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Chapter

Discrete-Time Nonlinear Attitude
Tracking Control of Spacecraft
Yuichi Ikeda

Abstract

Recent space programs require agile and large-angle attitude maneuvers for
applications in various fields such as observational astronomy. To achieve agility
and large-angle attitude maneuvers, it will be required to design an attitude control
system that takes into account nonlinear motion because agile and large-angle
rotational motion of a spacecraft in such missions represents a nonlinear system.
Considerable research has been done about the nonlinear attitude tracking control
of spacecraft, and these methods involve a continuous-time control framework.
However, since a computer, which is a digital device, is employed as a spacecraft
controller, the control method should have discrete-time control or sampled-data
control framework. This chapter considers discrete-time nonlinear attitude tracking
control problem of spacecraft. To this end, a Euler approximation system with
respect to tracking error is first derived. Then, we design a discrete-time nonlinear
attitude tracking controller so that the closed-loop system consisting of the Euler
approximation system becomes input-to-state stable (ISS). Furthermore, the exact
discrete-time system with a derived controller is indicated semiglobal practical
asymptotic (SPA) stable. Finally, the effectiveness of proposed control method is
verified by numerical simulations.

Keywords: spacecraft, attitude tracking control, discrete-time nonlinear control

1. Introduction

Recent space programs require agile and large-angle attitude maneuvers for
applications in various fields such as observational astronomy [1–3]. To achieve
agility and large-angle attitude maneuvers, it will be required to design an attitude
control system that takes into account nonlinear motion because agile and large-
angle rotational motion of a spacecraft in such missions represents a nonlinear
system.

Considerable research has been done about the nonlinear attitude tracking con-
trol of spacecraft [4–12], and these methods involve a continuous-time control
framework. However, since a computer, which is a digital device, is employed as a
spacecraft controller, the control method should have discrete-time control or
sampled-data control framework.

Although a sampled-data control method for nonlinear system did not advance
because it is difficult to discretize a nonlinear system, a control method based on the
Euler approximate model has been proposed in recent years [13, 14] and is applied
to ship control [15]. Although our research group has proposed a sampled-data
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control method using backstepping [16] and a discrete-time control method based
on sliding mode control [17] for spacecraft control problem, these methods are
disadvantageous because control input amplitude depends on the sampling period T
as the control law is of the form u ¼ a xð Þ þ b xð Þ=Tð Þ.

For these facts, about the spacecraft attitude control problem that requires agile
and large-angle attitude maneuvers, this chapter proposed a discrete-time nonlinear
attitude tracking control in which the control input amplitude is independent of the
sampling period T. The effectiveness of proposed control method is verified by
numerical simulations.

The following notations are used throughout the chapter. Let R and N denote the
real and the integer numbers. Rn and Rn�m are the sets of real vectors and matrices.
For real vector a∈Rn, aT is the vector transpose, ak k denotes the Euclidean norm,

and a� ∈R3�3 is the skew symmetric matrix

a� ¼
0 �a3 a2

a3 0 �a1

�a2 a1 0

2

6

4

3

7

5

derived from vector a∈R3. For real symmetric matrix A, A.0 means the
positive definite matrix. The identity matrix of size 3� 3 is denoted by I3. λ

max
A ∈R

and λmin
A ∈R are the maximal and the minimal eigenvalues of a matrix A,

respectively.

2. Relative equation of motion and discrete-time model for spacecraft

In this chapter, as the kinematics represents the attitude of the spacecraft with
respect to the inertia frame if g, the modified Rodrigues parameters (MRPs) [5] are
used. The rotational motion equations of the spacecraft’s body-fixed frame bf g are
given by the following equations:

_σ tð Þ ¼ G σ tð Þð Þω tð Þ, (1)

G σ tð Þð Þ ¼ 1

2

1� σ tð Þk k2
2

I3 þ σ tð Þσ tð ÞT þ σ tð Þ�
( )

