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Chapter

Artificial Intelligence in
Light-Source Design
Snjezana Soltic and Andrew N. Chalmers

Abstract

The advent of light-emitting diode (LED) light sources has led to a new freedom
in the design of light-source spectra, and it is now possible to optimise for different
source performance parameters, which is the principal aim of the authors’ work.
LEDs and lasers are real or potential light sources, and are inherently monochro-
matic, that is, narrow-band sources, with typical optical bandwidths in the range
20–40 nm (nanometres) for LEDs and 1–5 nm for diode lasers. Mixtures of three or
more can be used to produce nominally white light of the type acceptable for
general purpose lighting. It is a characteristic of all types of sources that there is a
trade-off between good colour properties and high efficiencies, and the methods
described here are directed towards an optimum combination of such parameters.
This chapter will explain the use of differential evolution (DE) as a highly effective
heuristic approach to optimisation, and proceeds to explain the structure and
operation of a DE algorithm designed as an optimisation tool for such purposes.

Keywords: differential evolution, optimisation, LED lighting, luminous efficacy,
correlated colour temperature, colour rendering and fidelity

1. Introduction

It has been stated by some authors that white LEDs are the eco-friendly light
sources for the twenty-first century [1]. White light in LEDs can be produced either
(i) by using blue (or violet) light to irradiate a phosphor that emits yellow light [2, 3]
or (ii) by combining the outputs of a group of monochromatic LEDs [1, 4, 5]. In
approach (i) the blue or violet is combined with the yellow to produce white light.
We have adopted approach (ii) in which three (or, preferably, four) primary colours
are mixed in appropriate proportions to produce high-quality white light with higher
efficiency than approach (i) since there is no loss of energy as in the down-conversion
in the phosphor [5, 6]. Both approaches aim to design LED-based white-light sources
characterised by high colour rendering and fidelity properties combined with high
luminous efficacy. It is an established fact in light-source design that these two
qualities are generally contravariant, and that both depend on the emitted spectrum
of the source. We have found that fine-tuning of the intensities of the individual
sources, as well as the selection of their individual peak wavelengths, enables us to
define the best balance of the significant spectral properties of the mixture. Our
adopted optimisation technique implements a trial-and-error search algorithm within
an n-dimensional space {I1, …, Ii, …, In} until an acceptable spectral power distribu-
tion (SPD) is found for the white-light mixture [5, 7, 8].
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In this chapter, we will describe an approach to the design of the optimum LED
mixture using a simple global optimisation algorithm based on differential evolu-
tion (DE) as proposed by Storn and Price [9]. We have optimised the SPDs of
mixtures of real and simulated LEDs and diode lasers. For this purpose, a MATLAB
program was developed that optimises the SPD of an arbitrary mixture of individual
SPDs. Specific versions of this program were developed to implement several dif-
ferent techniques for defining (and calculating) the colour properties of sources.

This chapter proceeds as follows. In Section 2, the principles of the DE algorithm
are described in detail. In Section 3, the theory of colour rendering and luminous
efficacy is given, along with other relevant lighting terms and their usage. Section 4
presents a selection of key experimental results and comparisons and, finally, we
state our conclusions in Section 5.

2. Differential evolution

Differential evolution is a powerful population-based evolutionary algorithm
suitable for the optimisation of real-value multi-modal non-linear and non-
differentiable objective functions fo(x1, x2, ..., xn) [9, 10]. DE is simple and has
proven to be powerful in solving a number of benchmark problems [11, 12].

The search for an optimal solution starts with a population of P randomly
created solution vectors {v1, v2, ..., vP}. This population is maintained constant
during the optimisation process, during which the solution vectors (i.e., candidate
SPDs) undergo mutation, crossover, evaluation and selection over a number of
generations G. The best choices for both the population size P and the number of
generations G depend on the problem to be optimised. Storn and Price suggest P ∈

[5n, 10n], where n is the dimension of the objective function, but P must be ≥4 to
provide sufficient mutually different solution vectors for the algorithm to
function properly [10].

The operation of the algorithm is controlled by the use of a fitness function ffit
designed to discriminate between solutions (SPDs here) with ‘good’ or ‘poor’
properties.

Mutation is the process of creating a new offspring vector ui,G + 1 by adding the
weighted difference between two randomly chosen solution vectors, vr2,G and vr3,G,
to a randomly chosen vr1,G [10]:

ui,Gþ1 ¼ vr1,G þ F � vr2,G � vr3,Gð Þ (1)

where F is a mutation weight ∈ [0,2] and random indices r1, r2, r3 ∈ [0, P�1] are
chosen to be different from the index i. The mutation process is illustrated in Figure 1.

