Ionic memcapacitive systems 
Memcapacitive behavior can be observed also in certain ionic systems because of 
their relatively slow dielectric response. A typical nanopore sequencing setup is an 
example of such a system. Two chambers with ionic solution separated by a 
membrane with a nanopore are considered in this model. When a varying voltage 
is applied to electrodes located in different chambers, ions redistribute with a time 
lag affecting the total system capacitance. In particular, it has been shown that the 
ac response of such a system demonstrates non-pinched q-VC hysteresis loops, 
and both negative and divergent capacitance. Moreover, the equivalent scheme of 
this setup can also be modeled using a set of classical circuit elements. Since 
nanopores are ubiquitous on membranes of biological cells (e.g., the nerve cells) 
we expect these phenomena to be observable (at appropriate frequencies) even in 
those cases.  

3.5.4. Permittivity-switching memcapacitive systems 
An analog memory capacitor has been reported in Polymer-based memcapacitive 
systems.Its programmable capacitance was achieved in a field-configurable doped 
polymer, in which the modification of ionic concentration induces a nonvolatile 
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change in the polymer dielectric properties. In this system, the RbAg4I5 ionic 
conductor functions as an ionic source, which contains Ag cations with higher 
mobility and iodine anions, whose mobility is lower. Negative voltage pulses above 
a threshold were used to inject iodine anions into the polymer, while positive voltage 
pulses above the threshold were used to extract iodine anions from the polymer. 
Some of Ag cations follow the iodine anions because of electrostatic interactions. 
When in the polymer, the anions and cations form ionic dipoles increasing the 
polymer permittivity and device capacitance. Since a voltage above a threshold is 
needed to overcome the ionic bonding with the polymer, the devices provide 
reasonable nonvolatile memory characteristics. In particular, it has been reported 
that after the analog capacitance was configured to a certain value, it changed by 
less than 10% under continuous reading for 5 days. 

3.5.5. Phase-transition memcapacitive systems 
During the process of a metal-to-insulator transition (MIT) both resistance and 
dielectric properties are affected. This latter property was used to fabricate a 
memory metamaterial in which a persistent electrical tuning of a resonant frequency 
was demonstrated. In this particular case, vanadium dioxide has been used as the 
memory material undergoing the MIT. In the experimental setup, a split-ring 
resonator array was patterned on a 9-nm thin film of vanadium dioxide connected 
by two electrodes to a voltage source. The device was mounted on a temperature-
controlled stage and a temperature of 338.6 K was selected. At this temperature, 
the slope of the resistance as the function of temperature is the steepest because 
of the proximity to the MIT. Therefore, even small amplitude voltage pulses have a 
notable effect on material characteristics. Such electrical pulses directly applied to 
vanadium dioxide were used to modify its dielectric properties. The latter ones were 
registered by measuring the modification of the resonant frequency of the split-ring 
resonator array. 

3.5.6. Spontaneously-polarized medium memcapacitive systems 

a) Ferroelectric memcapacitive systems 
Another interesting concept is the use of ferroelectric materials as the dielectric 
medium of a memory capacitor. Ferroelectric materials are composed of domains 
with a non-zero average electrical polarization. The polarization of ferroelectric 
materials shows hysteresis as a function of electric field, revealing two well-defined 
polarization states. These states are used in the ferroelectric ramdom-access 
memory (RAM) technology having functionality similar to Flash memory. 

b) MOS capacitors with nanocrystals 
Metal-Oxide-Semiconductor (MOS) structures with embedded nanocrystals have 
been much investigated recently. These devices are promising candidates to 
replace floating-gate Flash memory. The latter, in fact, has long programming times 
and poor endurance. Many different materials such as Si, Au and Ag have been 
considered as candidates for the nanocrystals that store charge. Currently, Ge 
nanocrystals seem to be the most promising ones because of a better data retention 
due to the smaller band-gap compared to Si. 

It is known that C-V curves of usual MOS capacitors demonstrate a non-linear 
behavior. Nanocrystals added to a MOS structure provide a mechanism to control 
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the displacement of the C-v curve. When charge is transferred to nanocrystals, this 
curve shifts by the amount ΔVFB determined according to the equation 

∆𝑉𝐹𝐵 =
−𝑞𝑛𝐷

𝜀𝑜𝑥
(𝑡𝐶𝑂 +

1

2

𝜀𝑜𝑥
𝜀𝐺𝑒𝑡𝑑𝑜𝑡

) 
(3.29) 

 

Where q is the elementary charge, n is the number of charges per nanocrystal, D is 

the density of Ge nanocrystals, 𝑡𝐶𝑂 is the control oxide thickness, 𝑡𝑑𝑜𝑡 is the mean 
diameter of Ge nanocrystals, 𝜀𝐺𝑒 and 𝜀𝑜𝑥 are dielectric permittivities of Ge 
nanocrystals and oxide, respectively. 

From the point of view of memory elements, the amount of transferred charge n 
plays the role of the state variable defining the capacitance C(V,n). Its dynamics can 
be described by a rate equation. However, the total equivalent scheme of such 
device should include a resistor in series with a capacitor as charge transfer to 
nanocrystals involves also dissipation processes. Indeed, such an equivalent 
resistor-capacitor circuit of MOS capacitors with nanocrystals do not manifest a 
purely memcapacitive behavior, although the memcapacitive component in these 
devices seems to be the dominant one.  

3.6. Memcapacitors Applications  
Although memcapacitive systems are well known in nature, and no electronic 
memory capacitor has been built yet, that can be used in electronic circuits, devices 
already exist that operate like memcapacitors, even if not categorized as such. 
Examples are a finite charging/discharging time of nanocrystals embedded in a 
capacitor (Pershin & Ventra, n.d.). 

This happens because at nanoscale dimensions, the dynamical properties of 
electrons and ions strongly depend on the history of the system, at least within 
certain time scales. Therefore, many devices at these length scales retain partial 
memory of the electron and ion dynamic (Pershin & Ventra, n.d.). 

In addition to the nonvolatile memory application, once they store information 
continuously, according to the values of the control parameter, these elements 
acquire a bounded continuous set of capacitances. This implies that they store 
analog information and, therefore, can be useful not only for conventional digital low-
power computation and storage but can be used for potential applications of 
memory circuit elements envisioned in both analog and digital domains. This way, 
memcapacitors can be used for high density data storage, circuit calibration or to 
provide self programming, fuzzy logic, or neural learning capabilities. Aligned with 
these new functionalities, memory arrays can be built without the need of a power 
source, and it would represent a paradigm change in electronics (Di Ventra et al., 
2009) (Pershin & Ventra, n.d.). 

Switching devices, self-programming circuit elements, memory devices capable of 
multi-state storage, solid-state elements which can be used to tune circuits, analog 
neuronal computing devices which share fundamental functionalities with the 
human brain, and electronic devices for applying fuzzy logic processes are systems 
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which could benefit from retained memory of past conditions a memcapacitor is able 
to provide (“Patent - Two Terminal Memcapacitor Device.pdf,” n.d.). 

Another application of these memory devices can be understood in the realm of 
simulating and understanding biological processes and neuromorphic circuits, 
namely, circuits, that mimic the function and operation of biological systems. For 
instance, the potassium and sodium channel conductances in the classic nerve 
membrane model can both be identified as memristive. Memristors have been used 
to understand the adaptive behavior of unicellular organisms, such as amoebas, by 
introducing the concept of learning circuits, namely LC circuits, with memristive 
elements, which can recognize input waveforms patterns and thus adapt to the 
incoming signal. 

In real systems, the three memory features – memristors, memcapacitors and 
meminductors - may appear simultaneously, specially at the nanoscale, the same 
way the three traditional lumped circuits elements are mixed in an electronic circuit 
(Pershin & Ventra, n.d.). 

It is also known that memristive and memcapacitive effects can be simultaneously 
observed in the resistance switching memory cells. Experimental data show that the 
changes in memristance and memcapacitance are correlated and, therefore, they 
are most probably related to the same state variables. We thus expect that in 
nanoscale systems memristive behavior is always accompanied to some extent by 
a possibly very small capacitative behavior (Pershin & Ventra, n.d.). 
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Chapter Four: Case Study 

 

4.1. Introduction 
This section describes the methodology used in the present work to present a full 
description of a memcapacitor and its characteristics. Three mathematical models 
of memcapacitor were used, two of them taken from scientific papers and the last 
proposed by the author’s adviser. 

 All of them were modeled using window functions. A proper justification of the use 
of window functions is that it causes deviations from the theoretical behavior of the 
simulated mem-elements, and, as a consequence, the memcapacitor passes to the 
more general memcapacitive system, which do not need to show the 
memcapacitor’s fingerprints. 

After properly described, the three models were compared with each other, in order 
to derive a complete model of a memcapacitor with its q-v characteristics. 

4.2. Window functions 
Window functions are functions of the state variable that forces the bounds of the 
device in order to model nonlinear behaviors close to these bounds. There are 
several window functions proposed, such as Strukov, Joglekar and Wolf, Biolek and 
Prodromakis. 

A window function is included in the state equation in order to handle nonlinearities 
of the device: 

𝑑𝑥

𝑑𝑡
= 𝑘 ∗ 𝑞(𝑡) ∗ 𝐹(𝑡) 

(4.1) 

 

Where the time derivative of the state depends on the charge in a charge-controlled 
memcapacitor, 𝐹(𝑡) is a window function chosen from the ones commonly used 
when modeling a memory device, and k is a constant derived from the device 
parameters. 

The window function used in this work is the Prodromakis Window Function, 
described as: 

𝑓(𝑥) = 1 − [(𝑥 − 0.5)2 + 0.75]𝑝 (4.2) 

 

This window function scales upwards, which implies that 0 < 𝑓𝑚𝑎𝑥(𝑥) < 1. The 
variable p can take any positive real number, allowing a greater extent of flexibility. 
P is a control parameter that co-determine both the rate of decrease of the window 
function as the state variable  approaches its bounds and the maximum value of the 
function itself. It  can assume any real positive number and has the function to 
control the non-linearity of the model where it is applied, as well as the values range 
of the window function. In the present work p was assumed to have the constant 
value of 10. The boundary issues are also resolved with the window function 
returning a zero-value at the active bi-layer edges (Adzmi & Herman, 2012) 
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4.3. Green’s theorem and area of the hysteresis loops 
Baptized under the name of the British mathematician George Green, who 
demonstrated the theorem for the first time, the Green’s theorem relates the line 
integral along a closed line in a particular plane of a loop with the double integral 
under the region limited by such curve. 

Let C be a simple closed curve with a defined derivative and D a region in the plane 
delimited by C. Let P and Q be two functions with real variables where there exists 
continuous partial derivatives in a region containing D. Thus, 

∫ (
𝜕𝐹

𝜕𝑥
−
𝜕𝐺

𝜕𝑦
)𝑑𝑆 = ∮ 𝐺𝑑𝑥 + 𝐹𝑑𝑦

𝐶𝑘𝐴𝑘

 
(4.3) 

 

Where 𝑘 ∈ {1,2}  and 𝐶𝑘 is the portion of C that encloses  𝐴𝑘. 

