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Resumo Os recentes avanços na tecnologia dos diodos emissores de luz (LED)
levaram a que estes conquistassem um lugar muito importante nos
sistemas de iluminação. Esta conquista aliada à sua velocidade de co-
mutação levou ao desenvolvimento de sistemas de comunicação por
luz visível (VLC), estes incluem-se nos sistemas de comunicação ópti-
cos não guiados. No passado as comunicações ópticas não guiadas
restringiam-se ao espectro infravermelho, devido a ine�ciência dos
LEDs, mas hoje em dia isso está a mudar.
Os sistemas de comunicação por luz visível podem oferecer alternati-
vas viáveis ou complementares aos actuais sistemas de comunicação,
devido à sua facilidade de integração em certos meios. Um dos meios
em que este tipo de comunicação se pode integrar, e que deu origem
a este trabalho, são as comunicações móveis. Os telemóveis antigos
possuíam interfaces que permitiam comunicações ópticas como por
exemplo IrDA, mas com os avanços tecnológicos estes tornaram-se ob-
soletos e foram eliminados. Devido a isso os smartphones modernos
não oferecem qualquer tipo de interface óptica de comunicação. Privi-
legiam no entanto o uso de câmaras que têm associado um dispositivos
de �ash baseados em LEDs de alta intensidade. Conseguindo controlar
com alguma precisão o �ash de um smartphone consegue-se implemen-
tar um sistema VLC de baixo débito que pode ser usado em sistemas
de smart tagging, controlo de remoto de dispositivos electrónicos ou
mesmo controlo de acesso a edifícios.
O principal objectivo deste trabalho é o estudo da viabilidade do uso
de um smartphone como emissor num sistema VLC de baixo débito.





Keywords Light Emitting Diode, Visible Light Communication, Smartphone, Mo-
bile Communications, Low Data Rate System

Abstract Recent advances in light emission diodes (LED) technology led them
to an important place on lighting systems. This conquer allied to its
switching speed permitted the development of new visible light com-
munication systems (VLC), these are included in unguided optical com-
munications. In the past, unguided optical communications were re-
stricted to infrared spectrum due to LEDs ine�ciency, but nowadays
this is changing.
Visible light communication systems can o�er viable or complementary
alternatives to the existing communication systems, due to its easy
integration in certain environments. One possible integration environ-
ment are the mobile communications, and that fact is in the origin
of this work. Old mobile phones had interfaces that allowed optical
communication, for example IrDA but with the advances of technol-
ogy these become obsolete and were eliminated. Due to that, modern
smartphones do not o�er any kind of interface for optical communi-
cations. However most of them have one camera that uses a �ash
device based on high intensity LEDs. Controlling with some precision
one smartphone �ash allows the implementation of one low data rate
VLC systems which can be used for smart tagging, remote control of
electronic devices or to control access to buildings.
The main goal of this project is study the viability of the use of one
smartphone as emitter in a VLC system.
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Chapter 1

Introduction

1.1 Motivation for Visible Light Communications (VLC)

With the introduction of mobile technologies in people's life, wireless communications
became an important tool either to work or just for fun. Technological advances in
the �elds of displays, batteries and processing technologies made it possible to build
smartphones and tablets that allow the user to access Internet almost everywhere.
This kind of devices created an increasing popularity of multimedia services supplied
over radio frequency, examples of this services are web browsing and audio/video on
demand. This increase on popularity originates an astronomic growth on mobile data
tra�c. Figure 1.1 shows one prediction on how the global mobile data tra�c will
behave until 2018, it is expected an compound annual growth rate of 61%.

Figure 1.1: Global Mobile Tra�c Forecast by Region [1]

Scienti�c community believes it is only a matter of time until radio frequency spectrum
reaches its limits and users start to face long latency problems and line congestion when
trying to access the services anteriorly referred, one belief which is supported by the fact
of the electromagnetic spectrum is extremely crowded. This fact, known as "spectrum
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crunch" may cause an increase in the number of dropped calls, slow down data speeds
and raise costumer's prices [2]. Figure 1.2 reveals that in a near future the spectral
bandwidth available for use will not be su�cient for our needs. This predictions were
presented in 2012 and refers to the USA scenario. Nonetheless, this lack of spectral
space caused by the increasing number of mobile devices a�ects all the world.

Figure 1.2: Expected Spectrum De�cit [2]

To mitigate that fact cellular systems started to reuse bandwidth but if by one side this
technique raised the achievable system capacity by the other side it increased interfer-
ences and limited the achievable network throughput. So, �nding an radio frequency
(RF) orthogonal communication medium to �ll the gap between needed and available
spectral bandwidth becomes a real need [3]. Despite of the predictions are not encour-
aging, nowadays we do not reach this spectrum de�cit, and we continue to use RF with
no problems.
Few years ago researchers realized that white LEDs (WLEDs) could be much more
than a lighting device and could be used for wireless communications purposes. The
advantages of such technology applications are many. It belongs to the green technolo-
gies category when used for lighting purposes, becoming even more environmentally
friendly when it supports communication functionality compared to RF alternatives
[4].
Light waves at visible and infrared (IR) wavelength are space con�ned, once they can
not penetrate solid materials such as walls. This property allows VLC to perform full
bandwidth reuse without interference.
In open environments where high speed communications may be needed, Optical Wire-
less (OW) revealed to be an sensible solution due to its limited cell size, but today's RF
cells do not support so much high capacity users per cell. Multiple high capacity users
require multiple cells and originate overlaps and inter-cell interferences. Contrasting
with that, OW provides user-sized cells and because of the intrinsically abrupt bound-
ary of these cells inter-cell interference is negligible and carrier reuse is not an issue.
It is expected that in a near future almost all the lighting devices are based on LEDs,
this makes VLC a viable option for OW system since LEDs can be used as a wireless
communications transmitter [5]. For all the previous mentioned characteristics and for
being interference-orthogonal to the cellular RF networks VLC is the best solution to
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provide viable or complementary alternatives for RF communications.

1.2 VLC Characteristics

Visible Light Communications use light sources such as LEDs rather than RF transmit-
ters as a transmission source. LEDs can be readily modulated making them suitable
for the dual role of illumination and data transmission. For illumination purposes,
LEDs generate very little heat and they do not radiate anything but light photons,
thus cause much reduced carbon emissions than other illumination technologies. Vis-
ible light occupies the range of wavelengths between 380 and 780nm. In Figure 1.3 it
is possible to see the position of visible band inside the electromagnetic spectrum.

Figure 1.3: Electromagnetic Spectrum [6]

Communications over light can o�er many advantages when compared to RF systems,
starting by the price of LEDs and photo-detectors, which tend to be cheaper than RF
emitters and receivers. Other factor that can reduce the price for VLC is that visible
light spectrum is unlicensed and can be used free of charge. Optical communications
can easily reuse bandwidth and provide more privacy than RF because light is con�ned
to a certain space and devices out of line of sight could not access data transmitted by
the light beam. The bandwidth for this communication technique is virtually unlimited
and can achieve high data rates, making it viable for high speed wireless communica-
tions. In [7] an experiment with link speeds up tp 3 Gb/s is reported. Since VLC uses
visible light beams it is not harmless to human health and does not represent danger
for human eyes. As there are already many lighting devices using LED lamps it could
be seen as one advantage to VLC, because this lamps could be used as data emitters.
All this facts make VLC a suitable option to use in environments where no RF inter-
ference is required, such as some medical environments, schools, military facilities and
planes [4].
Obviously this technology has some drawbacks once it uses light it become vulnerable
to the interference of other light sources. In some VLC applications a line of sight
(LOS) between emitter and receiver is required, and in some situations ensuring that
can lead to an increase of system complexity and price [4].
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1.3 VLC Applications

VLC has many applications, has previously referred. Now a short list af applications
and respective explanation will be provided.

Smart Lighting Any light source could be used to provide an VLC access point.
The same communications and sensor infrastructure may be used to control light-
ing. This kind of systems can adjust its brightness according to the natural light
they receive, saving money and reducing carbon emissions.

Indoor Positioning Indoor environments do not allow positioning systems such
as global positioning system (GPS), so VLC can help in that �eld. Using mul-
tiple LED bulbs and image sensors it is possible to calculate accurate indoor
positioning [8].

Hazardous Environments VLC could be used as safe alternative to electro-
magnetic interferences from RF communications in environments such as mines
and petrochemical plants.

Vehicular Networks Nowadays car lights and tra�c lights are LED based, this
fact can be used to set-up vehicular networks. This networks will be used to
exchange information between vehicles or from tra�c infrastructures to vehicles
[9]. This application might increase drive safeness and reduce tra�c jams.

Medical Hospitals and medical installations are generally much more averse to
the use of RF technology, mainly due to its lack of security, interference with other
electronic equipment by overlapping channels and possible damage to sensitive
electronic equipment. Because VLC is fast, safe and secure, and has no RF
radiation, medical applications are an obvious choice.

Aviation LEDs are present in aircraft cabins, so VLC could be used to provide in-
�ight entertainment systems. This entertainment systems could o�er audio/video
streaming and digital books or magazines, for example.

Underwater Communications Due to strong signal absorption in water, RF
use is impractical. Acoustic waves have extremely low bandwidth and disturb
marine life. VLC provides a solution for short-range communications.

Toys Lots of toys have built in LEDs, this fact could be used to enable commu-
nication and interaction between various toys, using VLC [10].

1.4 Project Motivation

The idea for this project stems from the fact of modern smartphones do not have any
kind of optical communication interface. If old mobile phones allowed data transfer
using IrDA, new smartphones just allow data exchange over RF. However the presence
of high de�nition cameras, with one �ash device associated, is normal in smartphones.
This �ash is typically based on one high intensity LED, and if we can control this LED
we may be able to use it to send data and use one mobile phone as an emitter in a
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VLC system.
Previous work on this �eld revealed that it is possible to make �ash light blink at
one speci�c frequency. Experimental data revealed that for today's smartphones the
�ashlight blinking frequency can be up to 50Hz. However, the frequency is not constant
over time because the �ashlight is controlled by the operating system, and depending
on the process scheduling, the �ashlight's light pattern deviates signi�cantly from the
intended pattern [10].
With this project it is intended to know if it is really possible to use one smartphone to
modulate and send data. For this, various �ash control strategies were tested in order
to �nd out its limitations as well as the complexity behind its implementation. During
the execution of this work some modulation techniques were also analyzed, because
this kind of application requires one modulation technique with one good compromise
between data throughput and energy consumption.

1.5 Document Structure

This document has four chapters.
The �rst one is this chapter, the Introduction. This chapter is divided in �ve sec-
tions:Motivation for Visible Light Communications (VLC), VLC Characteristics, VLC
Applications, Project Motivation and Document Structure.

In chapter two, "State of the Art", there are three sections:Some History, with his-
tory of LEDs and VLC history;Actual State of VLC Communications and Low Debt
VLC Projects.

Chapter three, called "Exploring Smartphone's Flashlight to Transmit Data" is com-
posed by sections: Concept, Flash Control Strategies, Modulation Techniques. There
we can �nd information on how to control �ash light and information about modu-
lation techniques that can be used on VLC. In that chapter decisions about chosen
modulation technique are justi�ed.

Chapter four, named "Developed Work" and has the analysis of the obtained results.

Last chapter has some brief conclusions and presents some points for future work.
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Chapter 2

State of the Art

2.1 Some History

2.1.1 LED History

The history of LED technology dates back to 1907 when Henry Joseph Round noticed
that the crystals used in radio receivers emitted light when electricity passed through
them. This phenomenon was called electroluminescence. Twenty years after Round's
discovery Oleg Losev reported the creation of a LED, but emitted light was too dim
for practical use. In 1939 Zoltan Bay and Gyorgy Szigety patented a silicon carbide
(SiC) electroluminescent lighting device, considered to be the predecessor of modern
LEDs.
The 1950s were very important for LED technology advances, beginning in 1951 with
the patent for an infrared LED by William Shockley. In 1952 Kurt Lehovec applied for
patent for SiC visible lights LEDs and in 1958 Rubin Braunstein and Egon Loebner
patented a green LED.
In �gure 2.1 it is possible to see one timeline with important dates and events referred
to in this subsection.

Figure 2.1: Time line for LED evolution (1907 - 1996)

The next important step was taken by Nick Holonyak Jr. in 1962 with the construction
of the �rst practical visible-spectrum (red) LED. In 1964 IBM used for he �rs time LEDs
on circuit boards in a early mainframe computer and the year of 1968 was marked by
the introduction of LEDs in Hewlett Packard's hand-held calculators. At the same
time LEDs also started to appear in digital displays on TVs, radios, watches, and
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telephones.
During the 1970s two major events took place, in 1972 M. George Craford created the
green and the yellow LED and in 1976 the �rst high-brightness, high-e�ciency LED
for optical �ber communications appeared by the hands of Tom Pearsall.
An LED revolution occurred in 1993, Shuji Nakamura introduced the blue to the LED
color spectrum with his high brightness blue LED. In 1996 Nakamura announced bright
white and green LEDs.
In the early 2000s LEDs started to be used on common use lighting devices [11].

2.1.2 VLC History

Using visible light to transmit data is not a entirely new idea. Fire and smoke signaling
were used in ancient civilizations. For example, Roman records indicate that polished
metal plates were used as mirrors to re�ect sunlight for long distance signaling. Chinese
used �re beacons followed by the Romans and American Indians used smoke signals
[12].
In Greek history we can �nd some references to communications using �re. Herodotus
described a �re signal sent from Sciathus to Artemisium in 480 BC. Later, Polybius
wrote about two devices that used �re to send messages. The �rst one was developed
by Cleoxenus and Democleitus and then perfected by Polybus. This device used a
complex system of torches and tables to send messages. The alphabet was divided in
�ve parts and each part was written into a table, then the transmitter of the message
raised two torches and waited until the receiver did the same. After that the dispatcher
of the message raised the �rst set of torches on the left side indicating which tablet is
to be consulted followed by the raise of a set of torches on the right signaling which
letter of the table should be written.

a
b

Figure 2.2: Polybus telegraph (a) and Aeneas water clocks (b) [13]

The second one, developed by Aeneas Tacticus was similar to a telegraph and was
named water clocks. To communicate using water clocks every communicating part
had exactly the same jar, with a same size hole that was closed and the same amount
of water in it. In the jar was a stick with di�erent messages written on. When one part
wanted to tell something to the other it made a �re-sign. When the other answered,
both of them opened the hole at the same time. And with the help of another �re-sign
closed it again at the same time, too. In the end the water covered the stick until the
point of the wanted message [14].
By the same time lighthouses appeared to help ships navigate through dangerous
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coastal areas, the most famous example is the "Pharos of Alexandria" which was built
around 300 BC.
In 1821 Carl Friedrich Gauss invented the Heliotrope, an instrumented that used a
mirror to re�ect sunlight over great distances. This instrument was used to mark the
position of the participants in land surveys and was used since 1822 until the late
1980s when GPS measurements replaced it. The Heliotrope was the start point for the
Heliograph. Heliograph was a wireless solar telegraph that signals using Morse code
�ashes of sunlight re�ected by a mirror. The �ashes are produced by momentarily
pivoting the mirror, or by interrupting the beam with a shutter. The navy often uses
blinking lights, i.e. Aldis lamps, to send messages also using Morse code from one ship
to another [15].

a b

Figure 2.3: Heliotrope (a) and Heliograph (b)

The �rst modern device built with VLC purposes was the photophone made by Alexan-
der Graham Bell in 1880. Bell's photophone was based on transmitting sound on a
beam of light. A person's voice was projected through an instrument toward a mirror.
The vibrations of the voice caused similar vibrations in the mirror. Sunlight was then
directed into the mirror, where the vibrations were captured and projected into the
photophone's receiver. There they were converted back into sound [16].

a b

Figure 2.4: Photophone transmitter (a) and receiver (b) [17]

Seventy �ve years after the photophone, Eugene Polley invented the Flash-Mati,c a
TV remote controller that used a light beam to interact with the TV. By pointing the
device to one of the four photo-cells located at each corner of the TV users were able
change channel, mute and unmute the volume and turn the TV set ON or OFF. This
device was not a great success because it was very sensible to interferences. External
light sources, such as solar light or lighting devices were able to produce the same
e�ects as the remote control, leading the TV to trigger the remote control functions
when they were not wanted [18].
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a b

Figure 2.5: Flash-Matic (a) and TV set with photo-cells (b)

During the year of 1961 Infrared Industries, an American company presented the Astro-
Phone. This device was a kind of walkie talkie that used light instead of RF to com-
municate. This set was composed by two similar devices and allowed bi-directional
communication, each of the devices used a regular light bulb and a �lter to block all
but infrared light to send data. Ten years after that Nintendo launched the Light
Phone, another walkie talkie set based on light communication. The Light Phone used
an incandescent torch bulb to transmit voice. Voice was picked up by the microphone,
coded and transmitted using the light bulb. On receivers side was a photocell to receive
the light pulse, then it was decoded and voice was played through the headphones.

a b

Figure 2.6: Astro-Phone (a) Light Phone (b) [19]

In the early 2000's Keio University in Japan started his work on data transfer us-
ing LEDs and the visible light communication consortium was founded by Japanese
tech-companies. Later, in 2011, IEEE workgroup 802.17, Task group 7 �nished the
standardization of VLC, this work has begun in 2009.
Nowadays there are lots of companies and investigation groups working on VLC.

