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Chapter

Pulmonary Vascular Reserve and 
Aerobic Exercise Capacity
Vitalie Faoro and Kevin Forton

Abstract

Pulmonary circulation has long been known to have specific proprieties of 
recruitment and distention to keep the hemodynamic pressure low even when 
facing very high blood flow. Aerobic exercise especially at high intensity has the 
particularity to increase considerably the cardiac output. The ability of the pulmo-
nary circulation to face high blood flow with maintaining low pressures is consid-
ered as the pulmonary vascular reserve. Furthermore, high pulmonary vascular 
reserve has been shown to be characterized by low pulmonary vascular resistance, 
high pulmonary vascular distensibility, high pulmonary capillary volume, and high 
lung diffusing capacity allowing for lower ventilation at a same metabolic cost. The 
pulmonary vascular reserve thus reflects the capacity of the pulmonary circulation, 
including the capillary network, to adapt to high exercise levels. Interestingly, a 
high pulmonary vascular reserve is an advantage as it is associated with a superior 
aerobic exercise capacity (VO2max). This observation strongly suggests that 
exercise capacity is modulated by the functional state of the pulmonary circula-
tion. However, why or when pulmonary vascular reserve may be related to a higher 
aerobic exercise capacity remains incompletely understood. The present chapter 
will discuss the role of each component of the pulmonary vascular reserve during 
exercise and develop the factors able to influence the pulmonary vascular reserve in 
heathy individuals.

Keywords: pulmonary circulation, VO2max, ventilation, diffusion capacity

1. Introduction

During aerobic exercise, muscular contractions increase oxygen peripheral 
demand proportionally to exercise intensity until a maximal level or maximal oxy-
gen consumption (VO2max). VO2max is widely used as a cardiorespiratory fitness 
indicator as the capacity of oxygen consumption increases with exercise training 
with values approaching 80–90 ml/min/kg in endurance athletes vs 20–30 ml/min/
kg in healthy sedentary subjects. The oxygen consumption is dependent on the 
interdependence of the different components of the convectional and diffusional 
oxygen transport systems from ambient air to the mitochondria. Every transport 
step is a potential VO2max determinant: ventilation, pulmonary diffusion, blood 
oxygen transport (depending on cardiac output and arterial oxygen content), mus-
cular diffusion, and mitochondrial activity. The importance of each contribution 
step varies under different health or environmental conditions. Nevertheless, one 
can reasonably assume that cardiac output (Q ) is most important at sea level, while 
at higher altitudes, lung or/and muscle diffusion may become more critical [1, 2].
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For many years, exercise physiologists have focused on the left side of the heart 
and the systemic circulation to explain aerobic exercise performance and limitation. 
However, more recently, robust and growing studies suggest that the right ventricle 
(RV) might also be an important determinant of maximal cardiac output and 
VO2max [3, 4]. More broadly, the RV-pulmonary circulation unit, including the capil-
lary network, has been identified as a potential factor modulating the aerobic exercise 
capacity in normoxia [5–8] and in hypoxia [7–10]. Indeed, pulmonary vascular 
reserve, or the ability of the pulmonary circulation to extend, recruit, and vasodilate 
to smooth an intravascular pressure increase, is critical in minimizing RV afterload 
and maximizing peak cardiac output at exercise [5, 6]. To discuss the potential 
importance of this phenomenon, the role of each physiological component of the 
RV-pulmonary circulation unit and interactions with gas exchange will be reviewed.

2. Right ventricle

Cardiac output increases with exercise intensity in order to ensure oxygen sup-
ply to the working muscles. Since the right and left heart are disposed in a series in 
the cardiovascular system, it is impossible for one ventricle to generate a blood flow 
exceeding that of the other. The maximal cardiac output is therefore depending 
on the “weakest” ventricle’s performance. Increases in RV afterload may, thereby, 
possibly serve to limit overall cardiac output [3]. Additionally, the heart being 
constrained within a stiff pericardium, congestion in the RV may shift the interven-
tricular septum to the left resulting in left ventricular diastolic volume restriction, 
further limiting maximal Q. This is observable in specific circumstances such as 
congestive heart failure or highly trained endurance athletes [3].