This relation is then used to calculate the area of the closed loop found in 
simulations. For a pinched hysteresis loop, two lobe areas are found, so the total 
area can then be calculated by adding the two areas from the two different lobes, 
by choosing F and G in a suitable way and expressing C parametrically as depicted 
in the figure and the following formulas: 

 

 

Figure 8 Green's algorithm(Capela,2013) 

Once F and G need to be defined in such a way to make the integrand of the left 

side of (4.3) be equal to 1, 𝐹(𝑥, 𝑦) = 0 and 𝐺(𝑥, 𝑦) = −𝑦 are chosen, leading to 

∬ 𝑑𝑆
𝐴𝑘

= ∮ −𝑦
𝐶𝑘

. 𝑑𝑥 

 

(4.4) 

𝐴𝑘 = −∮ 𝑦. 𝑑𝑥
𝐶𝑘

 
(4.5) 
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𝐴𝑘(𝜔) = ∫ [𝑦
𝑑𝑦

𝑑𝑡
] . 𝑑𝑡

𝑘
𝑇
2

(𝑘−1)
𝑇
2

 

(4.6) 

 

 

The total area is then 

𝐴(𝜔) = |𝐴1(𝜔)| + |𝐴2(𝜔)| (4.7) 
 

For an elliptic hysteresis loop, it is clear that there exists only a single area value, 
thus formulae (4.6) and (4.7) is used considering a unique value: 

𝐴𝑘(𝜔) = ∫ [𝑦
𝑑𝑦

𝑑𝑡
] . 𝑑𝑡

𝑘𝑇

0

 
(4.8) 

 

𝐴(𝜔) = |𝐴1(𝜔)| (4.9) 

 

4.4. Mathematical Models of Memcapacitors Used 
In this section the three mathematical models of memcapacitors are described. 

4.4.1. First Model: Theoretical Proposed Model Type I 
The first studied and simulated model is the one proposed by the author’s adviser. 
Such model is based in the Strukov and Williams model of the memristor, the first 
to be physically implement, by the HP Labs in 2008. 

Once the memristor has an 𝑅𝑜𝑛 and 𝑅𝑜𝑓𝑓 resistance, representing the doped and 

undoped region, respectively, this model of memcapacitor follows the same logic by 
implementing an 𝐶𝑜𝑛 and 𝐶𝑜𝑓𝑓 memcapacitance, where, if there exists aphysical 

memcapacitive device, 𝐶𝑜𝑛 would represent a fully doped portion of the device, 
whereas 𝐶𝑜𝑓𝑓 would represent a state with higher impedance. These regions would 

vary in length according to the applied voltage at the memcapacitor’s terminals.  

X is a state variable representing the proportion these two halves move inside the 
device. 

In this sense, this model is non-linear, once it takes into account the non-linearity of 
the dopants from the material it is made of. To take this fact into consideration, a 
window function is introduced in order to confine the state variable within its physical 
bounds. It is thus a well-behaved model where there is a well-defined equation 
describing the memristance of the device. 
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Here, the equation of the memcapacitance is explicited, and the state equation is 
derived from the equation that relates charge with voltage, adding however a 
window function, necessary for the device to operate within linear bounds. 

The model is then derived the following way: From the definition of the traditional 
capacitor: 

𝑖 = 𝐶
𝑑𝑣

𝑑𝑡
 

(4.10) 

 

Integrating equation (4.33) and assuming a variable memory capacitance, yields 

𝑞 = 𝐶𝑉 
 

(4.11) 

𝑞 = 𝐶𝑀𝑉 (4.12) 

 

Where 

𝐶𝑀(𝑥) = 𝐶𝑜𝑓𝑓 − (𝐶𝑂𝐹𝐹 − 𝐶𝑂𝑁)𝑥 (4.13) 

 

Is the memcapacitance of the system. 

The state equation of this model can then be depicted as follows: 

Let 

𝑑𝑥

𝑑𝑡
= 𝑘𝑣(𝑡)𝐹(𝑥) 

(4.14) 

 

Where 𝐹(𝑥) is a chosen window function, v(t) is the voltage across the 
memcapacitor and 𝑘 is a constant related to the physical characteristics of the 
device. 

4.4.2. Second Model: Elastic Memcapacitive System Type II 
 This model of memcapacitor is an example of elastic memcapacitive system and 
uses differential equations to describe a bistable non-volative parallel-plate 
memcapacitor using a strained elastic membrane to emulate its plates. The applied 
voltage dictates the behavior of the system, both by varying its capacitance in high 
and low values and by reliably switching the memcapacitor into the desired 
capacitance state, by setting an appropriate amplitude value. This model was 
studied from the article “Bistable non-volatile elastic membrane memcapacitor 
exhibiting chaotic behavior”(Martinez-rincon & Pershin, n.d.) 

Here, the capacitor is formed by a strained membrane in the upper plate and a flat 
fixed lower plate. The different values of capacitance are acquired by bending the 
membrane up or down, allowing thus two equilibrium positions: when the membrane 
is in the position closer to the bottom plate, the capacitance of the device is logically 
defined as “1”, higher than the opposite situation, when the capacitance has a lower 
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value and is logically defined as “0”. Both states are stable and provide a good non-
volatile information storage capability (Martinez-rincon & Pershin, n.d.). 

 

Figure 9 Elastic Memcapacitive System (Martinez-rincon & Pershin, n.d.) 

 

There is an attractive electrostatic interaction between the charges on the fixed plate 
and membrane, denoted by the electric field E given by 

𝐸 =
−𝑞

2𝜀𝑜𝑆
 (4.15) 

 

Where 𝜀𝑜 is the vacuum permittivity and S is the area of the fixed plate. 

The relation between charge and voltage is 

𝑞(𝑡) =
𝐶0

1 + 𝑦(𝑡)
𝑣(𝑡) 

 

(4.16) 

𝑞(𝑡) = 𝐶(𝑦(𝑡))𝑣(𝑡) (4.17) 

 

Where 𝑦 =
𝑧

𝑑
 is a dimensionless variable, constituted by the separation 𝑑 between 

the bottom plate and the middle position of the membrane and the effective 

displacement of the membrane from its middle non-strained position 𝑧. 

A.nd the membrane’s equation of motion is 

𝑑𝑦̇

𝑑𝜏
= −4𝜋2𝑦 (

𝑦2

𝑦𝑜2
− 1) − Γ𝑦̇ −

𝛽2(𝜏)

(1 + 𝑦)2
 

(4.18) 

 

Where its time derivatives are taken with respect to the dimensionless time 𝜏 =
𝑡𝜔𝑜

2𝜋
 

and 

𝐶𝑜 =
𝜀𝑜𝑆

𝑑
 

(4.19) 
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Is the initial capacitance value; 

𝑦𝑜 =
𝑧𝑜
𝑑

 (4.20) 

 

Being ±𝑧0 the  equilibrium positions of the membrane; 

Γ =
2𝜋𝛾

𝜔𝑜
 

(4.21) 

 

Being 𝛾 the damping constant and 𝜔𝑜 the natural angular frequency of the system; 

𝛽(𝑡) = (
2𝜋

𝜔𝑜𝑑
)√

𝐶𝑜
2𝑚

𝑣(𝑡) 

(4.22) 

 

Where m is the mass of the membrane. 

From the state equations above, once equations (4.16) and (4.18) are particular 
forms of equations (3.3) and (3.4), this membrane memcapacitor model is a second-
order voltage-controlled memcapacitive system. 

Certain range of parameters result in chaotic behavior regime and should be 
avoided. 

4.4.3. Third Model: Superlattice Memcapacitive System Type II 
The last model considered for a comparative analysis is the one exposed in the 
scientific article called “Solid-state Memcapacitor”. It consists on a model of a solid-
state polarization-based memcapacitive device based on the slow polarization of a 
medium between a regular capacitor plates, derived specific through tunneling, 
consisting of metal layers embedded into a parallel-plate capacitor. The key idea is 
to use non-linear electron transport, or tunneling, for fast writing and long storage 
capabilities. 

The operation of the memcapacitor relies on the redistribution of the internal charges 
Qk between the embedded layers caused by the electric field due to the charge q 
on the capacitor plates. Polarization of the metamaterial results in an internal electric 
field due to the plate charges. Therefore, for a given amount of plate charge, the 
internal charges tend to decrease the plate voltage or, equivalently, to increase the 
capacitance. 

This realization configures the capacitor constructed in internal metal layers that, 
along with the insulator material, form a “metamaterial” characterized by a long 
polarization/depolarization time. By applying an external voltage source to the 
capacitor, a charge redistribution between the metal layers occurs. The tunneling 
current  between the layers depend almost exponentially on this voltage, which is 
important when the operation of the device is considered, allowing the writing of the 
information on the form of medium polarization with high-voltage pulses, and the 
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holding of such information when low or zero voltages are applied. Once the internal 
metal layers and the capacitor plates are separated by an insulating material, no 
electron exchange between the external plates and those embedded occurs, so the 
tunneling occurs only between the internal metallic layers. Consequently, the total 
internal charge is always zero. 

This feature is important for the operation of the suggested system once it allows 
the “writing” of information with high-voltage pulses, in the form of medium 
polarization, and “holding” such information when low or even zero values of 
voltages are applied. 

The resulting memcapacitor exhibits hysteretic charge-voltage and capacitance-
voltage curves, and both negative and diverging capacitance within certain ranges 
of the field. 

a) General N-Layers Model 
The model begins with the assumption that there exists N metal layers embedded 

into an insulating material of thickness 𝛿 between external capacitor plates. The 
structure is designed in such a way that the insulating material in between the 
embedded metal layers is the same as those from a regular capacitor, and the 
electron transport between external plates and internal layers is not possible. 
Therefore, the internal charges Qk can only be redistributed between the internal 
layers creating a medium polarization.  

The following figure draws the schematics of such model, with its charge state 
variables and other physical parameters. 

 

Figure 10 Solid-state general layers (Martinez, DiVentra) 

Correspondingly, there is a constrain imposed on the total internal charge: 

∑𝑄𝑘(𝑡) = 0

𝑁

𝑘=1

 
(4.23) 

 

That means, the total internal charge is always zero, once the operation of the 
device relies on the redistribution of the internal charges between the layers caused 
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by the electric field due to the charge on the capacitor plates. Polarization of the 
metamaterial results in an internal electric field between the layers opposite to the 
electric field generated by the plate charges. As a consequence, the internal 
charges tend to decrease the plate voltage and increase the capacitance. 

