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Chapter

Chemoinformatic Approach: 
The Case of Natural Products of 
Panama
Dionisio A. Olmedo and José L. Medina-Franco

Abstract

Chemoinformatic analysis was used to characterize a compound database of 
natural products from Panama and other reference collections. Data mining allowed 
to compare drug-likeness properties with public and commercial software and to 
achieve a statistical analysis of the physicochemical properties. Visualization of the 
chemical space in 3D indicates a high structural similarity. Molecular flexibility and 
complexity were evaluated using 2D descriptors, whereas the molecular scaffold 
was obtained using the Murcko method, and these showed few differences between 
the explored data set. In this chapter, we also present and discuss an example of the 
application of the chemoinformatic approach using the concept of modeling the 
activity landscape to study the structure-activity relationships (SARs) of com-
pounds with activity against Plasmodium falciparum.

Keywords: chemoinformatic, complexity, data mining, physicochemical properties, 
scaffold

1. Introduction

Natural products (NPs) and their derivatives constitute a significant fraction of 
approved drugs [1–3], bioactive compounds [4–8], and lead compounds for drug dis-
covery [9]. NP fragment has been used to guide the synthesis of bioactive compounds 
and generate BIOS combinatorial libraries [10–15]. NPs have structures with different 
substituent patterns, giving rise to different biological activities for compounds with 
very similar structures [16–19]. These bioactive metabolites have greater affinity for 
biological targets and, overall, may have better bioavailability than synthetic com-
pounds, and the presence of pan-assay interference compounds (PAIN) is less frequent 
in this type of product [20]. The chemoinformatic analysis of several databases of NPs 
developed by academic institutions and private companies [21] has been carried out 
in different countries. Thus, the following databases were obtained: BIOFACQUIM 
[22], CIFPMA [23], NuBBE [24, 25], NANPDB [26], TCM [27], HIT [28], and NPACT 
[29]. The application of chemoinformatic tools involves the generation, manipulation, 
and analysis of data set of chemical substances. This allows us through mathematical 
calculations to order, develop, and evaluate structural information that can be visual-
ized in 2D and 3D [30]. The determination of the physicochemical properties carried 
out on different databases of NPs and principal component analysis (PCA) was used as 
an approximation to display the chemical spaces [22–24, 31–37].
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Computational exploration of NPs has increased in recent years, giving greater 
relevance to studies that include structural diversity metrics calculated with param-
eters based on distances such as Euclidean distance, Manhattan distances, and 
Cosine distance. Other criteria are based on circular fingerprint (ECFP-4, ECFP-6) 
[22–24, 38–45] and fingerprint based on substructure (MACCS, PubChem) [22–24, 
39–45]. Another metric used in NPs is the comparison by similarity that uses the 
Tanimoto index/Tanimoto coefficient [22–24, 45–49].

In this study, the molecular scaffolds of natural products have been obtained 
using the Murcko method [22–24, 50–57]. Meanwhile, the molecular complexity is 
frequently evaluated by descriptors in 2D such as fraction of sp3 hybridized carbons 
(Fsp3) [23], fraction of chiral centers (FCC) [23], and globularity [22–24, 58–63].

An update of the Natural Products Database from the University of Panama 
(UPMA) containing 454 compounds (Unpublished data) has been evaluated against 
different therapeutic targets such as cytotoxicity bioassay in cell lines, antifungal 
assay in vitro, parasites of tropical diseases (Leishmania sp., Plasmodium falciparum, 
and Trypanosoma cruzi), and the bioassay against HIV-1 virus, demonstrating an 
inhibitor effect on protease, reverse transcriptase, nuclear factor NFkappaB, and 
Tat protein affecting the viral replication. These are the most significant biological 
targets in which the natural products from Panama present bioactivity. The values 
of their biological activities are represented as percentages in Figure 1.

