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Abstract

Ischemic brain stroke is one of the most serious and socially important medi-
cal conditions. Transcriptome analysis is a prospective approach to the study 
of the mechanisms of brain functioning, both under normal conditions and in 
ischemia. In addition to mRNA encoding proteins, the study of noncoding RNAs 
in ischemia has exceptional importance for the development of new strategies for 
neuroprotection. Of greatest interest are microRNAs (miRNAs) and circular RNAs 
(circRNAs). circRNAs have a closed structure and predominantly brain-specific 
expression. They can interact with miRNAs, diminish their activity, and thereby 
inhibit miRNA-mediated repression of mRNA. Recently, it has become clear that 
the analysis of circRNA-miRNA-mRNA interactions is an important requirement 
for the detailed study of the mechanisms of damage and regeneration during 
ischemia. This chapter reviews the most recent data on the role of circRNAs, 
miRNAs, mRNAs, and their interactions in brain cells under normal conditions and 
in cerebral ischemia.

Keywords: functional genomics, experimental rat brain ischemia, mRNAs, 
noncoding RNAs, circular RNAs, microRNAs

1. Introduction

Ischemic stroke is a serious condition and is one of the leading causes of dis-
ability and death worldwide. It arises as a consequence of a critical decrease in blood 
flow in the brain tissues, which leads to the death of neurons and glial cells. Therapy 
aimed at treating or preventing ischemic stroke is one of the most significant prob-
lems of modern medicine. Molecular genetic approaches using experimental models 
of ischemia based on small laboratory animals are of great importance and provide 
perspectives for studying the mechanisms underlying the damage to nerve cells and 
their ability to recover. Events occurring in ischemic stroke in humans caused by the 
formation of a thrombus are best reflected by the permanent middle cerebral artery 
occlusion (pMCAO) model. Additionally, the transient middle cerebral artery 
occlusion (tMCAO) model best reflects the events occurring in ischemic stroke in 
humans caused by subsequent treatment with thrombolytic drugs. The results of 
clinical studies suggest that thrombolysis is among the most effective and affordable 
methods of treating ischemic stroke. At the same time, it is known that reperfusion 
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after thrombolysis not only contributes to the restoration of penumbra cells but also 
causes additional damage to brain cells, including disruption of endothelial micro-
vascular cells, the excess oxygen radicals, and activation of apoptosis.

Ischemic brain damage in combination with reperfusion damage is a complex 
process resulting from changes in the levels of transcripts of genes in response to 
pathological effects. Currently it has been shown that informational RNA and vari-
ous types of noncoding RNA (ncRNA), in particular, microRNA (miRNA) and long 
ncRNA, are actively involved in the response to the pathology. Recently, the idea that 
long ncRNAs can interact with miRNAs and diminish their activity has been actively 
developed. Such functions are attributed to circular RNA (circRNA), which is a new 
and actively studied type of RNA. circRNAs can also participate in the pathogenesis 
of various neurodegenerative and inflammatory diseases and cancer. These proper-
ties of circRNAs can be exploited in medicine to develop technologies to correct 
pathological processes caused by disruption of gene expression. This chapter will 
examine the most recent data on the roles of circRNAs, miRNAs, mRNAs, and their 
interactions in brain cells under normal conditions and in cerebral ischemia.

2. Ischemic stroke

According to the latest data from the World Health Organization, ischemic 
stroke, which is the result of a permanent or temporary decrease in cerebral blood 
flow, is in most cases caused by occlusion of cerebral arteries by a thrombus or 
embolus and is of particular importance among vascular conditions [1–3]. This 
serious condition is the second most common cause of the general mortality rate of 
the population in Russia and is the most common cause of impaired brain function 
[4]. Long-term studies of ischemic stroke have proven the existence of necrosis and 
penumbra zones in the first hours and days after the development of ischemic stroke. 
The penumbra is the tissue located around the ischemic nucleus in conditions of 
limited access of oxygen and glucose, and cells in the penumbra are capable of recov-
ery. The concept of a “therapeutic window” was developed in which this window 
is a period during which the restoration of penumbra cells is still possible and most 
effective. The duration of the therapeutic window may vary depending on the organ-
ism and model of ischemia, but for most cells, it is limited to 3–6 hours [4–9].

