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Chapter

Plant Comparative 
Transcriptomics Reveals 
Functional Mechanisms and Gene 
Regulatory Networks Involved in 
Anther Development and Male 
Sterility
Xiangyuan Wan and Ziwen Li

Abstract

Gene transcription and transcriptional regulation are crucial biological processes 
in all cellular life. Through the next-generation sequencing (NGS) technology, 
transcriptome data from different tissues and developmental stages can be easily 
obtained, which provides us a powerful tool to reveal the transcriptional landscape 
of investigated tissue(s) at special developmental stage(s). Anther development is an 
important process not only for sexual plant reproduction but also for genic male steril-
ity (GMS) used in agriculture production. Plant comparative transcriptomics has been 
widely used to uncover molecular mechanism of GMS. Here, we focused on researches 
of anther developmental process and plant GMS genes by using comparative tran-
scriptomics method. In detail, the contents include the following: (1) we described the 
commonly used flowchart in comparative transcriptomics; (2) we summarized the 
comparative strategies used to analyze transcriptome data; (3) we presented a case 
study on a maize GMS gene, ZmMs33; (4) we described the methods and results previ-
ously reported on gene co-expression and gene regulatory networks; (5) we presented 
the workflow of a case study on gene regulatory network reconstruction. The further 
development of comparative transcriptomics will provide us more powerful theo-
retical and application tools to investigate molecular mechanism underlying anther 
development and plant male sterility.

Keywords: plant comparative transcriptomics, gene regulatory network,  
anther development, genic male sterility, molecular mechanism

1. Introduction

Gene transcription is an important biological process by which genetic infor-
mation stored within DNA molecules is transmitted to RNA molecules according 
to the “genetic central dogma” in molecular biology [1]. After completion of 
the human genome project, the researchers began to reveal the transcriptional 
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landscape of all genes in a genome to further investigate the functional mecha-
nisms underlying phenotypic variations at a genome-wide transcriptional level. 
Therefore, biological studies on high-throughput omics data run from the genomic 
level into the transcriptomic level. Transcriptome data includes biological informa-
tion of gene transcriptional activities in a certain cell, a tissue, or an individual 
(a population of cells) and even in a pool of samples under a certain developmental 
stage, an environmental condition, or an experimental treatment. Compared 
with other omics data (e.g., data of genome, epigenome, proteome, metabolome, 
or phenome), the primary characteristic of transcriptome data is that it includes 
temporal–spatial bioinformation affected by diverse developmental stages, tissue 
types, and internal/external environment events. Therefore, transcriptome data is 
more complex than genome data.

Transcriptomic studies usually focus on the transcriptional content and gene 
regulations in a genome. Gene expression microarray (GEM) is an early developed 
but still-utilized biotechnology by which the genome-wide transcription infor-
mation can be obtained for genome-sequenced or transcriptional loci available 
species. In 1995, Schena et al. monitored expression levels of 48 genes by GEM in 
Arabidopsis thaliana [2], and then GEM was gradually and widely used for the esti-
mation of gene expression levels. Until 2013, the amount of transcripts monitored 
by one microarray had been reached to more than 285,000 in human transcrip-
tomics studies (the human transcriptome array). GEM is a hybrid-based method, 
while the sequencing-based method has been developed much faster and became 
one of the most commonly used biotechnologies in scientific studies and applica-
tions related to disease diagnosis [3]. Serial analysis of gene expression (SAGE) 
proposed by Velculescu et al. [4] and massively parallel signature sequencing 
(MPSS) reported by Brenner et al. [5] are two earlier developed sequencing-based 
methods to estimate the transcription information at a genome level. Nowadays, 
the majority of transcriptome data are generated by the NGS-based RNA sequenc-
ing (RNA-seq). RNA-seq technology combining with the following developed 
comparative transcriptomics analysis flowchart that is mainly based on digital gene 
expression profile (DGEP) is a commonly used research strategy in biological stud-
ies at molecular and genomic levels.