,

_ω tð Þ ¼ J�1 �ω tð Þ�Jω tð Þ þ u tð Þ þ w tð Þf g, (2)

where Eq. (1) is the kinematics that represents the attitude of bf gwith respect to

the if g, Eq. (2) is the rotation dynamics, σ tð Þ∈R3 [�] is the MRPs, ω tð Þ∈R3 [rad/s]

is the angular velocity, u tð Þ∈R3 [Nm] is the control torque (input), w tð Þ∈R3 [Nm]

is the disturbance input, and J ∈R3�3 [kg m2] is the moment of inertia.
We consider a control problem in which a spacecraft tracks a desired attitude

(MRPs) σd tð Þ∈R3 and angular velocity ωd tð Þ∈R3 in fixed frame df g. The MRPs of

the relative attitude σe tð Þ∈R3 and the relative angular velocity ωe tð Þ∈R3 in the
frame bf g are given by

σe tð Þ ¼
Ne tð Þ

1þ σ tð Þk k2 σd tð Þk k2 þ 2σd tð ÞTσ tð Þ
, (3)

Ne tð Þ ¼ 1� σd tð Þk k2
� �

σ tð Þ � 1� σ tð Þk k2
� �

σd tð Þ þ 2σ tð Þ�σd tð Þ,

2
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ωe tð Þ ¼ ω tð Þ � C tð Þωd tð Þ, (4)

where C tð Þ∈R3�3 is the direction cosine matrix from bf g to df g that expresses
the following Eq. [7]:

C tð Þ ¼ I3 þ
8 σe tð Þ�ð Þ2 � 4 1� σe tð Þk k2

� �

σe tð Þ�

1þ σe tð Þk k2
� �2 : (5)

Substituting Eqs. (3) and (4) into Eqs. (1) and (2) using the identity
_C tð Þ ¼ �ωe tð Þ�C tð Þ yields the following relative motion equations:

_σ e tð Þ ¼ G σe tð Þð Þωe tð Þ, (6)

_ωe tð Þ ¼ J�1½� ωe tð Þ þ C tð Þωd tð Þf g�J ωe tð Þ þ C tð Þωd tð Þf g
�J C tð Þ _ωd tð Þ � ωe tð Þ�C tð Þωd tð Þf g þ u tð Þ þ w tð Þ�

(7)

Hereafter, we assume that the variables of spacecraft σ tð Þ and ω tð Þ are directly
measurable and J is known. In addition, regarding the desired states σd tð Þ, ωd tð Þ,
_ωd tð Þ, and the disturbance w tð Þ, the following assumption is made.

Assumption 1: the desired states σd tð Þ, ωd tð Þ, and _ωd tð Þ are uniformly continu-
ous and bounded ∀t∈ 0;∞½ Þ. The disturbance w tð Þ is uniformly bounded ∀t∈ 0;∞½ Þ.

From Eqs. (A4) and (A5) in Appendix, the exact discrete-time model of relative
motion equations is obtained as

σe,kþ1 ¼ σe,k þ
ð kþ1ð ÞT

kT
G σe sð Þð Þωe sð Þ ds, (8)

ωe,kþ1 ¼ωe,k þ
ð kþ1ð ÞT

kT
� ωe sð Þ þ C sð Þωd sð Þf g�J ωe sð Þ þ C sð Þωd sð Þf g½

�J C sð Þ _ωd sð Þ � ωe sð Þ�C sð Þωd sð Þf g þ uk þ wk�ds
(9)

and the Euler approximate model of relative motion equations are obtained as

σe,kþ1 ¼ σe,k þ TG σe,kð Þωe,k, (10)

ωe,kþ1 ¼ ωe,k � TJ�1 � ωe,k þ Ckωd,kf g�J ωe,k þ Ckωd,kf g½
�J Ck _ωd,k � ωe,k

�Ckωd,kf g þ uk þwk�:
(11)