Cerebral ischemia results from biochemical changes in brain tissues after 
ischemic damage. During ischemia, following the occlusion of the vessel, the 
glutamate-calcium cascade is activated, contributing to an influx of Ca2+ ions, the 
formation of intracellular mediators (phosphoinositol and diacylglycerol), mem-
brane depolarization, accumulation of glutamate, and further influx of Ca2+ leading 
to damage to the cell macromolecules and ultimately to cell death [4, 10]. Among 
the factors affecting the development of ischemic stroke, it is important to consider 
the effects of molecular genetic parameters. High hopes of clinicians are placed on 
identifying and developing systems of genetic markers, which are an important step 
toward the development of personalized medicine and individualized prevention. It 
is extremely important to study the genetic systems that determine the mechanisms 
underlying the events during the therapeutic window, the death of neurons during 
ischemic damage, and the restoration of neurological functions.

3. Transcriptomics of ischemic stroke

Recently, as a result of the rapid development of genome-wide analysis and 
multi-omics technologies, it has become clear that tissue damage and regeneration 
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during ischemia is a complex process resulting from a change in transcript lev-
els of a significant number of genes in response to pathological effects. Thus, 
early-response genes such as c-fos and c-jun [11] and zinc finger genes trigger cell 
proliferation and differentiation [12, 13], while genes that encode heat-shock 
proteins are involved in the inflammatory response and cytoskeleton organization 
[14], and others are predominantly activated after the onset of ischemia. Of great 
importance and perspective in molecular genetic studies are the models based on 
small laboratory animals that best reflect certain features of the development of the 
ischemic process. Study of the molecular mechanisms of cell death using pMCAO 
and tMCAO models conducted by Ford et al. revealed molecular functions and 
biological processes unique for each model [15]. Genes unique to tMCAO were 
predominantly involved in the induction of inflammatory and oxidative stress, 
while pMCAO resulted in the expression of genes that were more associated with 
metabolic activity and cellular signaling [15]. A study of the dynamics of changes 
in gene expression in rat brain a day after pMCAO revealed a substantial number of 
genes that changed expression significantly and are involved in the development of 
ischemic damage, including those determining cell survival and death, the immune 
response, functioning of the vascular system, and also processes associated with 
hematopoiesis, immune cells, lymphocytes, leucocytes, and other cells [16].