2.  Application of chemoinformatic antimalarial databases: case of 
natural products from Panama

2.1 Preparation curated and processing of data set

In this chapter, we present a chemoinformatic analysis of natural products with 
antimalarial activities (in vitro), expressed as pIC50 against sensitive and resistant 

Figure 1. 
Biological endpoints and targets in which natural products from Panama present bioactivity.
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strains. Databases of natural products with antimalarial activity (NPAs) were 
constructed in-house by reviewing published articles including those compounds 
that were isolated and characterized by spectroscopic techniques of nuclear 
magnetic resonance. Around 1312 compounds were compared to 8 reference data 
sets: an open database, DrugBank (antimalarial drug), European Bioinformatics 
Institute. (CHEMBL drug indications) (antimalarial activities), Open Source Drug 
Discovery (OSDD) Malaria, Malaria Box (Medicines for Malaria Venture (MMV)), 
St. Jude Children’s Research Hospital (St. Jude), Novartis (GNF Malaria Box), and 
GlaxoSmithKline (GSK) Tres Cantos antimalarial set. All data sets were curated 
using the “Wash” function implemented in the Molecular Operating Environment 
(MOE2018.0101) software [64]. The structure of the studied compounds was rep-
resented by simplified molecular input line entry system (SMILES) notation, thus 
obtaining 20,364 unique molecules that are summarized in Table 1. The difference 
between initial compounds and unique compounds is due to the fact that during the 
data preparation (curation process), the duplicate compounds are eliminated, those 
that have positive or negative partial loads have neutralized their protonation states, 
the metals are disconnected, and the energy is minimized using the molecular 
mechanistic force field (MMFF94). The result of the data curation is the reduction 
of the initial number of molecules present in the databases evaluated in this work.

2.2 Molecular descriptors

The descriptors of physicochemical properties, hydrogen bond acceptors 
(HBAs), hydrogen bond donors (HBDs), number of rotatable bonds (NRBs), the 
octanol/water partition coefficient (logP), topological polar surface area (TPSA), 

Databases Initial 

compounds

Unique 

compounds

Source

Natural Products Antimalarial 

(NPAs)

1353 1312 Databases of NP in house

DrugBank Version 5.0. (Drug 

Antimalarial)

26 4 https://www.drugbank.ca

European Bioinformatics Institute. 

(CHEMBL Drugs Indications) 

(Antimalarial activities

27 24 [https://www.ebi.ac.uk/

chembl]

Open Source Drug Discovery 

(OSDD) Malaria

93 88 http://opensourcemalaria.

org/

Malaria Box-Medicine of Malaria 

Venture (MMV)

124 124 https://www.ebi.ac.uk/

chembl/malaria/source

St. Jude Children’s Research 

Hospital’s

1.478 1.478 https://www.ebi.ac.uk/

chemblntd

Novartis-GNF Malaria Box 4.878 4.868 Available in: https://www.

ncbi.nlm.nih.gov/pmc/

articles/PMC3941073/

Available in: https://www.ebi.

ac.uk/chemblntd

GlaxoSmithKline Tres Cantos 

Antimalarial

12.470 12.466 Open Source Malaria 

(GSK-TCMDC). Available 

in: https://www.ebi.ac.uk/

chemblntd

Table 1. 
Databases analyzed with chemoinformatic tools.
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Figure 2. 
3D visualization of the chemical space of natural product databases.

and molecular weight (MW), or others such as molar refractivity, are important 
physicochemical parameters for quantitative structure-activity relationship (QSAR) 
analysis. These molecular descriptors are based on Lipinski’s rule and Verger’s rule 
regarding the prediction of the pharmacological similarity of orally active pharma-
cological potential [65–67]. The statistical analysis of the physicochemical proper-
ties was realized with RStudio Software 1.0.136 AGPL [68].

2.3 3D visualization of chemical space of compounds with antimalarial activity

PCAs were done with MOE software [64], and the dominant characteristics are 
expressed as covariance and visualized with the corresponding 2D or 3D graphic 
score plot with DataWarrior program v. 5.0 [69]. Figures 2–8 showed the distribu-
tion of different compounds with antimalarial activities in the chemical spaces.

In Figures 2–8 we observed that NPs, drugs, and synthetic compounds occupy, in 
general, similar chemical space and are overlapping in most of the evaluated databases.

2.4 Molecular diversity based on fingerprints

Three binary molecular fingerprints were calculated with RStudio package rcdk: 
Extended connectivity fingerprints with diameter 4 (ECFP-4) for similarity search-
ing, molecular access system (MACCS) keys of 166 bits for determining similarity 
and molecular diversity, and PubChem keys of 881 bits for encoding molecular 
fragment information [42–44]. The similarity of fingerprints by structural pairs 
of compounds was calculated with the Tanimoto coefficient and analyzed with the 
cumulative distribution function (CDF). This approach has been used to calculate, 
measure, and represent the molecular variety of compound data sets [23].

