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Chapter

Cytokines and Maternal Omega-3 
LCPUFAs Supplementation
Yessica Rodriguez-Santana and Luis Peña-Quintana

Abstract

Daily supplementation of maternal diet during pregnancy and lactation with 
a fish oil-enriched dairy product increases the percentage of DHA and other 
omega-3 (ω-3) long-chain polyunsaturated fatty acids (LCPUFAs) in mothers 
(placenta, plasma, erythrocyte membranes, and breast milk) and children (plasma 
and erythrocyte membranes). This supplementation during critical periods such 
as pregnancy, lactation, and early development of a newborn may influence the 
levels of certain inflammatory cytokines, reducing pro-inflammatory cytokines 
and promoting an anti-inflammatory “environment”. In pregnant women who have 
not received any supplement of omega-3 LCPUFAs, IL-6 plasma levels are higher, 
while TNF-alpha plasma levels are also higher in their breastfed infant at birth and 
2 months thereafter. There could be a relationship between docosahexaenoic acid 
(DHA) and the concentrations of different cytokines.

Keywords: docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA),  
omega-3 LCPUFAs, pregnancy, lactation, cytokines, fatty acids

1. Introduction

Interest in the therapeutic effects of omega-3 (ω-3) fatty acids has grown over 
the last 30 years, particularly in regard to visual and neurological development in 
newborns, the immune system, and inflammatory and cardiovascular diseases [1–9].

Inflammation is one of the principal causes of complications during pregnancy 
and of prematurity and neonatal morbidity [10–15].

Docosahexaenoic acid (DHA) has anti-inflammatory effects and can alter 
the production of inflammatory cytokines in animal models, cell culture, and in 
humans [16–26]. A high intake of omega-3 fatty acids has been associated with a 
reduction in arachidonic acid-derived inflammatory eicosanoids, cytokine produc-
tion, reactive oxygen species, and expression of adhesion molecules [27]. It is also 
associated with the production of lipid mediators [28] that have anti-inflammatory 
[29–31] and immunomodulatory effects [27]. Both eicosapentaenoic acid (EPA) 
and DHA affect the function of many immune cells and can have a beneficial 
effect in preventing inflammatory or immune-mediated diseases, but their effects 
and mechanisms of action can differ [32]. They can inhibit the production of 
pro-inflammatory cytokines such as tumour necrosis factor-alpha and interleukin 
(IL)-1 and IL-6 [33]. In animal models their intake during pregnancy appears to 
exert an anti-inflammatory effect on damaged tissue in the young [34–36], while in 
humans it produces a decrease in Th1 cytokines such as interferon-gamma (IFN-γ) 
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and IL-1 in infants’ plasma and a decrease in the Th2 cytokines IL-14 and IL-13 in 
the umbilical cord blood [32, 37].

2. Omega-3 fatty acids

Long-chain polyunsaturated fatty acids are fatty acids containing at least 18–20 
carbon atoms. They are categorised into two main families according to the posi-
tion of the first double bond [38], as either omega-3 series or omega-6 series. In 
omega-3 fatty acids, the first double bond is between the third and fourth carbon 
atoms (Table 1).

The most relevant omega-3 LCPUFAs are alpha-linolenic acid (ALA), 
docosahexaenoic acid, eicosapentaenoic acid, and docosapentaenoic acid 
(DPA), while the most relevant omega-6 LCPUFAs are linoleic acid (LA) and 
arachidonic acid (ARA).

2.1 Synthesis and sources of fatty acids

In humans, the synthesis of omega-3 and omega-6 fatty acids is limited; they 
are therefore considered essential fatty acids. LA and ALA are synthesised in large 
quantities in plants, but humans and other mammals cannot make them from their 
precursor, oleic acid, because they lack the active enzymes Δ-12 and Δ-15 desatu-
rase [38]. Humans can synthesise other long-chain fatty acids such as ARA, DHA, 
and EPA from LA and ALA, which are precursors to the omega-6 and omega-3 
series, respectively. However, conversion of these fatty acids to DHA, EPA, and 
ARA is inefficient [39], the most efficient method being to obtain them from the 
diet. Conversion can vary between sexes and is more efficient in women [40]. It 
increases during pregnancy and is reduced in newborns [40] due to their lower 
enzymatic activity.