Anther is an important organ in sexual plant reproduction. Anther development 
is a dynamic process from the identity of the stamen to the production of mature 
pollen grains. During this period, two-thirds of protein-coding genes are tran-
scribed, and more than 6% of them are anther specific (a reanalyzed result based 
on [6]). Thus, the anther transcriptome is specific and complex compared with 
transcriptomes of other plant organs. Plant comparative transcriptomics is an effec-
tive strategy used to investigate the molecular mechanism underlying anther devel-
opmental process. The comparative method based on anther transcriptomes can be 
performed between different genotypes, different developmental stages, different 
types of anther cells, and different biotic or abiotic treatments and even between 
different plant species. Consequently, differentially expressed genes (DEGs) are 
identified from above comparisons. Based on the comparison results, functionally 
important coding genes and noncoding transcripts including long noncoding RNAs 
(lncRNAs), microRNAs (miRNAs), and other small RNAs could be uncovered. 
However, the goal of plant comparative transcriptomics is not only to identify DEGs 
but also to reconstruct gene regulatory relationships of the upstream regulators and 
the downstream regulated targets of the investigated genes. In this review, based on 
anther transcriptomes, we first summarized the research workflow commonly used 
in the experimental design and data analyses in plant transcriptomics studies, and 
then we described several types of comparison strategies in comparative transcrip-
tomics using anther transcriptome data as the analyzed example. In the following 
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section, we generally discussed gene regulatory and co-expression networks used 
to investigate the molecular foundation of developing anther in a network-based 
perspective. Additionally, we described two case studies in our laboratory to explain 
the detailed analysis processes and applications of comparative transcriptomics in 
plant GMS gene studies.

2. Comparative analysis using transcriptome data

In comparative transcriptomics, the commonly used pipeline to identify poten-
tial functional genes and to reveal the gene functions, as well as to investigate the 
regulatory relationships between these genes, includes five aspects. They are data 
preparation, DGEP analysis, DEG analysis, gene set enrichment (GSE) analysis, 
and gene regulatory network (GRN) analysis, respectively (Figure 1). These five 
aspects are closely connected in the whole pipeline, and the corresponding analyses 
mainly depend on data management skills in bioinformatics.

The basic application of comparative transcriptomics is to obtain a transcrip-
tional landscape of the investigated biological sample. It is composed of not only  
the estimated transcription levels of annotated transcribed loci along the genomes 
(the known genomic loci with reported or predicted transcription abilities) but 
also the identification of novel transcribed loci (the stably transcribed loci not 
annotated or identified in previous studies). More importantly, in current biological 
studies, transcribed loci identified by researchers include not only the protein-
coding genes but also lncRNAs and other noncoding RNAs. Both GEM and RNA-seq 
technologies can be used to uncover the genome-wide profiles of transcription lev-
els of annotated genes. However, the identification of novel transcribed loci can be 
only effectively performed by RNA-seq method and the following DGEP analysis. 
This is one reason why RNA-seq is more commonly used in transcriptomics studies. 
Moreover, GEM method depends on hybridization probes that are designed based 
on known whole genome sequence or an appreciable set of sequenced transcripts 

Figure 1. 
A flowchart of comparative transcriptomics analysis.
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(e.g., expressed sequence tags) of the investigated species, which restrict its appli-
cation on some species without whole genome information or sequence resource. 
On the contrary, the sequencing-based method of RNA-seq can be applicable for 
species without sequenced genomes. This is another reason for the popularity of 
RNA-seq. In genome available species, RNA-seq data should be firstly mapped to 
the reference genome (Figure 1).

A gene with its transcription levels significantly different between two groups of 
samples is defined as a DEG under a certain comparison condition (Figure 1). It is 
notable that the concept of DEG specially represents the expression changes of pro-
tein-coding genes at the earlier stages of expression data analysis. However, along 
with the rapid development of molecular biology and the deeper understanding on 
the functional element on the genome, the concept of DEG has been expanded to 
noncoding transcripts, for example, the differentially expressed (DE) miRNA and 
the DE lncRNA. Furthermore, if both coding and noncoding transcripts are consid-
ered in the comparative analysis of transcriptome data, transcriptional alterations 
between control and treated samples should be defined as DE transcribed loci or 
DE loci. Thus, DE loci is a broad concept used to describe transcriptional altera-
tions of genetic element. There are several strategies for comparing transcriptomes 
from different research subjects to identify DE loci (described in Section 3, “Plant 
comparative transcriptomics in anther”).