Figures 9–11 show the CDFs of the pairwise similarity of the different data sets 
evaluated with Tanimoto coefficient and ECPF-4, MACCS keys, and PubChem 
fingerprints, respectively.



5

Chemoinformatic Approach: The Case of Natural Products of Panama
DOI: http://dx.doi.org/10.5772/intechopen.87779

Figures 9–11 provide information on the structural diversity of the six data-
bases. Similar approach has been previously published [23]; the curves obtained 
with ECFP-4 did not prove to be a suitable fingerprint representation for these 
data sets. In the three similarity graphs based on fingerprints, it is shown that the 
database of natural products with antimalarial activity, OMS, and MMV has the 
lowest molecular diversity, while GSK DB was the most diverse.

In Tables 2–4, the statistical values of the pairwise Tanimoto similarity with the 
data sets analyzed are shown. In these tables, CHEMBL and DrugBank databases 
are excluded from our analysis, due to the small amount of data.

Figure 3. 
3D visualization of the chemical space of synthetic compounds.

Figure 4. 
3D visualization of the chemical spaces of natural products and GNF DBs.
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Figure 6. 
3D visualization of the chemical spaces of natural products and DBK DBs.

2.5 Molecular scaffolds: content and diversity

2.5.1 Scaffold content

Murcko scaffolds were calculated with the program Molecular Equivalent 
Indices (MEQI) [50, 51] and DataWarrior program [69]. MEQI has been used to 
obtain the codes corresponding to the chemotypes most frequently analyzed in the 
databases. [23, 45, 52–55]. The distribution and diversity of the molecular scaf-
folds present in the data sets were calculated and analyzed using the cyclic system 
retrieval (CSR) curves [42]. These curves were obtained by plotting the fraction of 

Figure 5. 
3D visualization of the chemical spaces of natural products and TCMDC DBs.
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scaffold and the fraction of compounds that contain cyclic systems [43, 44].
Table 5 indicates that the MMV DB (0.491) was the most diverse in scaffold 

content taken as reference the F50 values compared to the data set from GSK (0.183), 
NPs (0.168), and GNF (0.161), respectively. CSR curves on Figure 12 further 
confirm the relative scaffold variety of the eight databases. The analysis of area 
under curve (AUC) metrics associated with the CSR curves is reported in Table 5. 
The CSR curves showed that MMV has more variety in scaffold content with AUC 
value of 0.507. In contrast OSM, NPs, GNF, GSK, St. Jude, and CHEMBL were 
the least diverse (e.g., AUC scores of 0.745, 0.712, 0.705, 0.698, 0.655 and 0.607, 

Figure 7. 
3D visualization of the chemical spaces of natural products, OSM and St. Jude.

Figure 8. 
3D visualization of the chemical spaces of all databases.
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respectively). The CSR curves provide information on the diversity of the most 
frequent scaffolds in all databases.

2.5.2 Shannon entropy (SE) and scaled Shannon entropy (SSE)

The Shannon entropy has been adapted to measure the scaffold diversity based 
on the (N) number of most recurrent scaffolds [70]. The scaled Shannon entropy 
is a normalized value that measures the most common chemotypes present in a 

database. Thus, SSE closer to 1 indicates higher scaffold diversity, while SSE closer 
to zero (0) indicates lower diversity. In this study, we calculated the SSE for values 
ranging from N = 10 to N = 40.

Figure 10. 
Curve for cumulative frequency distribution based on MACCS keys.

Figure 11. 
Curve for cumulative frequency distribution based on PubChem.

Figure 9. 
Curve for cumulative frequency distribution (CFD) based on ECFP-4.
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Figure 13 shows a histogram with the distribution of the 40 most populated 
scaffolds in NPAs. The histogram includes the corresponding chemotype code. The 
comparison of the scaffolds of the NPAs allowed the identification of the 68MBD 
chemotype as one of the most active compounds in this database.

Figure 12. 
Cyclic system retrieval curves for all databases evaluated in this study.

Similarity ECFP-4/Tanimoto coefficient

DBs Min. 1st Qu. Median Mean 3rd Qu. Max.