Both omega-3 and omega-6 LCPUFA syntheses occur via the same pathway 
of elongation, desaturation, and peroxisomal retroconversion [41]. The most 
important enzymes in the desaturation processes are Δ-5 and Δ-6 desaturase. The 
two precursors, LA and ALA, compete for Δ-6 desaturase, but the enzyme has a 
greater affinity for ALA [40]. Therefore, a high supply of ALA causes a reduction 
in the synthesis of LA derivatives. In contrast, if LA supply is greater than ALA 
supply, conversion of ALA to its derivatives is limited. The Western diet contains 
10–20 times more omega-6 than omega-3 fatty acids [41]. In addition, the fatty acid 
content of plasma and many other tissues comprises predominantly omega-6 fatty 
acids, with the exception of the brain and retina, which are rich in omega-3 [41]. 
Thus, a high intake of EPA and DHA results in a decrease in tissue levels of ARA 
and an increase in EPA and DHA, due to enzymatic competition between the two 
series [42].

Omega-6 fatty acids Linoleic acid (LA) C18:2 ω-6

Arachidonic acid (ARA) C20:4ω-6

Omega-3 fatty acids Alpha linolenic acid (ALA) C18:3 ω-3

Eicosapentaenoic acid (EPA) C20:5 ω-3

Docosahexaenoic acid (DHA) C22:6 ω-3

Docosapentaenoic acid (DPA) C22:5 ω-3

Table 1. 
Omega-6 and omega-3 long-chain polyunsaturated fatty acids.



3

Cytokines and Maternal Omega-3 LCPUFAs Supplementation
DOI: http://dx.doi.org/10.5772/intechopen.86402

Polyunsaturated fatty acids are found mainly in oily fish and in seed oils. LA, the 
precursor of omega-6 fatty acids, is present in soybean, corn, and sunflower oils, 
while ALA, the precursor to omega-3 fatty acids, is found in numerous vegetables, 
such as linseed, canola, pumpkin seeds, and walnuts. The main dietary sources of 
EPA and DHA are cold-water oily fish (e.g. sardines, salmon, mackerel, and her-
ring) [43] (Figure 1).

Despite the benefits of a diet rich in omega-3 fatty acids, there is no con-
sensus on their recommended daily intake. The dietary recommendations from 
national and international bodies on the intake of omega-3 long-chain fatty 
acids, in particular EPA and DHA, vary between 200 and 600 mg per day for 
adults and 40 and 250 mg per day for infants older than 6 months, children, 
and adolescents [42]. These recommendations are based on the observed 
association between the omega-3 fatty acid consumption and reduced risk of 
cardiovascular disease. According to the Nutrition Committee of American 
Heart Association (AHA Nutrition Committee) recommendations, eating at 
least two servings of fish per week or 500 mg per day of omega-3 LCPUFAs pre-
vents and reduces the risk of cardiac disease [44, 45]. The expert panel of the 
European Food Safety Authority (EFSA) recommends an intake of 250 mg per 
day of omega-3 LCPUFAs, in contrast to the Australian suggested dietary tar-
gets of 610 mg EPA and 430 mg DHA per day in adults to reduce cardiovascular 
risk [38, 46, 47]. To achieve an anti-inflammatory effect, it is recommended 
to eat between 500 and 1000 mg of omega-3 fatty acids per day [48]. There 
are also specific recommendations for certain population groups: in pregnant 
or breastfeeding women, an additional intake of 100–200 mg DHA per day is 
recommended to compensate for oxidative losses of DHA and its accumulation 
in the foetus [42].

Figure 1. 
LCPUFAs food sources.
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There are few data on the adverse effects of long-term high-dose DHA supple-
mentation. The EFSA expert panel considers DHA dietary supplementation of up to 
1 g per day to not pose a risk in the general population. In a systematic review [1] of 
studies on DHA supplements during pregnancy, it was concluded that an intake of 
1–2.7 g per day of omega-3 LCPUFAs is not harmful.