3. Discrete-time nonlinear attitude tracking control

We derive a controller based on the backstepping approach that makes the
closed-loop system consisting of the Euler approximate modes (10) and (11)
become input-to-state stable (ISS), i.e., the state variable of closed-loop system

xk ¼ σTe,kω
T
e,k

h iT
satisfies the following equation:

xkþ1k k≤ ρ x0k k; kð Þ þ γ wkk kð Þ, ∀xk ∈R3, ∀wk ∈R3,

where ρ �ð Þ is the class KL function and γ �ð Þ is the class K function. To this end,
assume that ωe,k is the virtual input to subsystem (10), and derive the stabilizing
function αk that σe,k is asymptotic convergence to zero. Then, derive the control

3

Discrete-Time Nonlinear Attitude Tracking Control of Spacecraft
DOI: http://dx.doi.org/10.5772/intechopen.87191



input uk that closed-loop system becomes ISS. Here, regarding the variable σe,k, the
following assumption is made.

Assumption 2: σe,k lies in the region that satisfies the following equation:

0≤ σe,kk k≤ 1, ∀k:

Remark 1: from the relational expression

σe,k ¼
εe,k

1þ ηe,k
,

where εe,k ∈R3 and ηe,k ∈R are the quaternion εTe,kηe,k

h iT
�

�

�

�

�

�

�

�

¼
�

1, εe,kk k≤ 1, ηe,k
�

�

�

�≤ 1,∀kÞ. Assumption 2 is equivalent to ηe,k ∈ 0; 1½ �.
In addition, Lemmas when using the derivation of the control law are shown

below.

Lemma 1: for all σ ∈R3, the following equations hold [5]:

σTG σð Þ ¼ bσT, G σð ÞTG σð Þ ¼ b2I3, b ¼ 1þ σk k2
4

.0

 !

:

Lemma 2: when the quadratic equation

ax2 þ bxþ c ¼ 0 a; b; c∈Rð Þ

has two distinct real roots x ¼ α, β α, βð Þ, if a.0, then the solution of the
quadratic inequality

ax2 þ bxþ c,0

is α, x, β.

3.1 Derivation of virtual input αk

Assume that ωe,k is the virtual input to subsystem (10), and define the
stabilizing function such that

ωe,k ¼ αk ¼ �f 1σe,k, (12)

where f 1 ∈R is the feedback gain. The candidate Lyapunov function for (10) is
defined as

V1 kð Þ ¼ σe,kk k2: (13)

From Lemma 1, the difference of Eq. (13) along the trajectories of the closed-
loop system is given by

ΔV1 kð Þ ¼ V1 kþ 1ð Þ � V1 kð Þ ¼ Tf 1bk
� �2 � 2Tf 1bk
n o

σe,kk k2: (14)

From Lemma 2, ΔV1 kð Þ becomes negative, i.e., the range of f 1 that holds the
following equation

4
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Tf 1bk
� �2 � 2Tf 1bk,0 (15)

is obtained as

0, f 1,
2

Tbk
: (16)

In addition, since 2≤ 1=bkð Þ≤4 under Assumption 2, the range of f 1 that holds
Eq. (15) is obtained as

0, f 1,
4

T
: (17)

Therefore, if f 1 satisfies Eq. (17) and ωe,k ! αk k ! ∞ð Þ, then σe,k ! 0.

3.2 Derivation of control input uk

The error variable between the state ωe,k and αk is defined as

zk ≔ωe,k � αk: (18)

The control input uk that makes the closed-loop system becomes ISS is derived.
From Eq. (18), subsystem (10) becomes

σe,kþ1 ¼ σe,k þ TG σe,kð Þ zk þ αkð Þ: (19)

From Eqs. (18) and (19) and the following equation

αk � αkþ1 ¼ Tf 1 G σe,kð Þzk � f 1bkσe,k
	 


,

the discrete-time equation with respect to zk is

zkþ1 ¼ zk þ Tf 1 G σe,kð Þzk � f 1bkσe,k
	 


þ  TJ�1 � zk þ α,k þ Ckωd,kf g � J zk þ α,k þ Ckωd,kf g½
� J Ck _ωd,k � zk þ α,kð Þ � Ckωd,kf g þ uk þwk�:

(20)

Now, by setting uk to

uk ¼  zk þ α,k þ Ckωd,kf g � J zk þ α,k þ Ckωd,kf g

þ  J Ck _ωd,k � zk þ α,kð Þ � Ckωd,kf g

�  f 1J G σe,kð Þzk � f 1bkσe,k
	 


� f 2Jzk,

Eq. (20) becomes

zkþ1 ¼ 1� Tf 2
� �

zk þ TJ�1wk, (21)

where f 2 ∈R is the feedback gain. The candidate Lyapunov function for
Eqs. (19) and (21) is defined as

V2 kð Þ ¼ V1 kð Þ þ zkk k2 ¼ Xkk k2, Xk ¼ σTe,kz
T
k

� �T
: (22)

5
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As Eq. (14) is given by

ΔV1 kð Þ ¼ Tbkð Þ2 zkk k2 þ Tf 1bk
� �2 � 2Tf 1bk
n o

σe,kk k2 þ 2Tbk 1� Tf 1bk
� �

zTk σ
T
e,k

from Eq. (18), by using completing square, the difference of Eq. (22) along the
trajectories of the closed-loop system is given by

ΔV2 kð Þ ¼  T2f 22 � 2Tf 2 þ T2b2k
� �

zkk k2 þ Tf 1bk
� �2 � 2Tf 1bk
n o

σe,kk k2

þ 2Tbk 1� Tf 1bk
� �

zTk σ
T
e,k þ T2wT

k J
�2wk þ 2T 1� Tf 2

� �

wT
k J

�1zk

≤ 2T2f 22 � 4Tf 2 þ T2b2k þ 1
� �

zkk k2 þ Tf 1bk
� �2 � 2Tf 1bk
n o

σe,kk k2

þ 2Tbk 1� Tf 1bk
� �

zTk σ
T
e,k þ 2

T

λJ

� 
2

wkk k2

¼ XT
kQkXk þ 2

T

λJ

� 
2

wkk k2,

(23)

where

λJ ¼ Jk k, Qk ¼
Q11,k Q12,k

QT
12,k Q22,k

" #

, Q11,k ¼ Tf 1bk
� �2 � 2Tf 1bk
n o

I3,

Q12,k ¼ Tbk 1� Tf 1bk
� �

I3, Q22,k ¼ 2T2f 22 � 4Tf 2 þ T2b2k þ 1
� �

I3:

In Eq. (23), if Qk,0, then

ΔV2 kð Þ≤ � λmin
Qk

�

�

�

�

�

� Xkk k2 þ 2
T

λJ

� 
2

wkk k2,

where λmin
Qk
,0∈R is the minimum eigenvalue of Qk and the condition of ISS

holds [18]. Hereafter, conditions of f 1 and f 2 which the matrix Qk holds Qk,0 are
derived under Assumption 2.

From Schur complement, condition Qk,0 is equivalent to the following
equations:

Tf 1bk
� �2 � 2Tf 1bk,0, (24)

2T2f 22 � 4Tf 2 þ ck,0 ck ¼
Tbkf

2
1 � 2f 1 � Tbk

Tbkf
2
1 � 2f 1

 !

: (25)

Condition (24) is the same as Eq. (15), and assume that Eq. (24) holds. From
Lemma 2, the range of f 2 that holds for Eq. (25) is obtained as

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 2� ckð Þ
p

2T
, f 2,

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 2� ckð Þ
p

2T
, (26)

and the following Eq.

2� ck.0 ) Tbkf
2
1 � 2f 1 þ Tbk

Tbkf
2
1 � 2f 1

.0 (27)

6
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must hold true in order to obtain a real number. As the denominator of Eq. (27)
is the same as Eq. (24), the following equation must hold

Tbkf
2
1 � 2f 1 þ Tbk,0 (28)

in order to hold Eq. (27). From Lemma 2, the range of f 1 that holds for Eq. (28) is
obtained as

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Tbkð Þ2
q

Tbk
, f 1,

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Tbkð Þ2
q

Tbk
, (29)

and the following Eq.