The normal right ventricle is a thin-walled flow generator perfectly adapted to 
face the low-pressure, high-compliant pulmonary circulation [3, 11]. However, RV 
anatomical and physiological properties are maybe not designed to face dramatical 
afterload increase at high levels of exercise. As compared to the left ventricle (LV), 
load increases are greater for the RV during exercise [12], and its contractile reserve 
may become insufficient for adequate blood supply to peripheral demand [12, 13]. 
Relative to the LV, the greater load that the RV faces during exercise is dominantly 
attributed to a larger exercise-induced increase in pulmonary artery pressure (PAP) 
relative to systemic vascular pressure [3].

Increased PAP during exercise is known to limit exercise capacity in pulmo-
nary hypertension patients through a decreased maximum cardiac output by an 
overloaded right ventricle [11]. Recently it has also been suggested that the same 
phenomenon could appear in healthy individuals exercising at high workloads at sea 
level [5–8] but even more at altitude [7–10].

Invasive or noninvasive studies in healthy subjects described a ceiling level of the 
mean PAP approximating 40–50 mmHg when exercising at maximal workloads cor-
responding to the extreme afterload level which the RV can face while maintaining a 
high cardiac output [6, 14–17]. The RV is thus placed under great stress during intense 
exercise. This leads to the idea that RV outflow might become a limiting factor when 
the ventricular work demand is overwhelmed, particularly in cases of extreme cardiac 
outputs (high intensity exercise, endurance athletes) or increased PAP (pathological 
or hypoxic conditions). Recently, D’Alto et al. demonstrated that echocardiographic 
RV systolic function indices (tricuspid annular plane systolic excursion (TAPSE), S′, 
and TAPSE/PAP) correlate with maximal workload in healthy subjects. This finding 
illustrates that a higher RV contractility reserve, defined as the difference between 
peak exercise and rest, is an advantage to reach high exercise levels and suggests a 
potential role of the RV in exercise capacity limitation [13].
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3. Pulmonary circulation

3.1 Pulmonary vascular resistance

Pulmonary circulation opposes resistances to the ejecting RV that can be 
quantified by the PAP at a given cardiac output [18]. According to Poiseuille’s law, 
applicable for a Newtonian fluid flowing laminarly in a straight cylinder, flow and 
driving pressure are proportional. This would imply that with unchanged resistance 
every increase in flow would increase PAP. However, the pulmonary circulation has 
this specific property to reduce resistances by two possible mechanisms: (1) recruit-
ment, enlistment of previously closed pulmonary capillary [19, 20], and (2) disten-
sion, expansion of already filled pulmonary capillaries when pressure increases 
[21]. It is generally accepted that the initial vascular recruitment at the onset of 
exercise followed by distension allows for the pulmonary circulation to face a high 
blood flow with limited increase in pressure and maintaining RV systolic function 
at minimal energy cost [22]. Indeed, low pressure in the pulmonary circulation is 
essential to prevent two potential exercise capacity limitation mechanisms: fluid 
leaking from the capillaries to the interstitial space with subsequent gas exchange 
alterations and RV outflow and oxygen transport limitation [18, 22].

During exercise, PAP increases along with Q but not always with a one to one 
ratio [15, 23]. In exercising subjects, the PAP can be measured at different exercise 
intensities or Q allowing for the calculation of the PAP vs. Q slope, as illustrated in 
Figure 1. The PAP vs. Q slope is a more accurate estimation of pulmonary vascular 
resistance (PVR) as compared to a single measure at rest [14, 22, 24]. Invasive 
catheterization and noninvasive stress echocardiography studies showed that 
pulmonary vascular response to exercise varies considerably from one individual 
to another, with slopes of mean PAP/Q ranging from 0.5 or 1 mmHg/l/min in 
young adults to 2.5 mmHg/l/min in elderly [14, 23]. This means that with a 10 l/min 
exercise-induced Q increase, for example, normal PAP increase would range from 5 
to 25 mmHg. This great interindividual variability of pulmonary vascular response 