2.2 General functions of fatty acids

2.2.1 Cell membrane structure and function

Omega-3 polyunsaturated fatty acids are important structural components of 
cell membranes, where they are present as membrane phospholipids (esterified 
fatty acids) or as free molecules [49]. The incorporation of free polyunsaturated 
fatty acids into membrane phospholipids appears to alter the physical properties 
of the membranes. They can influence the structure of membrane phospholipids, 
reducing the van der Waals interactions [50].

They contribute to several membrane functions such as fluidity, permeability, enzy-
matic and receptor activity, gene expression, and signal transduction [41, 42, 51]. The 
changes in permeability appear to depend directly on the degree of fatty acid desatura-
tion [49]. EPA and DHA are of particular biological importance.

2.2.2 Visual and neurological function

The nervous system takes a long time to develop and mature, but there are 
many crucial events that occur during pregnancy and the first years of life. The 
brain grows rapidly between week 20 of gestation and 2 years of age, increasing in 
size by 64% during the first 3 months of life [52]. In these stages there is a period 
termed the window of sensitivity, during which certain nutrients or stimuli can 
influence and promote neurological development and functional brain capacity. 
Several nutrients have been described to play a crucial role in the development of 
the nervous system, including choline, iron, zinc, and long-chain fatty acids such as 
nervonic acid and DHA [53–55].

DHA forms part of the structural lipids of cell membranes, particularly the 
phospholipids found in the nervous tissue and the retina [38], where high levels 
of DHA have been found, primarily in the grey matter and photoreceptors; it is 
therefore thought to be essential for proper neurological and visual development 
[9, 35, 56–58]. Similarly, high levels of omega-3 polyunsaturated fatty acids have 
been found in the basal ganglia, frontal cortex, occipital cortex, hippocampus, and 
thalamus in studies performed on the young of baboons and rats, which suggests 
that they affect sensory-motor integration and memory [59–61]. Cerebral develop-
ment affects cognitive, social, and motor functions and communication. Stimulation 
and optimal nutrition [62] are essential. It has been demonstrated that babies who 
receive adequate quantities of omega-3 LCPUFAs, especially of DHA, show better 
development in these areas [63–68], so DHA is thought to be essential for the growth 
and function of neuronal and visual tissue [53]. These benefits continue beyond 
childhood [64, 69], and DHA is recommended as an essential dietary component in 
breastfeeding women and in children, to support brain development [54].

DHA appears to have important properties as a free radical scavenger, protect-
ing against oxidative damage in developing and adult brains. It also has a role in 
neuronal plasticity, a process that allows the replacement of damaged neuronal 
circuits and reorganisation of existing ones. It combines with glycerophosphocho-
line and phosphatidylserine to promote the formation of membrane phospholipids 
for the growth of nerve cells [55] and has also been observed to play a role in cell 
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migration during brain development [70]. Animal studies have demonstrated that 
DHA supplementation during pregnancy and breastfeeding is associated with an 
increased density of dendritic spines in the hippocampus [71] and of some synaptic 
proteins in the brains of weaned rats, while DHA deficiency has been associated 
with smaller neuronal soma [72] and altered synaptic vesicle density and neuronal 
growth and survival. Another study has demonstrated that supplementation with 
DHA significantly increases neuronal growth and synaptogenesis and increases 
levels of pre- and postsynaptic proteins involved in synaptic transmission and long-
term potentiation, which is associated with improved synaptic function [73].

2.2.3 DHA and oxidative stress

Omega-3 fatty acids are considered effective in the prevention of many diseases 
due to their antioxidant effects [74], yet there remains some debate on the subject. 
DHA, being a highly unsaturated fatty acid, is extremely susceptible to lipid per-
oxidation. Therefore, it is essential to ensure that LCPUFA supplements are safe, as 
they may generate free radicals that can affect the tissues. However, several studies 
in children found no abnormalities in baseline levels of peroxidised lipids nor in 
antioxidant enzymatic activity. Randomised studies in which up to 1 g per day of 
DHA or 2–7 g per day of omega-3 LCPUFAs was given found no adverse effects, 
including in pregnant women [75, 76].