The offspring solution vectors ui,G + 1 undergo crossover which ensures that the
offspring vectors wji,G + 1 differ from their parents [10]:

wji,Gþ1 ¼
uji,Gþ1 if j≤CRð Þ ∣ j ¼ ið Þ

vji,G if j>CRð Þ ∣ j 6¼ ið Þ

�

(2)

where the terms and parameters are defined as follows: i ∈ {1,2,..., P} is a
randomly chosen integer, j ∈ [0, 1) is a randomly chosen real value, CR ∈ [0, 1] is
a crossover constant influencing the number of elements to be exchanged. An
example of the crossover process is shown in Figure 2.

The process compares the offspring vectors {w1,G + 1,..., wP,G + 1} against their
parent vectors {v1,G,..., vP,G}. If the offspring wi,G + 1 has a better fitness function ffit
than its parent vi,G, then it becomes a member of the next generation, G + 1. If not,
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the vi,G vector is retained. Hence, only the fitter offspring become members of the
G + 1 generation.

Proposals have been made for several variants of the original DE algorithm [10].
The most significant differences are in the creation of new solution vectors where:

1. the best solution vector from the current generation vbest,G is mutated rather
than vr1,G;

2.more than two difference vectors are used in mutation; and

3. different crossover schemes are employed.

Our work is based on the original DE, and is described in pseudo-code given
below:

Require: G, P, F ∈[0,2], CR ∈[0,1]

1: Create vectors {v1,0,...,vP,0}

2: Evaluate {v1,0,...,vP,0}->ffit,0
3: for all G do

4: Mutate vi,G -> ui,G+1
5: Crossover {u1,G+1,...,uP,G+1} and

{v1,G,...,vP,G}->{w1,G+1,...,wP,G+1}

6: Evaluate {w1,G+1,...,wP,G+1}

7: if ffit(wi,G+1) > ffit(vi,G)

8: vi,G+1 = wi,G+1

9: else

10: vi,G+1 = vi,G
11: end if

12: end for

Figure 2.
Illustration of a typical crossover process for P = 6.

Figure 1.
Illustration of the mutation process for P = 9.
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3. Light-source properties

Our purpose in this chapter is to present an approach to intelligent spectral
design for any white-light source, aiming to achieve an optimum combination of
luminous efficacy and colour rendering which, as previously noted, are
contravariant characteristics of the SPD. We next introduce a brief outline of these,
and other important, source properties.

3.1 Colour rendering index

Colour rendering has been defined by the Commission Internationale de
l’Éclairage, International Commission on Illumination (CIE) who have published
recommendations for the method of calculation of their colour rendering index
(CRI) [13] based on a knowledge of the light-source spectrum. It represents an
evaluation of the average colour shift of eight defined moderate-chroma colour
samples when compared under the test source and a reference source having the
same correlated colour temperature (CCT).1 The system includes 14 test colours in
total, and the additional 6 comprise 4 highly saturated colours (red, yellow, green,
and blue) plus samples representing skin and foliage colours, respectively. As of the
time of writing, this is the internationally agreed method. Note that CRI and asso-
ciated technology have also been covered in [14]. The two most widely quoted
colour rendering terms are: Ra—the general colour rendering index, based on the
colour shifts of the eight principal test colour samples; and R9—the ‘special’ (indi-
vidual) index for the highly saturated red colour (sample 9).

In our optimisation work (see Section 4.1), we also made use of several
derived indices symbolised as Rb, Rc and Rmin, based, respectively, on: the 6 addi-
tional test colours; the full set of 14 test colours and the minimum individual value
from the Rc set.

3.2 Colour fidelity index

Some dissatisfaction with the CIE method has arisen since the widespread adop-
tion of LED lighting. As a consequence, the Illumination Engineering Society of
North America (IES) has adopted a recommended method (TM-30-15) [15, 16]
which recommends two new indices (Rf and Rg) for the classification of the colour
properties of light sources. The underpinning research leading to the development
of TM-30-15 [16–18] identified several weaknesses in the CIE’s earlier CRI method
[13], claiming that it does not adequately sample wavelength space and hence tends
to over-estimate colour performance.