The most frequently used tMCAO model showed a reorganization of the func-
tioning of many genes in various areas of rodent brains, including the infarction 
center, during the first day after the transient occlusion [15, 17–19]. In particular, 
activation of the transcription factor Nf-κb was shown. An increase of the mRNA 
level of Cox2, which encodes one of the key enzymes for the synthesis of the 
pro-inflammatory prostaglandin E2 (PGE2), was accompanied by an increase in 
the level of the corresponding protein, not only at the source but also in adjacent 
regions, and accompanied by increased concentration of PGE2 [20–22]. At the same 
time, as a result of the opening of the blood-brain barrier in brain sections, exten-
sive leucocyte infiltration was observed [21, 23, 24]. An increase of the mRNA level 
of the gene for INOS, encoding an enzyme for the synthesis of NO, also participat-
ing in the development of the inflammatory response in the lesion, was also noted 
[22, 25]. In the ischemia-reperfusion model, it was also shown that cytokines (IL-
1β, IL6), adhesion molecules (ICAM1, E-selectin, MMP-9), MAPK kinase, and c-fos 
transcription factors were involved in the development of inflammation [17, 20, 
23, 26–29]. Wang et al. studied the molecular mechanism of ischemia-reperfusion 
pathogenesis using genome-wide transcriptome analysis (RNA-Seq) in the hippo-
campus of rats at 24 h after tMCAO. These investigators detected 182 differentially 
expressed genes (DEGs), most of which were upregulated [17]. A Gene Ontology 
analysis showed that these DEGs were mainly associated with inflammation, stress, 
immune response, glucose metabolism, and apoptosis [17]. Our analysis of gene 
expression under tMCAO conditions using RNA-Seq confirmed these results. 
However, in the subcortical structures of the brain that contained the focus of 
ischemic damage and the penumbra, we identified hundreds of genes that changed 
expression 24 h after tMCAO using RNA-Seq. Among these, we found activation of 
genes involved in inflammatory and immune reactions. There were gene encoding 
chemokines (Ccl2 and Ccl3), heat-shock proteins (Hspa1 and Hspb1), macrophage 
receptors (Msr1), secreted phosphoprotein 1 (Spp1), cytokine 3 suppressor (Socs3), 
and other proteins. Mass suppression of genes that ensure the functioning of 
neurotransmitter systems (Chrm1, Chrm4, Cplx2, Drd2, Gabra5, and Gng7) was 
also shown [19]. A study of the dynamics of changes of gene expression in rat brain 
a day after tMCAO conditions revealed a significant activation of the expression of 
genes involved in biosynthetic cell systems (ribosome, proteasome, DNA replica-
tion, and purine metabolism functional categories). The effect obtained indicated 
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a large-scale reorganization of nucleic acid and protein biosynthesis that was 
apparently related to the adaptive response of brain cells to the damage caused by 
ischemia-reperfusion.

4. miRNAs in ischemic conditions

Not only coding mRNA but also various types of ncRNA, which have significant 
regulatory potential, are involved in the response to ischemia. Much current atten-
tion worldwide is paid to the study of the features of the functioning of mRNA, 
miRNA, and long ncRNA as regulators in the mechanisms of pathogenesis and 
neuroprotection in ischemic conditions [30–35].

miRNAs are ncRNA molecules with a length of 20–22 nt. They act by direct 
interaction with target sites on mRNA, which leads to the degradation of mRNA 
or repression of its translation [36, 37]. miRNAs are critical regulators of central 
nervous system plasticity and play an important role in ischemia. In particular, 
miRNA is actively involved in the response to ischemic brain damage [38, 39]. 
Following ischemic brain damage, miRNAs can play the role of both neuroprotec-
tive agents and contribute to pathological manifestations. mRNA of the AMPA 
receptor subunit GluA2/GluR2 (α-amino-3-hydroxy-5-methyl-4-isoxazole propi-
onic acid receptor) is the target of miR-181a. Thus, an increase in miR-181a expres-
sion may be neuroprotective. Indeed, there are many examples of where miRNAs 
contribute to the development of the pathological process following ischemic brain 
damage. Thus, miR-132 increases the expression of the NMDA receptor, which 
selectively binds N-methyl-d-aspartate, increasing the risk of excitotoxicity [40, 41].  
Therefore, the use of miR-132 antagonists may have a neuroprotective effect. 
Herzog et al. studied the role of steroid hormones 17β-estradiol (E2) and proges-
terone (P) in the brain as regulatory factors for miR-223-3p, miR-200c-3p, miR-
375-3p, miR-199-3p, miR-214-3p, and their target genes in the tMCAO model [42]. 
The levels of these miRNAs are increased at 12 and 72 h after tMCAO. E2 or P selec-
tively dampened miR-223 and miR-214 but further boosted miR-375 levels. The 
expression of the genes for NR2B and GRIA2, which are targets for miR-223, was 
reduced after tMCAO, and E2 and P canceled this effect. Steroid therapy inhibited 
tMCAO-induced increases in the expression of genes for BCL-2 and RAD1, which 
are targets for miR-375. Thus, E2 and P have a role as indirect regulators of transla-
tion of proapoptotic and pro-inflammatory genes, which leads to the weakening of 
ischemic damage of tissue [42].