Pregnancy is a state in which there is a high metabolic demand and increased 
production of free radicals. Pregnant women have been observed to have higher 
levels of free radical damage than non-pregnant women. Labour also involves 
increased oxidative damage in both mother and baby, being even higher in prema-
ture newborns [77, 78]. Studies carried out in animals have found increased activity 
of superoxide dismutase (SOD), an important antioxidant enzyme, in rat brains 
following post-natal DHA supplementation [79]. In a subsequent study in pregnant 
women, it was suggested that consumption of fish oil during pregnancy could have 
antioxidant effects during this period although the results were not conclusive [80].

2.2.4 Other benefits and disease prevention

Several studies have demonstrated the beneficial effect of fatty acids in inflam-
matory [81, 82] and autoimmune diseases such as systemic lupus erythematosus 
[43], asthma, cystic fibrosis [83], chronic obstructive pulmonary disease (COPD) 
[38], rheumatoid arthritis [81], multiple sclerosis [33, 38, 84, 85], ulcerative 
colitis [86], Crohn’s disease [81], and type 2 diabetes mellitus [33, 87].

The beneficial effects of omega-3 fatty acids on cardiovascular disease are 
widely known [88, 89]. Omega-3 LCPUFAs not only reduce triglyceride levels 
[90–93] but also reduce the production of chemotactic agents, growth factors, adhe-
sion molecules, inflammatory eicosanoids and inflammatory cytokines, decrease 
blood pressure, increase nitric oxide production, improve endothelial relaxation 
and vascular compliance, and reduce thrombus formation and cardiac arrhythmias 
[94, 95]. Although the mechanisms of their protective effects are not fully estab-
lished, it has been proposed that they may be due to the anti-inflammatory effects 
of these fatty acids on blood vessel walls [95], their aforementioned lipid-lowering 
effect, the regulated production of less potent eicosanoids, and the inhibition of 
pro-inflammatory cytokine production [89, 94], mechanisms which have also been 
shown to exert benefits in peripheral vascular disease [94].

Fish oil supplementation has also been shown to be beneficial in oncological 
processes [38] and is associated with a reduced incidence of metastatic breast 
cancer [33]. Its benefits have also been demonstrated in patients with colorectal 
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cancer [96], with an observed reduction in inflammatory markers such as inter-
leukin-6 (IL-6) in patients taking omega-3 fatty acid supplements, although these 
benefits are dependent on the duration, dose, and route of supplementation and the 
specific type of oncological treatment received. Its effects in leukaemia, lymphoma, 
neuroblastoma, glioblastoma, and lung, cervical, pancreatic, bladder, and ovarian 
cancer [97] have also been studied. The proposed mechanisms by which LCPUFAs 
act as adjuvants in cancer-specific treatments relate to their antitumour properties: 
they are anti-inflammatory [98], antiproliferative, pro-apoptotic, anti-invasive, and 
antimetastatic [99] and have epigenetic-regulatory effects [100]. Further studies 
are required to establish the therapeutic recommendations for EPA and DHA in 
oncological processes [97].

3. DHA and inflammation

Inflammation is part of the body’s normal response to injury or infection. 
However, when it is uncontrolled or inappropriate, it can damage the body’s own 
tissues, contributing to a wide variety of chronic and acute disorders. Inflammation 
is characterised by the production of inflammatory cytokines, ARA-derived 
eicosanoids (prostaglandins, thromboxanes, leukotrienes), reactive oxygen species 
(ROS), and molecular adhesion [81, 101].

