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Chapter

A Review of the Macroscopic, 
Microscopic, and 
Ultramicroscopic Characteristics 
of Some Key Oocyte 
Developmental Processes in Fish 
Species
Mônica Cassel

Abstract

Studies involving the reproductive biology of fish have several possibilities of 
approach, such as the understanding of gonadal development, oocyte develop-
ment, and the reproductive cycle of the species. In addition, analyses of gonadal 
morphology can be made at macro-, micro-, and ultramicroscopic levels. This 
knowledge helps to define factors that determine the different stages of gonadal 
development, as well as the “triggers” that initiate the reproductive process. In 
females, the growth and maturation of the ovarian follicles depend on a carefully 
elaborated communication between the follicular cells and the oocyte and a pre-
cisely organized contractile system. Changes in these systems appear to be related to 
apoptotic cells. This extensive remodeling of gonadal tissue, due to cell proliferation 
and differentiation, promotes also changes in the extracellular matrix. With this in 
mind, we provide herein a complementary and in-depth information on cell-cell 
and cell-matrix interactions related to the process of oocyte development in fish 
species. This information, together with the existing structural and ultrastructural 
descriptions of ovaries of different species, will enable a better understanding of 
the reproductive processes for the group of fish.

Keywords: fish species, reproductive biology, gonadal and oocyte development,  
cell-cell interactions, cell-matrix interactions

1. Introduction

The knowledge on the reproductive characteristics of fish is fundamental 
to understand the adaptations developed to maximize the reproductive success 
in a given environment, considering the life history aspects of each species [1]. 
Studies involving the reproductive biology of fish have several possibilities of 
approach, such as the understanding of gonadal development and the repro-
ductive cycle of the species. Analyses of gonadal morphology are important for 
the understanding of the biology of the species and have been widely applied in 
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Teleostei, as in recent studies on spermatogenesis [2–5], folliculogenesis [6–8], 
reproductive cycle [8–12], and fecundity [13].

Studies have been carried out to describe and classify the stages of gonadal devel-
opment and reproductive stages of fish in the Neotropical region. One of the most 
classic and used bibliographic sources has been Vazzoler [14]. However, other propos-
als for description have already been made by Grier and Taylor [15], Grier [16], and 
Lo Nostro et al. [17], which detail the continuity and discontinuity of the germinal 
epithelium and the cell types present in the gonads. Recently, Brown-Peterson et al. 
[18] developed a simpler terminology to facilitate the communication and comparison 
of studies on the reproductive biology of fish. Still in order to make the nomenclature 
more comprehensive, the stages of oocyte development were simplified by Quagio-
Grassiotto et al. [19], and the development of stages of atresia, which are character-
ized as involutive processes, follows according to Miranda et al. [20].

Gonadal development can be analyzed macroscopically, and changes in shape, size, 
color, and texture of the gonads have been used as parameters for the classification 
of maturation status in many studies of ecology and reproductive dynamics[14, 21]. 
However, the most used analysis has been of the microscopic characters, since it allows 
a more detailed and precise description of the transitions and morphological and 
structural transformations that happen during gonadal development [8, 22, 23]. Thus, 
regarding the microscopic aspects of the gonad, it is verified that [24]:

• Spermatogenesis shows stages of development that include spermatogonia, 
spermatocytes, spermatids, and spermatozoa.

• Oogenesis usually shows the following progression: oogonia, primary growth 
oocytes, a previtellogenic stage in which oocytes grow larger and often have 
cortical alveolar vesicles, an extensive vitellogenic phase, oocyte maturation, 
and ovulation.

The oocyte development in a mature egg is a complex process modulated by 
numerous environmental and endocrine factors [25], and understanding the 
morphological characteristics of oocytes is important to interpret the dynamics of 
oogenesis [26]. Among the oocyte processes, folliculogenesis results in the removal 
of the primary oocyte from oogonium nests and consequent formation of ovarian 
follicles [27]. Descriptions for the germinal epithelium made by Grier [28] concep-
tualized “follicular complex” as the functional unit of the ovary. This complex is 
formed by two compartments separated by a basement membrane. One compart-
ment is the follicle, which consists of the oocyte surrounded by follicular cells and 
originated from the germinal epithelium. The second compartment is the theca, 
made up of undifferentiated ovarian stromal cells.