The capacitance of the total structure is given by 

𝐶 =
𝑞

𝑉𝐶
=

2𝐶0

2 + ∑ [∆ − 2∆𝑖−1]
𝑄𝑖
𝑞

𝑁
𝑖=1

 
(4.24) 

  

Where 

∆=
𝛿

𝑑
 

 

(4.25) 

∆𝑖=∑
𝛿𝑗

𝑑
 𝑓𝑜𝑟 𝑖 = 1,2, … ,𝑁 − 1

𝑖

𝑗=1
 

 

(4.26) 

∆0= 0  
(4.27) 
 

𝐶0 =
𝜀0𝜀𝑟𝑆

𝑑
 

(4.28) 

 

Are geometry-related parameters: 𝐶0 is the capacitance of the system when no 
internal metal layers are considered; VC is the external plate voltage, defined as 

𝑉𝐶 = 2𝑑𝐸𝑞 +  𝛿𝐸1 + [𝛿 − 2𝛿1]𝐸2 + [𝛿 − 2(𝛿1 + 𝛿2)]𝐸3 +⋯

+ [𝛿 − 2(𝛿1 +⋯+ 𝛿𝑘−1)]𝐸𝑘…− 𝛿𝐸𝑁 

(4.29) 

 

Where  

 

𝐸𝑞 =
𝑞

2𝑆𝜀0𝜀𝑟
 (4.30) 

 

Is the magnitude of the uniform electric field due to the charge q ate the external 

plate in the direction perpendicular to the plane, where 𝜀0 is the vacuum permittivity, 

𝜀𝑟 is the relative dielectric constant of the insulating material and S is the area of the 
plates. 

 

𝐸𝑘 =
𝑄𝑘

2𝑆𝜀0𝜀𝑟
 

(4.31) 
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Is the electrical field due to the charge 𝑄𝑘 at the k-th embedded metal layer. For the 
sake of simplicity, equation (4.17) can be rewritten as: 

𝑉𝐶 =
𝑞

𝐶0
[1 + Δ

𝑄1
2𝑞
+ (Δ − 2Δ1)

𝑄2
2𝑞
+⋯+ (Δ − 2Δ𝑘−1)

𝑄𝑘
2𝑞
…− Δ

𝑄𝑁
2𝑞
] 

(4.32) 

 
 Which makes more sense when analyzing equation (4.12). 

 

 

Equation (4.12) explicits diverging values of capacitance when its denominator 
assumes the value of zero, while its numerator reaches a finite number. Negative 
and diverging values of capacitance have been found experimentally in ionic 
memcapacitors, for instance, in nanopore membranes in an ionic solution subject to 
external time-dependent perturbations. 

 Physically, it can be explained when the internal metal layers completely screen the 
external field, despite the presence of a finite charge q on the external capacitor 
plates. This explains the physical phenomenon of diverging values of capacitance. 
At certain instants of time, the internal metal layers may over-screen the external 
field, resulting in a negative capacitance, which is experimentally observed in 
different solid-state systems, but not accompanied by hysteretic and diverging 
values of capacitance.  

For the description of the dynamics of the internal charges Qk  in the system, the 
voltage Vk is defined as the voltage between k and k+1 metal layers as depicted in 
equation (4.33) 

𝑉𝑘 = −𝐸𝑘,𝑘+1𝛿𝑘 (4.33) 

 

Where the electrical field between two neighboring layers Ek,k+1 is obtained adding 

the electric fields due to charges – that means, equation (4.13) – at all layers and 
the external metal plates – in equation (4.12), in such a way that 

𝐸𝑘,𝑘+1 = −2𝐸𝑞 − 𝐸1 − 𝐸2…− 𝐸𝑘 + 𝐸𝑘+1 + 𝐸𝑁 

 

(4.34) 

𝐸𝑘,𝑘+1 =
−2𝑞 − (𝑄1 +⋯+ 𝑄𝑘) + (𝑄𝑘+1 +⋯+ 𝑄𝑁)

2𝑆𝜀0𝜀𝑟
 

(4.35) 

 

The dynamics of the charge at a metal layer k is determined by the currents flowing 
to and from that layer: 

𝑑𝑄𝑘
𝑑𝑡

= 𝐼𝑘−1,𝑘 − 𝐼𝑘,𝑘+1 
(4.36) 

 

Where  𝐼𝑘,𝑘+1 is the tunneling electron current flowing from layer k to layer k+1, 

defined by  
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𝐼𝑘,𝑘+1 =
𝑆𝑒

2𝜋ℎ𝛿𝑘
2 [(𝑈 −

𝑒𝑉𝑘
2
) 𝑒𝑥𝑝 [−

4𝜋𝛿𝑘√2𝑚

ℎ
√𝑈 −

𝑒𝑉𝑘
2
]

− (𝑈 +
𝑒𝑉𝑘
2
) 𝑒𝑥𝑝 [−

4𝜋𝛿𝑘√2𝑚

ℎ
√𝑈 +

𝑒𝑉𝑘
2
]] 

(4.37) 
 

  

If 𝑒𝑉𝑘 < 𝑈 
And 
 

 

𝐼𝑘,𝑘+1 =
𝑆𝑒3𝑉𝑘

2

4𝜋ℎ𝑈𝛿𝑘
2 [𝑒𝑥𝑝 [−

4𝜋𝛿𝑘√𝑚𝑈
3/2

𝑒ℎ𝑉𝑘
]

− (1 +
2𝑒𝑉𝑘
𝑈

)𝑒𝑥𝑝 [−
4𝜋𝛿𝑘√𝑚𝑈

3/2

𝑒ℎ𝑉𝑘
√1 +

2𝑒𝑉𝑘
𝑈

]] 

 

(4.38) 

 

 

Equation (4.24) is the state equation of this charge-controlled memcapacitive 
system, once the layer charges Qk are considered state variables of the equation. 

This memcapacitor, when in series with an ac voltage source, models the following 
differential equation of the charge inside the device, which, according to the 
definition of the memory devices already explained, is itself a state variable: 

𝑣(𝑡) = 𝑅
𝑑𝑞

𝑑𝑡
+
𝑞

𝐶
 

(4.39) 

 

b) Two-Layers Memcapacitive System 
The simplest system derived from the previous general model exhibiting polarization 
memory is a two-layer memcapacitor. 

Beginning at 𝑞 = 0, the applied sinusoidal voltage induces electron tunneling 
between the internal metal layers resulting in a non-zero Q1 andQ2. Positive half 
periods of v induce negative Q1 and positive Q2 charges, andy cause a screening 
electrical field opposite to the electric field of plate charges. 

The following figure exemplifies the physical schematics of this approximation when 
N=2. 
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Figure 11 Solid State Memcapacitor for k=2 (Martinez, DiVentra) 

The equations for the two-layers model can thus be derived from the general model, 
and written as follows: 

For k=2, equation (4.5) leads to 

∑𝑄𝑘(𝑡) = 0 ⟹ 𝑄1 + 𝑄2 = 0

2

𝑘=1

 
(4.40) 

 

This definition yields the important relation, which will dictate the form of the 
subsequent equations: 

𝑄2 = −𝑄1 (4.41) 

 

 

For N=2,  

𝛿 = 𝛿1 𝑎𝑛𝑑 ∆= ∆1 (4.42) 

Where 

∆= Δ1 =
𝛿1
𝑑
=
𝛿

𝑑
 

(4.43) 

 

 

When equations (4.12) and (4.13) assume the particular cases for k=2 

𝐸1 =
𝑄1

2𝑆𝜀0𝜀𝑟
 

(4.44) 

𝐸2 =
𝑄2

2𝑆𝜀0𝜀𝑟
 

(4.45) 

 

Equation (4.28), the voltage in the model assumes the form 
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𝑉𝑐 =
𝑞 + ∆𝑄1
𝐶0

 
(4.46) 

 

From equations (4.16) and (4.17), the first two terms of the electric field takes the 
form 

𝐸1,2 = −2𝐸𝑞 − 𝐸1 − 𝐸2 

 

(4.47) 

𝐸1,2 =
−(𝑞 + 𝑄1)

𝑆𝜀0𝜀𝑟
 

 

(4.48) 

 
The capacitance of the whole structure is thus defined as 

 

 

𝐶 =
𝑞𝐶𝑜

𝑞 + ∆𝑄1
 

(4.49) 

 

 

The system’s state equation can then be depicted in the form of the two equations 
that describe the charge dynamic of the system: 

𝑑𝑄1
𝑑𝑡

= −𝐼1,2 

 

(4.50) 

𝑑𝑄2
𝑑𝑡

= 𝐼1,2 
(4.51) 
 

 

Where the currents associated in equations (4.50) and (4.51) are defined as a 
particular case of equation (4.38), as follows: 

𝐼1,2 =
𝑆𝑒

2𝜋ℎ𝛿1
2 [(𝑈 −

𝑒𝑉1
2
) 𝑒𝑥𝑝 [

−4𝜋𝛿1√2𝑚

ℎ
√𝑈 −

𝑒𝑉1
2
]

− (𝑈 +
𝑒𝑉1
2
) 𝑒𝑥𝑝 [

−4𝜋𝛿1√2𝑚

ℎ
√𝑈 +

𝑒𝑉1
2
]] 

(4.52) 

 

If  𝑒𝑉1 < 𝑈, and 
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𝐼1,2 =
𝑆𝑒3𝑉1

2

4𝜋ℎ𝑈𝛿1
2 [𝑒𝑥𝑝 [

−4𝜋𝛿1√𝑚𝑈
3/2

𝑒ℎ𝑉1
]

− (1 +
2𝑒𝑉1
𝑈

)𝑒𝑥𝑝 [
−4𝜋𝛿1√𝑚𝑈

3/2

𝑒ℎ𝑉1
√(1 +

2𝑒𝑉1
𝑈
)]] 

(4.53) 

 

If  𝑒𝑉1 > 𝑈 

From the charge equation (4.39), a manipulation of equation (4.49) to explicit the 

initial capacitance 𝐶𝑜 and the definition of the current as the first derivation of the 
charge, the charge in a two-layer memcapacitive system is thus defined as: 

𝑞̇ =
𝑣𝐶𝑜 − 𝑞 + ∆𝑄1

𝑅𝐶𝑜
 

 

(4.54) 

𝑞 = ∆𝑄1 +  𝑣𝐶𝑜 − 𝑖𝑅𝐶𝑜 (4.55) 

 

Equation (4.40) then takes the form 

𝐼1,2 = [𝐴−(𝑞, 𝑄1)𝑒
𝐸𝑋1−(𝑞,𝑄1) − (𝑞, 𝑄1)𝑒

𝐸𝑋1+(𝑞,𝑄1)] (4.56) 

 

By making 

𝐴−(𝑞, 𝑄1) =
2𝑒𝑞𝑈𝑆𝜀0𝜀𝑟 − 𝑒𝑞

2𝛿1(𝑞 + 𝑄1)

4𝜋ℎ𝛿1
2𝜀0𝜀𝑟

 

 

(4.57) 