The term cytokine encompasses a group of families of low molecular weight 
molecules that are structurally related and comprise more than 200 members. They 
are characterised by their ability to alter the functional activity of cells and tissues 
[102]. They are involved in the immunoregulatory and effector mechanisms of the 
innate and adaptive immune system. They are also involved in angiogenesis and have 
been found to play a key role in neuro-immune and neuroendocrine processes. Their 
pleiotropism makes their functional classification difficult, but they can be divided 
according to their most significant function into the following groups [103, 104]: 
adaptive immune mediators, innate immune mediators, haemopoiesis mediators, 
and pro-inflammatory and immunosuppressive cytokines.

In disease states, fish oil has been shown to act as an anti-inflammatory agent. 
Omega-3 fatty acids regulate the production of ARA-derived eicosanoids [81]. EPA 
competes with ARA to stimulate the production of series three prostaglandins and 
series five leukotrienes that have a lesser inflammatory action than ARA-derived 
eicosanoids. Supplementation with DHA leads to changes in the metabolism of 
ARA and in the balance of eicosanoids synthesised from omega-3 and omega-6 
fatty acids. Thus it can affect the functions regulated by these eicosanoids [42].

Although fatty acids can modify the quantity and type of eicosanoids produced, 
they can also modify inflammation via eicosanoid-independent mechanisms that 
include acting on receptors, intracellular signalling pathways, and transcription 
factor activity [51]. They are able to reduce levels of C-reactive protein (CRP), 
cytokines [81], chemokines, and other inflammatory biomarkers. In addition, 
they produce the lipid mediators known as resolvins and protectins, which have 
anti-inflammatory and immunomodulatory effects [27–30, 43, 81]. Other anti-
inflammatory actions of omega-3 LCPUFAs include a reduction in major histo-
compatibility complex (MHC) class II antigen presentation, reduction in reactive T 
cells, and reduction in Th1 cytokine production.

Omega-3 LCPUFAs could be said to act directly on inflammation by replacing 
arachidonic acid as a substrate for eicosanoid synthesis and indirectly by altering 
the expression of inflammatory genes via activation of transcription factors [101], 
among other mechanisms. The pathways are complex and much remains to be 
determined. It is thought that the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) 
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transcription factor plays a key role in the anti-inflammatory effects of DHA and 
EPA. Via Nrf2-dependent signalling, DHA can inhibit pro-inflammatory mediators 
such as nitric oxide synthase and cyclooxygenase-2 (COX-2) and pro-inflammatory 
cytokines such as IL-6, interleukin-1 (IL-1), and tumour necrosis factor-α (TNF-α) 
[33]. Other studies suggest that omega-3 LCPUFAs are natural ligands of peroxi-
some proliferator-activated receptor gamma (PPAR-γ), a transcription factor that 
regulates the expression of genes involved in cellular proliferation, inflammation, 
and metabolism of fatty acids and lipoproteins. Activation of PPAR-γ can inhibit 
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling 
and expression of inflammatory genes [105]. Despite the available data, little is 
known about the cellular and molecular mechanisms by which omega-3 LCPUFAs 
exert their beneficial effect in the prevention of inflammatory and immune diseases 
[32]; such mechanisms are yet to be fully determined.

4. DHA in pregnancy and lactation

Essential fatty acids and those derived from LA (the omega-6 group) and ALA 
(the omega-3 group) play an important role during pregnancy. They have been 
associated with prolonged pregnancy, delay of spontaneous labour and reduction 
in recurrent premature labour in animal and human studies, improving neonatal 
outcomes [106]. In vulnerable states such as pregnancy and lactation, a high intake 
of omega-3 LCPUFAs is recommended as maternal levels of DHA decrease dur-
ing pregnancy [1] and continue to decrease if the lactation period is long [107]. 
Maternal DHA levels have also been observed to decrease further in multiple preg-
nancies and are lower in multiparous than in primiparous women [108] and when 
the time between pregnancies is short. This could be explained by the high demand 
for these fatty acids during pregnancy as the foetus receives them preferentially via 
the placenta [109]. The foetus’ DHA status depends exclusively on this transfer and 
in turn its supply in the mother’s diet [110]. Indeed, omega-3 PUFA supplementa-
tion in pregnancy has been associated with increased DHA concentrations in the 
plasma, placenta, and umbilical cord blood [111].