In the previtellogenic oocyte phase, multiple nucleoli are observed, as described 
by Grier et al. [29]. These oocytes are also called perinucleolar oocytes, when the 
nucleoli migrate to the nuclear periphery. There is also the formation of the zona 
pellucida, a complex structure consisting generally of two layers crossed by pores 
or channels containing the oocyte microvilli and/or follicular cell extensions. The 
zona pellucida reflects adaptations to different ecological conditions in which the 
eggs develop [30], whose inner layer protects the egg from mechanical damage and 
whose outer layer protects it from microorganisms.

Another cell characteristic that is used to describe the stages of oocyte develop-
ment is the presence of nüages, Balbiani corpuscles, and cortical alveoli. The nüages 
are originated by the transfer from the nucleus to the cytoplasm of large amounts of 
heterogeneous and ribosomal RNA synthesized [31] and associated with proteins. 
Balbiani corpuscles or yolk nuclei, described by Hubbard [32], were recognized 



3

A Review of the Macroscopic, Microscopic, and Ultramicroscopic Characteristics of Some Key…
DOI: http://dx.doi.org/10.5772/intechopen.87967

as clusters of organelles located near the nucleus, which proliferate intensely and 
spread throughout the cytoplasm. And, the cortical alveoli, as observed by Grier 
et al. [29], are vesicles filled with glycoproteins, formed by depressions of the 
oocyte membrane that become progressively larger, marking the final stage of 
primary or previtellogenic growth.

The described changes are followed by an expressive growth of the oocyte dur-
ing vitellogenesis, in which the oocyte accumulates the nutritive reserves necessary 
for the development of the embryo. The oocyte also accumulates RNA and com-
pletes the differentiation of its cellular and noncellular envelopes. During this time, 
the oocyte interrupts the meiosis at the end of the prophase and in the diplotene 
stage. Maturation processes are characterized by the reduction or halting of endo-
cytosis, resumption of meiosis, breakdown of the germinal vesicle, formation of a 
monolayer of cortical alveoli under the plasma oocyte membrane, and dissolution 
of yolk platelets; pelagic oocytes still undergo hydration [6].

The understanding of cellular modifications is used to describe the reproductive 
cycle. This allows the recognition of the reproduction period and the gonadal mor-
phological changes that occur. Descriptions of the reproductive cycle were initially 
elaborated by Yamamoto [33] and Agostinho et al. [34, 35], revalidated by Vazzoler 
[14], and later used by many authors. Next, Nuñez and Duponchelle [10] defined 
five stages of ovarian development with greater cellular detail and other four stages 
of testicular development based on macro- and microscopic characteristics. The last 
descriptions made by Lowerre-Barbieri et al. [24] and Quagio-Grassiotto et al. [19] 
on oocyte development, coupled with the stages of the reproductive cycle described 
by Brown-Peterson et al. [18], brought a proposal to homogenize the terms used and 
that has been applied in more recent studies. Research on the reproductive cycle of a 
given species helps to define determinant phases of gonadal development, as well as 
the “triggers” that initiate the process of cell proliferation and differentiation in the 
formation of gametes [14, 36–38].

2.  Important cellular morphological modifications during the oocyte 
development process

2.1 Cellular junctions and your distribution throughout the oocyte development

The growth and maturation of the ovarian follicles depend on carefully crafted 
communication between the somatic cells of the follicle and the oocyte. This 
association between somatic cell and germ cell in the ovaries of various vertebrate 
and invertebrate species is established through intercellular junctions [39–43]. In 
vertebrate ovarian follicles, direct cytoplasmic connections between the oocyte 
and follicular cells of the granulosa layer associated with it are established early in 
the oocyte development. In fish, amphibians, and mammals, these cytoplasmic 
connections are established at the points of contact between the oocyte microvilli 
and follicular cells or between follicular cell microvilli and oocyte, via specialized 
membrane junctions known as GAP junctions [44–47].