2.2 Actual State of VLC Communications

In recent years, interest in OW as a promising complementary technology for RF
technology has gained new momentum fueled by signi�cant deployments in solid state
lighting technology. In this section a brief review about VLC state of the art will
be provided. Here three points will be focused: Indoor VLC, Image Sensors as VLC
Receivers and VLC under water.
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2.2.1 Indoor VLC

Finding a modulation scheme that o�ers low bandwidth needs is on of the principal
challenges when trying to achieve high data rates for VLC transmission. Researchers
have been studying and proposing some solutions for this problem, and some options
came out over the last years. Possible solutions are blue optical �ltering, spectrally
e�cient modulation techniques, optical multiple-input multiple-output (MIMO), wave-
length division multiplexing (WDM) and their combinations.

OFDM

OFDM was successful used in a European project called OMEGA to transmit data
at a rate of 100Mbit/s. This was demonstrated with a broadcast of 4 high de�nition
video streams (about 20 Mbit/s each) from 16 LED ceiling lamps to a photo detector
placed within the lit area of ≈ 10m2. The same project was also able to keep tra�c
on the IP layer at ≈ 80Mbit/s [20].
There are still records of laboratory trials capable to achieve data rates of 500Mbit/s
using a phosphorescent white LED [21] and 800Mbit/s using an Red Green and Blue
(RGB) LED [22]. This results were published in 2010 and 2011, respectively. In 2014
IEEE Photonics Technology Letters published an article referring to an system based
on a single 50µm gallium nitride LED capable of transmitting data exceeding 3 Gb/s
[7]. To date, this is the fastest wireless VLC system using a single LED. To achieve this
values OFDM was employed as a modulation scheme to enable the limited modulation
bandwidth of the device to be fully used.

Optical MIMO

Obtained data rates could be increased in VLC, like in RF, by transmitting data in
parallel over multiple transmitter and receiver units. MIMO transmission scenarios in
indoor VLC could be enhanced by the fact of lighting scenarios require white LED
arrays in order to achieve a certain illumination level.
Using a combination of MIMO and OFDM a group of scientists demonstrated that it
is possible to transmit data at 220Mbit/s over a 1m, with line of sight (LOS) between
transmitter and receiver [23].
To improve power and bandwidth e�ciency a new modulation technique called Optical
Spatial Modulation (OSM) was proposed. In OSM, multiple transmission are used but
only one is active at any given time instance. This transmission units are spatially
separated and may be seen as constellation points. In �gure 2.7 is presented the model
for an VLC system using OSM.
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Figure 2.7: OSM system model [24]

OSM proved to be better than on - o� keying (OOK) when achieved transmission speed
of 60Mbit/s in a system with a bandwidth of 30MHz, against the 30Mbit/s achieved
by OOK [25].

2.2.2 Image Sensors as VLC Receivers

Reception of VLC signals is typically made using photodiodes, but instead of these it
is possible to use image sensors (i.e., cameras). First ones are better for high speed
applications whereas the second ones can be a good choice in applications where de-
termination of the source location is in the focus. Image sensors are capable to obtain
images and receive data at the same time. One camera can acquire data from several
sources at the same time, because data from separate LEDs is processed in di�erent
pixels on the sensor array. This approach of VLC systems could be used on augmented
reality applications as well as indoor location systems. Partners around Keio Uni-
versity have demonstrated a three dimensional position measuring system using VLC
determining an object location with mm accuracy. Another example is demonstrated
example is a VLC system, retrieving the global location information based on an LED
identi�cation. This system can be used indoor or outdoor. Detailed information about
this location systems could be read in [26]

2.2.3 VLC under water

Due to limitations of RF communications underwater, VLC pointed out to be the re-
searchers choice to allow rapid and successful transmission of data between sub-aquatic
nodes.
The company Penguin Automated Systems Inc. developed an optical communication
system the allows operators to control underwater remotely operated vehicles. This
system supports a 120° �eld of view, data rates up to 20Mbit/s and uses over 70 LEDs.
In 2009 a group of researchers published one paper describing AquaOptical, an under-
water optical communication system. In clear water AquaOptical achieved a data rate
of 1.2Mbit/sec at distances up to 30m. and in water with visibility estimated at 3m
AquaOptical achieved communication at data rates of 0.6Mbit/sec at distances up to
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9m [27]. A laboratory experiment reported in [28] demonstrated error-free underwater
optical transmission measurements at 1 Gbit/s over a 2 m path in a water pipe with
up to 36dB extinction rate.

VLC revealed to be an option not only for high speed communications, but also for
systems that require lowest data rates. So, over the last years researchers started to
investigate the use of this technology on low data rate portable systems. Most of this
investigation use smartphones as emitters and/or as receivers. Next section will provide
information about some of this projects.

2.3 Low Debt VLC Projects

2.3.1 LED to LED communication

Because LEDs are so commonly used as light emitters it is easy to forget that they are
fundamentally photodiodes, and as such, are light detectors as well. So, back in 2003 a
group of researchers from Mitsubishi Electric Research Laboratories, Inc. proposed the
use of LEDs to send and receive information. They built a bidirectional communication
system using only LEDs and one microprocessor.
LEDs are photodiodes that are sensitive to light at and above the wavelength at which
they emit (barring any �ltering e�ects of a colored plastic package). Under reverse
bias conditions, a simple model for the LED is a capacitor in parallel with a current
source which models the optically induced photocurrent. The simplest way to make a
photodetector out of a LED and a micro-controller is to tie the anode to ground and
connect the cathode to a input/output (I/O) pin driven high. This con�guration puts
the LED under reverse bias conditions and charges its capacitance, After that the I/O
pin must be switched to input mode, allowing the capacitance to discharge down to
the digital input threshold. Knowing the time that the capacitance takes to discharge
it is possible to compute the photocurrent value as well as the amount of received light.
Figure 2.8 shows the three referred situations.

Figure 2.8: Using LED as emitter and receiver

During the elaboration of this project two prototype devices were made, one to be used
to control the backlight of remote controls and another that can be used as a smart
key for building access or to replace Radio Frequency Identi�cation (RFID). The range

13



of communication in this project was very short and limited at 250bits/second in each
direction [29].
It is important to say that LEDs can not transmit and receive data at the same time.
When a LED is being used as receiver for long time periods it will not play its role as
lighting device, this may be a problem if VLC is to be integrated with existing lighting
devices.

2.3.2 Disney Research

Disney Research labs, in Zürich are working in the �eld of VLC. They have projects
to use this technology in theme parks and for toy networking.
In [30] we can �nd the explanation of one VLC led-to-led system that can be used for
toy networking. A brief explanation of all implementation layers is provided. In terms
of data rate this application provides link speed of 100 - 200 bits/second over short
distances. The maximum distance presented is 9 cm, with a throughput of less than
50 bits/second. In �gure 2.9 we can see the shapes of received data and discharging
voltage for one LED being used as receiver.

Figure 2.9: Pulse shapes for transmitted data (top) and discharging voltage (bottom) [31]

In July of 2014, IEEE Communications Magazine published an article reporting ex-
periences with several prototypes of practical VLC systems. This systems include
LED-to-LED communication, smartphone to LED communication using the �ashlight
LED and LED to smartphone communication using camera. The system with better
performance was the one that used LED-to-LED communication, which achieved a
realistic data rate of 8 kbits/s. For communications between smartphone and LED
the obtained data rate was 2 bits/s. The LED to smartphone protocol was tested
with two di�erent encoding techniques: blink and aliasing. In the Blink method, the
LED �ickers at rates visible to the human eye (around 10 Hz in our implementation),
whereas in the Aliasing method, the LED is modulated at high rates such that the
LED is perceived as constantly turned on. Blink scheme achieved 1 bit/s realistic data
rate, whereas aliasing scheme allowed communications at 0.5 bit/s [32].

2.3.3 Casio

Casio Computer Co., Ltd. has unveiled its prototype of VLC System Using Smart-
phones at Consumer Electronics Show (CES) 2012 [33].This prototype has two com-
ponents: smartphone to smartphone communication and information transmission to
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smartphones using LED and digital signage. The smartphone to smartphone commu-
nication system uses the smartphone's screen to send data that would be decoded by
another smartphone camera when it takes a picture. To send data the system �ashes
smartphone screens. This receiver could acquire data from up to �ve mobile phones
simultaneously and can display messages of up to 120 characters with customizable bal-
loon shapes and image frames. This could also send information about photographed
phone owners, such as phone number or social networks link, into the taker's mobile
phone.

2.3.4 Using Smartphones as Secure Keys

Nowadays people do not need to regularly go to the bank to deal with economical
issues. They can use internet or phone banking as well as ATM machines for per-
forming payments, withdrawals, transfers and even money deposits. With this services
the number of magnetic cards in people's wallets is expected to increase. Once smart-
phones are strongly present in our life, companies and researchers started the quest for
one solution for that problem using these equipments. Google and Samsung developed
Near Field Communication (NFC), which requires the user to tap the back of his NFC
enabled smartphone on the surface of an also NFC enabled card reader to transmit
the required credit card information [34]. Square created Square Reader a device that
is used to accept credit card payments by connecting to a mobile device's audio jack.
Square's original reader consisted of a simple read head directly wired to a 3.5 mm
audio jack, through which unencrypted, analogue card information was fed to smart-
phones for ampli�cation and digitization. Both solutions have some drawbacks, such
as lack of security, incompatibility or high complexity [35].
A group of researchers thought that maybe VLC could be the solution [36] and created
a prototype that used a smartphone �ash to send card data to a receiver. The used
smartphone was a Samsung device running Android OS 4.2.2 and the receiver was a
photodetector connected to an Arduino Mega kit. The Arduino Mega was responsi-
ble to decode data and send them to a computer to be displayed. Speaking about
modulation and data rates, the OOK modulation scheme failed to correctly receive
the transmitted signal. Using Pulse Width Modulation (PWM) the system achieved
error-free transmission of the required card information at speeds up to 4.2 and 15
bits/s using light-dependent resistor (LDR) and photodiode detectors, respectively.
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Chapter 3

Exploring Smartphone's Flashlight to

Transmit Data

3.1 Concept

In this project we are trying to use the �ashlight present in one smartphone to act as
emitter in one VLC system. This system is to be used for communication purposes
with link distance bellow 2 meters and in environments illuminated with LED lamps.
The use of LED lamps is required to avoid errors caused by light �ickering that is
characteristic of incandescent lamps. Once we are planing to use pulse modulation
we do not have to concern about amplitude noise. But some cautions with the noise
caused by signal transitions are needed, once that kind of noise could a�ect the sys-
tem's synchronism and introduce errors on the information decode.
We pretend to implement a low data rate system that can be used in the �eld of
electronic shelf labeling. An electronic shelf label (ESL) system is used by retailers
for displaying product pricing on shelves. Typically, electronic display modules are
attached to the front edge of retail shelving. These modules use liquid-crystal display
(LCD) or similar screen technologies to show the current product price to the customer.
A communication network allows the price display to be automatically updated when-
ever a product price is changed. This communication network can be based on radio,
infrared or even visible light communication.
Our project can be used to do an upgrade to exiting shelf labeling systems, allowing
costumers to provide feedback about is preferences to retailers. This feedback will be
provided using one mobile application, and could be something like "I like this product"
or "I do not like this product". To make this option viable the existing shelves must
be accompanied with photodetectors.

3.2 Flash Control Strategies

In this section we will explore and explain various ways in how the �ash could be
accessed and controlled.
Almost every smartphones have an high power LED, which is mainly used to provide
illumination to the camera, and to serve as a low power �ashlight. The advances in
VLC technology revealed that this LED can be used for communications, replacing
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existing technologies such as RFID and NFC. However the �ash sub-system was not
designed for that purpose, it was designed and implemented for short time illumination
when taking photos in dark environments or for being used as illumination source for
extended periods. Despite of that, smartphones have one characteristic that allows the
use of the LED as communication interface. They guarantee that applications could
access and manipulate the LED state. Knowing the value of LED state, and changing
it allow to turn ON and OFF the �ashlight. Some smartphones also allow applications
to manipulate the value of LED intensity, with up to 4 possible intensity levels.
The smartphone used for this project was an HTC One X which has one LED that
can handle currents up to 700mA, allowing both time and amplitude modulation for
transmitted data. This project only used the time control. In HTC One X an AAT1271
chip[37], exposed through the Tegra30 GPIO chip [38], drives the LED. On top of this,
the Linux kernel will use the AAT1271 driver software, and a �ashlight driver.
A generic NVidia Tegra30 based device running the Android OS o�ers four di�erent
strategies to access the �ashlight, these strategies are shown in �gure 3.1, identi�ed
with numbers for 1 to 4. It is important to know, describe and characterize the di�erent
strategies of �ash access and control that may be used by applications. Each one of the
strategies provide di�erent levels abstraction and functionality over the basic function
of the LED. The following subsections discuss the available methods for �ash control.