Lactation is another period in which DHA consumption is beneficial for both the 
mother and child. Breast milk contains DHA, as well as omega-6 and other omega-3 
LCPUFAs, which make up 2% of the total fatty acid content. It also contains compo-
nents that play a specific immunological role such as cytokines, growth factors, 
leucocytes, immunoglobulins, lysosomes, and proteins such as lactoferrin. The 
presence of cytokines in breast milk helps the neonatal immune system develop 
and confers protection to the infant who does not yet have a network of mature 
cytokines [112]. Even at femtomolar concentrations, they can regulate the actions 
and properties of immune cells. A wide range of both pro-inflammatory and anti-
inflammatory cytokines has been detected via numerous methods in breast milk 
throughout the different stages of lactation and includes IL-1 beta (β), IL-6, TNF-α, 
and transforming growth factor beta (TGF-β) [113].

The fatty acids present in breast milk also appear to play an important role in 
the maturation and function of the immune system. Exclusive breastfeeding for the 
first few months of life has been demonstrated to protect not only against various 
types of infection (respiratory, gastrointestinal, urinary, otitis media, and necrotis-
ing enterocolitis) [114, 115] but also against allergic diseases. For this reason, and 
others, breast milk is the ideal foodstuff for the newborn [116] as it provides the 
nutrients necessary for optimal growth and development. The composition of 
polyunsaturated fatty acids in breast milk is determined partly by the dietary PUFA 
content. There is a correlation between breast milk DHA levels and blood levels. 
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Likewise, there is a correlation between breast milk DHA levels and infant plasma 
levels [117, 118]. Other studies on supplementation have found a positive association 
between fish oil supplementation and a reduced plasma ω6/ω3 ratio in maternal 
plasma and in umbilical cord blood [119].

A dietary supply comprising mainly omega-6 fatty acids, as occurs in Western 
diets, can significantly inhibit the endogenous synthesis of omega-3 fatty acids, 
especially EPA and DHA given the enzymatic competition between their precur-
sors. This becomes particularly relevant in the developing foetus and newborn, 
especially in premature or small-for-gestational-age babies [9]. Due to the limited 
capacity for synthesising these fatty acids [58], neonates are exclusively dependent 
on their placental transfer during pregnancy and their supply from breast milk. 
Therefore, a limited intake of omega-3 fatty acids in pregnancy or lactation can 
be associated with insufficient DHA levels for optimal neurological and immu-
nological development in the foetus and newborn. In these states, a preventative 
nutritional intervention becomes particularly relevant as the fat that the mother 
consumes during pregnancy and lactation will greatly influence both foetal devel-
opment and the lipid composition of breast milk and in turn the newborn’s nutri-
tion during the first stages of life [120, 76].

5. Patients and methods

We studied whether supplementing maternal diet with omega-3 LCPUFAs during 
the last trimester of pregnancy and the breastfeeding period influenced the levels of 
inflammatory cytokines in mother and child. Our study included a group of healthy 
infants born to term to 46 mothers, who had been enrolled in a registered, double-
blind controlled randomised trial, from week 28 of pregnancy to the fourth month 
of lactation. Mothers were recruited in the Services of Gynecology of the Mother 
and Child Hospital of Granada, Spain (Hospital Materno-Infantil de Granada), and 
the Mother and Child University Hospital of Las Palmas de Gran Canaria, Spain 
(Complejo Hospitalario Universitario Insular Materno-Infantil de Canarias), between 
June 2009 and August 2010. Our sample was taken from an earlier larger study 
designed to assess the effects of omega-3 LCPUFA supplementation on the fatty acid 
profile of mothers and newborns [121]. The earlier study was registered on www.clini-
caltrials.gov under identification code NCT01947426. The experimental groups were 
fish oil (FO) group (n = 24) which received 400 ml of fish oil-enriched drink [320 mg 
DHA + 72 mg EPA] per day and control (CT) group (n = 22) which received 400 ml of 
a non-supplemented drink per day. The dairy drinks were not commercially available 
products but specifically prepared for the study. The dietary supplementation started 
on week 28 of pregnancy and finished on the fourth month of lactation. We deter-
mined in mother and children plasma the concentrations of the following cytokines: 
GM-CSF, IL-2, IL-4, IL-6, IL-10, INF-γ, and TNF-α using MILLIPLEX® Human 
Cytokine/Chemokine kit in conjunction with a Luminex 200® system (Austin, TX, 
USA) and xPONENT® software package. The fatty acid profiles of maternal and chil-
dren compartments were analysed in an earlier study [121], and DHA levels in mother 
and children plasma and erythrocyte membranes, as well as in breast milk, were used 
to evaluate correlation with cytokine levels.