Figure 1. 
Stress echocardiography multiple measurements of mean pulmonary arterial pressure (mPAP) at increasing 
flow (Q ) from rest until maximal exercise in one healthy subject. Pulmonary vascular resistance (PVR) is 
evaluated from the angular coefficient of the mPAP vs. Q linear regression line (ΔmPAP/ΔQ ). The PVR of 
0.8 mmHg/l/min found in this example is in good agreement with limits of normal (gray background) [23]. 
From the curvilinearity of this PAP vs. Q relationship (dotted line), a mathematical distensible model relating 
mPAP, Q , left atrial pressure (LAP), and total PVR at rest (R0) allows for a calculation of a distensible 
factor: α (cfr formula). The present subject shows a distensibility (α) corresponding of 1.4% increase of the 
pulmonary vascular diameter per mmHg of pressure elevation during the entire exercise test and is in good 
agreement with previous reports [8, 14, 23, 26].



Interventional Pulmonology and Pulmonary Hypertension - Updates on Specific Topics

4

during exercise also suggests a great interindividual variability of RV energy cost. 
Interestingly, lower PAP/Q slopes have been found in fittest subjects [6–8, 10]. This 
observation suggests that lower RV output resistance helps to reach higher exer-
cise intensities. Conversely, in patients with pulmonary hypertension, exercise is 
associated with a sharp increase in PAP (high PAP/Q slopes), and a right ventricular 
limitation affects exercise capacity [11, 25].

3.2 Pulmonary vascular distensibility

When multiple PAP are measured at increasing exercise or Q levels, it is possible 
to show that the PAP/Q relationship is not strictly linear but becomes curvilinear 
with a smoothened pressure increase at higher exercise intensities [14, 16, 26, 
27]. The curvilinearity of the PAP/Q relationship reflects the distension of the 
pulmonary resistive vessels in order to limit the flow-induced pressure increase 
during exercise. This pulmonary vascular distension participates in decreasing PVR 
and RV afterload during exercise. The pulmonary vascular distensibility can be 
quantified with a mathematical model applied to the PA-Q relationship allowing 
the calculation of a coefficient of distensibility; α (Figure 1). Alpha depends on 
the mechanical properties of the lung vascular walls and represents the percent-
age change in arteriolar diameter per mmHg of arteriolar pressure increase with 
exercise [16, 24, 26]. Direct in vitro or indirect in vivo measurements showed an 
average of 2% increase in diameter per mmHg of distending pressure in healthy 
pulmonary vessels [14, 26]. Higher alphas, representing a more distensible pulmo-
nary circulation, have been shown to be associated to lower blood flow resistances 
(PAP/Q slopes) [6]. However, it is interesting to note that the distensibility of the 
pulmonary vasculature does not stay constant with the onset of exercise but tends 
to decrease with exercise intensity, indicating that pulmonary vascular compli-
ance decreases along with increases in flow and intravascular distending pressures 
[6, 16, 23]. Argiento et al. described a mean distensibility α at rest of 2.2%/mmHg 
decreasing to 1.3%/mmHg at maximal exercise in 88 young heathy adults [23].

Fit subjects, with a high aerobic capacity, have been shown to have enhanced 
exercise-associated decrease in PVR and increase in pulmonary arterial compliance. 
This has been demonstrated recently with higher VO2max correlated to greater 
pulmonary arteriolar distensibility α [6, 8] associated with lower PVR at maximum 
exercise or lower PAP/Q slopes [6–8]. This observation was true at sea level but was 
even more pronounced at moderate or high altitude [7, 8, 10]. One could consider 
that a more distensible and low resistive pulmonary circulation is an advantage for 
aerobic exercise performance.