Figure 3.1: Di�erent ways of controlling the �ashlight

3.2.1 Java approach

Java is widely used to develop embedded and mobile applications, games, web content
and enterprise software. With more than 9 million developers all over the world, Java
is present in a huge amount of devices from mobile phones to scienti�c supercomputers.
Java has been tested, re�ned, extended, and proven by a dedicated community of Java
developers, architects and enthusiasts. This allow the use of Java in the development
of high-performance applications for a great variety of devices and platforms. With
Java it is possible to write software on one platform and run it on virtually any other
platform. This facts led to the use of Java in Android OS software development[39].
In spite of the chosen programing language is Java, Android terminals do not run Java
code. Programs are commonly written in Java and compiled to bytecode for the Java
Virtual Machine (JVM), which is then translated to Dalvik bytecode (.dex or .odex
�les).
Figure 3.2 shows the process of compiling and installing a Java application into one
Android OS terminal.
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Figure 3.2: Compile and Install Android OS Application

Dalvik is the process virtual machine (VM) in Android OS which runs over the Linux
kernel and executes Java applications written for Android. Unlike JVMs, which are
stack machines, the Dalvik VM uses a register-based architecture which requires fewer
but more complex virtual machine instructions.
A tool called dx is used to convert Java .class �les into the .dex format. Multiple classes
are included in a single .dex �le. Duplicate strings and other constants used in multiple
class �les are included only once in the .dex output to save space in memory. Java
bytecode is also converted into an alternative instruction set used by the Dalvik VM.
An uncompressed .dex �le is typically a few percent smaller in size than a compressed
Java archive (JAR) derived from the same .class �les.
Programing in Java it is easy to access �ashlight control, once it uses the Camera class
provided by the Android Java Software Development Kit (SDK). The implementation
of this control interface is high level and is well documented. Applications that use
this kind of approach can run on any Android OS smartphone because Camera class
is natively supported by the OS and abstracts the access to the hardware layer.
The biggest problem of using this approach is the fact that it is a Java interface
running inside Dalvik JVM. Despite of granting portability JVM needs to interact
with the world outside it and this interaction costs some time. This time costs are due
to synchronization mechanisms and context switching.
This approach o�ers a low level of control over �ash LED and imposes great time
delays during the execution. Along with the delays we found a enormous dispersion
on the obtained time values, making impossible the use of an Java application for
communication purpose.
To reduce de impact of all the mechanisms involved in the execution of Java applications
on the time precision it was decided to implement the LED control interface using Java
Native Interface (JNI). JNI is a Java platform that interacts directly with the machine
and can be employed to increase the interaction with the hardware improving e�ciency.
JNI code uses both Java and native languages, such as C, C++ or assembly and is
written using the Android Native Development Kit (NDK). The NDK is a toolset that
allows developers to implement parts of their applications using native languages. Since
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Java code runs on Dalvik and native code is compiled to binaries that run directly on
the operating system, JNI ensures correct cooperation between the two worlds.
As it can be seen on �gure 3.3 native code runs on top of the Android system, as well
as Dalvik VM and both require the system to provide the execution environment. JNI
belongs to the Dalvik VM and establishes two way communication between native code
and Java code, enabling the use of Java methods by native code and the use of native
methods by Java code. During the execution of this project JNI was used to perform
the interaction between Java and C methods[40].
Using JNI it was possible to access and control the �ashlight using three di�erent
methods: using Sys File System (SysFS), using the Input Output Control Interface
(IOCTL) and using General Purpose Input/Output (GPIO). The use of this three
approaches will be now described.

Figure 3.3: Relationship between Java code, Dalvik VM and native code

3.2.2 Accessing LED Through SysFS

SysFS is a virtual �le system provided by the Linux kernel. SysFS is used to export
information about several kernel subsystems, hardware devices and associated device
drivers from kernel's device model to user space. This �le system has an strict hierarchi-
cal directory organization, based on the kernel's internal data structures organization.
SysFS creates mostly ASCCII �les with one value per �le, to ensure that the exported
data is accurate and easily accessible. This makes SysFS one of the most intuitive and
useful features of the Linux kernel. It provides two components: a kernel programming
interface for exporting data via SysFS, and a user interface to view and manipulate
these items that maps back to the kernel objects which they represent. Table 3.1 shows
the mapping between internal kernel constructs and their external (user space) SysFS
mappings[41].

Kernel User Space
Kernel Objects Directories

Object Attributes Regular Files
Object Relationships Symbolic Links
Table 3.1: Mapping between kernel and user space

SysFS is typically mounted in /sys. In the smartphone used for this project, the Linux
kernel exposes the �ash LED in a directory available at /sys/class/leds/�ashlight. In-
side this folder there is a special �le named brightness that can be written in order
to control the �ash brightness, this �le supports integers between 0 and 255. A 0 will
turn the �ash OFF, while a number between 1 and 255 turns ON the �ash. Despite
the big range of supported values, only a few brightness levels are allowed, while other
values may result on a blinking LED or blinking screen. Every time we need to change
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the value present on brightness it is necessary to open the �le (fopen()), write a new
value to it (fprintf()) and then close the �le (fclose()), once the changes only take e�ect
when �le is closed.
This control interface provides lower latency and jitter once it avoids the JVM synchro-
nization mechanisms. The use of SysFS does not o�er portability once each smartphone
model has a di�erent kernel structure. Moreover, using SysFS interface implies that
some software layers are still present, such as Virtual File System (VFS), the Flashlight
driver, and the LED software driver.
This approach allowed to get �ner control over TON and TOFF , but with some unwanted
delays.

3.2.3 Using Input Output Control Interface to control the LED

Additionally to the read and write functions, �le based mechanisms o�er the possibility
of additional control commands which are supported by the Input Output ConTroL
(IOCTL) method. The IOCTL mechanism is implemented as a single system call which
multiplexes di�erent commands to the appropriate kernel space function. A call to ioctl
has three arguments: a �le descriptor, a number identifying the command, and a data
argument. The multiplexing is done based on the �le descriptor or on the number of
the command. Conceptually it would be possible to use any number for new IOCTL
commands, but this is strongly discouraged, and a system wide unique number should
be used instead. This ensures that it is not possible to execute an IOCTL on a wrong
device leading to unexpected behavior.
Using this approach the obtained results that are very similar to the SysFS control.
Despite of IOCTL calls are directed to the Flashlight driver, access to the brightness
control �le requires opening the �le, writing a value and closing the �le, as the value
is only committed when the �le is closed. Each of these operations requires at least
one IOCTL, totaling three interactions between the control application and the kernel.
This approach also does not o�er portability and have unwanted delays with almost
the same values as the SysFS approach.

3.2.4 Controlling the LED With General Purpose Input Out-

put

The last tested approach takes advantage of the GPIO interface. GPIO means "Gen-
eral Purpose Input/Output" and is a special pin present in some chips that can be set
as input or output and used to set a signal high or low (in output mode) or to get the
signal current status (in input mode). Usually this pin is directly managed by kernel
modules but there is an easy way to manage these pins also from user space.
This approach o�ers almost unrestricted control because it allows sending commands
directly to LED driver chip, through the GPIO chip. This access can be made in
two ways, one is through SysFS and other is by accessing directly the mapped mem-
ory space. It provides great access, but requires deep knowledge about how hardware
is structured in each smartphone. Applications made using this approach are good
for speci�c uses but do not permit portability between various smartphone models.
Fortunately, since GPIOs are identi�ed by numbers, the Linux kernel provide human
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readable alias, enabling dynamic discovery of the relevant GPIO to use to drive the
LED state. This method was the one that allowed to control the LED with shorter
pulses. Nevertheless it also imposes some unwanted delays, much smaller than other
approaches. If in previous �ash control strategies we had delays in the order of mil-
liseconds that are di�erent for TON and TOFF , here we have a delay of approximately
100µs that is equal for both LED states.

3.3 Modulation Techniques

Some pulse modulation techniques are presented in this section. Pulse modulation
techniques were used because it is easier to control the time that the �ashlight is ON
or OFF than control the amplitude of pulses.

3.3.1 IEEE Standard for VLC

The standardization of VLC was in charge of IEEE 802.15.7 Visible Light Communi-
cation Task Group. This task group de�ned the physical (PHY) and a medium access
control (MAC) layer for short-range optical wireless communications using visible light
in optically transparent media. The standardization process begun in 2009 with the
inaugural meeting for task group 7, where it was chartered to write standards for free-
space optical communication using visible light. In December 2011 the MAC and PHY
standards for VLC where released, this standardization was very important since it
allowed researchers and developers to work in products that will be compliant with the
international standard.
Despite of the standardization cover PHY and MAC layer, in this section informa-
tion about only PHY layer will be provided, once this is the one where light is really
used. Although MAC layer is rely important because it handles physical layer manage-
ment issues such as addressing, collision avoidance and data acknowledgment protocols.
Three main topologies are supported by MAC layer: peer to peer, star con�guration
and broadcast mode. Figure 3.4 shows this three scenarios.

Figure 3.4: MAC Topologies

The physical layer is divided in three types and employs a combination of di�erent mod-
ulation schemes: On-o� keying (OOK), Variable pulse position modulation (VPPM)
and Color shift keying (CSK).
OOK is used because it is simple to code and decode. The 802.15.7 standard uses
Manchester coding for low bit rates, once Manchester coding doubles the bandwidth
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needed for OOK transmission and uses run length limited (RLL) for higher bit rates.
Pulse Position Modulation (PPM) encodes data using the position of a pulse inside
a time slot, it requires the duration of the time slot to be long enough to permit the
identi�cation of di�erent pulse positions. VPPM es almost equal to PPM but it allows
the pulse width to be controlled for light dimming support. CSK needs the use of RGB
LEDs on the illumination system, since it codes data using by the color of emitted
radiation. Mixing of the red, green and blue primary sources produces the di�erent
colors which are coded as information bits. The disadvantage of this system is the
complexity of both the transmitter and the receiver.
The three physical layers have di�erent specs for di�erent uses. PHY I is used for data
rates between 11.67 and 266.6 kb/s and is designed for outdoor applications. Convolu-
tional and Reed Solomen codes can be used for forward error correction, and OOK or
VPPM are used for modulation. PHY II is designed to operate indoor with data rates
between 1.25 and 96 Mb/s. It may use Reed Solomen codes to forward error correction
and uses the same modulation techniques as PHY I. PHY III can only be used when
RGB senders and receivers are available and provides data rates between 12 and 96
Mb/s. CSK is the obvious choice for modulation scheme and Reed Solomen codes are
used again for forward error correction. Detailed information about the IEEE 802.15.7
standard can be found at[42].

3.3.2 On O� Keying

On-o� keying (OOK) is the simplest form of amplitude-shift keying (ASK) modulation.
It codes information as the presence or absence of a carrier wave. In its simplest form,
the presence of a carrier for a speci�c duration represents a binary one, while its absence
for the same duration represents a binary zero. Some more sophisticated schemes vary
these durations to convey additional information. Due to its simplicity OOK is widely
used for intensity modulation/direct detection in optical communications. Two OOK
codi�cation schemes could be used, return-to-zero (RZ) and non-return-to-zero (NRZ).
Figure 3.5 presents the mapping of OOK-NRZ and OOK-RZ with a duty cycle γ=0.5.

a b

Figure 3.5: Transmitted wave forms for OOK-NRZ (a) and OOK-RZ (b)

The NRZ scheme is the one that codes the bit one with a pulse that occupies all the
bit duration slot, RZ scheme uses a pulse that partially occupies the bit duration.
The envelope for OOK-NRZ is given by

p(t) =

{
2Pr t ∈ [0, Tb]
0 elsewhere

(3.1)
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where Pr is the mean power and Tb is the bit duration.
OOK is used in many commercial optical wireless systems, due to its simplicity. It is
used in IrDA and Fast IR links, for example.
Assuming independently and identically distributed ones and zeros it is possible to
compute electrical power spectral densities for OOK-NRZ and OOK-RZ (γ=0.5) using
following equations, δ() represents the Dirac delta function.

SOOK−NRZ(f) = (PrR)2Tb

(
sin πfTb
πfTb

)2 [
1 +

1

Tb
δ(f)

]
(3.2)

SOOK−RZ(γ=0.5)(f) = (PrR)2Tb

(
sin
(
πfTb

2

)
πfTb

2

)2 [
1 +

1

Tb

∞∑
n=−∞

δ(f − n

Tb
)

]
(3.3)

Using MatLab® it is possible to plot the theoretical PSDs for the OOK modulation
scheme, as shown in �gure 3.6.

Figure 3.6: Power Spectral Density of OOK-NRZ and OOK-RZ(γ=0.5)

For baseband modulations the bandwidth required is generally de�ned by the span
between DC and the �rst null of the transmitted signal PSD. Observing Fig. 3.6 it
is possible to infer that OOK-NRZ has low bandwidth requirements than OOK-RZ
(γ=0.5). The curve representing OOK-RZ power spectral density has discrete impulses
at the odd multiples of the bit rate, those impulses could have an important role in
clock recovery mechanisms. On the other hand, OOK-NRZ requires the introduction
of some nonlinearities to achieve clock recovery, due to the spectral nulls present at the
multiples of the bit rate. Both OOK-NRZ and OOK-RZ have signi�cant power at low
frequencies, it means that high-pass �ltering will not be very e�ective removing noise
introduced by external light sources.

3.3.3 Pulse Position Modulation

Pulse position modulation (PPM) is an attractive option to use in line of sight optical
wireless links where bandwidth is not the main concern, due to its power e�ciency. If
by one side PPM improves the power e�ciency of OOK by the other side it increases
bandwidth requirements and system complexity.
An L-PPM symbol consists of a pulse of constant power occupying one slot duration L
within possible time slots, leaving the other slots empty. The value of L is 2M where M
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is the bit resolution, an integer greater than zero. Information is encoded within the
pulse position, which represents the decimal value of the M -bit input data. A sequence
of two di�erent PPM symbols is shown in �gure 3.7.

Figure 3.7: Structure of Two PPM symbols (M=3)

If we want the same throughput as in OOK the PPM time slot Ts_PPM will be shorter
than the OOK bit duration (Tb) by a factor L/M . The following formula is used to
compute the value of PPM time slot

TsPPM =
TbM

L
(3.4)

Equations 3.5 and 3.6 can be used to compute the pulse shape for L-PPM and one
PPM symbol sequence, respectively

x(t) =

{
1 t ∈ [(m− 1)Ts_PPM ,mTs_PPM ]
0 elsewhere

,m ∈ {1, 2, ...L} (3.5)

x(t)PPM = LPavg

L−1∑
k=0

ckp

(
t− kTsymb

L

)
(3.6)

where Ck ∈ {c0, c1, c2, ..., Cl−1} is the PPM symbol sequence, p(t) is the pulse shaping
function of unitary height and duration Tsymb/L, Tsymb(= TbM) is the symbol duration
and LPavg is the peak optical power of PPM symbol.
All PPM signals are equidistant and the minimum spacing between them is given by:

dmin−PPM = min = i 6= j

∫
[xi(t)− xj(t)]2dt = 2LP 2 log2

(
L

Rb

)
(3.7)

The substitution of OOK modulation by PPM will increase the system complexity
due to the need of slot and symbol synchronization in the receiver, to demodulate
the received signal. Despite of that PPM was the choice in many optical wireless
communication systems because it is power e�ective. We can �nd PPM in deep space
laser communications and portable devices, applications where power consumption is a
great concern. Once we are using a smartphone to send data, power consumption is a
great concern. Smartphones are battery powered devices and less power consumption
means more battery time.
Using some mathematical formulas it is possible to the PSD for PPM.

SPPM(f) = |P (f)|2[Sc,PPM(f) + Sd,PPM(f)] (3.8)
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P (f) represents the Fourier transform of the pulse shape and Sc,PPM and Sd,PPM are
the continuous and discrete components, respectively.