6. Omega-3 fatty acids and cytokines during pregnancy

Supplementation with omega-3 LCPUFAs during pregnancy affects the 
pattern of fatty acids in maternal plasma and umbilical cord blood [122–124]. 
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Supplementation increases DHA levels not only in these compartments but also in 
breast milk and in the infant’s plasma if they are breastfed [121, 125].

Inflammation is considered one of the main causes of complications during 
pregnancy and of prematurity and neonatal morbidity [10–15]. Indeed, pregnancy 
may be considered a mild, controlled, systemic inflammatory state. Cytokines 
TNF-α and IL-1 are heavily involved in the inflammatory processes associated with 
pregnancy and labour [10, 12, 13], although an increase in inflammatory biomark-
ers such as IL-8, hepatocyte growth factor and monocyte chemotactic protein dur-
ing pregnancy have also been demonstrated. There is also a progressive increase in 
vascular biomarkers, such as E-Selectin, vascular adhesion molecule 1, intercellular 
adhesion molecule (ICAM) 1, and plasminogen activator-inhibitor 1 [126]. Other 
studies have suggested that an abnormal response from cytokines and other mol-
ecules such as leptin may be involved in the pathophysiology of pregnancy-related 
complications such as preeclampsia. An association has been demonstrated between 
TNF-α, IL-6, IL-8, IL-10, and leptin, indicating that a rise in these markers could 
be used as a marker of inflammatory dysfunction and endothelial dysfunction in 
preeclampsia [103]. In women with a diagnosis of preeclampsia, increased levels of 
inflammatory cytokines such as IL-6 have even been found in breast milk [104].

Significant changes can also take place during pregnancy that affect lipid and 
carbohydrate metabolic pathways and vascular function. Adipose tissue acts as 
both a store of energy during pregnancy and a metabolically active tissue [126]. 
Adipocytes and their stroma are a rich source of cytokines and inflammatory 
mediators such as TNF-α and adiponectin, which increase and decrease insulin 
resistance, respectively [127]. The increased insulin resistance and the changes that 
occur in the maternal lipid profile during pregnancy could play an important role 
in endothelial dysfunction [128]. The role of adipokines, cytokines, and vascular 
homeostasis biomarkers in the regulation of metabolic changes during pregnancy 
remains to be fully established. There are a few studies, some of which are in animal 
models, that have investigated the effect on inflammation of omega-3 LCPUFA 
supplementation during pregnancy [34–36, 126, 129, 130].