GAP junctions are intermembrane channel aggregates between adjacent cells 
composed by connexin proteins [48]. These junctions are considered homologous 
when they connect follicular cells to follicular cells and heterologous when they con-
nect follicular cells to the oocyte [49]. Recent observations suggest that the func-
tional coupling of GAP junctions, especially homologous ones, is necessary for the 
occurrence of the oocyte maturation process [50]. A possible role for the heterolo-
gous GAP junctions is the transfer of cAMP (PKA activator) from the follicular cells 
to the oocyte in order to induce the production or activity of membrane receptors 
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for the maturation-inducing hormone, or MIH [50], indirectly participating in the 
oocyte maturation process. GAP junctions may also be involved in specifying the 
pattern of polarity in the oocytes of various animal groups, so this junctional route 
can be used to pass intercellular signals from follicular cells to the oocyte to deter-
mine oocyte symmetry [51].

As previously reported, the fish oocyte is enveloped by the zona pellucida 
(microvillus area), by the follicular cells and by the basement membrane. Thus, 
from a morphological and functional point of view, it is important to know if there 
are any tight junctions between adjacent follicular cells, since these joints promote 
barriers for the passage of fluids through the extracellular space between adjacent 
cell membranes and maintain tissue and cell integrity [45, 52–54]. The main 
components of the intercellular junctions are the tight junctions [55, 56], which are 
composed of different transmembrane proteins that promote a homophilic interac-
tion. The cytoplasmic domain of the transmembrane adhesion molecules connects 
the binding proteins which, in turn, anchor the cytoskeletal adhesion complex. Of 
these molecules, occludins and claudins are the most extensively studied. Although 
occludin is a highly conserved molecule, claudins comprise a family of more than 20 
different proteins, some of which are expressed in a tissue-specific manner [57–59].

As claudins, cadherins are a transmembrane superfamily of proteins that contain 
several homologous members, exhibiting tissue diversity and distinct binding 
specificities [60–62], with a highly conserved cytoplasmic domain [63, 64]. These 
molecules mediate cell-cell contact at adhesion junctions also anchored in the 
cytoskeleton, thus playing an important role in the separation, positioning and 
control of cell movements, and in morphogenesis [65–67]. In a study with Danio 
rerio, E-cadherin homologous proteins were identified, and their synthesis and 
storage during oogenesis were verified [62]. Also, the establishment of heterotypic 
junctions linking the oocyte to follicular cells throughout folliculogenesis and 
cooperating in the determination of follicle architecture was observed [62]. When 
oocytes progress in vitellogenesis, the localization of adhesion proteins in the 
oocyte becomes restricted to a more specific pattern, which reflects the points of 
contact between the oocyte and the follicle cells and their adjustment to changes in 
the oocyte cytoskeleton throughout this phase [62].

2.2  Distribution and structuration of the cytoskeleton throughout the oocyte 
development

All intracytoplasmic and cortical events in oocytes involve a precisely organized 
and collaborative contractile system and a stable support matrix [68]. The cyto-
skeleton of the oocytes and embryos is implicated in key developmental events, 
such as creation and maintenance of axial polarity, cytoplasmic reorganization, 
cell division, change of surface architecture, morphogenetic motions, and internal 
arrangement of organelles [69]. It seems very likely that cytoskeletal structures are 
responsible for spatial distribution of yolk, cortical and pigment granules, lipid 
droplets, or mitochondria [68, 70]. Thus, the spatial organization of cytoskeletal 
filaments may be important for the preservation of oocyte viability [71].