Identified DEG set or DE loci should be appropriately annotated with functional 
descriptions to determine which biological process or pathway these DEGs are 
involved in. In comparative transcriptomics, this step is a critical bridge linking 
transcriptional changes to gene functions and even gene regulation networks. Two 
commonly utilized methods to annotate DEGs consist of the Gene Ontology (GO) 
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway gene enrich-
ment analyses. Both of them belong to GSE analysis (Figure 1). The GO database 
includes tens of thousands of GO terms, and each GO term contains several genes 
with the same biological function. Each gene has three functional aspects, including 
molecular function (the molecular activities of gene products), cellular component 
(the cellular locations of functional gene products), and biological process (the 
gene products’ molecular functions with biological process). GSE analysis based on 
GO database provides some basic functional descriptions for the investigated DEG 
set. KEGG analysis is a pathway-based enrichment method. The KEGG database has 
accumulated hundreds of metabolism pathways in plants, animals, and other spe-
cies. Thus, KEGG analysis can reveal significant pathways the DEGs participated in. 
GO-based methods can annotate more genes than KEGG-based method, as the GO 
terms are more flexible and include a larger number of genes. On the other hand, 
because most metabolic pathways are conserved across species and more significant 
in biological processes, annotated results obtained from KEGG-based method may 
be more conserved and stable. In comparative transcriptomics, GO- and KEGG-
based analyses are together utilized in gene function studies.

The locations of transcribed loci on the genome, their transcription levels, and 
the changed expression can be identified through comparative transcriptomics 
analysis. The detected DEG set represents a functional gene set related to the func-
tion of investigated gene, the phenotype variation, the stress resistance ability, or 
the development process. Furthermore, gene regulation relationships are the under-
lining molecular mechanism of altered transcriptomes, and novel gene regulatory 
networks could be uncovered by comparative transcriptomics analysis (Figure 1). 
Several types of gene regulatory relationships and the reconstructions of gene 
regulatory networks based on plant comparative transcriptomics are described and 
discussed in Section 5 (“Gene co-expression and regulatory networks reconstructed 
by comparative transcriptomics method”).
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3. Plant comparative transcriptomics in anther

One of the major subjects of modern molecular biology is to uncover the func-
tions of genes in the genome and reveal the molecular mechanism of phenotypic 
variation. Gene transcription levels and their changes in different conditions are 
important information that can reflect the functions and transcriptional regulation 
relationships of investigated genes. How to estimate the transcription levels of genes 
and how to obtain the transcriptional landscape of a genome are two major subjects 
in biological studies on gene expression. DGEP and DEG analyses are powerful tools 
to solve these questions. In DEG analysis, according to the scientific or application 
questions, the comparison strategies between investigated biological samples are 
classified into six types including (1) different genotypes, (2) different developmen-
tal stages, (3) different tissues, (4) different cell types, (5) different treatments, and 
(6) different species (Figure 2). Here, as we mainly focus on comparative transcrip-
tomics analysis on the developmental anther tissues and the interspecies analysis on 
anther transcriptome data being rare, the third and sixth types will not be discussed.

3.1 Different genotypes

There are two types of genotype-based transcriptome data between wild type 
(WT) and mutant lines in GMS studies, which are based on whether the causal 
mutation is known or not (Table 1). For transcriptomes of male sterility (MS) lines 
with known causal mutations, the comparison of transcriptomes between WT and 
MS lines will identify many DEGs associated with the function loss or expression 
change of the investigated mutation locus. If the causal mutation has not been 
identified from the MS line, comparative transcriptomics analyses will provide the 
researchers important results related to the unsettled genetic difference, such as 
how many genes are changed in expression levels in the MS lines and what the func-
tions of these genes are, even though the causal mutation candidates can be inferred 
from these genes if the researchers have primary mapping results.

3.2 Different developmental stages

The phenotypic differences among tissues and organs (e.g., root, leaf, and 
flower in plant) due to their differences of transcriptome landscape are well known. 

Figure 2. 
Comparative transcriptomics strategies.
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Plants MS gene or 

MS line

Method Tissue Data sourcea Reference

Arabidopsis 

thaliana

ROXY1 and 

ROXY2

Microarray Young 

inflorescences

SD [7]

AMS Microarray Anthers GSE18225 [8]

AMS Microarray Anthers SD [9]

AMS Microarray Floral buds SD [10]

EMS1 Microarray Anthers SD [9]

EMS1 Microarray Anthers SD [11]

Ms1 Microarray Young closed 

buds

SD [12]

Ms1 Microarray Floral buds GSE8864 [13]

ICE1 RNA-seq Anthers GSE107260 [14]

DYT1 Microarray Anthers GSE18225 [8]

CDM1 Microarray Young floral 

buds

GSE55799 [15]

TEK Microarray Closed floral 

buds

GSE56497 [16]

bHLH010, 

bHLH08, 

bHLH091

RNA-seq Anthers SRS838170, 

SRS838173

[17]