Sc,PPM(f) =
1

Tsymb

[(
1− 1

L

)
+

2

L

L−1∑
k=−∞

(
k

L
− 1

)
cos

(
k2πtsymb

L

)]
(3.9)

Sd,PPM(f) =
2π

T 2
symb

∞∑
k=−∞

δ

(
f − kL

Tsymb

)
(3.10)

Once again MatLab® is a great help to plot the PSD for several values of L.
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Figure 3.8: Power Spectral Density of PPM for L=4, 8 and 16

As it is possible to observe in �gure. 3.8 the position of the �rst null increases when L
increases, it represents that greater L's require more bandwidth.

3.3.4 Pulse Interval Modulation

Pulse interval modulation encodes data by inserting empty slots between two pulses.
As it has built-in symbol synchronization PIM o�ers reduced complexity compared to
PPM. The simplest version of PIM is digital pulse interval modulation (DPIM). DPIM
is an anisochronous pulse time modulation and o�ers improved performance compared
with PPM by removing redundant space. This results into higher transmission capacity
to DPIM when compared with PPM.
Each DPIM symbol is composed by a pulse of one slot duration followed by a variable
number of empty slots. There are L possible symbols {s(n), 0 < n ≤ L} of di�erent
length and each block of M (= log2 L) input data bits {di, i = 1, 2, ..., M} is mapped
to one of these symbols. The decimal value of the M -bit data stream being encoded
de�nes the number of empty slots. Once the number of empty slots is variable the
symbol duration varies between Ts and LTs, where Ts is the slot duration. In order to
reduce inter symbol interference e�ect a guard band composed by one or more empty
slots can be added to each symbol. This guard band is introduced immediately after
the pulse and will change minimum and maximum symbol duration, for example, with
one guard slot (1GS) the minimum duration will be 2Ts and maximum duration will
be (L+ 1)Ts.
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Variations on the value of L allows DPIM to increase either bandwidth e�ciency or
power e�ciency, compared to PPM. If we increase bit resolution, for a �xed average bit
rate and �xed bandwidth, we can achieve better power e�ciency, once again compared
to PPM.
Figure 3.9 shows the mapping for 4-DPIM with no guard slot (NGS) and with one
guard slot (1GS).

Figure 3.9: Mapping of DPIM Symbols

It is possible to compute slot duration of a DPIM system in a way that the mean
symbol duration is equal to the time taken to transmit the same number of bits using
OOK or PPM. To perform this calculus the next equation could be used:

Ts =
TbM

L̄DPIM
(3.11)

L̄DPIM is the average symbol length and is given by (2M + 1)/2 for DPIM(NGS) and
by (2M + 3)/2 for DPIM(1GS).
Assuming random and uniformly distributed symbol length it is possible to compute
the value for the bit rate (Rb):

Rb =
M

L̄DPIMTs
(3.12)

The higher transmission capacity of DPIM could be used in several ways for optical
wireless communications. It allows to transmit the same average data rate of PPM
at near half of the slot frequency, improving the bandwidth e�ciency but decreasing
the power e�ciency. On the other hand side the number of bits per symbol could
be increased without an increase of the slot frequency, improving this way the power
e�ciency. Finally this increased capacity could be used to introduce redundancy into
the code. Redundancy will provide error correction and detection mechanisms to the
code, allowing the same bit error rate to be achieved at lower transmit power.
This fact could be best appreciated taking a look on the spectral properties of DPIM.
One DPIM single sequence is modulated by:

SDPIM(t) = L̄DPIMPr

∞∑
k=∞

ckp(t− kTs − τn) (3.13)

where ck is a random variable which represents the presence or absence of a pulse in the
nth time slot and τn is the random jitter within a time slot at the threshold crossing
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time slot at the receiver. The power spectral density (PSD) model of the DPIM is
given as:

SDPIM(f) =
1

Ts_DPIM
|P (f)|2[Sc,DPIM + Sd,DPIM ] (3.14)

where P(f) is the Fourier transform of th pulse shape, Sc,DPIM is the continuous com-
ponent and Sd,DPIM is the discrete component. This components are given by:

Sc,DPIM(f) =
5L∑

k=−5L

(
Rk

1

L̄2
DPIM

)
e−j2πkfTs_DPIM (3.15)

Sd,DPIM(f) =
2π

Ts_DPIM L̄2
DPIM

∞∑
k=−∞

δ

(
f − 2πk

Ts_DPIM

)
(3.16)

When working with rectangular pulses with unit-amplitude and duration Ts_DPIM the
Fourier transform can be computed as:

P (f) = Ts_DPIM
sin(πfTs_DPIM)2

πfts_DPIM
(3.17)

The component Rk present in the continuous component is th slot autocorrelation.
This value varies according to the type of DPIM. Next will be presented the formulas
of Rk for DPIM(NGS) and DPIM(1GS).

Rk−DPIM(NG) =



2
L+1

k = 0

2
Lk

(L+ 1)2 1 ≤ k ≤ L

1
L

∑L
i=1Rk−i k > L

(3.18)

Rk−DPIM(NG) =


L−1avg k = 0
0 k = 1(
L−1
avgL

−1

√
1+4L−1

)[(
1+
√
1+4L−1

2

)k−1
−
(

1−
√
1+4L−1

2

)k−1]
2 ≤ k ≤ L+ 1

1
L

∑L
i=1Rk−l−i k > L+ 1

(3.19)

In �gure 3.10 graphics for PSD of DPIM(NGS) and DPIM(1GS) are presented.
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Figure 3.10: PSD for DPIM(NGS) (left) and PSD for DPIM(1GS) (right)
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All curves were plotted for the same average optical power, using rectangular-shaped
pulses occupying the full slot duration. The power axis is normalized to the average
electrical power multiplied by the bit duration and the frequency axis is normalized to
the bit rate Rb. Observing the areas under the curves it is possible to see an increment
in detected electrical power as L increases. By the observation of null points it is easy
to infer that DPIM(1GS) requires more bandwidth than DPIM(NGS).

3.3.5 Dual-Header Pulse Interval Modulation

Dual-Header Pulse Interval Modulation (DH-PIM) is a digital pulse time modulation
technique that o�ers increased transmission capacity requiring less bandwidth and has
built-in frame and slot synchronization. In DH-PIM, the nth symbol Sn(hn, dn) starts
with a header hn of duration Th = (α+ 1)Ts followed by a sequence of dn empty slots.
Ts represents the slot duration and α > 0 is an integer. Two headers are possible,
depending on the value of the most signi�cant bit (MSB) of the input word. If MSB=0
header one (H1) will be used, if MSB=1 the chose will be header two (H2). H1 and
H2 have pulse durations of 0.5 ∗ αTs and αTs, respectively.

Figure 3.11: DH-PIM Symbol Structure With Two Headers (α = 1)

After each pulse there is one guard band of variable length Tg ∈ {(α/2 + 1)Ts, Ts}
to cater for symbols representing zero. The value of dn ∈ {0, 1, . . . 2M−1 − 1} is the
decimal value of the input codeword for symbols which start with H1 or the value of
1's complement for the input codeword when symbols start with H2. Built-in symbol
synchronization is possible because the header has the role of symbol initializer and
time synchronizer. In addition to the removal of the redundant space in PPM, DH-PIM
also reduces the average symbol length of DPIM. This to facts leads to an increased
data throughput.
The average symbol length L̄DH−PIM and slot duration Ts_DH−PIM of DH-PIMα are
given by:

L̄DH−PIM =
2M−1 + 2α + 1

2
(3.20)

TSDH−PIMα =
2M

(2M−1 + 2α + 1)Rb

(3.21)

Mathematically, a DH-PIM pulse can de represented by:

x(t) = A

∞∑
k=0

{
p

[
2(t− Tk)
αTs

− 1

2

]
+ hnp

[
2(t− Tk)
αTs

− 3

2

]}
(3.22)
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with A = 4L̄DH−PIMPr
3α

representing the peak transmitted optical power and hn ∈ {0, 1}
indicating H1 or H2 respectively.
Table 3.2 shows the mapping of symbols for OOK, PIM(1GS) and DH-PIM

OOK PIM(1GS) DH-PIM(α=2)

000 10 100
001 100 1000
010 1000 10000
011 10000 100000
100 100000 110000
101 1000000 11000
110 10000000 1100
111 100000000 110

Table 3.2: Symbol mapping for DPIM(NGS) and DPIM(1GS)

Now some spectral characteristics will be analyzed. The Fourier transform of DH-PIM
is given by:

XN (ω) = V

N−1∑
n=0

∫ infty

−∞

{
rect

[
2(t− Tn)

αTs
− 1

2

]
+ hnrect

[
2(t− Tn)

αTs
− 1

3

]}
e−jωtdt (3.23)

So,

XN (ω) =
V

jω
e−jωT0

(
1− e−

−jωTsα
2

)N−1∑
n=0

[
(1 + hne−jωTsα/2)e−jωTsn(α+1)e−jωTs

∑n−1
k=0 dk

]
(3.24)

The PSD of DH-PIM pulse train could be computed by:

P (ω) =



4V 2 cos2(αωTs4 )


[
5− 4 sin2

(
αωTs

4

)]
+
[
9− 8 sin2

(
αωTs

4

)]
Re
(

ψ
1−ψ

) 
ω2Ts(2M−1+2α+1)

ω 6= 2πK
Ts

0 ω = 2πK
Ts

K even
or α even

∞ ω = 2πK
Ts

K odd
and α odd

(3.25)

where K is a positive integer and ψ given by

ψ =
1

2M−1
{1 + e−jωTs + e−j2ωTs + . . .+ e−jω(2M−1−1)Ts} · e−jω(α+1)Ts (3.26)

So, the spectrum consists of a sinc envelope when ωTs/2π is not integer, distinct
frequency components at the slot frequency and its harmonics when αωTs/2π is an
odd integer and nulls when αωTs/2π is an even integer. Depending on the values of
α the slot component and its harmonics may coincide the nulls of the sinc envelope.
By consequence the existence of the slot components and the locations of nulls are
a�ected by the pulse shape. The presence of the slot frequency component is useful for
synchronization at the receiver, once it could be extracted using a phase-locked loop
circuit.
Fig. 3.12 presents the MATLAB graphics of PSD for DH-PIM with �xed α and �xed
M.
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Figure 3.12: PSD for DH-PIM with constant α (left) and PSD for DH-PIM with constant M (right)

Observing �g. 3.2 it is possible to �nd out that increasing the value of M will increase
the detected optical power, for a constant α. It is also possible to see that increasing
the value of α for a constant M will cause a decreasing of needed bandwidth. To plot
this graphics the value of Rb was normalized to 1.

3.3.6 Comparison of the modulation techniques

Two important points when talking about modulation schemes are the power e�-
ciency and the bandwidth requirement. Since the optical wireless channel is mostly
power limited due to the safety issue, the power e�ciency is the foremost issue. Power
requirement is de�ned as the average optical power required by an ideal system to
guarantee a certain bit rate and error probability.
Using MatLab®we simulated and plotted the average optical power requirements and
bandwidth requirements of OOK (NRZ and RZ), PPM, DPIM and DH-PIM. For DH-
PIM, DPIM and PPM an increment in the value of L leads to a decrease of the average
optical power requirements together with one increase of the bandwidth requirements.
In OOK-RZ scheme, lower duty cycles have better power performance but by the other
side bandwidth increases for small duty cycles. If we are transmitting symbols from
a very little alphabet, more speci�cally and alphabet with 4 symbols(L=2), the best
option is the use of OOK-NRZ, as can be seen on �gure 3.13.

Figure 3.13: Normalized Optical Power Requirements vs. Normalized Bandwidth Requirements [43]
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In terms if transmission capacity, DH-PIM2 is the scheme that o�ers better perfor-
mance. For low bit rates we can say that DPIM is better that DH-PIM1, but this
di�erence disappears for M > 6. Figure 3.14 shows transmission capacity for several
modulation schemes.

Figure 3.14: Normalized Transmission Capacity vs. Bit Resolution [43]

In an anisochronous modulation scheme such as DPIM, the symbol length is variable.
Since errors are not con�ned to the symbol in which they occur, it is convenient to
base the study on the packet transmission rate rather than the bit rate.
In �gure 3.15 we can see the curves of the packet transmission rate of PPM, DPIM,
DH-PIM1 and DH-PIM2 normalized to that of PPM versus M. As we can see the worst
option, based on packet transmission rate is PPM and the best is DH-PIM2. For higher
values of M DPIM and DH-PIM1 achieve almost the same transmission rate

Figure 3.15: Normalized Packet Transmission Rate vs. Bit Resolution [43]

Based on the obtained results we can say that the best modulation scheme is DH-PIM2,
and this is the reason why DH-PIM was the chosen modulation for our project.
A deeper analysis on the modulation techniques can be found on [43].
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Chapter 4

Developed Work

4.1 Introduction

The experiments made to obtain the results that will be presented were made using
one mobile phone as information sender and one device based on an Arduino board as
receiver. The experimental set-up could be seen on �gure 4.1.

Figure 4.1: Experimental Set-up

This experimental set-up was closed inside a protected box during all the experiments,
to avoid external interferences caused by light sources. Both, the emitter and the re-
ceiver, were �xed to the extremities of the box to guarantee that the path between the
devices were equal for all the tests. The mobile phone used as sender was a HTC One
X[44] running Android OS 4.3.1. This smartphone has one Nvidia Tegra 3 chipset, this
chipset is a quad-core CPU, with 5th battery-saver core and maximum frequency of
up to 1.7 GHz in single core mode or 1.6 GHz as quad-core[45].
To get better performance and to guarantee access to some root functions some mod-
i�cations where made to the mobile phone's software. The bootloader was unlocked
and one custom ROM was installed. The chosen one was CyanogenMod version 10.2.1-
endeavoru.

The receiver is composed by a photo-detector followed by a transimpedance amplifying
stage. The received signal is threshold compared and feed in digital format to an
Arduino Uno digital port for further processing, as shown in �gure 4.2
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Figure 4.2: Schematic of the receiver set-up

This Arduino is a microcontroller board based on ATmega328. It has 14 digital pins
that could be used as input or output and 6 of them could be used as PWM outputs.
Furthermore it has 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a
power jack, an in circuit serial programming header, and a reset button[46].
The loop() function of Arduino is pooling the digital pin used to receive the signal.
When we are gathering times for the ON pulse an internal Arduino function is used
to obtain the pulse width. The same is made for OFF pulses. Figure 4.3 shows one
example of what is made in the Arduino function that measures the time intervals.

Figure 4.3: Example of the Arduino's Work Flow

Every time a pulse is measured its value is stored into one array, this array is then
dumped through the serial port into the PC. To connect the PC with the Arduino we
use one USB cable. All the collected data is analyzed using MatLab® .

4.2 Data Analysis

In this section we will evaluate the level of temporal control that can be achieved
for ON and OFF �ash pulses.This will allow the characterization of the statistical
properties associated with the duration of �ash pulses in the proposed communication
scheme.
For all results discussed in this section, the tests were made with the �ash set to send
30000 consecutive DH-PIM symbols to the Arduino based receiver. The symbols where
randomly chosen from the alphabet of N=8 di�erent symbols shown in table 4.1. For
each time value 3 tests were made measuring TON and 3 measuring TOFF . To control
pulse duration a base time (bt) was de�ned, the expected values for ON are bt or
2bt depending on the use of header 1 or header 2, respectively. For information slots
we expect times equal to nbt with n ∈ [1, 2, 3, 4].Figure 4.4 shows an example of the
structure of DH-PIM symbols used in this project.