5. Long ncRNAs and circRNAs

Long ncRNAs have lengths greater than 200 nt [30]. Analysis of GENCODE 
[32], LNCipedia [43], and NONCODE [44] databases indicates the number of 
annotated long ncRNAs reaches several tens of thousands in humans. Their number 
is several times greater than the number of human protein-coding genes. Long 
ncRNAs are classified according to the region of the genome from which they are 
synthesized [32, 45]. Intergenic long ncRNAs are the most common in humans 
(59.2%). In second place are sense long ncRNAs that overlap with protein-coding 
genes (24.4%). Intronic and antisense long ncRNAs account for approximately 
10% each [45]. Many long ncRNAs have specific evolutionarily stable expression. 
In addition, long ncRNAs exhibit tissue-, sex-, developmental stage-, and disease- 
specific expression [34, 46]. According to Mercer et al., in mice 64% of long 
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ncRNAs are associated with brain tissue [47]. Cabili et al. found that long ncRNAs may 
have a more pronounced tissue-specific expression than protein-coding genes [48].

To date, there is evidence that a substantial part of long ncRNA exists in a 
circular form [49–54]. Circular RNA (circRNA) is a newly discovered and relatively 
poorly studied class of long ncRNA, found predominantly in mammalian cells. The 
mammalian circRNAs are distinguished by a variety of structural organization. A 
common property of all cyclic structures is their resistance to treatment with RNase 
R, which depletes linear forms of RNA [55, 56]. A specific feature of the structure 
of exonic circRNAs is the unusual order of exon connection, in which the 3′-end of 
the downstream exon is linked with the 5′-end of the upstream exon. The mecha-
nism of circRNA formation is called back-splicing. circRNAs may consist of exon or 
intron sequences [51]. More recently, information has appeared on the existence of 
circRNAs containing, simultaneously with exons, sequences of un-spliced introns 
[57] and recursive (RS) exons [58]. We come to the study of circRNAs through 
the analysis of peculiarities of the structure and expression of the human SGMS1 
gene. This gene encodes the enzyme sphingomyelin synthase 1, which provides 
the synthesis of sphingomyelin and diacylglycerol from phosphatidylcholine and 

Figure 1. 
A model of circRNA formation with the participation of recursive exon (RS-exon). Exons are shown as 
numbered blocs. Roman numerals indicate introns. Exon 7 is part of the mRNA, and RS-exon 7b is located 
inside the intron VII. The convergence between the 5′-end of exon 7 and the 3′-end of RS-exon 7b is effected 
using an interaction of highly homologous repeats of the Alu subtype, which are located near the back-splicing 
sites. Thus, the structure of the precursor of circRNA is formed according to the back-splicing. Next, part of 
intron VII is excised up to RS-exon 7b, and a linkage of the main exon with the RS-exon is formed. This leads 
to the formation of circRNA, which includes RS-exon 7b. Otherwise, the RS-exon 7b is excised along with the 
rest of intron VII and leads to the circularization of the main exon 7.
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ceramide [59–63]. In addition to mRNAs providing protein synthesis, 13 circRNAs 
that predominantly contained sequences of the multi-exon 5′-untranslated region 
of the gene (5′-UTR) have been identified [54]. The RS-exons that participate in the 
multistep splicing of long introns of the gene were found within six circRNAs of 
the SGMS1 gene. Based on the human SGMS1 circRNAs formation from pre-mRNA 
with the participation of RS exons, the model of recursive back-splicing was pro-
posed (Figure 1). Intronic circRNAs often have loop-like (lariat) structures with an 
abnormal 2′–5′ phosphodiester bond [50, 51]. More than half of circRNAs contain 
only protein-coding exons, while a smaller proportion contains sequences cor-
responding to the UTRs [64]. In related species, the circRNAs are often encoded by 
genes that are orthologous for human genes. So, homologous exons of these genes 
are detected in circRNA [64]. Most human and rodent circRNAs have predomi-
nantly brain-specific expression [54, 65–68]. In particular, it has been shown that 
circRNAs are predominantly localized in areas of neurons (axons and dendrites). 
Their level depends on the stage of development of synapses and homeostatic 
plasticity [69]. It is believed that the accumulation of circRNAs upon neuronal 
differentiation could result from the combined effect of augmented transcription 
of circRNA-producing genes and diverse decay rates of circRNAs and their linear 
counterparts [70]. The specific expression and stability of circRNAs allow them to 
be considered as potential biomarkers for various diseases [71].