𝐴+(𝑞, 𝑄1) =
2𝑒𝑞𝑈𝑆𝜀0𝜀𝑟 + 𝑒𝑞

2𝛿1(𝑞 + 𝑄1)

4𝜋ℎ𝛿1
2𝜀0𝜀𝑟

 

 

(4.58) 

𝐸𝑋1−(𝑞, 𝑄1) = −
4𝜋𝛿1√2𝑚

ℎ
√(
2𝑈𝑆𝜀0𝜀𝑟 − 𝑒𝛿1(𝑞 + 𝑄1)

2𝑆𝜀0𝜀𝑟
) 

 

(4.59) 

𝐸𝑋1+(𝑞, 𝑄1) = −
4𝜋𝛿1√2𝑚

ℎ
√(
2𝑈𝑆𝜀0𝜀𝑟 + 𝑒𝛿1(𝑞 + 𝑄1)

2𝑆𝜀0𝜀𝑟
) 

(4.60) 

 

The same steps are made for equation (4.41): 

𝐼1,2 = 𝐿(𝑞, 𝑄1) [𝑒
𝐸𝑋𝑃3(𝑞,𝑄1) −𝑀(𝑞, 𝑄1)𝑒

𝐸𝑋𝑃3(𝑞,𝑄1)√𝑀(𝑞,𝑄1)]  (4.61) 
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Where 

𝐿(𝑞, 𝑄1) =
𝑒𝑞
3(𝑞 + 𝑄1)

2

4𝜋ℎ𝑈𝑆𝜀𝑜2𝜀𝑟2
 

 

(4.62) 

𝐸𝑋𝑃3(𝑞, 𝑄1) = −
4𝜋𝑆𝜀0𝜀𝑟√𝑚𝑈

3
2

𝑒𝑞ℎ(𝑞 + 𝑄1)
 

 

(4.63) 

𝑀(𝑞, 𝑄1) =
𝑈𝑆𝜀0𝜀𝑟 + 2𝑒𝑞𝛿1(𝑞 + 𝑄1)

𝑈𝑆𝜀0𝜀𝑟
 

(4.64) 

 

The added and removed energy to and from the capacitor is defined as equation 
(4.65): 

𝑈𝐶 = ∫ 𝑉𝐶(𝜏)𝑖(𝜏)𝑑𝜏
𝑡

0

 
(4.65) 

 

Which indicates that the present model operates as a dissipative system, once the 
amount of added energy is on average larger than the amount of removed energy, 
resulting thus in positive values of (4.65). Such process can be explained by the 
dissipation of energy caused by thermalization processes due to the different 
electromechanical potential energies of each metal layers which accompanies the 
tunneling between internal layers, as well as local heating expected in real devices. 

Next chapter defines the values used in simulations and the results achieved for 
each model here presented. 
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Chapter Five: Parameters used and Simulations Results 

 

Here, a brief description of the parameters used in the simulations of the systems, 
as well as an explanation of the codes used and the results obtained. 

5.1. Description of the model parameters 

a) First Model: Theoretical Proposed Model 
The first model was initially simulated using the Matlab script called 
Memdevice_view.m. This piece of code aims to solve the differential equation which 
describes the state variable x described by equation (4.14) using the Matlab function 
ode15s; after obtaining the values of x, equation (4.12) was used to calculate the 
charge that passes through the system. 

The parameters used were: 

𝐶𝑜𝑛 = 10𝑝𝐹 

𝐶𝑜𝑓𝑓 = 1𝑛𝐹 

The value of 𝐶𝑜𝑓𝑓 is much higher than 𝐶𝑜𝑛, following the assumption of  𝑅𝑜𝑓𝑓 ≫ 𝑅𝑜𝑛 

in the memristor’s theory, in order to perform the on switching of the device. 

For the Prodromakis window function, the parameters used were: 

𝐴 = 1, for the amplitude of the window, and 𝑝 = 5, for the control parameter. 

𝑘 = 1000  is a process parameter that takes into account the physical characteristics 
of the device. 

Using the angular frequency 𝜔 = 2𝜋𝑓, plots of 𝑞(𝑡), 𝑣(𝑡) in function of time were 

generated; the hysteresis plot 𝑞 − 𝑣 revealed a type I pinched hysteresis loop: once 

𝑞(0) = 0 for 𝑣(0) = 0, the plot passes through the origin of the axis, creating thus 
two lobes in the odd quadrants of the plane, showing positive and negative values. 
This Lissajous figure is a direct consequence of the periodic nature of the variables 
q and v, subjected to the same frequency. 

The symmetrical hysteretic curve is very similar to the one found in memristors, and 
thus it is considered to be a well-behaved model. It thus can serve as a model from 
which the other memcapacitors can be compared, in a measure of how much they 
are far from the ideal model. 

The critical frequency is the initial value of frequency from which the q-v graph 
begins to show a pinched hysteretic behavior. Here, after successive iterations it 
was discovered that the critical frequency for that model is around f=50Hz. 

The hysteresis plot of capacitance versus input voltage shows a circular hysteresis 
loop, clearly falling into type II classification mark, once the graph does not pass 
through the origin. 
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Figure 13 q-v Hysteresis plot for First Model 

Figure 12  q-t and v-t plot and q-v Hysteresis plot for Type I Theoretical Model 
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Another method for amplitude and frequency characterization of the models consists 
of taking a morphological measure of the area of the lobes against amplitude or 
frequency dependence characterization of memcapacitors. 

The proposed approach analyses the area of the associated hysteresis loop with a 
sweep of amplitude and frequency values of the input voltage, in order to check the 
behavior of the systems to a different set of amplitudes and frequencies, having an 
easier scale to interpret the results. 

A script called “Memdevice_area.m” performs the calculations of the areas of the 
two lobes from the hysteresis plot, by varying the input frequencies, and plot the 
results in db. 

The graph was coded first by defining a row vector of logarithmically spaced values 
of size N=100001 elements: 

wspace=logspace(1,5,N); 
 
For N iterations, the angular frequency is thus defined as a vector of values 
 
w=wspace(n); 
 
And the areas is then calculated, using only the first period of the sinusoid 
 
Area(n)=abs(q(:,1:(Ns+3)/4)*dv(:,1:(Ns+3)/4)')+abs(q(:,(Ns+3)/4:end)*dv(:,(Ns+3)/4
:end)'); 
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Figure 14 Area of Type I Memcapacitor Model for a frequency sweep 

The same logic was used to plot the amplitude variations of the model against the 
area of the loop, with slight changes: a row vector of logarithmically spaced values 
of size N=100001 elements was created, then, inside the iteration loop, a vector of 
v0 values was formed: 

vspace=logspace(0,1,N); 
 
vo=vspace(n); 
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Figure 15 Area of Type I Memcapacitor model for amplitude sweep 

b) Second Model: Elastic Memcapacitive System  
This model was initially simulated using the Matlab script called Memdevice_view.m. 
This piece of code aims to solve the differential equation which describes the state 
variable x described by equation (4.18) using the Matlab function ode15s; after 
obtaining the values of the state variable, equation (4.16) was used to calculate the 
charge that passes through the system. 

The parameters used were: 

𝑔𝑎𝑚𝑚𝑎 = 0.7 

𝑏𝑒𝑡𝑎0 = 2.7 

𝑦0 = 0.2 

 

Using the angular frequency 𝜔 = 2𝜋𝑓, plots of 𝑞(𝑡), 𝑣(𝑡) in function of time were 

generated; the hysteresis plot 𝑞 − 𝑣 revealed a type II pinched hysteresis loop. 

The critical frequency is the initial value of frequency from which the q-v graph 
begins to show a pinched hysteretic behavior. Here, after successive iterations it 
was discovered that the critical frequency for that model is around f=0.5Hz 
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Figure 16 q-t and v-t plots and q-v hysteresis loop for Type II elastic model 

 

 
The capacitance-voltage curve is plotted in figure (17). Here a slightly shift in the 

origin of the axis is seen, but the hysteresis curve is present, although it is a pinched 

one, in opposition to the elliptical hysteresis curve found in Model I. 
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Figure 17 C-vHysteresis loop for Type II elastic Model 

 

c) Third Model: Superlattice Memcapacitive Model 
This model was initially simulated using the Matlab script called Memdevice_view.m. 
This piece of code aims to solve the differential state equations (4.50) and (4.51) of 
the system, using the Matlab function ode15s, by calling the function “Fmemstate.m”  
; after obtaining the values of the state equation, the charge that passes through the 

system was calculated, as well as the charges 𝑄1 and 𝑄2 due to its internal layers. 

An important feature of this model was the definition of the constants used. Once 
they describe physical characteristics of the system in an atomic level, they played 
a significant role in the success of the code compilation. Conversion of units were 
also problematic. 

ℎ = 4.1356674335 ∗ 10−15 𝑒𝑉𝑠; 

ℎ = 6.62606957 ∗ 10−37 𝑚2𝑔/𝑠 

𝑒 = 1.60217656535 ∗ 10−19 

𝑚𝑒 = 9.1093821545 ∗ 10−34 𝑔 

𝜀0 = 08.854187817 ∗ 10
−12 𝐹/𝑚 

𝜀𝑟 = 5 
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𝑑 = 100𝑛𝑚 

𝑆 = 10𝑚𝑚2 

𝑑1 = 50𝑛𝑚 

𝑈 = 0.33 𝑒𝑉 

𝑅 = 1Ω 

The function “jk.m” models the tunneling current density as a function of the voltage 
drop between two adjacent layers, and the associated function “testJk.m” plots its 
results in a logarithmic fashion, as depicted in figure (18). The specific parameter 

used here was 𝑈 = 0.5𝑒𝑉. This graph is a direct solution from equations () and (), 
and clearly shows the growth of such current in function of the applied voltage. 

 

The following plot show the values of 𝑄1, 𝑄2 and 𝑞 in function of time. Once 𝑣(0) = 0 
as 𝑣(𝑡) = 𝑣𝑜sin (2𝜋𝑓𝑡), and 𝑄1(0) = 𝑄2(0) = 0, the sinusoidal voltage induces 
electron tunneling between the internal metal layers, resulting, at the end of the 

simulations, in non-zero values for the charges 𝑄1 and 𝑄2. Here it is clearly shown 
the symmetric value of 𝑄2 as already predicted in equation () as well as the 
sinusoidal nature of the three charges involved in this model: positive half periods 

Figure 18 Tunneling current for the third model 
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of the input sinusoidal voltage induce a negative 𝑄1 and positive 𝑄2. In turn, they 
cause a screening electric field opposite to the electric field due to the plate charges. 