Oryza sativa PTC1 Microarray Anthers SD [18]

UDT1 Microarray Anthers GSE2619 [19]

OsGAMYB Microarray Anthers SD [20]

TDR Microarray Spikelets SD [21]

MADS3 Microarray Anthers SD [22]

Zea mays Ms23 RNA-seq Anthers GSE90849 [23]

Ms32 Microarray Anthers GSE90968 [23]

MAC1 Microarray Anthers SD [24]

Triticum 

aestivum

TaMs1 RNA-seq Anthers SRP113349 [25]

TaMs2 RNA-seq Anthers SRP092366 [26]

Solanum 

lycopersicum

ms1035 RNA-seq Floral buds SD [27]

MS line 7B-1 RNA-seq Anthers GSE85859 [28]

Brassica 

napus

MS line 

WSLA

RNA-seq Young flower 

buds

SRR2192464, 

SRR2192489

[29]

MS line SP2S RNA-seq Young flower 

buds

GSE69638 [30]

MS line TE5A RNA-seq Young flower 

buds

SRP068170 [31]

Citrullus 

lanatus

MS line 

DAH3615-MS

RNA-seq Floral buds and 

flowers

GSE69073 [32]

a“SD” indicates the raw data is unavailable, while the up- and downregulated genes are listed in the supplemental 
data (SD) in references cited.

Table 1. 
Published studies on anther transcriptome data between WT and MS lines.
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Furthermore, it is a developmental process for most types of plant organs from 
the organ identity (e.g., meristematic cells) to the final mature organ. Thus, how 
to reveal the dynamic changes of gene transcription levels and how to explain the 
morphological alterations regulated by gene expression changes are important tasks 
in plant comparative transcriptomics studies.

Meiosis is an important step in gametophyte generation process and sexual 
plant reproduction. Morphologic changes during cell meiosis process have been 
well described by cellular level investigations, while the molecular level alterations 
and their corresponding gene regulatory networks are not well understood. Plant 
transcriptomes are a powerful dataset to estimate the gene expression changes and 
infer the regulatory roles of key genes. Based on GEM technology, Ma et al. inves-
tigated maize anther transcriptomes during seven developmental stages and found 
that transcriptomes during meiosis stages exhibited the lowest complexity [33]. 
Hollender et al. surveyed the gene transcription profiles of anther of woodland 
strawberry (Fragaria vesca) from developmental stages 7–12 and identified numer-
ous F-Box genes induced in transcription levels at meiosis stage [34]. Besides, 
tapetum is the inner cell layer of anther with important functions in anther develop-
ment and gametocyte maturation. The generation, development, and degradation 
of tapetum are fine regulated during the anther development, while the regulatory 
framework and the details are far from complete. Yue et al. identified 243 DEG 
and 108 stage-specific genes during four anther developmental stages in Hamelia 
patens [35]. Chen et al. investigated the expression of genes involving in tapetum 
development of male floral bud during eight developmental stages in Populus tomen-
tosa [36]. Thus, anther transcriptome data during different developmental stages 
provide valuable data sources for anther development studies. By the combination 
of comparative transcriptomics and bioinformatics analyses, more key functional 
genes and the underlying regulatory mechanisms for anther development will be 
further revealed.

3.3 Different types of anther cells

The cytological structure of anther consists of four cell layers, including the 
epidermis, endothecium, middle layer, and tapetum, and the archesporial cells 
are directly surrounded by the tapetum. Thus, the transcriptome data of a whole 
anther tissue is a mixed gene expression data from diverse cell types with different 
functions in the anther development process. It is necessary to obtain transcrip-
tional dynamics from different cell layers separately to investigate anther develop-
ment and the underlying molecular mechanism at a cell type-specific level. Several 
studies have identified cell layer-specifically expressed genes (e.g., tapetum cells 
or microgametes). Ma et al. identified 104 MS-related and non-pollen expressed 
genes most specifically expressed in tapetum by comparative transcriptomics 
analysis on four diverse MS lines in Brassica oleracea [37]. The other way to obtain 
cell layer-specific transcriptome in anther is firstly separating the investigated cell 
layer by laser capture microdissection (LCM) technology and then performing 
RNA-seq or GEM experiment on the separated samples. This strategy has been suc-
cessfully used in rice, maize, and woodland strawberry to identify the tapetum- or 
microgamete-specifically expressed genes and their expression dynamics [34, 38, 
39]. A recent published research has investigated maize male meiosis using single-
cell RNA sequencing (scRNA-seq) technology on pre-meiotic and meiotic cells 
from maize anthers, which greatly promoted studies on plant anther scRNA-seq 
[40]. The comparative studies on transcriptomic dynamics between different types 
of cells facilitate the deeper understanding of functions of specific cell layers on 
anther development.
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3.4 Different treatments