34



Figure 4.4: DH-PIM Symbol Structure

Decimal Binary DH-PIM
0 000 10
1 001 100
2 010 1000
3 011 10000
4 100 110
5 101 1100
6 110 11000
7 111 110000

Table 4.1: DH-PIM used alphabet

4.2.1 Accessing LED Through SysFS

We knew by previous work that using java we can turn ON and OFF the �ash but
we don not have any kind of control over the pulse duration, so new approaches were
required. The �rst one we thought was the SysFS approach, previously described.
To see if we can precisely control the pulse duration we made tests for base times
between 500µs and 900µs using the scheme described above. Here will be presented
the analysis of the obtained results for bt = 700µs, and some considerations about the
general comportment of the system for all the tested times.
In the experience that will be analyzed symbols must start with a ON pulse of 700
or 1400µs, depending on H1 or H2. This pulses must be followed by empty slots of
duration n·700µs, with n ∈ {1, 2, 3, 4}. The results provided by Arduino where used
to build histograms and to �t them with Gaussian shapes, using MatLab®. �gure 4.5
shows the obtained results. It is possible to see that headers and information slots have
almost the comportment of Gaussian random variables. For the headers we obtain a
mean value µ1 for H1 and Tp + µ1 for H2 and very similar standard deviations (σ1).
For information slots we have mean values of µ0 for n = 1 and µ0 + k · bt, k = 2, 3, 4
for n = 2, 3, 4 (n represents the number of empty slots).
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Figure 4.5: Histograms and Gaussian �t for headers and time slots

In table 4.2 it is possible to observe the uncertainty parameters obtained for three
consecutive runs, along with di�erence between expected and obtained mean values for
headers and empty slots.
As it is possible to see the distance between peaks is almost equal to bt, which means
we are controlling the time that the LED stays ON and OFF.

Headers Information Slots
H1 H2 D=1 D=2 D=3 D=4

Run µ1 σ1 µ1 σ1 µ0 σ0 µ0 σ0 µ0 σ0 µ0 σ0

1 1424.4 16.1 2119 16.4 3877.2 11.8 4573.2 14 5268.3 12.7 5964.7 15.7
2 1424.6 14.3 2120.1 15.9 3876.7 10.9 4573 13.7 5267.9 11.4 5964.5 14
3 1440.7 45.7 2136.1 45.3 3877.7 11.8 4574.2 13.9 5268.5 12.5 5965.6 14.1

Mean 1429.9 25.4 2125.1 25.9 3877.2 11.5 4573.5 13.9 5268.2 12.2 5964.9 14.6
Wanted 700 - 1400 - 700 - 1400 - 2100 - 2800 -
Di�. 729.9 - 725.1 - 3177.2 - 3173.5 - 3168.2 - 3164.9 -

Table 4.2: Measured uncertainty parameters, with TON = TOFF = 700µs for headers and empty slots

To �nd out if the di�erence between de�ned and obtained times is dependent or not
of the time we want the graphic from �gure 4.6 was drawn.

Figure 4.6: Di�erence between de�ned and obtained times for bt = 500, 600, 700, 800 and 900µs

Figure 4.6 reveals that for times between 500 and 700µs the di�erence between the time
we want and the time we obtain is almost constant. When de�ned time is higher than
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700µs this di�erence su�ers some variations.This di�erences might be forced by the
kernel that imposes minimum times for distance between transitions. On �gure 4.7
there it is studied the impact of ON and OFF nominal timings on the uncertainty
parameters.

Figure 4.7: Uncertainty parameters for increasing nominal ON and OFF timings (mean, standard deviation and relative

uncertainty)

Analyzing the graphics it is possible to see that an increase on bt may lead to decrease
on data quality. This decrease can be seen in the graphs of relative uncertainty (σ\µ)
and is represented by the increase of relative uncertainty for low data rates (i. e.
for higher ON and OFF nominal times). This fact can be favorable to this project's
purposes because allows data transmission at higher rates with less errors.
In the graphics it is also shown that ones and zeros have similar statistical properties
and ∆0 = |TOFF − µ0| is higher than ∆1 = |TON − µ1|. After this analysis we made
three new runs of the test, but this time de�ning a very low bt. This test was made to
discover what is the minimum duration for one ON/OFF pulse. The obtained values
can be seen on �gure 4.8 and table 4.3. The di�erence between de�ned and obtained
values is caused by the system governor, once the minimum obtained values for TON
and TOFF are almost the same as the encountered di�erences. The minimum possible
value for one ON/OFF pulse is about 4ms

Figure 4.8: Minimum values for TON and TOFF
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TON TOFF
Run µ1 σ1 µ0 σ0

1 761.6 49.8 3224.1 44.7
2 760.8 49.8 3224 44.3
3 760.2 49.5 3224.6 44.6

Mean 760.7 49.7 3224.2 44.5
Table 4.3: Obtained parameters for TON and TOFF

4.2.2 Using Input Output Control Interface to control the LED

In this section we made tests for the same time values we used on SysFS approach,
once the level of control must be similar. This time we tried to �nd out if there was
some minimum limits for TON and TOFF before starting the tests. This information
was important because allowed to know which kind of values we must expect. To do
that, the application on the mobile phone was set to turn ON and OFF the �ash
without time restrictions. The obtained parameters for TON and TOFF are synthesized
on �gure 4.9 and table 4.4.

Figure 4.9: Minimum values for TON and TOFF

TON TOFF
Run µ1 σ1 µ0 σ0

1 745.17 18.4 3211.5 12.7
2 742.96 17.4 3211 12.2
3 742.49 17.6 3211.1 11.9

Mean 743.54 17.8 3211.2 12.267
Table 4.4: Obtained parameters for TON and TOFF

Observing the obtained results we can see that the minimum possible time for an ON-
OFF pulse is about 4ms.
After knowing this values the tests with imposed times started. Here we will only make
a deep analysis for bt = 700µs and the same considerations about general comportment
that were made for SysFS will be made for this approach. De�ned durations for H1

and H2 are 700 and 1400µs respectively and for information slots de�ned times are
n·700µs, with n ∈ {1, 2, 3, 4}.
After gathering the data, MatLab®was used to perform some analysis, in �gure 4.10
we present timing histograms and its respective Gaussian, �t for the headers and
information slots.
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Figure 4.10: Histograms and Gaussian �t for headers and time slots

As we can see the headers and information can be approached by Gaussian random
variables with mean value µ1 forH1, Tp+µ1 forH2 and µ0 when n = 1 and µ0+k·bt, k =
2, 3, 4 when n = 2, 3, 4 (n represents the number of empty slots). In table 4.5 we have
more detailed information about mean and standard deviation for all the tests. The
last two lines show the expected value and the di�erence between this and the obtained
mean times.

Headers Information Slots
H1 H2 D=1 D=2 D=3 D=4

Run µ1 σ1 µ1 σ1 µ0 σ0 µ0 σ0 µ0 σ0 µ0 σ0

1 1519.3 20.9 2215.4 23.7 3974.6 14.8 4670.1 16.3 5365.9 16 6061.5 15.4
2 1518.3 21.5 2214.3 23.5 3975.5 14.6 4671.1 15.8 5366.8 16.1 6063 15.9
3 1518.5 22.4 2214.7 24 3974.9 14.3 4670.9 15.9 5366.9 16.1 6062.3 15.1

Mean 1518.7 21.6 2214.8 23.7 3975 14.6 4670.7 16 5366.5 16.1 6062.3 15.5
Wanted 700 - 1400 - 700 - 1400 - 2100 - 2800 -
Di�. 818.7 - 814.8 - 3275 - 3270.7 - 3266.5 - 3262.3 -

Table 4.5: Measured uncertainty parameters, with TON = TOFF = 700µs for headers and empty slots

Table 4.5 reveals that the di�erence between the obtained times and the expected
ones is roughly equal to the minimum values for TON and TOFF previously obtained.
To better see this fact �gure 4.11 shows the di�erence between expected and obtained
times for headers and information slots. If we look carefully over the picture it con�rms
what is seen on table 4.5, the di�erence between the expected and obtained times is
very close to the minimum time imposed by the device for �ash transitions. It is also
possible to see that this di�erence decreases as nominal times increase.
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Figure 4.11: Di�erence between de�ned and obtained times for bt = 500, 600, 700, 800 and 900µs

Once again the study of uncertainty parameters was done, and the resultant graphics
are displayed on �gure 4.12

Figure 4.12: Uncertainty parameters for increasing nominal ON and OFF timings (mean, standard deviation and relative

uncertainty)

For this �ash control strategy the relative uncertainty decreases when nominal times
increase, which means that higher data rates are more likely to produce errors during
transmissions. The standard deviations are stable and do not vary too much with
variations of nominal times.
Ones and zeros have di�erent statistical properties and ∆0 = |TOFF − µ0| is higher
than ∆1 = |TON − µ1|.

4.2.3 Controlling the LED With General Purpose Input Out-

put

GPIO seemed to be the �ash control strategy for our project purposes, because it is
the one that guarantees lower values for ON and OFF pulses. To con�rm that, several
tests were made, as in the other control strategies.
The values presented next were obtained with pulses ON and OFF with 200 µs of base
time. This time de�nition generated symbols started with ON pulses with duration
200µs or 400µs (depending on the used header) followed by a series of OFF pulses with
duration n·200µs, with n ∈ {1, 2, 3, 4}. Figures 4.13 and 4.14 show timing histograms
�tted to Gaussian shapes for both headers and for all data slots.
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Figure 4.13: Histograms for H1 and H2 and the correspondent Gaussian �tting

Figure 4.14: Histograms for n = 1, 2, 3 and 4 and the correspondent Gaussian �tting

As it can be seen the duration of headers and data slots behave like Gaussian random
variables. Headers are characterized by the temporal mean µ1 (for H1) and Tp + µ1

(for H2), and have similar standard deviations (σ1). Data slots have mean (µ0) and
variance (σ0) that do not depend on the number of empty slots. Results are shown in
table 4.6, for three consecutive runs. Ensemble averages for each case and parameter
are also given. In the end of the table it is possible to see the values of wanted time as
well as the di�erence between the mean obtained time and the wanted time.

Headers Information Slots
H1 H2 D=1 D=2 D=3 D=4

Run µ1 σ1 µ1 σ1 µ0 σ0 µ0 σ0 µ0 σ0 µ0 σ0

1 200.7 11.6 399.9 12.2 326.9 13.1 532.9 13.5 729.5 11.2 927.8 10.2
2 199.8 11.7 410.9 14.6 326.9 12.8 529.9 15.1 727.2 12.6 925.7 12.5
3 199.1 11.7 402.5 17.7 326.9 12.9 534.5 13.3 731.0 12.3 929.6 11.3

Mean 199.9 11.7 404.4 14.8 326.9 12.9 532.4 14 729.2 12 927.7 11.3
Wanted 200 - 400 - 200 - 400 - 600 - 800 -
Di�. 0.1 - 4.4 - 126.9 - 132.4 - 129.2 - 127.7 -

Table 4.6: Uncertainty parameters for TON = TOFF = 200µs for headers and empty slots
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Figure 4.15: Uncertainty parameters for increasing nominal ON and OFF timings (mean, standard deviation and relative

uncertainty)

The experiment was repeated for increasing nominal times between 200µs and 600µs
in order to perceive the impact of ON and OFF nominal timings on the uncertainty
parameters. �gure 4.15 shows absolute and relative uncertainty parameters. Observing
the graphics it is possible to see that uncertainty increases almost linearly with the ON
and OFF nominal times while standard deviations are more stable and do not seem to
depend on those times. This means that the relative uncertainty (σ\µ)increases when
the system is set for higher data rates.
Results also show that ones and zeros have similar statistical properties, although
∆0 = |TOFF − µ0| is a little higher than ∆1 = |TON − µ1|.

4.3 Timing Uncertainty on DH-PIM

Once we have the ability to produce results with predictable ON and OFF pulses,
some considerations will be taken about time uncertainty.
This analysis will be made assuming a generic DH-PIM system. Each block of M input
data bits is mapped to one of possible DH-PIM symbols, as shown in �gure 4.16.

Figure 4.16: DH-PIM Symbol Structure showing H1 and H2

The nominal slot duration is bt and pulses have amplitude A. For each symbol that is
transmitted we have a rectangular pulse with nominal width bt or 2bt, depending on the
used header, followed by a sequence of empty slots containing information. The nominal
width for the empty slots is equal to nbt, with n ∈ {1, . . . , 2M−1}. Headers have the role
of data decoding and symbol synchronization, but almost all the information is coded
in empty slots. From the receiver perspective there is a much higher probability of
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receiving one '0' than one '1'. This probabilities are given by p(0) and p(1), respectively,
and can be computed using the following formulas:

p(1) = 1/L, p(0) = (L− 1)/L,with L = (2M−1 + 3)/2 (4.1)

Even in systems where additive noise is negligible, the uncertainty associated with ON
and OFF timings may cause errors. This uncertainty can a�ect DH-PIM system's
performance due to decoding errors in both headers and information slots.
During header reception many errors can occur:

I ) H1 is transmitted but not detected (erasure error)
II ) H1 is transmitted but H2 is detected (header detection error)
III ) H1 is transmitted but not detected (erasure error)
IV ) H2 is transmitted but H1 is detected (header detection error)

In information slots errors are caused by an incorrect count of the number of zeros.
Considering Phe is the header error probability and Pie is the information slot's error
probability, the symbol error probability is given by:

Pse = p(1)Phe + p(0)Pie =

p(1)p(H1)p(0|H1) + p(H2|H1)] + p(H2)[p(0|H2) + p(H1|H2)]] + p(0)p(zn)p(zm|zm)
(4.2)

Where p(Hi) stands for the probability of transmitting Hi, p(x|Hi)) is the conditional prob-

ability of detecting x when Hi was transmitted, p(zn) is the probability of transmitting n

zero slots, and p(zm|zn) is the probability of detecting m zero slots when n zero slots were

transmitted.

Next some considerations about the impact of time uncertainty on header and information

slots will be made separately. To do that the probability of detecting an empty slot when

H2 is transmitted will be considered to be vanishingly small, so that p(0|H2) ≈ 0. As the

impact of Additive White Gaussian Noise will not have a signi�cant impact on this system's

performance, it will not be discussed here.

4.3.1 Impact on Header Decoding

According to experimental results, the uncertainty when generating a sequence of '1's or '0's

will be considered not to depend on the absolute sequence time duration. So, H1 pulses are

considered to have random width equal to τ1, H2 pulses are considered to have random width

equal to τ1 + bt, and empty slots have random width equal to τ0 + (n− 1)2bt. It is considered
that τ0 and τ1 are Gaussian variables with mean (µ0 and mu1) and standard deviation (σ0

and σ1).The absolute time di�erence between mean values and the correspondent nominal

times will be therefore represented by ∆0 = |µ0 − 2bt| and ∆1 = |µ1 − bt|.
To evaluate the uncertainty impact on header detection, it is necessary to consider four dif-

ferent situations:

I ) H1 is transmitted with µ1 < bt
II ) H1 is transmitted with µ1 > bt
III ) H2 is transmitted with µ1 < bt
IV ) H2 is transmitted with µ1 > bt

Assuming that µ1 can be smaller or larger than bt with equal probabilities and that H1 and
H2 also have equal probabilities of occurring,t is possible to write the header error probability
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(Phe) as:

Phe =
1

2

[
Q

(
A((bt/2)−∆1)

σ1

)
+Q

(
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σ1

)]
+

1

2

[
1

2
Q

(
A((bt/2)−∆1)

σ1

)]
=

3

4
Q

(
A((bt/2)−∆1)

σ1

)
+

1

2
Q

(
A((bt/2) + ∆1)

σ1

) (4.3)

where A represents the amplitude if the received signal.