Among the different proteins expressed in the cytoskeleton, the intermediate 
filament proteins are exceptionally complex [72, 73], especially in the class of cyto-
keratins. This is a class of proteins typical and specifically induced in cells compro-
mised for epithelial differentiation [72, 74, 75], and their identification in oocytes 
and eggs presents an interesting contrast when comparing to other cytoskeletal 
proteins in germ cells. Cytokeratins are not synthesized in previtellogenic oocytes 
but are expressed and accumulated in the vitellogenic stage. These filament proteins 
are first detectable in the cortex of oocytes in later stages of previtellogenesis; at 
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the beginning of vitellogenesis, they are distributed primarily in the region clos-
est to the nucleus and appear to become cortical again in mature oocytes [76]. 
Intermediate filaments of cytokeratin contribute to the complex structure of the 
oocyte and egg cortex, which is also rich in other cytoskeletal filaments such as 
actin filaments and microtubules [68, 77–79].

The microtubule matrix seems to be a very important component in the imma-
ture oocyte cortex in fish. The function of the cortical matrix of microtubules in 
oocytes remains undetermined but may be related to the mechanical stiffness that 
has been attributed to the cortex [80]. Even the basic mechanism of germinal vesicle 
migration and its mechanical anchoring in the region of the animal pole occur from 
the depolarization of the microtubules, leading to a consequent change in the posi-
tion of the germinal vesicle [80, 81].

Evident changes occur in the distribution and localization of tubulin-containing 
structures in growing oocytes. In previtellogenic oocytes, a great amount of tubulin 
is concentrated in the Balbiani corpuscle [82–85]. During vitellogenesis, mitochon-
dria are displaced from the Balbiani corpuscle to the surface of the cell, while others 
remain around the nucleus [82, 86], and this movement seems to be related to the 
reorganization of tubulin [87]. With the disintegration of the Balbiani corpuscle, 
due to the anterior displacement of membranous organelles, the released space is 
gradually filled with yolk, i.e., the yolk granules are in a tubulin-positive region. As 
vitellogenesis progresses, rearrangement of cell growth and its contents occurs with 
the movement of endosomes to transport yolk through the microtubules [87].

The proper organization and assembly of the cytoskeleton microtubule is an integral 
phenomenon, which is related to the expression of cellular asymmetry. Particularly in 
oocytes, the microtubules exhibit a unique paradigm as forming an eccentric meiotic 
spindle which, consequently, gives rise to asymmetric cytokinesis to form the first and 
second polar bodies. Its existence and function are dynamically regulated throughout 
the process of cell division, particularly during the S and M phases of the cell cycle [88].

Another element that contributes to the oocyte asymmetry is the actin cytoskel-
eton. In oocytes, the actin filaments are not randomly distributed within the cell 
[89]. In germ cells, as in many other cells, two types of actin are present: filamentous 
(F-actin) and non-filamentous (G-actin) actins [90]. Actin polymerization-depo-
lymerization process is essential for the translocation of many organelles, as mito-
chondria [91], Golgi system [92], and cortical granules [93, 94], as well as for the 
regulation of ion channel activity [95]. In addition, a certain proportion of F-actin 
and G-actin is required for the normal course of meiotic and mitotic divisions [96].

In many cells, a significant part of these filaments is in the area of the cellular cor-
tex, so it has been proposed that they take part in the transduction of transmembrane 
information signals, including hormonal signaling [97, 98]. Still in the oocyte cortex, 
the cortex-specific F-actin layer is peculiarly absent in the space between the germinal 
vesicle and the plasma membrane at the animal pole. In fact, it is through this “corri-
dor” that the two polar bodies are extruded in the posterior phase of meiosis [99, 100].