1� Tbkð Þ2.0 ) 0,T,
1

bk
(30)

must hold in order to have the real number. As 2≤ 1=bkð Þ≤4 under Assumption
2, T must satisfy the condition

0,T, 2: (31)

In addition, since

maxbk
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Tbkð Þ2
q

Tbk
¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� T2
p

T
,

minbk

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Tbkð Þ2
q

Tbk
¼ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� T2
p

T

under Assumption 2, the condition (29) is given by

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� T2
p

T
, f 1,

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� T2
p

T
0,T, 2ð Þ: (32)

Therefore, if f 1 satisfies Eq. (32) under Assumption 2, Eqs. (27) and (28) hold.
Furthermore, since

max
bk

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 2� ckð Þ
p

2T
¼ 1

T
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tf 21 � 4f 1 þ T

2T2f 1 Tf 1 � 4
� �

s

,

min
bk

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 2� ckð Þ
p

2T
¼ 1

T
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tf 21 � 4f 1 þ T

2T2f 1 Tf 1 � 4
� �

s

,

under Assumption 2, the condition (26) is given by.

1

T
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tf 21 � 4f 1 þ T

2T2f 1 Tf 1 � 4
� �

s

, f 2,
1

T
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tf 21 � 4f 1 þ T

2T2f 1 Tf 1 � 4
� �

s

0,T, 2ð Þ: (33)

Therefore, if f 1 and f 2 satisfy Eqs. (32) and (33) under Assumption 2, then
Qk,0.

Summarizing the above, the following theorem can be obtained.
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Theorem 1: if sampling period T and feedback gains f 1 and f 2 satisfy Eqs. (31),
(32), and (33) under Assumption 2, then the closed-loop systems (10) and (11) with
the following control law

uk ¼  zk þ α,k þ Ckωd,kf g�J zk þ α,k þ Ckωd,kf g

þ J Ck _ωd,k � zk þ α,kð Þ�Ckωd,kf g

� f 1 J G σe,kð Þzk � f 1bkσe,k
	 


� f 2Jzk

¼ ωk
�Jωk þ J Ck _ωd,k � zk þ α,kð Þ�Ckωd,kf g

� f 1 f 2Jσe,k � J f 1G σe,kð Þ þ f 2I3
	 


ωe,k

(34)

becomes ISS.
Then, we show that the pair uk;V2 kð Þð Þ is semiglobal practical asymptotic (SPA)

stabilizing pair for the Euler approximate systems (10) and (11). Hereafter, suppose
that sampling period T and feedback gains f 1 and f 2 satisfy Eqs. (31), (32), and (33)
under Assumption 2. By using the following coordinate transformation

Xk ¼
1 0

f 1 1

� �

σe,k

ωe,k

� �

¼ ZXk,

Lyapunov function V2 kð Þ and its difference ΔV2 kð Þ can be rewritten as

V2 kð Þ ¼ X
T
kZ

TZXk ¼ X
T
kRXk,

ΔV2 kð Þ ¼ X
T
kZ

TQkZXk þ 2
T

λJ

� 
2

wkk k2 ¼ X
T
kQkXk þ 2

T

λJ

� 
2

wkk k2:

Since R.0 and Qk,0, V2 kð Þ and ΔV2 kð Þ satisfy following equations:

λmin
R Xk

�

�

�

�

2
≤V2 kð Þ≤ λmax

R Xk

�

�

�

�

2
, (35)

ΔV2 kð Þ≤ � λmin
Qk

�

�

�

�

�

� Xk

�

�

�

�

2 þ 2
T

λJ

� 
2

wkk k2: (36)