 

 

Figure 4 Charges in function of time for the third model 

The most important feature of this model is the formation of a non-pinched 
hysteresis loop in the q-v, Q1-v and Q2-v planes. Once these planes do not cross 
the origin, it is suffice to say that they are classified as a type II hysteresis loop. 
Despite most of the memristor models and, as far as the memcapacitors models 
analysed in this work are concerned, exhibit a pinched hysteresis loop, this model 
shows an elliptical hysteresis loop, far beyond the well-behaved first model from 
which it is compared. A physical explanation of such phenomenon lies in the internal 
polarization of the memcapacitor: when the plate charge is zero, it creates a non-

zero voltage drop on the structure, in such a way that, for 𝑞 = 𝐶𝑣, 𝑣𝑐 = 0 at 𝑞 ≠ 0. 
Mathematically, this condition explains why the loop does not cross the origin of the 
axis. 
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Figure 5 Hysteresis Loop of the charges involved in the Third Model 

 

5.2. Amplitude Changes 
An analytical solution of the state equations of the memcapacitor models is possible 
when the state variable x, the output variable y and the angular frequency 𝜔 are 
periodic functions of time under special driving stimulus conditions, as in amplitude 
ranges of x. For a small window of amplitude values, plotting y against x reveals the 
characteristic hysteresis loop as a manifestation of the memory property, revealing 
that y exhibits different values for the same value of the input x. 

Hence, for the three models studied an amplitude sweep is made, in order to reach 
a characterization of the behavior of the model as amplitude values change in time. 

a) For the first model 
After several values of amplitude were tested, a range of allowed amplitudes was 
found, that means, a set of values where a typical pinched memcapacitance 
hysteresis plot can be found. For this model, in a range from 0.01 V to 1 V a type I 
hysteretic behavior is found, both for the q-v plots and for the capacitance-voltage 

loop, for the same value of frequency. In this case,𝑓 = 1𝐻𝑧. 

The low values of amplitude observed show that the transitions occur in a very fast 
mode. 



  

59 

For lower values of amplitude a linear dependency is found, and for higher values, 
the graph again shows linear behavior. That means to say that, for increasing values 
of the amplitude used at each iteration, the loop changes from smooth to sharp 
behaviors. The sharp behavior, showing the asymptotic values of 𝐶𝑜𝑛 and 𝐶𝑜𝑓𝑓, is 

identified with hard switching conditions , occurring with the physical limits of the 
device approaching the boundaries. 

Increasing further the amplitude of the driving signal will lead to the collapse of the 
hysteretic behavior. For lower amplitudes, the loop displays a smooth behavior as 

a result from soft switching conditions, when the physical boundaries of 𝐶𝑜𝑛 
approaches the boundaries. Further decreasing the amplitude leads to the total 
collapse of the hysteretic behavior. For these cases, the device must be in its off 
state. 

The method of amplitude characterization also led to the identification of the critical 
value of amplitude. That means, the initial value of initial amplitude from which the 
device begins to show hysteretic effects in its q-v plane. In the present case, 𝑣𝑜 =
0.1𝑉, according to figure (21). 

Figure (22) also shows the behavior of the charge across the device as a function 
of time. Here it is clearly seen the change from smooth sinusoidal behavior to a 
much degenerate sinusoid as the amplitude reaches its upper boundary, although 
the periodic characteristic remain present. 
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Figure 21 Hysteresis Plots for different values of amplitudes in the first model 

 

Figure 6 Normalized charge in function of time for the First Model 
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Figure 7 C-v plots for different values of amplitude for the First Model 

 

Figure (23) shows the variation of the C-v hysteresis plots for different values of 

amplitude. Here, the particular value of 𝑣0 = 0.5𝑉 marks the abrupt change from a 

well-behaved hysteresis loop to a degenerated one. This value should then be taken 

into account when designing circuits where the change in amplitude voltage is 

required, once it will chage the behavior of the memcapacitor, and, thus, the circuit 

as a whole. 

b) For the second model 

𝛽0 is a normalized value which depends on physical factors of the system. 
Therefore, it is not possible to perform an amplitude sweep, and vary this parameter, 
once the results may turn to be impredictable and do not translate any characteristic 
of the system. From this observation, it can be said that the system is ergodic and 
does not reach a steady-state solution. 

c) For the third model 
After several values of amplitude were tested, it was found that the changes in 
amplitude for the three charges involved in this model follow the behavior of figure 
(3): a type II ellipsoidal hysteresis loop, where no cross on the origin of the axis is 
observed. 
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For this model, the values of amplitude capable of create a hysteretic loop are higher 

than the theoretical model: the range goes from 𝑣𝑜 = 3𝑉 to 𝑣𝑜 = 100𝑉, for 𝑓 = 1𝐻𝑧. 

By analyzing the three charges involved, there is a clearly difference among q and 
the other two layer charges Q1 and Q2. The area of the loop is lower for q at the 
same values of amplitude than the other ones, so it is safe to say that its critical 
amplitude is lower than for Q1 and Q2.  

For amplitude changes in q,Q1 and Q2, the hysteresis plot degenerates into a 

straight line at 𝑣0 = 100𝑉, while it maintains a bigger area around 𝑣0 = 20𝑉, as 
depicted in figures (24), (25) and (26). Figures (25) and (26) also explicit the 
symmetric nature of the charges Q1 and Q2. 

Comparing those values of amplitude to the values found in the First Model, it can 
be seen that the third model can handle a broader range of amplitude values before 
degenerate into a straight line, being thus more robust to amplitude changes in a 
circuit. 

 

Figure 8 Hysteresis plots for q as amplitude changes 
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Figure 95 Hysteresis Plots for Q1 as amplitude changes 
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Figure 26 Hysteresis plots for Q2 as amplitude changes 

 

5.3. Frequency Changes 
Morphological based method to address the frequency dependence 
characterization of memcapacitors. The proposed approach analyses the area of 
the associated hysteresis loop, and the ability of the device to maintain non-zero 
area as frequency increases as figure of merit for frequency characterization, in 
order to harvest values of frequency from which the models studied can operate in 
a circuit. 

a) for the first model 
As it can be seen in figures (27) and (28), the area plots degenerate into a straight 
line as frequency rises, which is consistent with the third fingerprint of a memristive 
device.  Under hard switching conditions, the loop area assumes the maximum 
value, decreasing for both directions. 

For lower frequencies under 𝑓 = 50𝐻𝑧, in the soft switching behavior zone, the area 
decreases sharply until the loop collapses. For moderate to high frequency regime, 
plotting y against x reveals the characteristic hysteresis loop 

For increasing values of the applied frequency, specially after 𝑓 = 120𝐻𝑧, the loop 
changes from sharp to smooth behaviors. The sharp behavior in a memcapacitor 
should occur with its physical limits approaching the boundaries. 
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Decreasing further the frequency of the driving signal will lead to the partial collapse 
of the hysteretic behavior. For these cases, switching occurs only once, leaving the 
device in its on state. For higher frequencies, the loop displays a smooth behavior 
as a result from soft switching conditions. Increasing further the frequency leads to 
the total collapse of the hysteretic behavior, by the appearance of a straight line in 
the hysteresis loop. 

These behavioral changes can be captures from the plots of the loop area versus 
frequency. 

 

Figure 107 Hysteresis Plots for frequency changes in the First Model 
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Figure 28 Further frequency changes for the First Model 

 

Figures (29) and (30) show the variation of the normalized charge in function of time 
for the frequency sweep performed in this section. It is clearly seen the changes in 
the charge behavior near the frequencies of interest. 
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Figure 11 Normalized charge for frequency changes in the First Model 

 

 

Figure 120 Normalized charge for further simulations for frequency changes in the First Model 
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Figures (31) and (32) show the normalized memcapacitances against voltage in a 
hysteretic loop. Again, the graphs are consistent with the values from which a q-v 
hysteresis plot are stable. 

 

 

Figure 31 C-v Hysteresis plots for frequency variations of the First Model 
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Figure 13 Frequency changes for C-v Hysteresis Loops 

 

b) For the second model 
As it can be seen in figure (33), the area plots degenerate into a straight line as 
frequency rises, which is consistent with the third fingerprint of a memristive device.  
Under hard switching conditions, the loop area assumes the maximum value, 
decreasing for both directions. 

For lower frequencies under 𝑓 = 0.3𝐻𝑧, in the soft switching behavior zone, the area 
decreases sharply until the loop collapses. For moderate to high frequency regime, 
plotting q against v reveals the characteristic hysteresis loop. 

For increasing values of the applied frequency, specially after 𝑓 = 0.9𝐻𝑧, the loop 
begins to degenerate into a straight line, according to the third fingerprint of a 
memcapacitor. 

An interesting feature to be noticed is that the frequency ranges of which the 
memcapacitor model operate is far smaller than the first model. This happens 
because  this model operates in a very fast switching mode, and it can be useful in 
applications where the frequency operation range and values are very low. 

Figure (34) also shows the normalized charge in function of time, denoting this 
parameter is in accordance to the values of frequency from which a q-v hysteresis 
plot is found. 
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Figure 14 Hysteresis plots for frequency changes in the Second Model 

 

Figure 15 Normalized charge as a function of time for different frequencies for the Second Model 
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Figure (35) shows the C-v hysteresis plots for the range of frequencies used, once 

again consistent with the hysteresis found in the q-v plane. 

 

Figure 35 C-v hysteresis plots for frequency ranges of the Second Model 

 

c) For the third model 
As it can be seen in figure (36), the area plots degenerate into a straight line as 
frequency rises, which is consistent with the third fingerprint of a memristive device.  
Under hard switching conditions, the loop area assumes the maximum value, 
decreasing for both directions. 

For lower frequencies under 𝑓 = 1𝐻𝑧, in the soft switching behavior zone, the area 
decreases sharply until the loop collapses. For moderate to high frequency regime, 
plotting q against v reveals the characteristic hysteresis loop. 

For increasing values of the applied frequency, specially after 𝑓 = 1000𝐻𝑧, the loop 
begins to degenerate into a straight line, according to the third fingerprint of a 
memcapacitor. 

Again, the graphs below show the symmetric nature of the charges Q1 and Q2. 

For very high frequencies, as well as for very low ones, the MATLAB code enters in 
an infinite run time and does not converge into a solution. 
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Figure 36 q-v Hysteresis Loop as frequency changes for the Third Model 

 

 

Figure 16 Q1-v Hysteresis loop as frequency changes for the Third Model 
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Figure 38 Q2-v Hysteresis Loop as frequency changes for the Third Model 
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Chapter Six: Conclusions  

 

This work presented theories about the new memory capacitive device, the 
memcapacitor, its mathematical models and uses in the future of the 
nanotechnology and microelectronics. Here, three models of memcapacitive 
systems were presented, and a methodology of simulation in MATLAB by varying 
the frequency of the input voltage was conducted. With this information, it was 
possible to drawn the hysteresis plots for charge-voltage and capacitance-
voltage for the models presented. Area of the plots were also taken from the data 
available, in order to drawn a full characterization of the mathematical models 
manipulated during the work. 