4. Pulmonary capillaries, gas exchange, and ventilation

It has previously been estimated that resistances in the pulmonary circulation 
are located for 60% at the precapillary level and for 40% at the capillary-venous 
level [28]. Pulmonary capillaries hemodynamic thus significantly contribute to 
changes in PVR during exercise and can therefore not be neglected.

4.1 Pulmonary transit of agitated contrast

The property of the pulmonary capillaries to distend during exercise can be 
studied by intravenous injection of an agitated contrast. Bubbles appearing in the 
right heart must transit through the pulmonary circulation to be observed in the left 
heart chambers with echocardiography. At rest, no bubble transit occurs from the 
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right to the left heart. However, during exercise in healthy individuals, pulmonary 
transit of agitated contrast (PTAC) occurs when contrast appears from the right to 
the left heart chamber after four to five heartbeats [29, 30]. Whether this exercise-
induced bubble transit is explained by pulmonary capillary distension or by the 
opening of an arteriovenous shunt is still debated [31–33].

In a recent study, La Gerche et al. used PTAC to assess pulmonary vascular 
reserve in exercising healthy individuals. They observed that subjects with no or 
minimal bubble transit through the pulmonary circulation also showed higher 
PVR assessed by steeper PAP/Q slopes, and individuals with high PTAC had lower 
exercise-induced increases in PAP and greater PVR reduction [5]. This observation 
suggests that a greater pulmonary vascular reserve can occur through a possible 
enhanced capillary distensibility. Moreover, this physiological advantage was asso-
ciated with improved RV function and higher maximal Q. The authors of this study 
concluded that higher PTAC is advantageous to lower RV afterload and creating less 
RV fatigue during prolonged and intense exercise [5]. In support of this previous 
finding, in a similar study, Lalande et al. found that the amount of bubbles transit-
ing through the pulmonary circulation was proportional to the increase in pulmo-
nary capillary pressure and volume during exercise [6]. In this study positive PTAC 
occurred during exercise when a twofold increase in vascular pressure allowed for 
a 20–30% increase in capillary blood volume [6]. Capillary recruitment and dila-
tion seem thus crucial to unload the RV at high levels of exercise but is also crucial 
to maintain capillary pressure low during intense exercise. In numerous studies, 
West et al. highlighted that an abnormal increase in PAP and subsequent capillary 
pressure elevation above a 20–25 mmHg threshold at exercise could possibly lead to 
a capillary stress failure known to elicit interstitial lung edema and altered ventila-
tion/perfusion relationships [34, 35]. Capillary damages have indeed previously 
been described in some endurance-trained athletes [36].

4.2 Lung diffusion capacity

Capillary blood volume can be estimated noninvasively from lung diffusing 
capacity measurements using double gas tracers: carbon monoxide (CO) and nitric 
oxide (NO) differing in their affinity for hemoglobin. The Roughton and Forster 
equation, 1/DLCO = 1/Dm + 1/θVc, states that lung diffusion from the alveola to 
the erythrocyte’s hemoglobin is the result of two resistances in series: the alveolo-
capillary membrane diffusion component and an intracapillary component. DLCO 
is the measured diffusing capacity of the lung for CO, Dm the membrane compo-
nent, θ the hemoglobin affinity for CO, and Vc the capillary blood volume [37]. 
Transposing this equation for NO, which has particularly high hemoglobin affinity, 
two equations can be solved with two unknowns allowing for Vc calculation [38].

Exercising at sea level is associated with an increase in DLCO, DLNO, Dm, and 
Vc linearly with the workload intensity without ceiling effect. This suggests that 
recruitment and distention of the pulmonary circulation does not reach a limit even 
at high exercise levels. Also, a predominant exercise-induced increase in Vc relative 
to Dm has been described suggesting a predominance of capillary distension rather 
than recruitment, whereas a recruitment would increase more Dm than Vc [39–41]. 
This is in keeping with the notion that exercise is associated with an increased 
diameter of pulmonary capillaries [6, 41–43]. Recent studies found indeed that 
the amount of blood in the pulmonary capillaries was a determinant of the aerobic 
exercise capacity [6, 8]. This observation is compatible with the hypothesis that 
exercise capacity is modulated by the functional state of the pulmonary circula-
tion, including capillary vessels, and could be confirmed in more than 150 healthy 
adults tested in our laboratory (Figure 2C). Additionally, it also appeared that the 
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blood volume of the pulmonary capillaries (Vc) measured by the DLCO and DLNO 
method was correlated to the ventilation at a given metabolic cost (VE/VCO2 ratio) 
measured during incremental cardiopulmonary exercise testing (Figure 2A). This 
founding, suggesting that better perfused lungs allows for lower ventilatory cost, is 
an advantage to reach higher exercise levels (Figure 2B and C).