The method is also based on the colour-shift concept, but now using a set of 99
test colours considered to provide uniformity of both wavelength sampling and
colour-space sampling. In addition, it uses a more modern colour-difference calcu-
lation technique, CAM02UCS [19] which is a development of the basic CIECAM02
colour appearance space [20].

The new index Rf gives an overall assessment of colour fidelity, while gamut
index Rg indicates the relative magnitudes of colour shifts for sample colours in
different regions of colour space. Also available is the skin colour index, Rf skin,
which is an average of two specific sample-colour indices, selected as representative
of human skin. In our optimisations, we also called up the minimum value of Rf,

1 Defined in Section 3.5.
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symbolised as Rf min, from the full set of 99 individual indices Rf i, as well as the
referenced colour sample number imin (in the set i1 to i99).

3.3 Colour quality scale

This was a precursor to TM-30-15, first proposed by Davis and Ohno of NIST
(USA) [21]. The following serves as a brief introduction for the purpose of the
present discussion. Again using the previously mentioned colour-shift concept, the
CQS metric employs 15 saturated test colour samples, on the premise that certain
light sources may render saturated colours more poorly than the de-saturated col-
ours of the CIE’s CRI method. The chromatic differences are calculated using the
CIE 1976 (CIELAB) colour model [22].

The full calculation procedure has also been explained in [23]. It employs
multiple steps, several of which are non-linear, resulting in the general CQS index,
Q a. As with the previous two cases, the ‘special CQS’ (Q i) for each test colour
sample may be calculated for a more thorough investigation of a test source. We
have used the minimum value of Q i (designated Qmin) from the set of 15 Q i values,
as an optimisation parameter.

3.4 Luminous efficacy of radiation

The luminous efficacy of the radiation (LER) of a light source assesses the
‘lighting content’ of the spectrum by comparing the visible light output (in lumens)
to the total radiant output (in watts) as in Eq. 3.

LER ¼
Km

Ð

λ
V λð ÞS λð Þdλ
Ð

λ
S λð Þdλ

(3)

where Km is the maximum luminous efficacy of radiation (≈683 lumen per
watt), S(λ) is the spectral distribution of the light source, and V(λ) is the CIE
spectral sensitivity function for human photopic vision [24]. The LER is an impor-
tant determinant of the overall economy of a light source since the overall luminous
efficacy is given by the product of LER with the energy conversion efficiency of
the particular light source.

3.5 Correlated colour temperature

From the perspective of the lighting system designer, the correlated colour
temperature (CCT) is the key feature in the selection of a light source since the CCT
serves as an indicator of, not only the colour of the source, but also, the ‘atmo-
sphere’ it will create.

The CCT is defined in [25], and its significance is that it describes the chroma-
ticity of the source (which must be close to the Planckian locus) in the CIE (u, v)
chromaticity diagram.2 Note that it is possible for many different spectral power
distributions (SPDs) to have the same CCT; and that CCT is not essentially linked
with colour rendering, quality or fidelity.

2 In CIE documentation, this is now replaced by the u0; 23 v
0

� �

diagram based on CIE 1976 (u0, v0)

coordinates.
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4. Optimisations

We here present, in outline form, the results of optimised spectral designs
achieved using DE. Interested readers are referred to previous publications
[23, 26–29] for full details.

It is noted at the outset that it is, in principle, possible to create white-light
mixtures by the use of as few as two or three wavelengths. Our early experiments
showed that these practically always lead to suboptimal mixtures in the sense that
either one or both of LER and Xc are unacceptably low (Xc is here used to denote any
one of the colour metrics mentioned in Section 3). Further experiments indicated
that mixtures of five, six or seven wavelengths gave little or no practical advantage
over 4-band mixtures, while adding to the complexity (and possible unreliability)
of the light source. For the sake of brevity, therefore, the following descriptions are
confined solely to results for 4-band mixing.

Two types of optimisation conditions are described: (i) constrained, in which the
optimiser is presented with a set of known (e.g., commercial) monochromatic
spectra, and is required to find the best available mixtures in terms of defined
criteria and (ii) unconstrained, when the program is given mathematical descrip-
tions for the shapes of potential monochromatic spectra, which it then proceeds to
mix and optimise as above.

In the optimisations described below, all SPDs for LEDs were computed at 5-nm
intervals, and for lasers at 1 nm.