From the data collected, it was possible to drawn the following conclusions: 

First of all, it is expected to find the main hysteresis plot in the q-v plane, in 
accordance to the capacitive law q=Cv, once in opposition to the memristor, 
where the hysteresis plane is found in the v-I plane, which according to the Ohm’s 
law; 

Once the first theoretical model is the most predictable of all the ones studied, 
and showed to be well behaved for a certain range of values, it can serve as a 
table of comparison to the other two models studied here. All chaotic and irregular 
behavior the superlattice memcapacitive model and the elastic memcapacitive 
model showed was a deviation of the “smooth” theoretical model presented here. 

This way, although assembled in the same theory (two conduction equations, one 
of them a state equation governed by a differential equation) and ruled by the 
same physical laws of electromagnetism, all the models studied presented 
different types of hysteresis plots: for the first model, a pinched type I hysteresis 
loop was found; For the third model an elliptical type II hysteresis loop was found 
because there must be a residual voltage drop in the device, and for other kinds 
of mathematical models of memcapacitor this is the pattern to be looked for. 

In fact, the very presence of different forms of hysteresis loop just confirms the 
theory about memcapacitors and its variations in the q-v plane. 

Talking about theory, once the three fingerprints of a memristive device was 
found in all three models studied, it is suffice to say that a memcapacitor and the 
models available in the literature nowadays are memristive systems. 

The systems deviate considerably from the ideal model, represented by the first 
model studied. Hence it is suffice to conclude that different mathematical models 
are suitable for different applications once the frequency operation range differs 
from one another. While the first and third models operate at high frequencies, 
the second model operates at low frequencies. It is up to the circuit designer to 
match the model and the consequent frequency range to the desired use he/she 
needs; 
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Each model has its critical frequency, where the non-linear model degenerates 
into a linear hysteresis loop according to the fingerprints of a memory device. It 
is also a good specification the circuit designer must take into account in order to 
use the semiconductor device when it becomes available in Integrated Circuit, 
fact that the author believes to happen in a near future; 

The state-of-the art presented in the literature predicts that the development of 
memory devices, especially in the particular case of the memcapacitors, will 
revolutionize the world of the electronics, first by breaking the cycle of the Moore’s 
Law; then, by replacing the old methods to think and design memories in portable 
devices, making thus appear smaller, faster, and more efficient electronics 
devices in the market, with the philosophy of environment preservation by 
replacing the power sources in the electronics devices for a semiconductor new 
device with no power source. This concepts will give electronics a few more 
decades of economic domination over other technologies inside the field of 
electronics engineering, such as optoelectronics. There is no limits electronics 
can do and reach in the history of mankind. 

 

5.2. Future Work 
As a future work to be done in this subject, the author suggest more amplitude 
and frequency sweeps to be done, but this time, by varying physical features of 
a system, as well as by using more window functions, future researchers can 
extract figures of merit, such as rate of decay of the loops, operational bandwidth, 
among others. 

the author also suggest an equivalent memcapcitor circuit to be constructed, by 
using the traditional lumped circuit elements, such as resistors and capacitors, 
maybe controlled by an Arduino or PIC microprocessor, in order to generate the 
hysteresis plots and compare them to the theoretical results achieved by this 
work, validating thus the theory. Circuit models drawn in CADs like Pspice, Orcad 
and Labview would be an interesting contribute to the theory and further 
implementation of an emulator circuit. 

Surely, with advanced research and with an advanced materials laboratory 
available, a solid-state sample of memcapacitor should appear in upcoming years 
or decades. So an attempt to bring a two-terminal solid-state device as already 
made by the memristors is an exciting field of research for those who hold interest 
in the subject. 
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Annexes 

A.1. Matlab Code for the First Model 
 

a) Fmemstate.m 
function dx=Fmemstate(t,x) 
global A p Con Coff k vo w 
dx(1)=1; 
xaux=x(2); 
if xaux>1 
    xaux=1; 
end 
if xaux<0 
    xaux=0; 
end 
Fx=A*(1-((xaux-1/2)^2+3/4)^p); 
v=vo*sin(w*x(1)); 
% C=Coff-(Coff-Con)*x(2); 
dx(2)=k*Fx*v; 
if (dx(2) < 0 && x(2) < 0)  
    dx(2) = 0 ; 
end 
if (dx(2) > 0 && x(2) > 1)  
    dx(2) = 0 ; 
end 
dx=dx'; 

 

b) AmplitudeChanges .m 
%% description of the code 
% amplitude changes in the memcapacitor 
% third type I model 
%% 
clear all 
close all 
clc 
%% data 
voArray = [1,10,100,1000]; 
f=1000; 
w = 2*pi*f; 
%% plots 
for counter1 = 1:length(voArray) 
    vo = voArray(counter1); 
    input = [f,vo]; 
    [output] = ODEsolution(input); 
    sz = length(output(1,:)); 
    t(counter1,1:sz) = (output(1,:));   
    x(counter1,1:sz) = (output(2,:)); 
    C(counter1,1:sz) =(output(3,:));      
    v(counter1,1:sz) =(output(4,:)); 
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    q(counter1,1:sz) =(output(5,:)); 
    qo(1)= (output(6,1)); 
    sprintf('passou %d vezes', counter1) 
end 
  
figure(); 
for counter2 = 1:length(voArray) 
    subplot(2,length(voArray)/2,counter2); 
    plot(t(counter2,:),v(counter2,:)); 
    grid on; 
    xlabel('t [s]'); 
    ylabel('v(t) [V]'); 
    leg=sprintf('%s%3d','vo=',voArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(voArray) 
    subplot(2,length(voArray)/2,counter2); 
    plot(t(counter2,:),q(counter2,:)/qo); 
    grid on; 
    xlabel('t [s]'); 
    ylabel('q(t)/qo [C]'); 
    leg=sprintf('%s%3d','vo=',voArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(voArray) 
    subplot(2,length(voArray)/2,counter2); 
    plot(v(counter2,:),q(counter2,:)/qo); 
    grid on; 
    xlabel('v [V]'); 
    ylabel('q(t)/qo [C]'); 
    leg=sprintf('%s%3d','f=',voArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
%set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(voArray) 
    subplot(2,length(voArray)/2,counter2); 
    plot(v(counter2,:),C(counter2,:)); 
    grid on; 
    xlabel('v [V]'); 
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    ylabel('C [F]'); 
    leg=sprintf('%s%3d','f=',voArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',10) 

 

c) FrequencyChanges.m 
%% description of the code 
% frequency changes in the memcapacitor 
% third type I model 
%% 
clear all 
close all 
clc 
%% data 
fArray = [1,10,100,500]; 
vo=1; 
w = 2*pi*fArray; 
%% plots 
for counter1 = 1:length(fArray) 
    f = fArray(counter1); 
    input = [f,vo]; 
    [output] = ODEsolution(input); 
    sz = length(output(1,:)); 
    t(counter1,1:sz) = (output(1,:));   
    x(counter1,1:sz) = (output(2,:)); 
    C(counter1,1:sz) =(output(3,:));      
    v(counter1,1:sz) =(output(4,:)); 
    q(counter1,1:sz) =(output(5,:)); 
    qo(1)= (output(6,1)); 
    sprintf('passou %d vezes', counter1) 
end 
  
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
    plot(t(counter2,:),v(counter2,:)); 
    grid on; 
    xlabel('t [s]'); 
    ylabel('v(t) [V]'); 
    leg=sprintf('%s%3d','f=',fArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
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    plot(t(counter2,:),q(counter2,:)/qo); 
    grid on; 
    xlabel('t [s]'); 
    ylabel('q(t)/qo [C]'); 
    leg=sprintf('%s%3d','f=',fArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
    plot(v(counter2,:),q(counter2,:)/qo); 
    grid on; 
    xlabel('v [V]'); 
    ylabel('q(t)/qo [C]'); 
    leg=sprintf('%s%3d','f=',fArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
%set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
    plot(v(counter2,:),C(counter2,:)); 
    grid on; 
    xlabel('v [V]'); 
    ylabel('C [F]'); 
    leg=sprintf('%s%3d','f=',fArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',10) 

 

d) Area in dB 
% Mem Device area study script  
%  
% 
% Dynamics 
% q=C(x)v 
% dx/dt=kFx(x)v 
% 
% C(x) state-dependent capacitance mapping 
% C(x)=Coff-(Coff-Con)x 
% 
% F(x) window function, to prevent x from becoming less than 0 or larger 
% than 1, using Prodromakis window 
% Fx(x)=A(1-((x-1/2)^2+3/4)^p) 
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% 
% Area is computed using the v/i loop and Green Theorem. 
% Memdevices modelled with Prodromakis window and HP dynamics 
are symmetric 
% then, the area of the loop is simply 
% 
% Area=2*integral(0,T/2,i*dv/dt) 
%  
% which must consider stationary device regime, excluding the initial 
% period(s) 
% 
%% 
clc 
clear all 
close all 
% Model parameters 
global A p Con Coff k vo f dt Tfinal w 
% Window parameters 
A=1; 
p=5; 
% Device parameters 
Con=10e-12;                   % Con capacitance 
Coff=1e-9;                    % Coff capacitance 
k=1000;             % process parameter 
xo=0.2;                       % initial state 
% stimulus parameters 
vo=1; 
f=1000;                             % stimulus frequency in Hz 
% Note: the critical frequenct«y is around 50Hz for k=1000 
w=2*pi*f;                           % angular frequency 
Ns=100001;                  % time samples 
N=100;                      % frequency samples 
qo=Con*vo; 
xo=0.5; 
%% 
% Incialization 
Area=zeros(1,N); 
wspace=logspace(1,5,N); 
options = odeset('RelTol',1e-12,'AbsTol',1e-15); 
for n=1:N 
    w=wspace(n); 
    Tfinal=4*pi/w; 
    dt=Tfinal/(Ns-1); 
    t=0:dt:Tfinal; 
    % Integration 
    [tout, x]=ode15s(@Fmemstate,t,[0 xo],options); 
    C=Coff-(Coff-Con)*x(:,2)'; 
    v=vo*sin(w*tout'); 
    q=C.*v; 
    % second period 



  

84 

    q=q((Ns+1)/2:end); 
    v=v((Ns+1)/2:end); 
    % time derivatives of v(t) 
    dv=zeros(1,(Ns+1)/2); 
    dv(1)=v(1)-v(end); 
    dv(2:end)=v(2:end)-v(1:end-1); 
    % area integration - Green theorem: absolute value of the areas of the 
    % two lobes. Note: Biolek and Corinto window functions may exhibit 
    % different hard switching dynamics, which may constrain the ideal 
    % periodic behaviour of M(q). For these cases integration must be 
    % performed over the entire period of v(t), as shown below. 
    