At the reproductive stage, plant is more sensitive to external environment 
conditions. The abiotic stresses, such as high temperature, drought, and cold 
and freezing stresses, will critically affect the developmental process of anther 
and pollen in flowing plants. Though there have been numerous studies on stress 
resistance and response in plant, the regulatory pathways of stress response and 
their cross talk at molecular level should be further investigated for anther develop-
ment. Additionally, more effective stress-resistant genes should be identified for the 
purpose of crop improvement. Plant comparative transcriptomics between normal 
and stress-treated plants provide a wide insight into the stress response mechanisms 
of plant during sexual reproductive stage. Zhang et al. investigated the genome-
wide transcriptional changes of rice panicle under heat treatment (40°C) and found 
thousands of DEGs participating in transcriptional regulation, transport, cellular 
homeostasis, and stress response [41]. Studies on photosensitive or thermosensitive 
GMS lines can also reveal a lot of genes responding to environmental changes.

4.  A case study: revealing the molecular functions of a MS gene, 
ZmMs33, by comparative transcriptomics

The discoveries of genes that play key roles in the development of maize anther 
provide important genetic resources for the utilization of heterosis in maize. 
Analysis of functional mechanism of GMS genes can effectively promote researches 
on anther development biology and deepen our understanding of molecular 
mechanism controlling sexual plant reproduction [42]. There are several published 
case studies containing comparative transcriptomics analysis on maize GMS genes 
in our laboratory, including ZmMs7 [43], ZmMs20 [44], ZmMs30 [45], and ZmMs33 
[46, 47]. We used comparative transcriptomics analysis based on developmental 
anthers of ZmMs33 wild type and ms33–6038 mutant to analyze the transcription 
changes corresponding to male sterility phenotype and to further investigate the 
underlying molecular mechanisms of GMS regulated by ZmMs33 gene.

This ms33–6038 mutant is complete male sterility and displays small and pale-
yellow anthers (Figure 3A). Transmission electron microscope (TEM) observation 
and dynamic scanning electron microscopy (SEM) analysis were performed to 
analyze the phenotypic alteration of anther wall layers, microspores, Ubisch bodies, 
and exine between wild type and ms33–6038 mutant during anther developmental 
stages (Figure 3A–C).

Maize Zm00001d007714 was identified as ZmMs33 via a map-based cloning 
approach (Figure 3D). ZmMs33 encodes an esterase that belongs to gene family of 
glycerol-3-phosphate acyltransferase (GPAT) in maize. To further confirm gene 
function of Zm00001d007714, a CRISPR/Cas9 system was used to generate targeted 
knockout lines. Three types of T0-generation maize plants homozygous for null 
alleles of Zm00001d007714 were observed to be complete male sterility (Figure 3E), 
suggesting that function loss of Zm00001d007714 is the causal mutation for male 
sterile phenotype of the ms33 mutant.

Subsequently, RNA-seq was performed using anther tissues during develop-
mental stages 5–9 to obtain a comprehensive transcriptional profile of WT and 
ms33-6038. Three biological samples were collected at each developmental stage for 
sequencing. After data preparation and transcription level estimation, we com-
pared similarities of transcriptional profiles of protein-coding genes by principal 
component analysis (PCA) (Figure 3F) and found good repeatability among three 
biological repeats.
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Finally, we identified DEGs between WT and mutant and between adjacent 
developmental stages, separately. We found that the amount of DEGs between 
WT and mutant at stages 5–7 was significantly smaller in magnitude than that at 