4.3.2 Impact on Information Decoding

Uncertainty in the measurements of information slot's duration depends on:

I ) the uncertainty associated with the time reference used in the measurement
II ) the uncertainty associated with the empty slot's duration

If the time reference used is perfect there will not be synchronization error and the
counter will measure a Gaussian random time interval equal to ti = (n − 1)2bt + τ0,
with mean µi = (n− 1)2bt ± µ0 and standard deviation σi = σ0.
The value for zero error probability can be computed as:

Pe0|SE = Q

(
bt −∆0

σ0

)
+Q

(
bt + ∆0

σ0

)
(4.4)

And the information error probability (Pie) is given by:

Pie = p(SE)Pe0|SE + p(SE)Pe0|SE =
1

4
Pe0|SE +

3

4
Pe0|SE (4.5)

Time uncertainty is better explained in[47], present in the appendixes of this thesis.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

When analyzing the obtained values it is important to have in mind that these results
are for three runs only and were obtained with a particular transmitter. Di�erent
transmitters (di�erent smartphones, with di�erent �ash control capabilities) may ex-
hibit di�erent absolute and relative uncertainty parameters. Thus, the receiver must
cope with signi�cant timing uncertainty. In fact, the receiver will never be adequately
matched to the transmitted pulse, which depends on the �ash controllability of each
used smartphone.
With the observed results we can say that this smartphone has some potential for VLC
uses. It has good performance using GPIO, but for systems that do not require high
transmission rate any control interface could be used.
Since the relative uncertainty decreases with the increase of data rate for SysFS �ash
control strategy, SysFS might be better than IOCTL to transmit data.

5.2 Future Work

� Implement one communication system based on this results

� Find out the viability of the communication system, based on link speed and
transmission error rate

� Make one application that could be used on several smartphones

� Test the application in real scenarios
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Appendix A

Emitter Control

Here a generic Java method will be presented, followed by some Java snippets showing
speci�c options for each �ash control strategy. This options are related with the kind
of kernel objects we need to guarantee access.
After the Java code the native C methods used to control the �ash light will be dis-
played.

A.1 Java Code

A.1.1 Generic Java Method

import java.io.DataOutputStream;

import java.io.IOException;

import android.app.Activity;

import android.content.Context;

import android.media.Ringtone;

import android.media.RingtoneManager;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnKeyListener;

import android.widget.Button;

public class MainActivity extends Activity {

Button send;

Process sh;

static {

System.loadLibrary("native -methods");

}

public native void flashFlicker (); // Native methods that

control flash
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@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

android.os.Process

.setThreadPriority(android.os.Process.

THREAD_PRIORITY_URGENT_AUDIO); // Increase thread priority

try {

sh = Runtime.getRuntime ().exec("su"); // Guarantee root

privileges , equal for every approach

/*Here we need to define some options , according

to the used flash control strategy. This options

will be shown next.*/

} catch (IOException e) {

// TODO Auto -generated catch block

e.printStackTrace ();

}

send = (Button) findViewById(R.id.myBt); // Create Button

send.setOnClickListener(new View.OnClickListener () {

@Override

public void onClick(View v) {

flashFlicker (); //Call native methods

try {

Uri notification = RingtoneManager

.getDefaultUri(RingtoneManager.TYPE_NOTIFICATION);

//Sound notification when test is done

Ringtone r = RingtoneManager.getRingtone(

getApplicationContext (), notification);

r.play();

} catch (Exception e) {

e.printStackTrace ();

}

}

});

}

}

A.1.2 IOCTL Speci�c Options

try {

sh = Runtime.getRuntime ().exec("su");

DataOutputStream os = new DataOutputStream(sh.getOutputStream

());
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// Unlock AAT1271 chip for reading and writing

os.writeBytes("chmod 777 /dev/aat1271\n");

os.flush();

os.writeBytes("exit\n");

os.flush();

sh.waitFor ();

} catch (IOException e) {

e.printStackTrace ();

} catch (InterruptedException e) {

e.printStackTrace ();

}

A.1.3 GPIO Speci�c Options

try {

sh = Runtime.getRuntime ().exec("su");

DataOutputStream os = new DataOutputStream(sh.getOutputStream

());

// Unlock GPIOs that control flash light for torch mode and

flash mode

os.writeBytes("chmod 777 /sys/class/gpio/gpio219/value\n");

os.flush();

os.writeBytes("chmod 777 /sys/class/gpio/gpio137/value\n");

os.flush();

os.writeBytes("exit\n");

os.flush();

sh.waitFor ();

} catch (IOException e) {

e.printStackTrace ();

} catch (InterruptedException e) {

e.printStackTrace ();

}

A.2 Native methods

A.2.1 SysFS

#include <jni.h>

#include <sequence -jni.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <unistd.h>

#include <sys/types.h>

#include <pthread.h>

#include <sys/time.h>

#include <sys/resource.h>

#include <sys/ioctl.h>

#define BASE_TON 700 //Base time for ON pulses
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#define BASE_TOFF 700 //Base time for OFF pulses

#define SYMS 30000 // Number of symbols to send

int sTs;

struct time_param {

unsigned int param_on;

unsigned int param_off;

};

void transmitter(struct time_param mTimes []) {

int i;

FILE *flash;

for (i = 0; i < sTs; i++) {

flash = fopen("/sys/class/leds/flashlight/brightness", "w");

fprintf(flash , "1\n");

fclose(flash);

usleep(mTimes[i]. param_on);

flash = fopen("/sys/class/leds/flashlight/brightness", "w");

fprintf(flash , "0\n");

fclose(flash);

usleep(mTimes[i]. param_off);

}

}

JNIEXPORT void JNICALL

Java_com_example_genericJavaMethod_MainActivity_flashFlicker(

JNIEnv *env , jobject thiz) {

setpriority(PRIO_PROCESS , 0, -16); // Process priority

int i, symbol;

sTs = SYMS;

struct time_param mTimes[sTs];

srand(time(NULL));

i = 0;

while (i < sTs) {

symbol = rand() % 8;

switch (symbol) {

case 0:

case 1:

case 2:

case 3:

mTimes[i]. param_on = BASE_TON;

mTimes[i]. param_off = BASE_TOFF * (symbol + 1);

break;

case 4:

case 5:

case 6:
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case 7:

mTimes[i]. param_on = BASE_TON * 2;

mTimes[i]. param_off = BASE_TOFF * (symbol - 3);

break;

}

i++;

}

transmitter(mTimes);

}

A.2.2 IOCTL

#include <jni.h>

#include <Flash.h>

#include <fcntl.h>

#include <errno.h>

#include <string.h>

#include <unistd.h>

#include <stdlib.h>

#include <android/log.h>

#include <sys/stat.h>

#include <sys/syscall.h>

#include <sys/ioctl.h>

#include <sys/types.h>

#include <sys/resource.h>

#include <sys/time.h>

#define BASE_TON 700 //Base time for ON pulses

#define BASE_TOFF 700 //Base time for OFF pulses

#define SYMS 30000 // Number of symbols to send

struct nvodmimager_param {

int param;

unsigned int sizeofvalue;

unsigned long *p_value;

};

struct time_param {

unsigned int param_on;

unsigned int param_off;

};

int dev , sTs;

uint32_t value;

struct nvodmimager_param led_mode;

//IOCTL command to write to AAT1271

#define AAT1271_IOCTL_PARAM_WR _IOW('o', 4, struct

nvodmimager_param)
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void transmitter(struct time_param mTimes []) {

memset (&led_mode , 0, sizeof(led_mode));

led_mode.param = 10;

led_mode.sizeofvalue = sizeof(value);

led_mode.p_value = &value;

int i;

for (i = 0; i < sTs; i++) {

value = 1;

ioctl(dev , AAT1271_IOCTL_PARAM_WR , &led_mode);

usleep(mTimes[i]. param_on);

value = 0;

ioctl(dev , AAT1271_IOCTL_PARAM_WR , &led_mode);

usleep(mTimes[i]. param_off);

}

}

JNIEXPORT void JNICALL

Java_com_example_genericJavaMethod_MainActivity_flashFlicker(

JNIEnv *env , jobject thiz) {

setpriority(PRIO_PROCESS , 0, -16); // Process priority

dev = open("/dev/aat1271", O_RDWR);

sTs = SYMS;

int i, symbol;

struct time_param mTimes[sTs];

srand(time(NULL));

i = 0;

memset (&mTimes , 0, sizeof(mTimes));

while (i < sTs) {

symbol = rand() % 8;

switch (symbol) {

case 0:

case 1:

case 2:

case 3:

mTimes[i]. param_on = BASE_TON;

mTimes[i]. param_off = BASE_TOFF * (symbol + 1);

break;

case 4:

case 5:

case 6:

case 7:

mTimes[i]. param_on = BASE_TON *2;

mTimes[i]. param_off = BASE_TOFF * (symbol - 3);
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break;

}

i++;

}

transmitter(mTimes);

}

A.2.3 GPIO

#include <jni.h>

#include <flash -gpio.h>

#include <android/log.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <time.h>

#include <pthread.h>

#include <sys/time.h>

#include <sys/resource.h>

#include <sys/ioctl.h>

// TEGRA_GPIO_PBB1

#define FLASH "/sys/class/gpio/gpio219/value"

// TEGRA_GPIO_PR1

#define TORCH "/sys/class/gpio/gpio137/value"

int f;

#define sTs 30000 // Symbols to simulate

#define BASE_TIME 200 //Base time for DH-PIM

char on = '1';

char off = '0';

static void gpio_direction_output(const char* dev , char value) {

int f = open(dev , O_WRONLY);

if (f < 0) {

return;

}

write(f, &value , 1);

close(f);

}

static void flashlight_turn_off(void) {

gpio_direction_output(FLASH , '0');

gpio_direction_output(TORCH , '0');

}

struct time_param {

unsigned int param_on;

59



unsigned int param_off;

};

void transmitter(struct time_param mTimes []) {

int i;

for (i = 0; i < sTs; i++) {

write(f,&on ,1);

usleep(mTimes[i]. param_on);

write(f,&off ,1);

usleep(mTimes[i]. param_off);

}

}

JNIEXPORT void JNICALL

Java_com_example_genericJavaMethod_MainActivity_flashFlicker(

JNIEnv *env ,

jobject thiz) {

setpriority(PRIO_PROCESS , 0, -16); // Process priority

f = open(FLASH , O_WRONLY);

int symbol , i;

struct time_param mTimes[sTs];

srand(time(NULL));

i = 0;

while (i < sTs) {

symbol = rand() % 8;

switch (symbol) {

case 0:

case 1:

case 2:

case 3:

mTimes[i]. param_on = BASE_TIME;

mTimes[i]. param_off = BASE_TIME * (symbol + 1);

break;

case 4:

case 5:

case 6:

case 7:

mTimes[i]. param_on = BASE_TIME * 2;

mTimes[i]. param_off = BASE_TIME * (symbol - 3);

break;

}

i++;

}

transmitter(mTimes);

write(f, &off , 1); close(f);

}
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Appendix B

Arduino Control
Here the Arduino program responsible for acquiring data will be presented.

#define SAMPLES 500 // Number of Samples

#define PIN_IN A2 //Input pin

unsigned short valores[SAMPLES ]; //array for value storage

void setup()

{

pinMode(PIN_IN ,INPUT);

for(int i=0;i<SAMPLES;i++)

valores[i]=0;

Serial.begin (9600); //start serial communication

Serial.println("OK");

}

int j=0; int m = 0; unsigned short num = 0; long a = 0;

void loop()

{

short v = pulseIn(PIN_IN , HIGH )/10;

//for measure TOFF must be short v = pulseIn(PIN_IN , LOW )/10;

if(v >= SAMPLES)

v = SAMPLES -1;

if(num > 0 && (v == 0 || m == 0xFFFF))

{

for(int i = 0; i < SAMPLES ; i++)

{

Serial.println(String(i)+" : "+String(valores[i]));

valores[i] = 0;

}

Serial.println("Total: "+String(num));

m = 0; num = 0;

}

if(v == 0)

return;

num++; valores[v]++;

if(valores[v] > m)

m = valores[v];

}
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Abstract 

There are several design tradeoffs regarding visible light communication systems supported on currently available 

smartphones. Current smartphones do not include means for optical communications, rather than a CCD camera 

and a flash LED. Neither of these devices is conceived for communication purposes, nevertheless several attempts 

have been made in other to extend their functionalities. This paper discusses the usage of the flash LED as a 

transmitting device in low bit rate applications. For analysis purposes it was used an HTC One X with Android 

4.3.1 Operating System (OS). Android is open source, thus enabling several flash control possibilities, from an 

application level down to the hardware access level. Achieved results reveal that, communication means using the 

flash LED are limited on data rate and link distance. It was also disclosed that the best approach to mitigate data 

rate problems is to rely on DHPIM modulation formats, which are able to improve data rate due to their non-

uniform symbol timings. 

 

Keywords: Optical Communications, Data Communications, Light Emitting Diodes. 
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1 Introduction 
 

Modern smartphones do not support optical wireless communications means. Previous generations included a 

dedicated IrDA port able to provide an easy access communication link with neighbor equipment. This is in general 

not present in most smartphones in the market. Thus, the optical communications means available on these devices 

are restricted to the camera and flash LED. These devices can exploited for communications on the framework of 

the IEEE Standard 802.15.7 [1], tackling short range communication employing visible light communication 

concepts. However, in order to address this service integration, some challenges posed by the usage of 

smartphone’s cameras and flash LEDs need to be considered. 

Camera and flash LED peripherals were not intended for communication purposes. Nevertheless, it is possible to 

exploit their usage as receiving and transmitting devices [2-10]. The camera is limited in terms of acquisition time 

to acquisition speeds around 30fps (60fps in some devices), which poses a direct limitation on the receiving data 

rates. However, being a multiple input device (pixels), it is possible to exploit more sophisticated modulation 

formats able to take improve data rates. Previous contributions available on the literature focus on visible content 

bidirectional communication links [2, 3]. In 2012 Casio unveiled visible light communication concepts to allow 

augmented reality scenarios involving the camera and flash LED of smartphone [4]. On the other hand, the flash 

LED is normally used as flashlight for the camera or even, as general purpose lighting device. Normal applications 

do not require fast switching devices, but rather, power devices. Still, power drivers offer reasonable fast response 

times, potentially enabling several VLC scenarios, after the system is correctly characterized. Thus using the flash 

LED for communication purposes poses some challenging considerations, normally not very well specified in the 

literature. Adding to this, the wide variety of smartphones models running different OS and relying on different 

hardware platforms, contribute to make the picture more complex.  