The VE/VCO2 ratio represents the ventilation level needed to evacuate 1 L of 
CO2 for 1 minute and is therefore a good indicator of the ventilatory efficiency and 
represents the metabolic cost of ventilation. The VE/VCO2 ratio can be measured at 
the ventilatory threshold, when metabolic acidosis is not yet pronounced and does 
not substantially influence ventilation. However, the slope of the VE versus VCO2 
relationship from rest until the respiratory compensation point might be more 
accurate to define the ventilatory chemosensibility [44].

Chronic heart failure and even more so pulmonary arterial hypertension 
increase the VE/VCO2 slope by a combination of increased dead space related to low 
cardiac output, early lactic acidosis, and increased chemosensitivity in the context 
of an increased sympathetic nervous system tone in relation with the severity of the 
pathology [45]. The VE/VCO2 slope has indeed been identified as a strong prog-
nostic tool in patients with heart failure, and in some studies, its prognostic signifi-
cance has outperformed the VO2max [44]. In the other hand, endurance athletes 
are known to have shallow VE/VCO2 slopes probably through a training-induced 
decrease in chemosensibility [46].

Interestingly, recent studies also showed a link between higher diffusion capaci-
ties (DLNO) and shallowest VE/VCO2 slopes [6, 8] in keeping with previous notion 
that higher lung diffusing capacity allows for preserved gas exchange at a lower 
ventilatory cost [47]. In those studies, the higher diffusion capacities and lower VE/
VCO2 slopes were associated to higher aerobic capacity [6, 8].

5. Pulmonary vascular reserve

The pulmonary vascular reserve is the ability of the pulmonary circulation to 
accommodate high flows by moderating pressure increase with vascular recruit-
ment, dilatation, and/or distension and allows low hemodynamic pressures in the 
pulmonary circulation. The more the pulmonary circulation is able to face high 
blood flow with maintaining low pressures during exercise the greater the pulmo-
nary vascular reserve. This is critical in minimizing RV afterload and maximizing 
cardiac output during exercise. When pulmonary vascular reserve is compromised, 
RV ejection may also be compromised, increasing right atrial pressure and limiting 
maximal cardiac output [18]. Pulmonary vascular reserve avoids abnormal increase 

Figure 2. 
Correlations between lung capillary volume measured at rest (Vc), ventilatory equivalent for CO2 (VE/VCO2) 
measured at the ventilatory threshold (VT), and aerobic exercise capacity (VO2max). Larger blood capillary 
volume allows for better ventilation-perfusion adequacy decreasing ventilation at a given metabolic rate and 
higher aerobic capacity.
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in PAP and subsequently increases in pulmonary capillary pressure, protecting from 
an interstitial pulmonary edema [35, 48]. Finally, a better vascular reserve allows 
for a greater capillary distention increasing the lung capillary volume which has 
been shown to be associated with better ventilation-perfusion adequacy, better lung 
diffusion capacity, and lower ventilatory cost at a given metabolic rate [7, 8].