Figure 3. 
Reveal ZmMs33 gene functions for anther development by comparative transcriptomics analysis. (A) Phenotype 
of whole plants (A1), anthers (A2), pollen grains (A3), and outer surface of anther wall (A4) of WT and 
ms33–6038 mutant. (B) TEM analysis of anther wall layers, microspores, Ubisch bodies, and exine in WT 
and ms33–6038 mutant. (C) SEM analysis of microspores and pollen grains in WT and ms33–6038 mutant. 
(D) Map-based cloning of ZmMs33 gene. (E) Phenotypes of tassels, anthers, and pollen grains in three ms33 
knockout lines generated by a CRISPR/Cas9 system. (F) PCA analysis of RNA-seq data from WT and 
ms33–6038 mutant. (G) Venn plot of DEGs at each developmental stage. Figure 3A–C was cited from [46]. 
Figure 3D and E was cited from [47].
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stages 8a–9 (Figure 3G), indicating that ms33 mutant transcriptomes are signifi-
cantly divergent from WT starting from stage 8a. The transcriptome landscapes 
of WT were similar to those of ms33 mutant at stages 5–7. Besides, DEG amounts 
were various between adjacent developmental stages. It is worth noting that the 
DEG amount between WT and mutant exceeded that between adjacent stages 
from stage 8a–9. This result implied that the transcriptomes were significantly 
changed at the later three stages. Therefore, we compared the transcriptomes 
between genotypes at the former three and the later three stages, separately. In 
contrast to a limited number of DEGs (only two genes) shared by the former 
three stages, there were thousands of shared DEGs at the later three stages. GSE 
analysis based on KEGG database suggested that the upregulated gene set was 
firstly enriched in the function of biosynthesis of secondary metabolites, while 
the downregulated genes were significantly related to the photosynthesis process. 
This pathway enrichment analysis partly represents the alterations in metabo-
lisms and physiological activities closely associated with the transcriptional 
changes caused by function defect of ms33.

5.  Gene co-expression and regulatory networks reconstructed by 
comparative transcriptomics method

Though DEGs are mainly identified by pairwise comparisons between tran-
scriptomes of tissues, stages, or treatment conditions and can reflect most of the 
transcriptional changes between two sets of samples, these transcriptional altera-
tions are not sufficient to explain the detailed molecular mechanism underlying 
tissue-specific development processes and stress-resistant pathways. Moreover, 
the molecular functions of genes act under GRNs. All the biological processes of 
growth, development, stress response, and reproduction are regulated by GRNs. 
The prediction of gene regulatory relationships and the reconstruction of the GRNs 
by using the transcriptome data are also the major aims in transcriptomics studies, 
except for the DGEP and DEG analyses.

5.1 Gene co-expression analysis

Function-related genes tend to co-express in a cell, either to form a complex or 
to involve in the same biological pathway. Thus, the similar pattern of gene expres-
sions can be used as an indicator to predict gene functions. Gene co-expression 
(GCE) analysis is a powerful tool to discover important functional genes in 
biological processes including anther development. A relatively early study identi-
fied two functional GMS genes, POLYKETIDE SYNTHASE A (PKSA) and PKSB, 
through detecting co-expressed genes with ACOS5, a GMS gene belonging to fatty 
acyl-CoA synthetase gene family, based on microarray data in A. thaliana [48]. 
Similarly, ABORTED MICROSPORES (AMS) gene was reported participating in 
the pollen wall formation in rice by the analyses of 98 co-expressed genes with 
AMS in flower development [49]. GCE analysis can be also used to investigate 
the biological functions and the regulatory targets of a gene. This genome-wide 
analysis on GCE networks has been performed based on microarray data from A. 
thaliana anther tissues, and 254 complete GCE groups containing 10,513 anther-
transcribed genes were revealed [50]. Another microarray-based GCE network 
was reconstructed in A. thaliana anther by using 10,797 genes expressed in anther/
flora, and transcriptional landscape of GMS mutant was included in the stable 
examination of this newly constructed network [51]. In rice, microarrays from WT 
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anther tissue across stages 2–14 and nine GMS lines were integrated to reconstruct 
a big GCE network containing more than 9000 genes and 0.4 million pairs of co-
expression relationships [52].

RNA-seq data-based GCE network analysis was performed in anther when 
high-throughput sequencing technology was developed. In woodland strawberry, 
stages 1–12 floral samples dissected by LCM or hand, including stages 6–12 anther 
tissues, were sequenced by RNA-seq. Gene co-expression network analysis was used 
to reconstruct GCE networks in strawberry’s flower development, and 23 modules 
were discovered from the GCE networks including 4584 pollen-specific genes [34]. 
These genome-wide GCE networks are useful for characterization of genes associ-
ated with anther development and floral reproduction.