Previous contributions on this topic focused on application oriented cases, highlighting applications such as secure 

cash transactions [5, 6], communication with interactive tabletop equipment [7], and electronic shelf labelling [8-

10]. The first mentions to the use of visible light to communicate with electronic shelf labelling equipment were 

reported in [8, 9]. There, the authors discuss the possibility of wireless optical access to the devices inside the store 

for programming purposes. In [10] the authors propose the usage of the LED flash as a means to communicate with 

electronic shelf labelling devices to enable fast feedback loops between consumers and retailers. This is seen as a 

promising technology given the current trends on massive advertising campaigns. It also copes with the trends on 

these kind of devices, which are currently seen as part of sensor networks, thus extend their normal usage to other 

important scenarios (such as consumer habits profiling) [11]. Other possibilities are directed to the toys market. 

Disney research labs are currently investing on visible light communications products linking toy control to 

smartphones [12, 13]. Other possible applications may resort to secure key lockers or general communication 

interface. On another edge, high speed short range communication links are seen as a relevant technology for fast 

download/upload of media content. The Infra Red Data Association (IrDA) is advancing technology able to tackle 

communication speeds on the range of 10Gbps, seen as ideal for instantaneous data transfer in point-to-point links 

[14, 15]. 

Though promising, these application oriented contributions are not able to address the limitations posed by both the 

camera and the flash LED when exploited as communication devices. This paper addresses the limitations and 

tradeoffs posed on the usage a LED flash, in a current smartphone, as transmitting device. In order to identify the 

sources of data rate limitations, a detailed study on different methodologies to control the flash LED is presented. 

As it will be disclosed, limitations are mostly posed by the software and OS (Operating System) of the smartphone 

rather than the LED itself. It should be highlighted that normal battery savings and temperature control are high 

priority tasks in a smartphone. Thus the software assumes by default conservative timings for short pulses on the 

LED flash, typically restricting how fast two consecutive pulses may appear. The net result affects pulse timing 

definitions, on both the average and standard deviation, with obvious impairments for communication.  

Depending on the control methodology, different pulse statistics can be expected. This is linked to the normal 

operation of the smartphone, where communication tasks and network search have higher priority than controlling 

the flash LED timings. For the aforementioned applications, the communication link is mostly line-of-sight and 

short range, thus it is reasonable to assume that amplitude induced noise has negligible impact on performance. 
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Clearly, this will be the case where nearby lighting sources induce only white noise on the receiver. For these cases, 

communication performance will be mostly affected by the timing statistics of the transmitter, which appear to the 

receiver as uncertainty on the signal edges.  

The present work proposes the usage of DH-PIM [16, 21] as a means to fight data rate limitations. DH-PIM 

modulation format has two relevant characteristics for the application: i) it is a pulsed modulation scheme with 

reduced average duty-cycle, which is important considering both LED temperature and energy; ii) the symbol 

duration is not uniform, which implies a considerable gain on the achievable data rates, obviously dependent on the 

symbol composition. Achieved results for 8DH-PIM disclose that performance depends greatly on the ability to 

accurately generate ON and OFF pulses with the smartphone flash, as time uncertainty is the major impairment to 

data throughput in such systems. Also, uncertainty is shown to increase for higher data rates. However, because 

each smartphone has shown to exhibit a significant static uncertainty, higher throughputs may be attained by 

resorting to dynamically adjusted receivers.  

The paper is divided into five sections. Section 2 discusses the available flash LED control schemes in a HTC One 

X smartphone with Android 4.3.1 OS [17], and some experimental results that illustrate the timing uncertainty 

problem in this system. Section 3, presents an in deep analysis to evaluate the impact of timing uncertainty in DH-

PIM receiver error performance. Section 4 discusses the theoretical results regarding the symbol error probability 

induced by timing uncertainty. Finally, section 5 draws the final conclusions. 

2 Flash Control Strategies 
 

It is common for smartphones to have a high power LED, which is mainly used to provide illumination to the 

camera, and to serve as a low power flashlight. As discussed, the LED can be used for communications, instead of 

other technologies such as RFID and NFC. In particular, because it enables more devices to communicate under 

short distance scenarios [18]. However, the LED flash sub-system was not designed for this. Applications trigger 

the LED for a short instant, in order to enable capturing a photo in dark environments or for extended periods in 

order to provide a constant illumination source. The main characteristic of smartphones, which enables the use of 

the LED as a communication interface, is the fact that applications can have direct access to the LED state. In some 

smartphones, it is also possible to have access to the intensity of the LED, with up to 4 intensity levels being 

available. In the smartphone used in this work, the LED can be safely driven with currents up to 700mA, enabling 

time and amplitude modulation of signals. In the smartphone we used, an AAT1271 chip [19], exposed through the 

Tegra30 GPIO chip [20], drives the LED. On top of this, the Linux kernel will use the AAT1271 driver software, 

and a flashlight driver. Each layer provides a better abstraction and functionality over the basic function of the 

LED. The following subsections discuss the available methods for flash control, as well as their experimental 

characterization. 

 

2.1 Flash LED Control Methodologies 

While applications have access to the LED, there are multiple interfaces through which control can be applied. 

Interfaces that may have be implemented at a software level, having multiple abstraction layers between the LED 

driver and the application. Therefore, it is vital to describe and characterize the different flash control strategies that 

can be used by applications. Considering a generic NVidia Tegra30 based device running the Android OS, four 

different approaches are readily available, and were considered. These approaches are identified in Figure 1 and 

identified by numbers 1 to 4.  

The first interface is through the Camera class provided by the Android Java SDK. This is the most readily used 

interface as it is high level and well documented. It provides a common interface to applications, enabling 

development of applications that are able to control the LED of any Android smartphone. The Camera class 

abstracts access to the hardware and applications do not need to have any knowledge about the smartphone. The 

main drawback is that this is a Java interface, available for applications that run inside a Java Virtual Machine 

(JVM). While the use of a JVM is great for portability, interaction with the world outside the JVM will impose 
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synchronization mechanisms and added context switching. Moreover, Java is not a top performance programming 

language, at least not when comparing with carefully optimized C code. 

The second interface is through the sys filesystem (SysFS), a mechanism provided by the Linux kernel, allowing 

swift communication between applications and drivers residing in kernel space. SysFS is a file system that is 

typically mounted in /sys and exposes interfaces for most drivers. In the case of the flash LED in a smartphone, the 

Linux kernel will expose a directory /sys/class/leds/flashlight. A special file named brightness, present at this 

directory, allows applications to set the brightness level of the LED by writing an integer to it. Writing 0 will turn 

the LED off while other values will set the LED to a different brightness level. Because only a few levels are 

available, only a few values are allowed, and some may provide complex behavior, such as turning on the LED for 

0.5s and then turning it off. A clear advantage is that a developer can use a wide range of languages to interact with 

the LED. Another advantage is that control can be enforced outside the JVM, through Java Native Interface (JNI) 

integrated C functions, which potentially provides lower latency and jitter by bypassing the JVM. However, 

controlling the LED of a specific phone will imply knowing which brightness values are available. Moreover, using 

the SysFS interface implies that multiple software layers are still present, such as the Virtual File System (VFS), 

the Flashlight driver, and the LED software driver. 

The third interface is similar to the previous, but makes use of the IOCTL mechanism of the Linux kernel. The 

level of control is similar, but Input Output ConTroL (IOCTL) calls are directed to the Flashlight driver, bypassing 

the VFS.  Moreover, access to the brightness control file requires opening the file, writing a value and closing the 

file, as the value is only committed when the file is closed. Each of these operations requires at least one IOCTL, 

totaling three interactions between the control application and the kernel. 

Finally, the forth interface bypasses more layers and is the GPIO interface. Accessing a GPIO provides almost 

unrestricted control as it allows sending commands directly to the LED driver chip, through the GPIO chip. Such 

access can be obtained either through the SysFS interface or through direct access to the mapped memory space. 

GPIO access is at the same time, the most flexible and most specific method. It provides great access, but requires 

deep knowledge about how hardware is structured in each specific smartphone. This makes such solution important 

for specific applications, but not so relevant for an application aiming to be generic and support a wide range of 

devices. Fortunately, while numbers identifies GPIOs, the Linux kernel provide human readable alias, enabling 

dynamic discovery of the relevant GPIO to use to drive the LED state.  

From all the above methodologies, last three were tested, as they are the most promising in terms of performance. 

The first was discarded because from our experience, and previous experiments, it is known that latency values 

were a magnitude higher than the other cases. Achieved results demonstrate that with the second and third 

methodologies, although there is a fine control of the LED, there is limited control on LED pulse duration. Both the 

ON and OFF durations have a minimum value set by default, and enforced by the driver. For the smartphone under 

test, these times were 0.8ms for the minimum ON pulse and 3.2ms for the minimum OFF pulse which put a limit of 

4ms for the minimum ON-OFF pulse occurrence. In practice, the driver tries to set a delay a little higher than 1ms, 

but as it is software timing, in a concurrent OS, using the usleep function, some uncertainty is always present. 

Furthermore, it was ascertained that the timing uncertainty using the second method, was worse than for the third 

method, with standard deviations reaching the order of 300ms. This was expected, but it would further reduce the 

achievable data rates, even with DH-PIM modulation schemes. The forth method revealed superior performance 

with better timing control of the pulse durations, allowing switching the LED with pulses below 100μs. 

 

2.2 Timing Uncertainty in Flash-Based Communications  

Before conducting a formal system analysis, it is necessary to evaluate first the uncertainty associated with ON and 

OFF flash pulses with a suitable experimental setup. This will allow the characterization of the statistical properties 

associated with the duration of flash pulses in the proposed communication scheme. This was achieved with the 

set-up of figure 2. The transmitter side is composed by one HTC One X smartphone, configured according to the 

third methodology previously described, while the receiver is composed by a photo-detector followed by a 

transimpedance amplifying stage.  
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The received signal is threshold compared and feed in digital format to an Arduino Uno digital port for further 

processing. The Arduino board includes an ATmega328 microprocessor, used here for the purpose of measuring 

the duration of each impulse. The microprocessor samples the incoming signals at the rate of 1μs and builds two 

timing histograms, one for ON pulses and another for OFF pulses. The flash was set to transmit 30000 consecutive 

DH-PIM symbols to the Arduino based receiver, from an alphabet of N=8 different symbols. Both the transmitter 

and receiver were fixed, the distance between them was limited, and the setup was protected with an enclosure to 

remove the influence from external light sources. Thus, the impact of external noise sources can be disregarded 

when analyzing presented results. Moreover, because the receiving front-end regenerates the signal coming out of 

the photo-detector, additive noise is not a concern in this system. 

In this particular experiment, 200μs ON and OFF pulses were used. Thus, symbols start with ON pulses with 

duration 200μs or 400μs (header one or two, respectively), followed by a series of OFF pulses (empty slots) with 

time duration D ∙ 200μs, with D ϵ {1,2,3,4}. Timing histograms were curve fitted to Gaussian shapes, as shown in 

Figure 3 for both headers (H1 and H2). As it can be seen, the duration of H1 and H2 pulses approximately behaves 

like a Gaussian random variable characterized by the temporal mean μ1(for H1) and Tp + μ1 (for H2), and similar 

standard deviations (σ1). The duration of empty slots has also shown to behave like Gaussian random variables 

with mean (𝜇0) and variances (𝜎0) that do not depend on the number of consecutive empty slots. Timing 

histograms for empty slots were also curve fitted to Gaussian shapes, and uncertainty parameters obtained. Results 

are shown in Table 1, for three consecutive runs. Ensemble averages for each case and parameter are also given. 

To investigate the impact of ON and OFF nominal timings on the uncertainty parameters, the experiment was 

repeated for increasing nominal times, from 100𝜇𝑠 to 600𝜇𝑠. Figure 4 shows the absolute and relative uncertainty 

parameters. Note that these results were obtained for a single run and thus, exhibit natural deviations from the 

ensemble average that characterizes this smartphone. Nevertheless, it is possible to see that the uncertainty 

increases almost linearly with the ON and OFF nominal times while standard deviations are more stable and do not 

seem to depend on those times. This means that the relative uncertainty increases when the system is set for higher 

data rates (smaller ON and OFF nominal timings). 

Results also show that ones and zeros have similar statistical properties, although ∆0= |𝑇𝑂𝐹𝐹 − 𝜇0| is a little higher 

than ∆1= |𝑇𝑂𝑁 − 𝜇1|. Nevertheless, it must be recalled that these results are for three runs only and were obtained 

with a particular transmitter. Different transmitters (different smartphones, with different flash control capabilities) 

may exhibit different absolute and relative uncertainty parameters. Thus, the receiver must cope with significant 

timing uncertainty. In fact, the receiver will never be adequately matched to the transmitted pulse, which depends 

on the flash controllability of each smartphone used. Thus, it is important to analyze the impact of uncertainty in 

DH-PIM symbol error probability. 

3 Timing Uncertainty Analysis 
In the previous section, the ability to produce accurate and predictable ON and OFF flash pulses was shown to 

depend greatly on the particular execution environment provided by smartphones. This section will analyze timing 

uncertainty in flash based VLC systems in order to evaluate its impact in symbol error probability. 

 

3.1 Introduction  

To evaluate the impact of timing uncertainty in DH-PIM symbol error probability, a generic DH-PIM system will 

be considered here. Each block of M input data bits is mapped to one of 𝑛 = 2𝑀 possible symbols, as shown in 

Figure 5. The nominal slot duration is equal to 𝑇𝑠 = 2𝑇𝑝 and pulses have amplitude A. Each transmitted symbol 

starts with a header rectangular pulse, with nominal width equal to 𝑑ℎ𝑇𝑝, with 𝑑ℎ  𝜖 {1,2}, followed by a series of 

empty slots (information slots), with nominal width equal to 𝑑𝑖𝑇𝑠, with 𝑑𝑖 𝜖 {1, … , 2𝑀−1}. Note that headers are 

used both for data decoding and symbol synchronization, but information is conveyed mainly in empty slots. Thus, 

from the receiver perspective, the probability of receiving a one is much lower that the probability of receiving a 

zero. These probabilities are shown in (1), where 𝐿̅ is the average DH-PIM symbol length.  
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𝑝(1) = 1 𝐿̅⁄  ,   𝑝(0) = (𝐿̅ − 1) 𝐿̅⁄    𝑓𝑜𝑟   𝐿̅ = (2𝑀−1 + 3) 2⁄        (1) 

The optimum DH-PIM receiver consists of a matched filter, which will integrate the symbol energy, followed by 

two parallel paths: one to detect and decode the header and one to decode information slots (Figure 6). Here, the 

detection scheme is based on the popular hard decision threshold detector because DH-PIM symbol boundaries are 

not known prior to detection. Information slots are decoded using a simple counter, followed another hard decision 

threshold detector. This is the usual scheme in DH-PIM receivers because information is carried in the duration of 

empty slots and not on the amplitude of samples therein [21].  

The filter has an impulse response ℎ(𝑡), matched to the transmitted pulse shape in H1 or H2. If it is matched to H2, 

the second peak (as shown in Figure 7) can be used to synchronize the local clock generator with the incoming data 

sequence. Also, the peak sample 𝑦𝑝 can be used to detect the type of header received. The threshold in this detector 

is set to the optimum level considering the probabilities of receiving H1 or H2. In this case, both headers have the 

same probability and thus, the threshold should be set midway between H1 and H2 levels. These levels are 𝐴𝑇𝑝 

and 𝐴𝑇𝑠, respectively, as shown in Figure 7. 