A pioneer study by La Gerche et al. demonstrated that favorable changes in pul-
monary vascular reserve provide a physiological advantage for RV function during 
exercise [5]. Indeed, subjects with the higher PTAC had the lowest PVR and lowest 
exercise-induced B-type natriuretic peptide blood levels (usually elevated with 
ventricular volume and pressure overload) associated with higher maximal Q [5]. 
Subsequently, Lalande et al. observed that the individuals with the highest VO2max 
had the greatest pulmonary vascular reserve, in this study defined as greater arte-
riolar distensibility α and capillary bed volume along with lowest PVR at maximum 
exercise [6]. Following these observations, Pavelescu et al. reviewed diffusion 
capacity measurements and echocardiographic measurements of the pulmonary 
circulation in a larger number of healthy subjects and confirmed that better aerobic 
exercise capacity is associated with lower PVR and higher lung diffusing capacity 
allowing for lower exercise ventilation [7].

Taken together, all those observations strongly suggest that exercise capacity is 
modulated by the functional state of the pulmonary circulation. A great pulmonary 
vascular reserve is therefore an advantage in endurance athletic performance espe-
cially when exercise is performed at extreme cardiac output levels. However, when 
or why pulmonary vascular reserve may allow for a higher aerobic exercise capacity 
is still incompletely described.

6. Influences of pulmonary vascular reserve

It is well-known that interindividual pulmonary vascular response to exercise 
varies considerably. Beyond that, different factors have been identified to influence 
the pulmonary vascular reserve such as body position, sex, race, age, and environ-
mental factors.

6.1 Body position

Pulmonary vascular response to exercise testing is either performed in a supine 
position during catheterization or in a semi-recumbent position during stress 
echocardiography, while exercise testing is usually performed in a sitting or upright 
position. Invasive studies previously reported a lower resting PVR in the recumbent 
position compared with upright position explained by a vascular recruitment when 
venous return is increased with gravity [49]. However, the authors observed that 
differences faded and disappeared with exercise-induced cardiac output increase, 
because of vascular recruitment with pulmonary blood flow elevation. Accordingly, 
those observations have been confirmed recently by Forton et al. who compared 
maximal exercise testing in supine, semi-recumbent, and upright positions and 
showed no body position effect on PAP/Q relationships, alpha, and VO2max [50].

Influence of posture [17] PAP rest supine (14.0 + −3.3 mmHg) versus upright 
(13.6 + −3.1 mmHg)

6.2 Race and sex

Racial differences have been suspected to influence pulmonary vascular reserve 
as black African Americans compared to white Americans of European descent are 
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known to have higher prevalence of hypertension and higher mortality rates for 
most cardiovascular diseases [51]. Recently, Simaga et al. tested this hypothesis and 
showed an intrinsically less distensible pulmonary circulation in healthy black sub-
Saharan African men as compared to healthy white Caucasians, and this was associ-
ated with a lower aerobic exercise capacity [52]. Lower DLNO and DLCO are also 
reported in Africans as compared to sex-, age-, and body size-matched Caucasians 
and are explained by racial-related smaller lungs proportionally to body size [53]. 
However, those racial differences in pulmonary vascular function at exercise did not 
appear when women were compared [52]. This latest observation is in keeping with 
previous studies showing that premenopausal women have a more distensible pul-
monary circulation with a coefficient of distensibility α up to 45% higher compared 
to age-matched men [23]. The underlying explanation is not clearly established but 
might be related to the hormonal context.

6.3 Aging

Exercise capacity decreases with aging, as does the pulmonary vascular reserve. 
Invasive measurements have previously showed that a reduction in pulmonary 
microvascular distensibility occurs with age [17, 24]. Consistently, La Gerche et al. 
noticed that individuals with low PTAC were older than those with positive PTAC 
[5]. More recently, Argiento et al. confirmed this aging effect observation with 
noninvasive echocardiographic measurements and showed that while maximal 
cardiac output was reduced in fifties or older individuals, PAP and PVR were higher 
with a lower alpha at maximal exercise [23].

Influence of age [17] PAP <30 (12.8 + −3.1 mmHg) versus 30–50 
(12.9 + −3.0 mmHg) versus > 50 years (14.7 + −4.0).