5.2 TF-encoding gene regulatory network

Genes with their products forming one protein complex, genes encoding 
transcription factor (TF) and TF target genes, and genes functioning in the same 
metabolic pathway or stress-resistant process often tend to be co-expressed in a cell. 
Therefore, the expression-associated genes in GCE network may be not directly 
functionally linked. A more accurate and robust gene regulatory network is needed 
for both the biological function and network researches at molecular and genome 
levels. One way to improve the gene regulatory network is to introduce gene regula-
tory types into the network. Several TF gene regulatory networks (TF-GRN), also 
called as transcriptional regulatory network (TRN), were reconstructed based 
on expression patterns of TF-encoding genes and TF target genes from transcrip-
tome data. One TF-GRN comprised 19 TFs and their 101 target genes involving in 
A. thaliana pollen development [53]. Another GRN of early anther development 
was constructed by interactively analyzing transcriptome data from three GMS 
lines of TF-encoding gene knockout mutants [9]. In the maize genome, there are 
2298 TF-encoding genes identified which belonged to 56 diverse families [54]. 
A total of 3078 TF-encoding genes belonging to 59 families are predicted in silico 
analysis in rice genome [55]. These TF databases, combining with increased amount 
of transcriptome data from mutants of TF-encoding genes and other omics data 
(e.g., Chip-seq, DAP-seq), provide abundant data for the reconstruction of TF-GRN 
with increased credibility, applicability, and completeness.

5.3 miRNA target gene regulatory network

Both transcriptional and posttranscriptional regulations are crucial in con-
trolling the normal development and stress-resistant process in cellular life. The 
miRNA-mediated regulation model on target genes is a well-studied posttranscrip-
tional gene regulation pathway that plays important roles in floral identification 
and the following development of flower organs [56–58] as well as male fertility 
[59, 60]. Beyond numerous case studies on functional miRNAs in anther develop-
ment and GMS genes [61–64], the expression profile of miRNAs and the regulatory 
networks were investigated to elevate our understanding on the transcriptional 
regulatory mechanism of miRNAs. GRNs between miRNA and their target genes 
have been constructed via flower/anther transcriptomics in the model plant species, 
A.  thaliana, and some other plants [65–68]. Furthermore, comparative transcrip-
tomics analysis on small miRNAs has been commonly used as a research method to 
reveal the transcriptional alterations between fertility and sterility lines in economic 
and food plant species, such as maize [45], tomato [69], cotton [70, 71], wheat [72, 
73], pine [74], lycium [75], watermelon [32], and Brassica campestris [76].
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5.4 ceRNA-miRNA regulatory network

It is well known that miRNAs are crucial regulators on gene expressions that 
control key biological functions including anther development, since miRNA was 
firstly found in nematodes in 1993 [77]. It is noteworthy that a novel type of gene 
regulatory model, the competing endogenous RNA (ceRNA) hypothesis, was 
recently proposed [78]. According to the ceRNA hypothesis, some endogenous 
transcripts have abilities to adsorb miRNA molecules; subsequently, the expression 
levels of miRNA target genes can be derepressed [78, 79]. A typical ceRNA in plant, 
a long noncoding RNA, IPSI, was found in A. thaliana. It could completely sponge 
miRNA ath-miR399 and indirectly increase the transcription levels of an important 
gene involved in phosphate homeostasis [80]. The following studies revealed that 
transcripts of protein-coding genes, pseudogene, transposable elements, simple 
sequence repeat, and circular RNAs have molecular functions as ceRNAs [79, 81, 
82], indicating that the ceRNA-miRNA relationship is an essential gene regulatory 
mechanism in the growth and development of plants and animals. Consequently, it 
is necessary to introduce ceRNA regulators into GRN construction. Here, we present 
our recent study on reconstructing ceRNA regulatory network mainly based on 
RNA-seq and small RNA-seq transcriptomes from developmental maize anther.

6.  A case study: reconstructing ceRNA-miRNA target gene regulatory 
networks using transcriptome data of maize anther

Here we summarized the research progress of one recently completed research 
related to the ceRNA-mediated GRN in our laboratory. Generally speaking, this is 
the first study introducing ceRNA regulation into miRNA target gene regulatory 
pathway for deeply dissecting the mechanism of anther development and sexual 
plant reproduction at a network level. This provides a fresh example for GRN 
research by plant comparative transcriptomics and has dual significance in both 
theoretical and practical senses. It may also provide new thoughts and strategies for 
further transcriptome-based GRN studies.