The formation of actin bundles in the oocyte cortex is one of the first morpho-
logical markers of induction to maturation [99]. The role of actin microfilaments 
in oocyte maturation seems to be related to the translocation of the endoplasmic 
reticulum structures to the germinal vesicle area and to the coordination of the cor-
tical granules in the plasma membrane zone [93, 101]. Even during follicular atresia, 
the actin cytoskeleton undergoes changes associated with the yolk degradation, 
while it remains preserved in follicular cells. Thus, maintenance of the actin cyto-
skeleton may be a sign of survival for follicular cells during early and/or advanced 
atresia processes [102]. Cytoskeleton changes have been extensively reported in 
apoptotic cells, among which changes in cell shape and anchorage are dependent on 
the reorganization of actin filaments and focal adhesion contacts [103].
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3. Morphological characteristics related to ovarian reorganization

3.1 Processes of atresia and cellular proliferation

Atresia is a degenerative process by which the ovarian follicles lose their integrity 
and are eliminated [104]. It is a common process in vertebrate ovaries under natural 
and/or experimental conditions [105] and can be induced by a series of exogenous and  
endogenous factors [106–109]. Oocyte degeneration, or follicular atresia, is a 
process that may occur before spawning, in oocytes that have not reached maturity 
and thereafter in oocytes that are no longer ovulated [110, 111]. In fish, atresia is 
involved in normal ovary growth [112, 113] and postovulatory regression [114–116], 
especially in females that are not able to perform maturation or ovulation after the 
vitellogenesis process [117].

Fish, in general, exhibits a reproductive periodicity, and, therefore, oocytes at 
various stages of development may be resorbed with the resultant formation of an 
atretic body. Considering the foregoing, Rajalakshmi [118] made a classification of 
the atretic processes taking into account the following stages: (1) “immature oocyte 
atresia” begins with the distortion of the cell shape, followed by loss of cytoplasmic 
homogeneity and reabsorption of the structure (in this type of atresia, the follicular 
cells do not exhibit any activity so the reabsorption of oocytes without yolk seems 
to be a relatively simple process); (2) “mature oocyte atresia” begins with the loss of 
the soft outline of the zona pellucida and dissociation of the follicular cells, which 
will then present phagocytic characteristic (i.e., enzymatic activity of acid phospha-
tase that will liquefy the yolk), followed by a slow dissolution of the zona pellucida 
and culminating in total resorption of the follicle; (3) “postovulatory complex 
atresia” begins with the distortion of the follicular cell shape, followed by loss of cell 
boundaries and formation of a syncytial structure, and finally the follicle shrink, 
with consequent degenerative changes.

The morphological characteristics of the atretic bodies and their stages of involu-
tion, independent of cellular development stage, were summarized in the study of 
Miranda et al. [20], as (1) initial atresia, with the disintegration of the oocyte nucleus, 
fragmentation of the zona pellucida, and follicular cell hypertrophy; (2) intermedi-
ate atresia, with follicular cells presenting phagocytic characteristics and ingesting 
the yolk; (3) advanced atresia, with numerous myelinic figures in the cytoplasm of 
follicular cells; and (4) final atresia, with the reduction in the number of follicular and 
theca cells and presence of granules of lipofuscin and granulocytes near the atretic 
follicle. With the current emergence of the theme of cell death pathways, studies 
about ovarian involutive processes in fish were brought to the spotlight again with 
new descriptions being made [102, 108, 116, 119–124] that add and/or corroborate 
those morphological characteristics already proposed by Miranda et al. [20].

In fish, mammals and, presumably, other vertebrates, the molecular mechanism 
responsible for ovarian follicular atresia is cell death by apoptosis [102, 124, 125]. 
Apoptosis, or programmed cell death, is a physiological process controlled by 
various hormones and growth factors. This is an evolutionarily conserved process, 
involved in remodeling, differentiation, and tissue degeneration in a variety of cell 
types [125]. It is characterized by biochemical and morphological changes such as 
chromatin condensation, DNA fragmentation, and the formation of apoptotic bod-
ies [126]. The main effector proteins in apoptosis are the caspases, a family of highly 
conserved cysteine proteases [127, 128]. Among the caspases, caspase-3 is the major 
effector one, including in the ovarian tissue in which it is expressed in the follicular 
cells of atretic follicles of fish and mammals [102, 124, 129].