4.1 Optimisation of LED mixtures for LER and CRI (CIE Ra)

This investigation [26] explored the optimisation of white-light mixtures of
seven LEDs (four at a time) from the Lumileds Luxeon™ range [30] and it is
therefore classed as constrained. The objective here was to achieve the best available
combination of Ra with LER, and the fitness function for DE was defined as in Eq. 4:

f fit ¼ aRa þ bRb þ cRc þ drad þ eRmin (4)

where Ra = CIE general colour rendering index (based on 8 medium-chroma test
colours); Rb = similar figure of merit based on the 6 additional test colours in the
CIE method; Rc = similar figure of merit based on all 14 test colours in the CIE
method; ηrad = the value of the LER (lumen per watt figure); Rmin = the lowest value
of Ri in the set of 14 individual values; a, b, c, d and e are user-selectable weights
controlling the influence of Ra, Rb, Rc, ηrad and Rmin on the optimisation process.

Experimentation found that ffit converged around (or before) the 1000th gen-
eration; hence, the number of generations G was set to 1000 for fast and accurate
convergence of the DE. Note that a too-small G can mean that the process has
insufficient opportunity to search for effective solution vectors whereas, for exces-
sive values of G, the optimisation process is unnecessarily slowed down without
improving the optimisation result.

The other DE parameters that may influence the operation of the algorithm are
P, F, and CR, all of which need to be set prior to any run. We found by experimen-
tation that the values of these parameters had only a minor influence on the opti-
misation results; and the choice of suitable values for good optimisation was
straightforward. We quickly settled on a value of P = 50, and we set F and CR
according to the suggestions in [10], that is, F = 0.5 and CR = 0.1.

Further experimentation investigated the effects of different values for the
weighting factors for ffit, and some indicative results are shown inTable 1. The relative
spectral power distribution (SPD) for the result listed as Test 1 is shown in Figure 3.
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It is worth noting that Ra ≥ 90 is generally considered as excellent colour
performance, and LER ≥ 300 lm/W exceeds that of many other (efficient)
light sources.

Table 1 shows that significant step decrements in the weight e (the Rmin

weighting) led to fairly small losses in the colour performance of the mixtures, but
to noticeable gains in LER (and hence, efficiency in use).

Figures 4 and 5 show how the individual elements of ffit in Test 1 were
fluctuating before converging to their final values.

It can be seen that ηrad (Figure 5), and hence also ffit, undergoes significant swings
during the early stages of the process (G < 300). It then converges to just below
340 lm/W at G = 336. In this instance, the population has converged around G = 400,
and all parameters are only fine-tuned thereafter. These curves indicate that the
process could, in fact, have been terminated at G = 500, with low likelihood of loss.

4.2 Optimisation of mathematical mixtures for LER and CRI (CIE Ra)

It was decided to extend the above approach to an unconstrained investigation
of SPD mixtures defined by the following mathematical functions:

• Gaussian

• rectangular

• triangular

The optimiser was free to position four spectral bands, conforming to any one
function, at any wavelength within the visible band (380–760 nm) and having any
relative intensity (i.e., height) of one to another. One constraint was imposed for
practical purposes, namely each band was kept to a spectral width between 25 and

Test no Weighting factors Best results

a b c d e Ra Rb Rc ηrad (lm/W) Rmin imin CCT (K)

1 1 1 1 1 10 95 96 91 339 76 12 3268

2 1 1 1 1 5 93 83 89 350 76 12 3074

3 1 1 1 0.5 0 92 79 87 384 58 9 3169

Table 1.
Influence of different ffit weights on the optimization of LED mixtures.

Figure 3.
Relative SPD of the 4-band LED mixture (Test 1). Wavelength peaks for: blue = 460 nm, green = 530 nm,
amber = 590 nm, red = 630 nm. Source parameters: Ra = 95, Rb = 86, ηrad = 339 lm/W, CCT = 3268 K,
R12 = 76 (blue sample).
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45 nm (full width at half maximum, or FWHM) [27]. Apart from these changes, the
procedure was essentially the same as that used in Section 4.1, and the same fitness
function was used.

A total of 36 optimisations were performed, using 12 different combinations of
ffit weightings for each of the three functions. The following extract from this set of
results shows the SPDs obtained with the weightings: a = 1; b = c = d = e = 0. See
Figure 6.

It was intended that the unconstrained approach will help to identify those
wavelength combinations that will lead to optimum SPDs. The findings relating to
the spectra in Figure 6 are summarised in Table 2.