It is well known that gene expressions are controlled by the GRN in cellular life. 
Newly found regulatory patterns (e.g., miRNA pathway and epigenetic modifica-
tion) have enhanced our understanding on the GRN. Recently, “ceRNA hypothesis” 
was proposed as a novel type of gene regulatory relationship and was found to 
participate in different development and stress response processes of organisms 
by a number of case studies. However, the network level study on ceRNA regula-
tory functions is still rare, which limited our deep understanding on the GRN. In 
addition, studies on the GRN of sexual plant reproduction and male sterility are 
crucial for both fundamental biological significance and applications in plant 
hybrid breeding and seed production. We investigated ceRNA-miRNA target gene 
regulatory network in maize anther developmental process by plant comparative 
transcriptomics method. Six steps were performed from raw sequencing data prep-
aration to the finally constructed GRN (Figure 4). Firstly, we performed RNA- and 
small RNA-seq using anther tissues at three developmental stages from two maize 
lines to obtain a relative broad transcriptional landscape in anther development and 
transcribed loci that are stably expressed in maize species. Secondly, we identified 
stably transcribed loci based on the maize reference genome and estimated their 
transcription levels. In this step, we only used shared transcription loci identified 
from RNA-seq data between two maize lines (Figure 4A). Notably, these tran-
scribed loci were divided into five groups such as protein-coding genes, lncRNAs, 
transposable elements, and unassigned loci. Thirdly, we identified known miRNAs 
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and predicted potential novel miRNAs that may be involved in maize anther devel-
opment. Sequenced small RNA data were obtained from the same samples that were 
used in RNA-seq. A matched dataset (e.g., matched RNA and small RNA sequenced 
dataset here) is important in experimental design and more powerful to reveal the 
investigated biological questions. Though the analysis workflow of small RNA-seq 
data is similar to that of RNA-seq data in general (Figure 1), there are some dif-
ferences between them. In our analysis, we reanalyzed two sets of published small 
RNA data to compare with their results from our own sequenced data for credible 
known and potential novel miRNAs involved in maize anther development [23, 83] 
(Figure 4B). This is an important check method to confirm the stability of research 

Figure 4. 
A flowchart of reconstructing the ceRNA-miRNA target gene regulatory network in developmental maize anther. 
(A) Identification and classification of stably transcribed loci in maize anther. (B) Identification of known miRNA 
in maize anther. (C) Prediction of ceRNA-miRNA and miRNA target gene interaction pairs. (D) Reconstruction 
of ceRNA-miRNA target gene regulatory networks. (E) GSE analysis of target genes in the networks.



Transcriptome Analysis

14

results and conclusions. Fourthly, we predicted ceRNA-miRNA interaction pairs 
and miRNA target gene regulatory pairs by computational approach (Figure 4C). 
Bioinformatics analysis in this step is mainly based on genome sequence but not the 
transcriptomes. Fifthly, we reconstructed ceRNA-miRNA target gene regulatory 
networks by predicted interaction pairs and transcription correlation patterns from 
transcriptomics data (Figure 4D). It is well known that miRNAs could repress the 
transcription levels of their target genes. Additionally, ceRNA was demonstrated 
to negatively regulate the transcription levels of matched miRNAs. The negatively 
associated gene pairs in transcription levels may be more credible in mutual inter-
actions. By integrating ceRNA-miRNA and miRNA target gene interactions, we 
reconstructed ceRNA-miRNA target gene regulatory networks in maize anther. 
Finally, we generally investigated the functional significance of genes in the regula-
tory network by GO enrichment analysis. In these networks, we found a number of 
well-studied genes and miRNA target gene pairs involved in maize anther develop-
ment and male sterility, suggesting that the ceRNA-miRNA target gene regulatory 
networks contribute to anther development in maize. Besides, GO analysis of target 
genes in the network revealed that they are functionally enriched in flower develop-
ment process (Figure 4E) [84].

7. Conclusions

Here, we summarized major points in comparative transcriptomics analysis from 
the commonly utilized workflow to the closely related research cases and from the 
single gene-based function analysis to GRN-based gene function investigation. In 
GMS gene studies, the research experiments using comparative transcriptomics 
method to investigate key functional genes and the genome-wide GRNs in develop-
mental anther will facilitate our systematical understanding on the biological pro-
cesses and molecular regulatory networks for anther development and sexual plant 
reproduction. More importantly, case studies illustrated here have a general mean-
ing on technologies and methodologies for functional researches of other biological 
pathways and processes. With the fast advancement of sequencing technology, plant 
comparative transcriptomics has achieved considerable development. However, our 
understanding on the transcriptional dynamics and gene regulatory relationships 
of biological processes are far from being completed. Consequently, more efforts 
are needed for the further improvement of comparative transcriptomics in plant 
biological studies.
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