Area(n)=abs(q(:,1:(Ns+3)/4)*dv(:,1:(Ns+3)/4)')+abs(q(:,(Ns+3)/4:end)*dv(:
,(Ns+3)/4:end)'); 
end 
semilogx(wspace,20*log10(Area/qo)) 
grid on 
xlabel('\omega (rad/s)') 
ylabel('Area') 
title('Area in dB of Type I Theoric Model') 
 

e) Memdevice_view.m 
% Mem Device study script  
% 
% Dynamics 
% q=C(x)v 
% dx/dt=kFx(x)v 
% 
% C(x) state-dependent capacitance mapping 
% C(x)=Coff-(Coff-Con)x 
% 
% F(x) window function, to prevent x from becoming less than 0 or larger 
% than 1, using Prodromakis window 
% Fx(x)=A(1-((x-1/2)^2+3/4)^p) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
clear all 
close all 
% Model parameters 
global A p Con Coff k vo f dt Tfinal w 
% Window parameters 
A=1; 
p=5; 
% Device parameters 
Con=10e-12;                   % Con capacitance 
Coff=1e-9;                    % Coff capacitance 
k=1000;             % process parameter 
xo=0.2;                       % initial state 
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% stimulus parameters 
vo=1; 
f=1000;                             % stimulus frequency in Hz 
% Note: the critical frequency is around 50Hz for k=1000 
w=2*pi*f;                           % angular frequency 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
% Incialization 
N=100001; 
Tfinal=2/f; 
dt=Tfinal/(N-1); 
t=0:dt:Tfinal; 
% Integration 
options = odeset('RelTol',1e-12,'AbsTol',1e-15); 
[tout, x]=ode15s(@Fmemstate,t,[0 xo],options); 
C=Coff-(Coff-Con)*x(:,2); 
v=vo*sin(w*tout); 
q=C.*v; 
qo=Con*vo; 
figure(1) 
subplot(1,2,1) 
plot(tout,v,tout,q/qo) 
grid on 
legend('v(t)','q(t)') 
xlabel('t') 
subplot(1,2,2) 
plot(v,q/qo) 
grid on 
xlabel('v') 
ylabel('q') 
figure(2) 
plot(v,C) 
grid on 
xlabel('v(t)') 
ylabel('C(t)') 
  

f) vsweep.m 
% Mem Device area study script  
% Dynamics 
% q=C(x)v 
% dx/dt=kFx(x)v 
% 
% C(x) state-dependent capacitance mapping 
% C(x)=Coff-(Coff-Con)x 
% 
% F(x) window function, to prevent x from becoming less than 0 or larger 
% than 1, using Prodromakis window 
% Fx(x)=A(1-((x-1/2)^2+3/4)^p) 
% 
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% Area is computed using the v/i loop and Green Theorem. 
% Memdevices modelled with Prodromakis window and HP dynamics 
are symmetric 
% then, the area of the loop is simply 
% 
% Area=2*integral(0,T/2,i*dv/dt) 
%  
% which must consider stationary device regime, excluding the initial 
% period(s) 
% 
%% 
clc 
clear all 
close all 
% Model parameters 
global A p Con Coff k vo f dt Tfinal w 
% Window parameters 
A=1; 
p=5; 
% Device parameters 
Con=10e-12;                   % Con capacitance 
Coff=1e-9;                    % Coff capacitance 
k=1000;             % process parameter 
xo=0.2;                       % initial state 
% stimulus parameters 
vo=1; 
f=1000;                             % stimulus frequency in Hz 
% Note: the critical frequenct«y is around 50Hz for k=1000 
w=2*pi*f;                           % angular frequency 
Ns=100001;                  % time samples 
N=100;                      % frequency samples 
qo=Con*vo; 
xo=0.5; 
%% 
% Incialization 
Area=zeros(1,N); 
vspace=logspace(0,1,N); 
options = odeset('RelTol',1e-12,'AbsTol',1e-15); 
for n=1:N 
    vo=vspace(n); 
    Tfinal=4*pi/w; 
    dt=Tfinal/(Ns-1); 
    t=0:dt:Tfinal; 
    % Integration 
    [tout, x]=ode15s(@Fmemstate,t,[0 xo],options); 
    C=Coff-(Coff-Con)*x(:,2)'; 
    v=vo*sin(w*tout'); 
    q=C.*v; 
    % second period 
    q=q((Ns+1)/2:end); 
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    v=v((Ns+1)/2:end); 
    % time derivatives of v(t) 
    dv=zeros(1,(Ns+1)/2); 
    dv(1)=v(1)-v(end); 
    dv(2:end)=v(2:end)-v(1:end-1); 
    % area integration - Green theorem: absolute value of the areas of the 
    % two lobes. Note: Biolek and Corinto window functions may exhibit 
    % different hard switching dynamics, which may constrain the ideal 
    % periodic behaviour of M(q). For these cases integration must be 
    % performed over the entire period of v(t), as shown below. 
    
Area(n)=abs(q(:,1:(Ns+3)/4)*dv(:,1:(Ns+3)/4)')+abs(q(:,(Ns+3)/4:end)*dv(:
,(Ns+3)/4:end)'); 
    fprintf('passou %d vezes\n',n); 
end 
semilogx(vspace,20*log10(Area/qo)) 
grid on 
xlabel('vo (V)') 
ylabel('Area') 
title('Area in dB of Type I Theoric Model') 

A.2. Matlab Code for the Second Model 

a) Memdevice_view.m 
% Mem Device study script  
% 
% Dynamics 
% q(t)/qo=v(t)/(1+y) 
% d2y/dt2+Gamma*dy/dt+4*pi*pi*y((y/y0)^2-1)+(beta(t)/(1+y))^2=0 
%  
% State variables 
% x1=y 
% x2=dy/dt 
% State equations 
% dx1/dt=x2 
% dx2/dt=-(Gamma*dy/dt+4*pi*pi*y((y/y0)^2-1)+(beta(t)/(1+y))^2) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
clear all 
close all 
% Model parameters 
global beta0 Gamma y0 v0 k 
% Device parameters 
y0=0.2;     % No change 
Gamma=0.7;  % No change 
beta0=2.7;  % Can change slightly, chaotic for ]2.25, 2.58[ 
% initial state 
xo=[0 0 0]; 
% stimulus parameters 
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vo=1; 
k=0.5;                       % w/w0 
f=k; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Incialization 
N=1000000; 
Tfinal=10/f; 
dt=Tfinal/(N-1); 
t=0:dt:Tfinal; 
% Integration 
options = odeset('RelTol',1e-12,'AbsTol',1e-15); 
[tout, x]=ode15s(@Fmemstate,t,xo,options); 
v=vo*sin(2*pi*k*tout); 
beta=beta0*sin(2*pi*k*tout); 
q=v./(1+x(:,2)); 
tout=tout(9*N/10:end); 
v=v(9*N/10:end); 
beta=beta(9*N/10:end); 
q=q(9*N/10:end); 
figure(1) 
subplot(1,2,1) 
plot(tout,beta,tout,q) 
grid on 
legend('\beta(t)','q(t)/q_0') 
xlabel('t') 
subplot(1,2,2) 
plot(beta,q) 
grid on 
xlabel('\beta') 
ylabel('q/q_0') 
figure(2) 
plot(beta,q./v) 
grid on 
xlabel('\beta(t)') 
ylabel('C(t)/C_0') 
 

b) Fmemstate.m 
function dx=Fmemstate(t,x) 
global beta0 Gamma y0 v0 k 
dx(1)=1; 
dx(2)=x(3); 
beta=beta0*sin(2*pi*k*x(1)); 
dx(3)=-(Gamma*x(3)+4*pi*pi*x(2).*((x(2)/y0).^2-1)+(beta./(1+x(2))).^2); 
dx=dx'; 
  

c) MultipleFmemstate.m 
function dx=MultipleFmemstate(t,x,inputs) 
global beta0 Gamma y0 v0 k 
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fo=inputs(1); 
%vo=inputs(2); 
%% 
dx(1)=1; 
dx(2)=x(3); 
beta=beta0*sin(2*pi*fo*x(1)); 
dx(3)=-(Gamma*x(3)+4*pi*pi*x(2).*((x(2)/y0).^2-1)+(beta./(1+x(2))).^2); 
dx=dx'; 
end 
 

d) FrequencyChanges.m 
clear all 
close all 
clc 
%% data 
fArray = [1,1.2,1.5,2]; 
vo=1; 
w = 2*pi*fArray; 
%% plots 
for counter1 = 1:length(fArray) 
    f = fArray(counter1); 
    input = [f]; 
    [output] = ODEsolution(input); 
    sz = length(output(1,:)); 
    t(counter1,1:sz) = (output(1,:));   
    beta(counter1,1:sz) = (output(2,:)); 
    C(counter1,1:sz) =(output(3,:));      
    v(counter1,1:sz) =(output(4,:)); 
    q(counter1,1:sz) =(output(5,:)); 
    sprintf('passou %d vezes', counter1) 
end 
  
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
    plot(t(counter2,:),beta(counter2,:)); 
    grid on; 
    xlabel('t [s]'); 
    ylabel('beta(t)'); 
    leg=sprintf('%s%.2f','f=',fArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
    plot(t(counter2,:),q(counter2,:)); 
    grid on; 
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    xlabel('t [s]'); 
    ylabel('q(t)/qo [C]'); 
    leg=sprintf('%s%.2f','f=',fArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
    plot(beta(counter2,:),q(counter2,:)); 
    grid on; 
    xlabel('\beta(t)'); 
    ylabel('q(t)/qo [C]'); 
    leg=sprintf('%s%.2f','f=',fArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
%set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
    plot(beta(counter2,:),C(counter2,:)); 
    grid on; 
    xlabel('\beta(t)'); 
    ylabel('C(t)/C_0'); 
    leg=sprintf('%s%.3f','f=',fArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',10) 
 

e) ODEsolution.m 
% Mem Device study script  
% 
% Dynamics 
% q(t)/qo=v(t)/(1+y) 
% d2y/dt2+Gamma*dy/dt+4*pi*pi*y((y/y0)^2-1)+(beta(t)/(1+y))^2=0 
%  
% State variables 
% x1=y 
% x2=dy/dt 
% State equations 
% dx1/dt=x2 
% dx2/dt=-(Gamma*dy/dt+4*pi*pi*y((y/y0)^2-1)+(beta(t)/(1+y))^2) 
% 
function [output]= ODEsolution(input) 
fo=input(1); 
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%vo=input(2); 
%% data 
% Model parameters 
global beta0 Gamma y0 v0  
% Device parameters 
y0=0.2;     % No change 
Gamma=0.7;  % No change 
beta0=2.7;  % Can change slightly, chaotic for ]2.25, 2.58[ 
  
%% initial state 
xo=[0 0 0]; 
%% stimulus parameters 
vo=1; 
%k=0.5;                       % w/w0 
%f=k; 
%% Incialization 
N=1000000; 
Tfinal=10/fo; 
dt=Tfinal/(N-1); 
t=0:dt:Tfinal; 
%% Integration 
options = odeset('RelTol',1e-12,'AbsTol',1e-15); 
eqInput = [fo]; 
  