6. Competitive endogenous RNAs

Relatively recently, it was shown that miRNA activity in the human cells can 
be regulated by the so-called sponge transcripts of competitive endogenous RNA 
(ceRNA). These transcripts compete with mRNA for binding to miRNA and dimin-
ished the effect of miRNA on the transcriptional and posttranscriptional levels of 
gene expression regulation [72, 73]. Long ncRNAs may act as ceRNAs in mammals. 
There are examples of pseudogenic and intergenic noncoding transcripts that can 
perform the functions of ceRNA [74]. One example is regulation of the expression 
of the tumor suppressor gene PTEN using the RNA of its pseudogene PTENP1. The 
3′-terminal region of the pseudogenic RNA (PTENP1) is highly homologous to the 
corresponding 3′-terminal region of the mRNA of PTEN. Competitive binding of 
the 3′-terminal region of the PTENP1 pseudogenic RNA with miRNAs (miR-19b 
and miR20a) ensures stable transcription of PTEN and translation of its mRNA 
[75]. The expression level of PTENP1 is about 100 times higher than that of mRNA 
of PTEN. This provides a competitive advantage of PTENP1 for binding miRNAs 
and performing the functions of ceRNA [72]. Among the recent most important 
and interesting studies of the functioning of ncRNA in ischemia, it is worth men-
tioning the work of Li et al. [76]. Malat1 ncRNA acts as ceRNA for ULK2 when the 
endothelial cells of the brain capillaries are damaged. Malat1 acts as an endogenous 
sponge for miR-26b. This leads to an increase in the expression of ULK2 and 
contributes to the autophagy of the endothelial cells of the brain capillaries and 
to the survival of oxygen-glucose in the conditions of deprivation/reoxygenation 
(OGD/R). Xing et al. showed that miR-155 inhibition may play a protective role in 
ischemic stroke by S6K phosphorylation on the Rheb/mTOR pathway [77].

Effective ceRNAs should have multiple miRNA binding sites and a high level of 
expression or increased stability [73, 78]. Of particular interest are circRNAs, which 
have a covalently closed structure and are often formed from protein-coding genes 
during back-splicing [52, 58]. circRNAs are not exposed to exonucleases [51, 52], 
so they can more effectively act as ceRNAs because of their increased stability. 
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Currently, great attention is being paid to the function of circRNAs as miRNA 
sponges. CircRNA acting as ceRNA competes with mRNA for binding to miRNA and 
diminishes the effect of miRNA on transcriptional and posttranscriptional levels of 
regulation of gene expression [65, 79] (Figure 2). The function of several circRNAs 
as miRNA sponges has been investigated in various pathologies. In particular, the 
role of circRNA CIRs-7 in preventing models of neuropsychiatric disorders in 
mice is associated with its functioning as a ceRNA [79]. In addition, in Alzheimer 
 disease [80] and various types of cancer [81–83], circRNA-miRNA-mRNA competi-
tion may be associated with regulation of pathogenesis.