In addition to apoptosis, Thomé et al. [130] presented a new route to cell death—
the autophagy. This route differs from apoptosis by the purpose of the processes: 
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apoptosis is the programmed cell death, and autophagy is a stress adaptation to 
prevent cell death. The functional relationship between apoptosis and autophagy 
is complex. In some cases, autophagy is a form of adaptation to suppress apoptosis, 
whereas, in other cases, autophagy constitutes an alternative pathway of cellular elim-
ination called autophagic or type II cell death [131–133]. It has been understood that 
apoptosis is the main mechanism involved in the involution of postovulatory follicles 
[116, 121], while autophagy contributes to the regression of atretic follicles [20, 130]. 
Even though the limits and interrelationships between these two processes have not 
yet been well established, recent studies have shown that there may be a crosstalk 
between autophagy and apoptosis pathways in the ovarian involution processes. A 
fine balance between the signs for survival and cell death appears to be essential for 
determining the fate of follicular cells, particularly in follicular atresia [102, 124].

During follicular development, a low rate of follicular cell apoptosis can be con-
sidered as a physiological event for the control of the appropriate number of cells 
and elimination of the undesirable ones [134]. However, high apoptosis values can 
be observed under unfavorable conditions, compromising follicular viability [135]. 
Thus, organic homeostasis is dependent on the balance between cell proliferation, 
differentiation, and death, so populations of rapidly proliferating cells usually have 
high rates of cell death by apoptosis [125, 136].

The mechanism of cell proliferation is a highly regulated process that seems to 
be essential for the maintenance of ovarian homeostasis [137], and yet the hor-
monal mechanism controlling oocyte proliferation and recruitment of oocytes is 
not understood completely for any vertebrate [6]. In contrast to mammals, oogonia 
continue to proliferate in adult female fish [138], thus renewing stocks of young 
oocytes and follicles [139, 140]. The pre-follicular and follicular cells begin to 
proliferate when in the folliculogenesis phase, to support the oocyte growth [19]. 
However, ovarian mitosis in fish is usually observed at the end of each reproductive 
cycle [137], when ovarian tissues are reorganized [141, 142]. Throughout ovigerous 
lamellae in adult females, germ cell proliferation and the formation of germline 
cysts result in extensions of the germinal epithelium that are segregated from the 
connective tissue by a basement membrane [19]. These extensions of the germinal 
epithelium are known as oogonium nests [28, 143] and mark the beginning of the 
reproductive cycle again.

3.2 Extracellular matrix and its changes through the reproductive cycle

During the reproductive cycle, ovarian tissue is constantly remodeled, with 
extensive cell proliferation and differentiation, as well as extracellular matrix 
changes from early follicular development to tissue involution after ovulation 
[144]. Among the processes and factors involved in tissue remodeling are apoptosis, 
changes in hormone levels, and degradation of the extracellular matrix in contact 
with cells [134].

The extracellular matrix is an insoluble network of several structural and 
functional macromolecules found in connective tissues and basement membranes 
[145]. It is both a barrier that separates the organism into tissue compartments and 
a substrate for cell adhesion [146]. In addition to these structural functions, the 
extracellular matrix is an essential regulator of cellular physiology, predominantly 
in cell survival, cell cycle, cell migration, and morphogenesis [147].

A coordinated interaction of signals is necessary to regulate the proliferation, 
differentiation, adhesion, and migration of specific cell types for the development 
and organization of structural tissues [148]. During the normal development of 
an organ or in pathological modifications, the matrix undergoes intense changes 
in its composition. This process, called matrix remodeling, is involved in many 
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physiological processes, such as activation of immune cells [149], wound healing 
[150, 151], embryogenesis [152, 153], or reproductive cycle [154].