[tout, x]=ode15s(@MultipleFmemstate,t,xo,options,eqInput); 
  
v=vo*sin(2*pi*fo*tout); 
beta=beta0*sin(2*pi*fo*tout); 
q=v./(1+x(:,2)); 
tout=tout(9*N/10:end); 
v=v(9*N/10:end); 
beta=beta(9*N/10:end); 
q=q(9*N/10:end); 
%% outputs 
output(1,:) = tout;  
output(2,:) = beta; 
output(3,:) = q./v; %C=q/v 
output(4,:) = v;  
output(5,:) = q;  
end 
f)  

 

A.3. Matlab Code for the third Model 

a) Memdevice_view.m 
% Mem Device study script  
% 
% Dynamics 
% dq/dt=v/R-q/RC 
% dQ1/dt=-I1_2(v1,U) 
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% dQ2/dt=I1_2(v1,U) 
% v1=(2q+Q1-Q2)/(2e0erS) 
%  
% State variables 
% x1=t 
% x2=q 
% x3=Q1 
% x4=Q2 
% State equations 
% dx1=1; 
% dx2=v/R-q/RC 
% dx3=-I1_2(v1,U) 
% dx4=I1_2(v1,U) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
clear all 
close all 
% Model parameters 
global e0 er S d d1 U R Co vo f 
% Physical constants 
% h=4.1356674335e-15;  % Planck constant (eVs) 
% h=6.62606957e-37;    % Planck constant (m^2g/s) 
% e=1.60217656535e-19; % electron charge (C) 
% me=9.1093821545e-34; % electron mass (g) 
e0=8.854187817e-12;  % vacuum permitivitty (F/m) 
% Device parameters 
er=5;                % relative permitivitty 
S=1e-4;              % plate area (m^2) 
d=100e-9;            % plate separation (m) 
d1=50e-9;          % internal plate separation (m) 
U=0.33;              % Potential barrier height (eV) 
R=1;                 % Series resistance 
Co=e0*er*S/d;        % Device capacitance        
% initial state 
xo=[0 0 0 0]; 
% stimulus parameters 
vo=7.5;              % stimulus amplitude 
f=1000;              % stimulus frequency 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Incialization 
N=1000000; 
Tfinal=10/f; 
dt=Tfinal/(N-1); 
t=0:dt:Tfinal; 
% Integration 
options = odeset('RelTol',1e-12,'AbsTol',1e-15); 
[tout, x]=ode15s(@Fmemstate,t,xo,options); 
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v=vo*sin(2*pi*f*tout); 
C=Co./(1+d1*x(:,3)./(d*x(:,2))); 
q=x(:,2); 
Q1=x(:,3); 
Q2=x(:,4); 
figure(1) 
plot(t,q,t,Q1,t,Q2) 
grid on 
xlabel('t (s)') 
ylabel('(q, Q1, Q2)') 
legend('q(t)','Q_1(t)','Q_2(t)') 
v=v(9*N/10:end); 
t=tout(9*N/10:end); 
q=x(9*N/10:end,2); 
Q1=x(9*N/10:end,3); 
Q2=x(9*N/10:end,4); 
C=C(9*N/10:end); 
figure(2) 
plot(v,C) 
xlabel('v(t) (V)') 
ylabel('C(t) (F)') 
grid on 
figure(3) 
  
plot(v,q,'r',v,Q1,'b',v,Q2,'g') 
grid on 
xlabel('v(t) (V)') 
ylabel('q, Q_1, Q_2 (C)') 
legend('q(t)','Q_1(t)','Q_2(t)') 

b) Fmemstate.m 
function dx=Fmemstate(t,x) 
global e0 er S d d1 U R Co vo f 
dx(1)=1; 
if x(2)==0 
    x(2)=1e-60; 
end 
C=Co/(1+d1*x(3)/(d*x(2))); 
v=vo*sin(2*pi*f*x(1)); 
dx(2)=v/R-x(2)/(R*C); 
v1=d1*(x(2)+x(3))/(e0*er*S); 
dx(3)=-S*Jk(U,v1,d1); 
dx(4)=-dx(3); 
dx=dx'; 
end 
 

c) jk.m 
function jk=Jk(U,v,d) 
% function jk=Jk(U,v,d) 
% See Simmons paper for the contants The relevant equations are for a 
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% rectangular tunnel barrier (equations 27, 30 and corresponding 46 and 47, 
% respectively) 
A=6.2E10; 
B=1.025; 
C=3.38E10; 
D=0.689; 
d=d/1E-10; % convert m to angstrom 
if v<=U 
    jk=(A/(d^2))*((U-v/2)*exp(-B*d*sqrt(U-v/2))-(U+v/2)*exp(-B*d*sqrt(U+v/2))); 
else 
    F=v/d; 
    jk=(C*(F^2)/U)*(exp(-D*(U^1.5)/F)-(1+2*v/U)*exp((-
D*(U^1.5)/F)*sqrt(1+2*v/U))); 
end 
jk=jk/0.0001; %convert A/cm^2 to A/m^2 
end 
  

d)Test_Jk.m 
clc 
clear all 
close all 
% Model parameters 
global h e me e0 er S d d1 U R Co vo f 
% Physical constants 
% h=4.1356674335e-15;  % Planck constant (eVs) 
% h=6.62606957e-37;    % Planck constant (m^2g/s) 
% e=1.60217656535e-19; % electron charge (C) 
% me=9.1093821545e-34; % electron mass (g) 
e0=8.854187817e-12;  % vacuum permitivitty (F/m) 
% Device parameters 
er=5;                % relative permitivitty 
S=1e-4;              % plate area (m^2) 
d=100e-9;            % plate separation (m) 
d1=5e-9;          % internal plate separation (m) 
U=0.5;              % Potential barrier height (eV) 
R=1;                 % Series resistance 
Co=e0*er*S/d;        % Device capacitance  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
vk=linspace(0,1.5,1000); 
jk=zeros(1,1000); 
for n=1:1000 
    jk(n)=Jk(U,vk(n),d1); 
end 
semilogy(vk,jk) 
axis([0 1.5 1e-6 1e5]) 
xlabel('v_k (V)') 
ylabel('j_k (A/m^2)') 
grid on 
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e) FrequencyChanges.m 
%% description of the code 
% frequency changes in the memcapacitor 
% third type I model 
%% 
clear all 
close all 
clc 
%% data 
fArray = [1e4,1e5,1e6,1e7]; 
vo=7.5; 
w = 2*pi*fArray; 
%% plots 
for counter1 = 1:length(fArray) 
    f = fArray(counter1); 
    input = [f,vo]; 
    [output] = ODEsolution(input); 
    sz = length(output(1,:)); 
    t(counter1,1:sz) = (output(1,:));   
    Q1(counter1,1:sz) = (output(2,:)); 
    Q2(counter1,1:sz) =(output(3,:));      
    q(counter1,1:sz) =(output(4,:)); 
    C(counter1,1:sz) =(output(5,:)); 
    v(counter1,1:sz) =(output(6,:)); 
    sprintf('passou %d vezes', counter1) 
end 
  
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
    plot(t(counter2,:),v(counter2,:)); 
    grid on; 
    xlabel('t [s]'); 
    ylabel('v(t)'); 
    leg=sprintf('%s%3d','f=',fArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
    plot(v(counter2,:),q(counter2,:)); 
    grid on; 
    xlabel('v [V]'); 
    ylabel('q(t) [C]'); 
    leg=sprintf('%s%3d','f=',fArray(counter2)); 
    legend(leg); 
end 
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% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
    plot(v(counter2,:),Q1(counter2,:)); 
    grid on; 
    xlabel('v(t) [V]'); 
    ylabel('Q1(t) [C]'); 
    leg=sprintf('%s%3d','f=',fArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
%set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
    plot(v(counter2,:),Q2(counter2,:)); 
    grid on; 
    xlabel('v(t) [V]'); 
    ylabel('Q2(t) [C]'); 
    leg=sprintf('%s%.3f','f=',fArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',10) 
figure(); 
for counter2 = 1:length(fArray) 
    subplot(2,length(fArray)/2,counter2); 
    plot(v(counter2,:),C(counter2,:)); 
    grid on; 
    xlabel('v(t) [V]'); 
    ylabel('C(t)'); 
    leg=sprintf('%s%3d','f=',fArray(counter2)); 
    legend(leg); 
end 
 

f) AmplitudeChanges.m 
% description of the code 
% amplitude changes in the memcapacitor 
% third type I model 
%% 
clear all 
close all 
clc 
%% data 
voArray = [1,10,100,500]; 
f=1; 
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w = 2*pi*f; 
%% plots 
for counter1 = 1:length(voArray) 
    vo = voArray(counter1); 
    input = [f,vo]; 
    [output] = ODEsolution(input); 
    sz = length(output(1,:)); 
    t(counter1,1:sz) = (output(1,:));   
    Q1(counter1,1:sz) = (output(2,:)); 
    Q2(counter1,1:sz) =(output(3,:));      
    q(counter1,1:sz) =(output(4,:)); 
    C(counter1,1:sz) =(output(5,:)); 
    v(counter1,1:sz) =(output(6,:)); 
    sprintf('passou %d vezes', counter1) 
end 
  
figure(); 
for counter2 = 1:length(voArray) 
    subplot(2,length(voArray)/2,counter2); 
    plot(t(counter2,:),v(counter2,:)); 
    grid on; 
    xlabel('t [s]'); 
    ylabel('v(t)'); 
    leg=sprintf('%s%3d','vo=',voArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(voArray) 
    subplot(2,length(voArray)/2,counter2); 
   plot(v(counter2,:),q(counter2,:)); 
    grid on; 
    xlabel('v [V]'); 
    ylabel('q(t) [C]'); 
    leg=sprintf('%s%3d','vo=',voArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(voArray) 
    subplot(2,length(voArray)/2,counter2); 
   plot(v(counter2,:),Q1(counter2,:)); 
    grid on; 
    xlabel('v(t) [V]'); 
    ylabel('Q1(t) [C]'); 
    leg=sprintf('%s%3d','vo=',voArray(counter2)); 
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    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
%set(h3,'FontSize',15) 
  
figure(); 
for counter2 = 1:length(voArray) 
    subplot(2,length(voArray)/2,counter2); 
 plot(v(counter2,:),Q2(counter2,:)); 
    grid on; 
    xlabel('v(t) [V]'); 
    ylabel('Q2(t) [C]'); 
    leg=sprintf('%s%3d','vo=',voArray(counter2)); 
    legend(leg); 
end 
% [ax4,h3]=suplabel('Frequency Changes for Type I Model' ,'t'); 
% set(h3,'FontSize',10) 
figure(); 
for counter2 = 1:length(voArray) 
    subplot(2,length(voArray)/2,counter2); 
    plot(v(counter2,:),C(counter2,:)); 
    grid on; 
    xlabel('v(t) [V]'); 
    ylabel('C(t)'); 
    leg=sprintf('%s%3d','vo=',voArray(counter2)); 
    legend(leg); 
end 
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