A high intake of omega-3 fatty acids has been demonstrated to reduce the 
production of eicosanoids, cytokines, ROS and expression of adhesion molecules. 
Cell culture studies [33] have reported that EPA and DHA can inhibit the produc-
tion of pro-inflammatory cytokines, such as TNF-α, IL-1, and IL-6, and in vitro 
studies have demonstrated that they can also reduce the expression of cell adhesion 
molecules and recently also in endothelial cells of the umbilical cord. These effects 
are supported by similar studies on dietary supplementation in animal and human 
models. In animal models, a reduction in the inflammatory response, expression 
of remodelling enzymes, and functional improvement has been demonstrated 
in offspring exposed to stressful situations whose mothers received DHA during 
pregnancy [34, 35]. In humans, some studies have revealed a decrease in cytokine 
levels, as a measure of systemic inflammatory response, after 8 weeks of fish oil 
supplementation [23]. During pregnancy, it has been demonstrated that intake of 
omega-3 long-chain fatty acids can modify cytokine levels and maturation of helper 
T (Th) cells [32]. Comparative studies in breastfed children whose mothers received 
EPA and DHA supplements from week 22 of pregnancy showed that this dietary 
intervention confers a reduction in Th1 cytokines such as IFN-gamma and IL-1 in 
the plasma and a reduction in the Th2 cytokines IL-14 and IL-13 in the umbilical 
cord blood [37]. In our study, in which mothers received supplements from week 28 
of pregnancy and throughout breastfeeding, we found that levels of IL-6, TNF-α, 
IL-4, and IL-10 could be altered [26]. Maternal plasmatic levels of IL-10 and IL-4 
were higher in the supplemental group (FO) than in the control group (CT). On the 
other hand, plasmatic IL-6 levels were higher both in mothers and children of the 
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CT group. Additionally, TNF-α was higher in CT children [26]. In a study on depres-
sion in pregnant women, it was also observed that prenatal EPA supplementation in 
particular reduced maternal levels of IL-6, Il-15, and TNF-α [131]. Clinically, these 
findings could translate to an increased anti-inflammatory “environment” provided 
by omega-3 LCPUFAs. TNF-α and IL-6 are pro-inflammatory, and IL-10, although 
it has both effects [131, 132], is considered the principal regulator of T cells and may 
act as an anti-inflammatory mediator of omega-3 LCPUFAs [133]. However, some 
studies have found no correlation between DHA and different cytokines: a study by 
Hawkes et al. [129] found that women receiving supplementation during pregnancy 
with a combination of 600 mg DHA plus 140 mg EPA daily for 4 weeks had an 
increase in omega-3 LCPUFA levels in the cells studied. DHA levels increased in a 
dose-dependent manner in the plasma and breast milk, which highlights the benefits 
of this dietary intervention. However, no significant differences were found between 
groups in the production of cytokines, either in breast milk cells or in peripheral 
blood. In addition to the dose, the duration of supplementation could be the key.

There has been some investigation into the clinical effect that supplementation 
may have on infants [133–136]. It has been observed that increased dietary intake 
of salmon during pregnancy increases levels of omega-3 LCPUFAs in umbilical 
cord plasma and affects cytokine production in neonates, with lower levels of IL-2, 
IL-4, IL-5, IL-10, and TNF-α in response to various stimuli [133]. Reduced IL-10 
production has also been observed in vitro following stimulation with cat allergens 
in an atopic population [134]. Increased DHA and EPA in mother and child results 
in lower levels of PGE-2, a pro-inflammatory eicosanoid and inducer of IL-10 pro-
duction, which could explain the reduced secretion of IL-10 in these individuals. 
This concept is also supported by Warstedt et al. [136] who suggested that reduced 
maternal levels of PGE-2 after omega-3 LCPUFA supplementation could contrib-
ute to a foetal immune system less prone to developing inflammatory disease such 
as allergies, since eicosanoids, cytokines, and chemokines are closely associated 
with the immune response. However, although results have been promising, it is 
still unclear whether or not omega-3 LCPUFAs affect the development of atopy [4].

Changes in fatty acid levels have been demonstrated to affect cytokine levels. A 
positive association has been observed between DHA and IL-10 such that at higher 
concentrations of DHA, IL-10 secretion is increased [26, 131]. Likewise, DHA has 
been negatively associated with IL-6, which could translate to an increased anti-
inflammatory effect [26, 137]. These findings will need to be confirmed in future 
studies to clarify the uncertainties regarding the various mechanisms by which 
omega-3 LCPUFAs can affect inflammatory cytokines [137].

7. Conclusions

DHA supplementation during the third trimester of pregnancy and during 
breastfeeding can affect cytokine production, increasing anti-inflammatory 
cytokine levels and decreasing pro-inflammatory cytokine levels. These effects may 
translate to a lower risk of pregnancy-related complications and childhood disease, 
but much remains to be investigated in these fields.
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