GSK 0.01724 0.05789 0.08844 0.11490 0.12245 0.82353

NPs 0.00000 0.07826 0.09910 0.10565 0.12389 1.00000

OSM 0.00000 0.07826 0.09917 0.10607 0.12397 1.00000

MMV 0.00000 0.07826 0.09924 0.10615 0.12403 1.00000

ST JUDE 0.00000 0.08197 0.10345 0.10980 0.12857 1.00000

GNF 0.00000 0.08209 0.10345 0.10772 0.12739 1.00000

Table 2. 
The statistical values of the similarity of the Tanimoto coefficient with ECFP-4.

Similarity MACCS keys/Tanimoto coefficient

DBs Min. 1st Qu. Median Mean 3rd Qu. Max.

GSK 0.07813 0.25682 0.33333 0.37009 0.45581 0.92683

NPs 0.00000 0.34426 0.43636 0.44673 0.54545 1.00000

OSM 0.00000 0.34483 0.43636 0.44693 0.54545 1.00000

MMV 0.00000 0.34483 0.43636 0.44677 0.54412 1.00000

ST JUDE 0.00000 0.33333 0.41250 0.42313 0.50000 1.00000

GNF 0.00000 0.31746 0.39437 0.39999 0.47619 1.00000

Table 3. 
The statistical values of the similarity of the Tanimoto coefficient with MACCS keys.
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2.5.3 Molecular complexity and flexibility

The structural descriptors used to quantify fraction of sp3 hybridized car-
bons (Fsp3) [23, 58, 63, 70], fraction of chiral centers (CCF) [23, 59, 63, 70], 
fraction of aromatic atoms (Faro-atm), globularity [60], principal moments of 
inertia (PMI), normalized principal moments of inertia ratio (NRP)  
[61, 62], molecular complexity, shape index of Kier, and molecular flexibility 
were calculated with DataWarrior program [69] and MOE 2018.0101 [64]. 
Figures 14–19 showed the descriptors utilized to evaluate the complexity and 
the molecular flexibility.

Tables 6–8 summarize the statistics of the distribution of Fsp3, FCC, and Faro-
atm of NPs and reference data sets. These results indicate that the NP data set has 
the largest complexity molecular in Fsp3 (0.63) and CCF (0.16) and a low distribu-
tion of Faro-atm (0.67–0.78). In contrast, GNF, MMV, St. Jude, and GSK DBs are 
very similar in these three metrics with values between 0.25 and 0.37, 0.27 and 0.37, 
and 0.014 and 0.025, respectively. In contrast, the structural flexibility was evalu-
ated with the index of form presenting all databases in the range of 0.41–0.58 indi-
cating that many of the compounds present sphericity and intermediate molecular 
flexibility (data not presented).

DBs Number of 

Compounds 

(M)

Unique  

chemotypes 

(N)

FN/M NSING FNSING/M FNSING/

NS

AUC F50

NPs 1298 629 0.4846 400 0.3082 0.6359 0.7125 0.1685

DBK 5 5 1.0000 5 1.0000 1.0000 0.4800 0.4000

CHEMBL 24 18 0.7500 16 0.6667 0.8889 0.6072 0.3333

OSM 89 39 0.4382 27 0.3034 0.6923 0.7453 0.1025

MMV 124 122 0.9839 120 0.9677 0.9836 0.5079 0.4918

St. JUDE 915 479 0.5235 325 0.3552 0.6785 0.6551 0.2474

GNF 4860 3229 0.6644 2690 0.5535 0.8331 0.7054 0.1615

GSK 12,463 6703 0.5378 5009 0.4019 0.7473 0.6982 0.1837

M = number of molecules in the BD, N = number of chemotypes or substructures, FN/M = chemotype 
diversity fraction, NSING = singleton number, FNSING/M = singleton fraction between total molecules, 
FNSING/N = fraction of singleton among total chemotypes, AUC = area under the curve, F50 = fraction of 
chemotype required to recover 50% of the molecules.

Table 5. 
Summary of the scaffold diversity of the eight databases analyzed in this work.

Similarity PubChem/Tanimoto coefficient

DBs Min. 1st Qu. Median Mean 3rd Qu. Max.