6.4 Growth

Aerobic capacity increases gradually with age during childhood and adolescence. 
The kinetics of this evolution differs in girls and boys related to pubertal hormonal 
changes reaching a peak in VO2max earlier in girls compared to boys. However, 
previous studies showed that VO2max is not so much a matter of age when VO2max 
is corrected by body weight [54, 55].

On the other hand, the maximal workload, endurance time, and maximum aver-
age running speed increase continuously with age attesting the complexity of the 
relations between VO2 at exercise, weight or body dimensions, and the mechanical 
performance of muscular work [56].

The progression of endurance time and load at a given VO2 with age is multifac-
torial and includes neuromuscular adaptations, movement technique, musculoten-
dinous elastic energy storage, surface vs. weight ratio, body temperature, energy 
substrates use, and ventilatory response. Indeed, the VE/VCO2 slope decreases with 
age reflecting a more efficient ventilatory response during exercise. This has been 
attributed to chemosensitivity maturation with age [54, 57]. Concomitantly, it is 
also known that diffusion capacity of DLCO and DLNO increases during adoles-
cence. The link between these two observations remains to be clarified as the DLCO 
and DLNO increase has previously been mainly attributed to increase in height [58].

Experiments from our exercise laboratory on heathy adolescents show that 
pulmonary arterial distensibility and chemosensitivity decrease with growth, while 
maximal Q , RV function and diffusion capacity increase in relation to increased 
aerobic exercise capacity.

Taken together, the aforementioned findings suggest that the different compo-
nents of the RV- pulmonary circulation unit are mature at different times. Creating 
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a probable optimal pulmonary vascular reserve and exercise capacity at adulthood 
but declining further with aging.

6.5 Pollution

Finally, some environmental factors have also been identified as potential 
pulmonary circulation stressors, namely, altitude and pollution. It has recently been 
shown that an acute exposure of 2 h to a dilute diesel exhaust increased the pulmo-
nary vasomotor tone by decreasing the distensibility of pulmonary resistive vessels 
at high cardiac output or high exercise intensities [59]. Further studies are needed 
for a better understanding of this phenomenon and to evaluate the long-term 
consequences of diesel exposure on exercise capacity.

6.6 Hypoxia

Increasing visitors and athletes are traveling to altitude but not without conse-
quences on their physical condition. It has long been known that aerobic exercise 
capacity decreases exponentially with altitude ascent with a significant decline 
starting above 1000 m. Numerous studies have been conducted in the field, but 
the underlying mechanisms are until now not fully understood. Although causes 
might be multifactorial, decreased oxygen transport to the exercising muscle, with 
a decrease in arterial oxygenation (SpO2) and an altered maximum Q , is fingered 
[1, 2, 60].

6.6.1 Right ventricle

At high altitude, in resting conditions, signs of altered diastolic but preserved or 
enhanced systolic RV function have been described in chronic [61] or acute hypoxic 
conditions [62, 63]. RV seems thus to tolerate hypoxic conditions. However, a recent 
study showed inhomogeneous RV contraction in hypoxia but not during exercise, 
suggesting that hypoxic stress is not trivial [63]. How much this could account for 
altered RV maximal outflow remains unknown as studies on right ventricular func-
tion during hypoxic exercise are sorely lacking [64].

6.6.2 Pulmonary circulation

Since the pioneer study of Von Euler and Liljestrand in 1946 that when airways 
are exposed to hypoxic air, a local vasoconstrictive reflex modifies the lung perfu-
sion in favor of better oxygenated alveoli [65]. This hypoxic pulmonary vasocon-
striction (HPV) is a protective mechanism allowing for substantial improvement in 
arterial oxygenation [66]. However, at altitude, when the entire lung is hypoxic, a 
global arteriolar vasoconstriction reduces the pulmonary vascular distensibility and 
increases the PVR. The subsequent hypoxic pulmonary hypertension is generally 
mild to moderate [64]. However, during exercise, this substantial increased after-
load on the right ventricle might become substantial [64]. Hypoxia may therefore 
affect the pulmonary vascular reserve with increased likelihood of RV function 
limitation and/or altered gas exchange by interstitial pulmonary edema or ventila-
tion/perfusion mismatch. How much this accounts for aerobic exercise capacity 
limitation at high altitude is still a matter of debate.