7.  The role of circRNA-miRNA-mRNA competition in ischemic 
conditions

The transcriptional profile and functional properties of circRNAs under con-
ditions simulating brain ischemia have been investigated. Cell culture of HT22 
hippocampal cells under conditions of OGD/R simulating damage during cerebral 
ischemia with reperfusion produced results consistent with the hypothesis that 
miRNA sponges are assigned to circRNA [84]. In this model, circRNA expression 
was associated with metabolic pathways related to apoptosis and immunity. In a 
tMCAO model, biological regulation, metabolism, cellular communication, and 
protein and nucleic acid binding were the main biological and molecular functions 
controlled by circRNAs, whose expression was changed during the day after occlu-
sion [85]. Bioinformatics showed that 16 circRNAs contain binding sites for many 
miRNAs. In a mouse tMCAO model, microarrays detected a change in the expres-
sion of over a thousand circRNAs associated with signaling pathways regulating cell 
survival and death [86]. Moreover, Liu et al. predicted possible pathways of interac-
tions between circRNA and miRNA that could provide information potentially 
elucidating the mechanisms of brain damage during stroke. We have investigated 
the expression of genes for glutamate metabotropic mGluR3 and mGluR5 receptors 
(Grm3 and Grm5) in a tMCAO model [87]. These genes are important participants 
in the metabolic pathways associated with neuro-signaling. Rat Grm3 and Grm5 
encode homologues for human and rodent circRNA. In the subcortical structures 
of rat brains containing a lesion, the level of such circRNAs is more stable than the 
corresponding mRNAs. Bioinformatics analysis revealed the distribution of miRNA 
binding sites along the mRNA molecules of human GRM3 and GRM5, which are 

Figure 2. 
Scheme of mRNA, miRNA, and circRNA interactions. Exons are shown as numbered blocs.
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homologous to the corresponding genes in rats. A sufficiently large number of bind-
ing sites are located inside the exons, which are also part of conservative circRNA. A 
functional role of circRNAs of the genes under study is implicated by ceRNA in the 
response of brain cells to ischemia. In an experimental ischemia-reperfusion model, 
we found numerous circRNAs that were differentially represented in the damage 
zone 24 h after occlusion. These circRNAs may be key modes for the regulation of 
the neurotransmission genetic response.

In a recent study, new important information was provided on the function-
ing of circRNA under ischemia conditions. Bai et al. showed that circRNA of 
DLGAP4 (circDLGAP4) functions as a miRNA sponge to diminish the activity 
of miR-143, which inhibits the expression of homologues of E6-AP C-terminal 
domain E3 ubiquitin ligase 1 [88]. The level of circDLGAP4 was significantly 
reduced in the plasma of patients with acute ischemic stroke and after tMCAO in 
mice. Upregulation of circDLGAP4 expression significantly reduced neurologi-
cal deficit and reduced areas of infarction and damage to the blood-brain barrier 
in a mouse model of ischemia. Han et al. convincingly showed that circHECTD1 
increases expression in the brain of mice after tMCAO, in human glioblastoma 
A172 cells under conditions of OGD/R, and in the blood of patients with acute 
ischemic stroke [89]. circHectd1 is involved in the regulation of the regenerative 
mechanisms of brain cells during ischemia. In particular, suppression of the 
expression circHectd1 was associated with a reduced infarction size in a mouse 
model of ischemia [89]. By interacting with MIR142, which negatively affects 
the mRNA level of the gene for 2,3,7,8-tetrachlorodibenzo-p-dioxin inducible 
poly [ADP-ribose] polymerase (TIPARP), circHECTD1 diminished the miRNA 
activity, with consequent circHECTD1-MIR142-TIPARP competition leading 
to the modulation of astrocyte activity through autophagy during cerebral 
ischemia.

8. Conclusion

The data presented in this review indicate that in addition to protein-coding 
mRNA, ncRNAs play an important role in the regulation of intracellular processes, 
both under normal conditions and in pathologies. An active study of the features 
of the functioning of ncRNAs in ischemia is of exceptional importance for the 
development of new strategies for neuroprotection and repair of nerve tissue and 
for the development of effective new drugs. circRNAs are a new class of RNAs that 
have enhanced resistance and preferential brain-specific expression. An analysis of 
circRNA-miRNA-mRNA interactions is an important component of any detailed 
study of the mechanisms of damage and regeneration in the case of pathological 
effects and the action of therapeutic agents, especially during the therapeutic 
window, when treatment is possible and most effective.
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