GSK 0.08125 0.24500 0.37555 0.40263 0.54002 1.00000

NPs 0.03684 0.32298 0.43802 0.46184 0.58621 1.00000

OSM 0.03684 0.32340 0.43902 0.46253 0.58730 1.00000

MMV 0.03684 0.32444 0.44033 0.46321 0.58791 1.00000

ST JUDE 0.03684 0.38224 0.47143 0.47624 0.56195 1.00000

GNF 0.00000 0.40598 0.48117 0.47800 0.55446 1.00000

Table 4. 
The statistical values of the similarity of the Tanimoto coefficient with PubChem.
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The descriptors globularity, PMI, and NRP did not prove to be suitable metrics 
to measure and differentiate the molecular complexity in the data sets evaluated. 
This is because the corresponding values computed for all data sets were very low 

Figure 13. 
Scaled Shannon entropy of the most frequent scaffolds with values ranging from 10 to 40 in natural products.

Figure 14. 
Distribution of the fraction of sp3 hybridized carbons in different databases.

Figure 15. 
Distribution of the fraction of chiral centers in different databases.
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Figure 16. 
Distribution of the fraction of aromatic atoms (Faro-atm) in different databases.

Figure 17. 
Shape index distribution of different databases.

Figure 18. 
Distribution of the molecular flexibility in different databases.

Figure 19. 
Distribution of the molecular complexity in different databases.
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(close to zero) and did not differentiate the data sets (data not shown). The large 
molecular complexity of NPs measured is in agreement with previous studies using 
similar metrics [23, 63, 71].

Fraction of sp3 hybridized atoms (Fsp3)

DBs Min 1qst median mean 3qrt max dev.st

NPs 0.000 0.481 0.636 0.656 0.833 2.000 0.254

CHEMBL 0.167 0.342 0.536 0.621 0.627 1.333 0.374

MMV 0.000 0.167 0.300 0.316 0.402 0.800 0.190

OSM 0.000 0.174 0.255 0.277 0.338 0.893 0.145

DBK 0.250 0.438 0.519 0.463 0.545 0.565 0.175

GNF 0.000 0.227 0.364 0.377 0.500 2.667 0.207

STJUDE 0.000 0.222 0.333 0.353 0.471 1.136 0.178

GSK 0.000 0.250 0.375 0.372 0.500 1.500 0.180

Table 6. 
Distribution of Fsp3 in different databases.

Fraction of chiral centers (CCF)

DBs min 1qst median mean 3qrt max dev.st

NPs 0.000 0.033 0.139 0.161 0.267 0.656 0.145

CHEMBL 0.000 0.000 0.036 0.128 0.141 0.533 0.192

MMV 0.000 0.000 0.000 0.014 0.000 0.111 0.028

OSM 0.000 0.000 0.000 0.008 0.000 0.286 0.035

DBK 0.000 0.000 0.019 0.020 0.040 0.043 0.024

GNF 0.000 0.000 0.000 0.025 0.040 0.556 0.053

STJUDE 0.000 0.000 0.000 0.024 0.045 0.217 0.037

GSK 0.000 0.000 0.000 0.017 0.034 0.500 0.033

Table 7. 
Distribution of FCC in different databases.

Fraction of aromatic atoms (Faro-atm)

DBs min 1qst median mean 3qrt max dev.st

NPs 0.000 0.000 0.324 0.341 0.600 1.133 0.294

CHEMBL 0.000 0.299 0.556 0.509 0.690 1.091 0.321

MMV 0.261 0.682 0.826 0.817 0.956 1.429 0.230

OSM 0.000 0.677 0.733 0.786 0.860 1.500 0.232

DBK 0.538 0.591 0.733 0.720 0.862 0.875 0.171

GNF 0.000 0.522 0.667 0.670 0.818 1.714 0.235

STJUDE 0.000 0.553 0.712 0.708 0.857 1.556 0.216

GSK 0.000 0.571 0.706 0.713 0.857 1.400 0.208

Table 8. 
Distribution of fraction of aromatic atoms.
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3. Activity landscape modeling

The methods of modeling the landscape based on properties of the compounds 
(property landscape modeling (PLM)) is at the interface between experimental 
sciences and computational chemistry, being a frequent strategy to systematically 
describe the structure-property relationships (SPR) of the compound data set 
[72]. PLM have been used in medicinal chemistry in the stages of drug discovery 
with a quantitative, descriptive, and statistical approach to activity cliffs [72–74]. 
Structure-activity relationships (SARs), using the concept of modeling the activity 
landscape (activity landscape modeling ALM), are an increasing common practice 
in the drug discovery process to identify the activity cliffs, guide the optimization of 
compound hits, and to avoid the deleterious effects of the activity cliffs in the stud-
ies of the classic models of QSAR and in the search of structural similarity. In this 

Figure 21. 
Structural similarity compared with activity cliffs in GSK and Novartis (GNF).