This is too small a sample fromwhich to generalise; however, it is possible to make
the following observations. The colour performance of these three mixtures is excep-
tionally good (other than the high CCT for G1) possibly at the expense of relatively
moderate LER values. It is probable that the Gaussian and triangular shapes are more
realistic simulations of real physical spectra (whether originating from LEDs or
phosphors); hence their corresponding centre wavelengths (λ1–λ4) may be useful
indicators for use in light-source design. See [27] for a more complete discussion.

Figure 5.
Behaviour of ηrad in Test 1.

Figure 4.
Behaviour of Ra, Rb, Rc and Rmin in Test 1.
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4.3 Optimisation of LED mixtures for LER and CQS (NIST Qa)

This was again a constrained optimisation process. It was based on the same set
of Luxeon™ LEDs as used in Section 4.1, and also used tetrachromatic mixtures.
The optimisation process [23] was also broadly similar to that in Section 4.1, and it
used a similar interface, but the software was rewritten to compute the perfor-
mance of candidate SPDs in terms of CQS parameters, specifically the average
colour quality index, Q a, and the minimum, Qmin (the lowest individual index, Q i)
for every candidate SPD.

The following fitness function (Eq. 5) was employed:

f fit ¼ aQ
 a þ bηrad þ cQmin (5)

where a, b, c are the weights controlling the influence of Q a, LER and Qmin on
the optimisation of the LED mixtures. A selection of the results of the optimisation
of the LED mixtures using various weightings is shown in Table 3.

Expt Ra Rb Rc ηR (lm/W) Rmin imin TC (K) λ1 λ2 λ3 λ4

G1 98 93 96 228 80 12 7870 456 524 591 671

R1 97 90 94 317 72 12 3542 445 510 570 625

T1 98 95 97 303 84 12 4133 460 525 585 645

Table 2.
Results for the mixtures of mathematical functions shown in Figure 4.

Figure 6.
Relative SPDs of the mathematical 4-band mixtures. (a) G1, Gaussian; (b) R1, rectangular; (c) T1,
triangular ffit = Ra.

Weights Optimised spectra

a b c Q a ηrad (lm/W) Q min CCT (K)

1 0 0 96 306 93 3638

1 0 1 96 305 94 3386

0 0 1 96 298 94 3379

10 1 0 95 322 91 3452

0 1 2 84 367 75 5041

Table 3.
Optimizations of five tetrachromatic LED mixtures (CQS domain).
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4.4 Optimisation of LED mixtures for specific CCT values

The previously mentioned techniques (used in Section 4.1–4.3) did not take
account of the CCTs of the spectra except as values to be calculated following the
optimisations. Because of the importance of the CCT to lighting designers and users,
it was recognised that this parameter needed to be incorporated into the optimisa-
tion procedure.

We therefore designed a new optimisation tool [29], again based on differential
evolution, which puts CCT at the centre of the process and then proceeds to
optimise colour rendering while maintaining a close tolerance to the target CCT
value. We selected three CCT values to illustrate the effectiveness of the process.

The optimiser was presented with a specific set of four monochromatic LED
spectra selected from the Luxeon™ range. The objective was to minimise the aver-
age colour difference for a set of colour samples which, in principle, could be any
suitable set of colours. We chose to use the 14 test colours specified in CIE13.3 [13]
since they constitute a well-known and widely used set.

The basis of the selection process in our algorithm was the colour difference of
specific surface colours as they appear under the candidate spectrum and under the
reference spectrum of the same CCT. In each new generation, the offspring solu-
tions were evaluated on the basis of minimising the colour difference ΔE00(Avg)

calculated using the CIEDE2000 colour difference formula [31]. Hence, the algo-
rithm was designed to search for a spectrum with the lowest colour differences. The
optimum solution was determined after having performed G generations (typically
1000); that is, the best solution in generation G is accepted as the best white-light
spectrum.

Figure 7 shows the results in the form of the SPDs realised by the LED mixtures,
and their performance is summarised in Table 4. Note that ΔE00(Avg) represents the
average of 14 colour differences (for the 14 colours in the CIE set) and Δ(u0,v0) is
the chromaticity difference in CIE 1976 coordinates between the target CCT and
that achieved by the LED mixture. The other listed parameters were computed after
the completion of each optimisation run.

Figure 7.
Relative SPDs of 4-LED mixtures that match CIE illuminants A, D50 and D65. Relative SPDs of the actual
illuminants are shown for reference (lighter lines).