In addition, Xk is bounded, and V2 kð Þ is radially unbounded from Eqs. (35) and
(36). Hence, the control input (34) satisfies the following equation under Assump-
tion 1:

ukk k≤M, (37)

where M is a positive constant. Furthermore, V2 kð Þ also satisfies the following

equation for all x, z∈R6 with max xk k; zk kf g≤Δ:

V2 xð Þ � V2 zð Þj j ¼ xTRx� zTRz
�

�

�

� ¼ xþ zð ÞTR x� zð Þ
�

�

�

�

�

�

¼ λmax
R xþ zk k x� zk k≤ 2Δλmax

R x� zk k,
(38)

where Δ is a positive constant. Therefore, from Eqs. (35) to (38), Lyapunov
function V2 kð Þ and control input uk satisfied Eqs. (A8)–(A11) in Definition 2 under
Assumptions 1 and 2, and the pair uk;V2 kð Þð Þ becomes SPA stabilizing pair for the

8
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Euler approximate systems (10) and (11). Then, the following theorem can be
obtained by Theorem A.1 in Appendix.

Theorem 2: control input (34) is SPA stabilizing for exact discrete-time systems
(8) and (9).

4. Numerical simulation

The properties of the proposed method are discussed in the numerical study. For
this purpose, parameter setting of simulation is as follows:

J ¼
7050:0 �0:536 43:9

�0:536 2390 1640:0

43:9 1640:0 6130:0

2

6

4

3

7

5
kgm2, σ 0ð Þ ¼

0

0

0

2

6

4

3

7

5
,ω 0ð Þ ¼

0

0

0

2

6

4

3

7

5
rad=s

T ¼
1:0 : Case 1

0:5 : Case 2

0:1 : Case 3

, f 1 ¼ 0:6, f 2 ¼ 0:8:

8

>

<

>

:

The moment of inertia J is from [1]. The initial values σ 0ð Þ correspond to

Euler angles of 1–2-3 system of θ 0ð Þ ¼ θ1 0ð Þθ2 0ð Þθ3 0ð Þ½ �T ¼ 0 0 0½ �T deg½ �. The
feedback gains f 1 and f 2 satisfy Eqs. (25) and (28) for all cases of T. The desired
states σd tð Þ, ωd tð Þ, and _ωd tð Þ in this simulation are the switching maneuver as shown
in Figure 1.

Figure 1.
Switching maneuver.

9
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Figure 2.
Time histories of MRPs σ tð Þ and σe tð Þ (solid line, case 1; dashed-dotted line, case 2; dashed line, and case 3;
dotted line, σd tð Þ).

Figure 3.
Time histories of attitude angles θ tð Þ and θe tð Þ (solid line, case 1; dashed-dotted line, case 2; dashed line, and
case 3; dotted line, θd tð Þ).

Figure 4.
Time histories of angular velocities ω tð Þ and ωe tð Þ (solid line, case 1; dashed-dotted line, case 2; dashed line,
and case 3; dotted line, ωd tð Þ).

10
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The results of the numerical simulation are shown in Figures 2–5. The
relative attitude σe tð Þ and relative angular velocity ωe tð Þ converge to the neighbor-
hood of σe tð Þ;ωe tð Þð Þ ¼ 0;0ð Þ, and the control input amplitude u tð Þ does not
depend on the sampling period T although there is a slight difference in the
maximal value of u tð Þ.

5. Conclusion

This chapter considers the spacecraft attitude tracking control problem that
requires agile and large-angle attitude maneuvers and proposed a discrete-time
nonlinear attitude tracking control that the amplitude of the control input does not
depend on the sampling period T. The effectiveness of proposed control method is
verified by numerical simulations. Extension to the guarantee of stability as
sampled-data control system will be subject to future work.

Appendix: sampled-data control of nonlinear system

This section shows preliminary results for nonlinear sampled-data control
[13, 14, 19].