Figure 20. 
Structural similarity compared with activity cliffs in NPAs.
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research we analyze, through the web tool Activity Landscape Plotter (ALP) [72], a 
set of data from NPs from Panama with antimalarial activity against four strains of 

Figure 22. 
SAS maps of compounds with antimalarial activity ((a), (b), and (c)) through the web tool activity landscape 
plotter.
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Plasmodium falciparum in the erythrocyte gametocyte stage (Figures 20 and 24).
The generation and comparison of structure-activity pairs, by structure- activity 

similarity maps (SAS map). The SAS map has been used to link up structure and 
biological activity, based on a systematic pairwise comparison of all the compounds 
in a data set analyzed. We compare the values of structure-activity similarity, 
the activity difference, and structure-activity landscape index (SALI) to find the 
pairs of compounds with high molecular similarity and the activity difference that 
are located in the upper right quadrant of the SAS map (activity cliffs) [72–76]. 
Figures 17–19 show SAS map in NP of Panama, NP published, GSK, and GNF. In 
SAS maps, data points are colored by density (Figure 22).

The SAS maps using the molecular fingerprints EFCP-4, MACCS keys, and 
PubChem led to the identification of a total of 26 pairs of compounds with 
 structure-activity similarity ratios >0.50 and structure-activity landscape index 
values varying between 0.3 and 5.0. The web application Activity Landscape Plotter 
[72] is a tool that allows us to perform QSAR. The SAS generated represent 55 natural 
products isolated in Panama with antimalarial activity which were analyzed and 
compared the biological activities against strains of Plasmodium falciparum sensitive, 
resistant and multiresistant. The analysis with the parameters the (SAS / Tanimoto 
index / ECFP-4), a total of twenty-six pairs of compounds showed similarity values 
greater than 70%, sixteen pairs greater than 80% and only two pairs of compounds 
gave a similarity greater than 85%. While with activity cliffs, only three pairs of 
compounds show structural similarity correlated with the values of pIC50 activity 
[72, 77].

SAS maps are color-coded according to their intensity and we observe that most 
pairs of compounds with antimalarial activity show an intense red color. A nalyzed 
are located in the region of little structural similarity, indicating that the natural 
products have high structural diversity and low difference in activity, attributed to 
having similar functional groups in their molecules.

Figure 23. 
DAS map with MACCS key fingerprint.
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DAS maps represent the pairwise activity differences for each possible pair of 
compounds in an evaluated data set, against two biological targets. These maps 
permitted to differentiate if a structural modification can increase or decrease the 
activity under one target or other (Figure 23).

With this web application, we have carried out a QSAR study in a fast, simple, 
and easily interpretable way, obtaining three natural products as leading compu-
tational compounds for their optimization as Plasmodium falciparum blockers, 
which exhibit a gametocidal activity [78] (Figure 24).

4. Conclusion

The chemoinformatic analysis of the 20,364 compounds (1312 NPs and 19,052 
synthetic (MMV, OSM, GNF, St. Jude, GSK, CHEMBL, and DrugBank)) indicates 
that so many natural products and synthetic products (S) share the same chemi-
cal space showing molecules that have similar structural properties. NPs present 
a greater diversity based on fingerprint than the synthetic compounds. Also, 
NPs have a higher proportion of chiral carbons and atoms with sp3 hybridization 
and greater complexity, while synthetic products contain a greater proportion of 
aromatic atoms. Finally, concerning the properties related to cyclicity, relative 
shape, and flexibility, all have very similar values, which could explain the antima-
larial activity of computationally determined compound hits in this work against 
Plasmodium falciparum-sensitive (3D7, D6, poW, D10) and chloroquine-resistant 
strains (W2, Dd).
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Figure 24. 
Antimalarial compounds in NPs from Panama.
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