Illuminant Ra Rmin imin LER (lm/W) ΔE00(Avg) Δ(u’,v’)

A 93 68 11 313 0.73 0.0038

D50 95 70 12 311 0.81 0.0010

D65 95 63 12 298 0.94 0.0015

Table 4.
Optimizations of tetrachromatic LED mixtures with specified CCTs.
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The above approach was extended to a set of optimisations in which Gaussian-
shaped spectra of either 25 or 50 nm bandwidth, but with unconstrained peak
intensities and wavelengths, were optimised in the same way as the LED mixtures.

Table 5 shows the best CRI performance for 4-band (25 nm) Gaussian mixtures,
along with the other properties as listed in Table 4, and there is an evident degree
of conformance between the two sets of results.

4.5 Optimisation of laser diode mixtures using TM-30-15 (IES Rf)

Our investigations in this field [28, 32] were inspired by the work of Neumann
et al. [33] who successfully demonstrated a white-light 4-laser mixture with
acceptable colour properties expressed in terms of the CRI and CQS metrics. Our
earlier paper [28] also used CRI and CQS as measures of colour rendition. These
approaches are now regarded as suspect (particularly in respect of mixtures of
ultra-narrow bands such as lasers) on the grounds of incomplete sampling of wave-
length and colour spaces.

Our purpose in [32] was to optimise similar mixtures of solid-state lasers, and to
utilize the more up-to-date method of the IES colour fidelity index Rf [15, 16].

A new optimisation tool was designed to implement the complex sequence of
non-linear calculation steps in the evaluation of colour fidelity for any given SPD.
We then developed a new fitness function (Eq. 6) based on the IES parameters as
well as the LER, to evaluate every candidate spectrum produced in the process.

f ¼ aRf þ bRf min þ cRf skin þ dηrad (6)

where Rf = average fidelity index for all 99 colour samples; Rfmin = value of the
lowest-scoring individual Rf (single colour sample); Rfskin = average index for two
individual colours selected as representative of human skin; ηrad = value of LER in
lm/W; a, b, c, d are the respective weighting factors.

For the purposes of optimisation, each laser was simulated by a pseudo-delta
function (1-nm bandwidth) at the centre wavelength of its output. Optimisations
were performed in both constrained (using commercially available laser diode
wavelengths) and unconstrained modes.

The best result (with four real laser wavelengths) was Rf of 84 with LER 364 lm/W,
which indicates the feasibility of the mixed-laser approach to provide highly efficient,
energy-saving light sources. The unconstrained mixtures showed that the prospects
will be further enhanced by potential future developments in semiconductor lasers,
with the possibility of producing Rf of 86 with LER of 380 lm/W. The detailed
properties for these two mixtures are given in Table 6.

Compared with LEDs, lasers have the advantage of higher conversion efficiency
(from electrical input to radiant output). This, combined with the very high pro-
spective LER values, will make future laser mixtures exceptionally attractive in
terms of energy conservation. The colour properties are not as good as for LEDs, but
they are nevertheless regarded as sufficiently good for many types of lighting

Illuminant Ra Rmin imin LER (lm/W) ΔE00(Avg) Δ(u’,v’)

A 96 68 12 318 0.82 0.0034

D50 95 89 12 336 0.58 0.0019

D65 93 75 9 299 0.67 0.0059

Table 5.
Optimizations of tetrachromatic Gaussian mixtures with specified CCTs.
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situations. Lasers are not yet considered to be practical as white-light sources but,
with the potential for new developments in solid-state visible laser sources, their
future prospects must be very strong.

5. Conclusions

We have here demonstrated the power of the differential evolution algorithm in
the intelligent design of light source spectra, based on both LEDs and laser diodes. It
provides a simple, flexible and effective solution in the elusive search for the
balance of the LER and the colour rendition properties in optimised light sources.
We recommend this technique to anyone engaged in the optimum design of light-
source spectra.

We feel confident that our method can also be readily adapted to other types of
optimisation problem, wherever suitable elements for the fitness function can be
readily identified.
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Simulation mode Rf Rf skin Rf min imin LER (lm/W) CCT (K)

Constrained 84 87 59 97 364 3011

Unconstrained 86 91 54 81 380 3156

imin refers to the sample number that gave the listed value of Rf i = Rf min,
i = 97 is dark pink-purple (printed origin); 81 is dark purple-blue (natural origin).

Table 6.
Optimizations of simulated tetrachromatic laser mixtures.
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