Let us consider the following nonlinear system:

_x tð Þ ¼ f x tð Þ; u tð Þð Þ, x 0ð Þ ¼ x0, f 0;0ð Þ ¼ 0, (A1)

where x tð Þ∈Rn is the state variable and x tð Þ∈Rm is the control input. The
function f x tð Þ; u tð Þð Þ in Eq. (A1) is assumed to be such that, for each initial condi-
tion and each constant control input, there exists a unique solution defined on some
intervals of x 0; τÞ½ .

The nonlinear system (A1) is assumed to be between a sampler (A/D converter)
and zero-order hold (D/A converter), and the control signal is assumed to be
piecewise constant, that is,

u tð Þ ¼ u kTð Þ≕ u kð Þ, ∀t∈ kT; kþ 1ð ÞT½ �, k∈ 0f g∪N, (A2)

Figure 5.
Time histories of control input u tð Þ (solid line, case 1; dashed-dotted line, case 2; and dashed line, case 3).
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where T.0 is a sampling period. In addition, assume that the state variable

x kð Þ≔ x kTð Þ (A3)

is measurable at each sampling instance. The exact discrete-time model and
Euler approximate model of the nonlinear sampled-data systems (A1)–(A3) are
expressed as follows, respectively:

xkþ1 ¼ xk þ
ð kþ1ð ÞT

kT
f x sð Þ; ukð Þ ds≕ Fe

T xk; ukð Þ, (A4)

xkþ1 ¼ xk þ Tf xk; ukð Þ≕ FEuler
T xk; ukð Þ, (A5)

where we abbreviate x kð Þ and u kð Þ to xk and uk. For the stability of the exact

discrete-time model (A4) (Fe
T) and Euler approximate model (A5) (FEuler

T ), the
following definitions are used [13, 14, 19].

Definition 1: consider the following discrete-time nonlinear system:

xkþ1 ¼ FT xk; uT xkð Þð Þ, (A6)

where xk ∈Rn is the state variable and uT xkð Þ∈Rm is a control input. The family
of controllers uT xkð Þ SPA stabilizes the system (A6) if there exists a class KL
function β �ð Þ such that for any strictly positive real numbers D; νð Þ, there exists
T ∗
.0, and such that for all T ∈ 0;T ∗ð Þ and all initial state x0 with x0k k≤D, the

solution of the system satisfies

xkk k≤ β x0k k; kTð Þ þ ν,∀k∈ 0f g∪N: (A7)

Definition 2: let T̂ .0 be given, and for each T ∈ 0; T̂
� �

, let functions
VT : Rn ! R and uT : Rn ! Rm be defined. The pair of families uT;VTð Þ is a SPA
stabilizing pair for the system (A7) if there exist a class K∞ functions α1, α2, and α3
such that for any pair of strictly positive real numbers Δ; δð Þ, there exists a triple of
strictly positive real numbers T ∗ ;L;Mð Þ T ∗

≤ T̂
� �

such that for all x, z∈Rn

with max xk k; zk kf g≤Δ, and T ∈ 0;T ∗ð Þ:

α1 xk kð Þ≤VT xð Þ≤ α2 xk kð Þ, (A8)

VT FT x; uT xð Þð Þð Þ � VT xð Þ≤ � α3 xk kð Þ þ Tδ, (A9)

VT xð Þ � VT zð Þj j≤L x� zk k, (A10)

uT xð Þk k≤M: (A11)

In addition, if there exists T ∗ ∗
.0 such that Eqs. (A8)–(A11) with δ ¼ 0 hold

for all x∈Rn and T ∈ 0;T ∗ ∗ð Þ, then the pair uT;VTð Þ is globally asymptotic (GA)
stabilizing pair for the system (A6).

Using the above definitions, the following theorem is obtained by literatures
[13, 14, 19].

Theorem A.1: if the pair uT;VTð Þ is SPA stabilizing for FEuler
T , then uT is SPA

stabilizing for Fe
T .

Hence, if we can find a family of pairs of uT;VTð Þ that is a GA or SPA stabilizing

pair for FEuler
T , then the controller uT will stabilize the exact model Fe

T .
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