This last decade, a partial recovery of 10–25% of the hypoxia-induced decrease 
in maximal oxygen uptake has been reported with intake-specific pulmonary 
vasodilating interventions [67–72]. Indeed, specific pulmonary vasodilating inter-
ventions have been reported to improve the decreased aerobic exercise capacity in 
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hypoxia with little or no effect on normoxic exercise performance. Primary studies 
described an increase in maximal workload and VO2max after intake of sildenafil, a 
phosphodiesterase-5 inhibitor used to treat erectile dysfunction in healthy hypoxic 
subjects [9, 67–69]. It has been suggested that the underlying mechanism was an 
increase maximal Q due to a reduced RV afterload after HPV inhibition or pul-
monary vasodilation. Similar results were reported after administration of dexa-
methasone [70] or endothelin receptor blockers [71, 72]. In most of these studies, 
pulmonary vasodilation effect was also associated with improved arterial oxy-
genation probably allowing improved oxygen transport to the exercising muscles 
[69, 73]. De Bisschop et al. showed that pharmacological pulmonary vasodilation 
improved lung diffusion capacity and also correlated to enhanced exercise capacity 
at high altitude [74]. The principal suggested underlying mechanisms was related 
to a pulmonary vasodilation associated decrease in capillary filtration pressure 
protecting from an interstitial lung edema [74].

6.6.3 Lung diffusion capacity

Acute or chronic hypoxic exposure is associated with enhanced pulmonary 
diffusion capacity at rest [7, 75, 76]. Moreover, the hypoxia-induced increase in 
the capillary component being more pronounced than the membrane component 
suggests a capillary distension in addition to recruitment. This observation has been 
attributed to increased pulmonary perfusion pressure caused by HPV associated 
with a venous component of hypoxic vasoconstriction both possibly contributing to 
increase effective capillary pressure [77].

Interestingly, Taylor et al. showed that recruitment of pulmonary capillaries in 
response to exercise at high altitude is limited and may therefore be a significant 
source of exercise limitation [78]. This is keeping with previous correlation found 
between lung diffusing capacity for nitric oxide (DLNO) and VO2max at altitude 
[7, 8, 74].

6.6.4 Pulmonary vascular reserve

The reviewing of data collected during four different high-altitude expeditions 
(>4350 m) highlighted that individuals with a larger increase in PVR and larger 
decreased ventilation efficacity with ascent to high altitude were the ones with the 
greater VO2max fall [7]. Higher aerobic capacity at high altitude was associated 
with more pronounced pulmonary vascular reserve as suggested by lower PVR, 
higher diffusion capacity, and lower VE/VCO2 [7]. Similarly, pulmonary vascular 
reserve has been described as an aerobic performance limiting factor in Andean or 
Himalayan highlanders [10, 79]. This observation has also been confirmed at mod-
erate altitude, even though the overwhelming determinant of decreased VO2max 
and maximum workload is a decrease in arterial O2 content CaO2 [8].

7. Conclusion

In conclusion, aerobic exercise capacity is depending on the integrity of the 
different components of the oxygen transfer from ambient air to the mitochondrial 
cytochromes. The RV function coupling to the pulmonary circulation and the 
pulmonary capillary network is one of multiple determinants of aerobic exercise 
capacity. It becomes increasingly clear that a high pulmonary vascular reserve is an 
advantage for high-intensity exercise performance in heathy subjects. The pulmo-
nary vascular reserve is characterized by lower exercise PAP and PVR and higher 
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pulmonary vascular distensibility associated with greater capillary volume and gas 
exchange allowing for a lower ventilatory cost at a given metabolic rate. When and 
how the pulmonary vascular reserve modulates aerobic capacity still need to be 
clarified. However, age, race, sex, and environmental factors such as pollution and 
hypoxia have been identified as pulmonary vascular reserve influencers.
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