The extracellular matrix-cell interactions influence gene regulation, cytoskeletal 
structure, differentiation, and many aspects of cell growth [155]. Changes in the 
expression of components that make up the extracellular matrix accompany follicu-
lar growth, ovulation, and involution of postovulatory follicles, which in its turn may 
influence follicular maturation, cell survival, and steroidogenesis [134, 156, 157]. 
Studies with mammals demonstrate that gonadal support cells synthesize a variety of 
components comprising the extracellular matrix and the basement membrane, such 
as collagen, laminin, keratin, fibronectin, lectin, and fibril chains [158, 159].

The balance between the degradation and regeneration of the extracellular 
matrix in ovarian tissues is maintained, in part, by the action of extracellular 
proteolytic enzymes that are secreted by the local cells. Most of these enzymes are 
matrix metalloproteinases (MMPs), which depend on the Ca+2 or Zn+2 binding to 
their activity [160]. During oogenesis, great changes in the extracellular environ-
ment of the ovary were largely attributed to the action of MMPs [144]. MMPs play 
an important role in the ovulation process in different groups of vertebrates, acting 
on follicular rupture, basement membrane fragmentation, and follicular connective 
fibers [144, 161, 162].

The integrity of the basement membrane is also evidenced by the continuous 
marking of laminin-β2 and type IV collagen, which allows the development of ovar-
ian follicles [159, 163]. On the other hand, the discontinuous labeling of laminin-β2 
and type IV collagen in the basal membrane of postovulatory follicles indicates 
that basement membrane degradation occurs due to the breakdown of these major 
components [134]. The loss of the basement membrane integrity may contribute to 
the increase of follicular cell apoptosis, suggesting its influence on the survival of 
postovulatory follicle cells [116].

Fibronectin and laminin have been shown to be extracellular matrix proteins 
synthesized by follicular cells [164, 165]. The presence of fibronectin on the sur-
face of postovulatory follicle cells is due to the need of interaction between their 
domains with type IV collagen and cell surface integrin, and it is important for 
the maintenance of cell adhesion in the extracellular matrix [159]. According to 
Iwahashi et al. [166], the type IV collagen detected in the connective tissue among 
theca cells may be involved in the organization of extracellular fibronectin. This 
interaction between type IV collagen and fibronectin may act on cell migration that 
occurs during the late remodeling of postovulatory follicles [134].

Thus, the structure and composition of the extracellular matrix play an impor-
tant role during follicular development and post-spawning involution in teleost fish. 
The basement membrane integrity is important for follicular cell survival, and the 
loss of integrity contributes to increased follicular apoptosis. In addition, MMP-9 
may be involved in the final oocyte maturation and regression of postovulatory 
follicles [134]. Therefore, it follows that different combinations and proportions in 
the assembly of extracellular matrix components, together with the presentation 
of a large variety of proteoglycans at various times during the development and 
maturation of the gonads, can orchestrate distinct gene expression programs and 
culminate in more diverse tissue variations and adaptations [148].

4. Conclusions

Studies in gametogenesis help to understand the ecological, adaptive, and evolu-
tionary relationships in the groups of species, especially when the oocyte structures 
are analyzed in an ultrastructural level. This is even more important when we 
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consider that there are few fish species that present descriptions with adequate mor-
phological and/or functional detail. Most of the studies do not evaluate the repro-
ductive characteristics with the necessary histological and ultrastructural details, 
which can lead to incomplete interpretations of the reproductive characteristics of 
the species. Likewise, studies involving organelles and their distribution throughout 
the reproductive cycle and cellular development in fish species are punctual or 
restricted to a developmental stage. The understanding of these processes is then 
due to the sum of several studies at different stages of development, but they do not 
necessarily represent the same environmental, behavioral, and population pressures 
that are being addressed to the individuals of a given species. Thus, the continuous 
study of these variables throughout the reproductive cycle of key species may allow 
more real parameters on the dynamics of the intracellular structures in germ cells 
and follicular cells, as well as the extracellular matrix. All of the above is even more 
relevant when applied to such a diverse group, as fish, that have great ecological, 
social, and economic importance.
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