Even in the absence of additive noise, errors may occur due to the uncertainty associated with ON and OFF 

timings. This uncertainty can affect DH-PIM system’s performance due to decoding errors in both the headers and 

information slots. If a header is transmitted, an error occurs when: i) H1 is transmitted but not detected (erasure 

error); ii) H1 is transmitted but detected as H2 (header detection error); iii) H2 is transmitted but not detected 

(erasure error); or iv) H2 is transmitted but detected as H1 (header detection error). If zeros are transmitted an error 

occurs when a wrong number of information slots are detected. If 𝑃ℎ𝑒 is the header error probability and  𝑃𝑖𝑒  is the 

information slot’s error probability, the expression for symbol error probability can be written as shown in (2).  

𝑃𝑠𝑒 = 𝑝(1) ∙ 𝑃ℎ𝑒 + 𝑝(0) ∙ 𝑃𝑖𝑒 = 𝑝(1) ∙ [𝑝(𝐻1) ∙ [𝑝(0|𝐻1) + 𝑝(𝐻2|𝐻1)] + 𝑝(𝐻2) ∙ [𝑝(0|𝐻2) + 𝑝(𝐻1|𝐻2)]] + 𝑝(0) ∙
𝑝(𝑧𝑛) ∙ 𝑝(𝑧𝑚|𝑧𝑛)            (2) 

Here, 𝑝(𝐻𝑖) is the probability of transmitting 𝐻𝑖, 𝑝(𝑥|𝐻𝑖) is the conditional probability of detecting x when 𝐻𝑖 has 

been transmitted, 𝑝(𝑧𝑛) is the probability of transmitting n zero slots, and  𝑝(𝑧𝑚|𝑧𝑛) is the probability of detecting 

m zero slots when n were transmitted. Next, the error probabilities in header and information slot’s detection are 

analyzed separately, in the presence on timing uncertainty. In this analyzes, the probability of detecting an empty 

slot when H2 is transmitted will be considered to be vanishingly small, so that (𝑝(0|𝐻2) ≈ 0. As explained before, 

the impact of Additive White Gaussian Noise will not be discussed here, as it will not have a significant impact on 

this system’s performance. Nevertheless, the interested reader can find a thorough analysis in [21]. 

 

3.2 Impact on Header Decoding 

According to experimental results shown in section 2.2, the uncertainty when generating a sequence of ‘1’s or ‘0’s 

will be considered not to depend on the absolute sequence time duration. Thus, H1 and pulses are considered to 

have a random width equal to 𝜏1, H2 pulses have a width equal to 𝜏1 + 𝑇𝑝, and the transmitted zeros (empty slots) 

to have a random width equal to  𝜏0 + (𝑑𝑖 − 1)𝑇𝑠. Random variables 𝜏1 and 𝜏0 are considered to follow a Gaussian 

distribution, characterized by mean (𝜇1 and 𝜇0) and standard deviation (𝜎1 and 𝜎0) parameters. The absolute time 

difference between mean values and the correspondent nominal times will be therefore represented by ∆1=

|𝜇1 − 𝑇𝑝| and ∆0= |𝜇0 − 𝑇𝑠|. 

To evaluate the uncertainty impact on header detection, the matched filter output has to be considered for four 

different situations: H1 is transmitted with 𝜇1 < 𝑇𝑝; H1 is transmitted with 𝜇1 > 𝑇𝑝; H2 is transmitted with 𝜇1 < 𝑇𝑝; 

and H2 is transmitted with 𝜇1 > 𝑇𝑝. These situations are illustrated in Figure 8. It shows that the second peak in the 

filter’s output occurs at 𝑇𝑠 in three out of four situations and thus, a synchronization offset will occur only when H2 

is transmitted with 𝜇1 > 𝑇𝑝. This will impact the error probability in the information slot’s detection and thus, will 

be considered in the next section.  

Figure 8 also shows that, as long as the peak detector introduces no error, the peak sample (𝑦𝑝) will be a constant 

value equal to 𝐴𝑇𝑠 when H2 is transmitted and 𝜇1 > 𝑇𝑝. In the other three situations, 𝑦𝑝 will be a random variable 
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with a conditional probability density function (PDF) that depends upon the presence of H1 or H2 pulses. Figure 9 

shows curves of the conditional probabilities 𝑝𝑦(𝑦𝑝|𝐻𝑖) along with the proposed decision thresholds, midway 

between expected levels for zero, H1 and H2.  

Based in (1) and (2), and the shaded areas in Figure 9, it is possible to write the header error probability 𝑃ℎ𝑒, as 

shown in (3). This equation is based on the assumption that 𝜇1 can be smaller or larger than 𝑇𝑝, with equal 

probabilities, and that H1 and H2 occur with the same probability.   

𝑃ℎ𝑒 =
1

2
∙ [𝑄 (

𝐴((𝑇𝑝 2⁄ )−∆1)

𝜎1
) + 𝑄 (

𝐴((𝑇𝑝 2⁄ )+∆1)

𝜎1
)] +

1

2
∙ [

1

2
∙ 𝑄 (

𝐴((𝑇𝑝 2⁄ )−∆1)

𝜎1
)] =  

=
3

4
∙ 𝑄 (

𝐴((𝑇𝑝 2⁄ )−∆1)

𝜎1
) +

1

2
∙ 𝑄 (

𝐴((𝑇𝑝 2⁄ )+∆1)

𝜎1
)          (3) 

 

3.3 Impact on Information Decoding 

Uncertainty in the measurement of information slot’s duration depends on: i) the uncertainty associated with the 

time reference used in measurement; and ii) the uncertainty associated with the empty slot’s duration. If the time 

reference is perfect (no synchronization error), the counter will measure a Gaussian random time interval equal 

to 𝑡𝑖 = (𝑑𝑖 − 1)𝑇𝑠 + 𝜏0, with mean 𝜇𝑖 = (𝑑𝑖 − 1)𝑇𝑠 ± 𝜇0 and standard deviation 𝜎𝑖 = 𝜎0. Thus, as before, the error 

probability is given by the shaded areas in the conditional probability density functions shown in Figure 10 and the 

expression for zero error probability can be written as shown in (4). 

𝑃𝑒0|𝑆𝐸̅̅̅̅ = 𝑄 (
(𝑇𝑠 2⁄ )−∆0

𝜎0
) + 𝑄 (

(𝑇𝑠 2⁄ )+∆0

𝜎0
)          (4) 

On the other hand, if there is a timing error in the filter’s output peak, the receiver is affected by this 

synchronization uncertainty. Thus, the counter will start later than it should and one (or more) empty slots may be 

missed by the detector, even if no uncertainty exists in the transmitted zero slots. Finally, if both uncertainties exist 

(in synchronization and empty slots), the mean of 𝑡𝑖 becomes equal to 𝜇𝑖 = (𝑑𝑖 − 1)𝑇𝑠 ± 𝜇0 − 𝜇1 and the standard 

deviation equal to √𝜎0
2 + 𝜎1

2. Note that the sum of variances must be taken due to the assumption that uncertainty 

in zeros and ones is not correlated. Thus, when synchronization error exists, the error probability is given by (5). 

𝑃𝑒0|𝑆𝐸 =
1

2
∙ 𝑄 (

(𝑇𝑠 2⁄ )−(∆1+∆0)

√𝜎0
2+𝜎1

2
) +

1

2
∙ 𝑄 (

(𝑇𝑠 2⁄ )−(∆1−∆0)

√𝜎0
2+𝜎1

2
)        (5) 

Finally, the information error probability 𝑃𝑖𝑒 is given by (6), considering that synchronization errors may occur in 

one out of the four situations depicted in Figure 8. 

𝑃𝑖𝑒 = 𝑝(𝑆𝐸) ∙ 𝑃𝑒0|𝑆𝐸 + 𝑝(𝑆𝐸̅̅̅̅ ) ∙ 𝑃𝑒0|𝑆𝐸̅̅̅̅ =
1

4
∙ 𝑃𝑒0|𝑆𝐸 +

3

4
∙ 𝑃𝑒0|𝑆𝐸̅̅̅̅         (6) 

4 Results and Discussion 
The present section analyzes the symbol error probability for different uncertainty parameters using the expressions 

derived in section 3. Figure 11a) shows the symbol error probability (𝑃𝑠𝑒) for an increasing time deviation from 

nominal time and different standard deviations, with  𝑇𝑠 = 2𝑇𝑝 = 200𝜇𝑠 and M=3 (8 symbols). Statistical 

parameters were considered to be proportional to nominal times and thus, 𝜇0 = 2𝜇1 and 𝜎0 = 2𝜎1. The particular 

ON and OFF timings used in the experiments described in section 2 (𝑇𝑠 = 𝑇𝑝 = 200𝜇𝑠) was also evaluated. Results 

are shown in Figure 11b), where 𝜇0 = 𝜇1 and 𝜎0 = 𝜎1. These are both valid DH-PIM schemes, although the 

symbol mean time duration in the first is a little shorter than in the second. According to (1), the first exhibits  𝐿̅ =
7𝑇𝑠/2 = 700𝑢𝑠 while the second exhibits 𝐿̅ = 4𝑇𝑠 = 800𝑢𝑠. 

As expected, there is only a small difference in 𝑃𝑠𝑒 when comparing both scenarios, which is noticeable only for 

small ∆. In this case, the impact of 𝜎0 and 𝜎1is higher and thus, the scheme with lower global variances is the one 

with lower error probability. Moreover, as it can be seen in both graphics that the error probability increases fast 

when the pulse’s duration is higher than Ts 2⁄ , as this is the threshold level at the information hard-decision 
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detector. Also, the impact of the standard deviation is as expected - it increases the error probability when ∆ is 

small and decreases it for higher ∆. 

Also interesting is the behavior of the symbol error probability for different ‘1’s and ‘0’s time differences and 

standard deviations. In the following analysis it was considered the general case where Ts = 2Tp = 200μs. Figure 

12a) shows that uncertainty in ‘1’s (header pulses) have a higher impact than in ‘0’s, for large ∆. This is due to the 

fact that uncertainty in ‘1’s affects both the header and information slot’s decoding. On the contrary, Figure 12b) 

shows that for a given standard deviation, any deviation from the nominal slot duration in ‘0’s has a greater impact 

in symbol error probability than in ‘1’s. This makes sense if we remember that the probability of receiving ‘0’s is 

higher than the probability of receiving ‘1’s. 

As a final comment on these results, it is important to highlight that error probabilities are unusually high in these 

graphics because we considered unusually high timing uncertainty parameters. This large amount of variability 

may indeed occur is the described communication system because the receiver cannot know the transmitter’s 

timing characteristics in advance. Thus, it will never be perfectly matched to the transmitter and high deviations 

from nominal times may occur. Future work to alleviate this problem should include the development of a 

dynamically adjusted matched filter in the receiver to mitigate the static uncertainty introduced by the particular 

characteristics of different transmitters. 

5 Conclusions 
 

This paper discussed limitations and tradeoffs on the usage of the smartphone flash LED as transmitting device, 

employing visible light communication concepts. It was ascertained that timing uncertainties constrain the 

achievement of high data rates. Timing uncertainties depend on the smartphone model, its hardware resources, and 

operating systems. Results are expected to change for different devices, but maintain similar trends, due to the fact 

that the flash LED will have similar specifications. Although the relative uncertainty was shown to increase with 

data rates, it was disclosed the possibility to achieve a switching speed in the range of 100us, which will open up 

space for several low data rate applications. Also, the receiver could be designed to tolerate higher uncertainty 

levels by resorting to dynamic automatic threshold adjustment.  
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Figures 

 

 

 

 

Figure 1 – Layered stack for flash control in Android smartphones. 

 

 

 

 

Figure 2 – Experimental set-up for LED timing characterization 
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Figure 3 – Histograms for H1 and H2 and the correspondent Gaussian fitting 

 

 

Figure 4 – Uncertainty parameters for increasing nominal ON and OFF timings: a) mean; b) standard deviation; and c) relative 

uncertainty. 
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Figure 5 - DH-PIM symbol structure showing both headers (H1 and H2) 
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Figure 6 - DH-PIM optimum receiver 
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Figure 7 - Matched filter output when receiving H1 and H2 pulses 
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Figure 8 - Matched filter output time uncertainty in H1 and H2. 
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Figure 9 - Conditional PDFs with decision thresholds and error probabilities. 
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Figure 10 - Conditional PDF with decision thresholds and error probabilities. 

a)  b)  

Figure 11 – Symbol error probability for M=3, for increasing mean deviation from nominal time duration and different standard 

deviation parameters. Two schemes are shown: a) 𝑻𝒔 = 𝟐𝑻𝒑 = 𝟐𝟎𝟎𝝁𝒔; and b) 𝑻𝒔 = 𝑻𝒑 = 𝟐𝟎𝟎𝝁𝒔. 

a) b)  

Figure 1 - Symbol error probability for: a) increasing ∆𝟎= 𝟐∆𝟏 and different standard deviations 𝝈𝟏 and 𝛔𝟎; b) increasing standard 

deviation and different time differences ∆𝟏 and ∆𝟎. 
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Tables 

 

Table 1 – Measured uncertainty parameters, with TON=TOFF=200us for headers and empty slots. 

 Headers Information Slots 

 H1 H2 D=1 D=2 D=3 D=4 

Run µ1 1 µ1 1 µ0 0 µ0 0 µ0 0 µ0 0 

1 200.7 11.6 199.9 12.2 226.9 13.1 232.9 13.5 229.5 11.2 227.8 10.2 

2 199.8 11.7 210.9 14.6 226.9 12.8 229.9 15.1 227.2 12.6 225.7 12.5 

3 199.1 11.7 202.5 17.7 226.9 12.9 234.5 13.3 231.0 12.3 229.6 11.3 

Mean 199.9 11.7 204.4 14.8 226.9 12.6 232.4 14.0 229.2 12.0 227.7 11.3 

 

77


	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation for Visible Light Communications (VLC)
	VLC Characteristics
	VLC Applications
	Project Motivation
	Document Structure

	State of the Art
	Some History
	LED History
	VLC History

	Actual State of VLC Communications
	Indoor VLC
	OFDM
	Optical MIMO

	Image Sensors as VLC Receivers
	VLC under water

	Low Debt VLC Projects
	LED to LED communication
	Disney Research
	Casio
	Using Smartphones as Secure Keys


	Exploring Smartphone's Flashlight to Transmit Data
	Concept
	Flash Control Strategies
	Java approach
	Accessing LED Through SysFS
	Using Input Output Control Interface to control the LED
	Controlling the LED With General Purpose Input Output

	Modulation Techniques
	IEEE Standard for VLC
	On Off Keying
	Pulse Position Modulation
	Pulse Interval Modulation
	Dual-Header Pulse Interval Modulation
	Comparison of the modulation techniques


	Developed Work
	Introduction
	Data Analysis
	Accessing LED Through SysFS
	Using Input Output Control Interface to control the LED
	Controlling the LED With General Purpose Input Output

	Timing Uncertainty on DH-PIM
	Impact on Header Decoding
	Impact on Information Decoding


	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendices
	Emitter Control
	Java Code
	Generic Java Method
	IOCTL Specific Options
	GPIO Specific Options

	Native methods
	SysFS
	IOCTL
	GPIO


	Arduino Control
	Submitted Paper

