
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



1

Chapter

Doped Zinc Oxide Nanostructures 
for Photovoltaic Solar Cells 
Application
Tyona MD

Abstract

Zinc oxide and doping effects of Cu on its structural, morphological, optical, 
and surface wettability properties and the consequent influence on photoelec-
trochemical solar cell performance has been reviewed. Cu dopant in the doping 
solution is varied in the range of 1 to 5 at.% which significantly affected the proper-
ties of ZnO. Slight changes in the lattice parameters of the Cu-doped zinc oxide 
(CZO) electrodes were reported, due to the successful substitution of Zn2+ by Cu2+ 
and also enhancement in crystallinity of the films at 3 at.% Cu due to reduction 
in crystallographic defects in the film. Surface morphologies were reported with 
densely grown nanorods over the varied range of Cu, with 3 at.% having the densest 
microstructures with average diameter approximately 125 nm. A review of optical 
properties indicated significant enhancement in absorption edge of approximately 
60 nm into the visible band for the nanorods with 3 at.% Cu content due to light 
scattering. Optical energy band-gaps decrease from 3.03 to 2.70 eV with Cu dop-
ing. Surface wettability was adjudged hydrophilic for all the films, implying high 
porosity and water contact angles depended on Cu content. Photoelectrochemical 
cell performance indicated an n-type photoactivity in sodium sulfate (Na2SO4) 
electrolyte, which motivates to check its feasibility in solar cell applications.

Keywords: zinc oxide, nanostructures, CZO, photoelectrochemical solar cells, 
Cu concentration, nanorods

1. Introduction

Zinc oxide is an inorganic compound having a chemical formula ZnO. It is a 
white powder which is nearly insoluble in water. It crystallizes in two main forms, 
the hexagonal wurtzite and cubic zinc blende. The wurtzite structure with lat-
tice parameters a = 0.3296 and c = 0.52065 nm is found to be more stable than the 
zinc blende structure, and hence it is more widely used [1]. The ZnO structure is 
commonly described as consisting of a number of alternating planes composed of 
tetrahedrally coordinated O2− and Zn2+ ions, stacked alternately along the c-axis 
without a central symmetry as illustrated in Figure 1 [1, 2]. It is a group II–VI semi-
conductor with a wide band gap of about 3.33 eV. Due to its direct and wide band 
gap in the near-UV spectral region [3–5] and a large free exciton binding energy, it 
has become a promising functional semiconductor material, which possesses a wide 
range of novel applications. ZnO has been identified with many unique properties 
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such as excitonic emission at or even above room temperature, optical transparency 
in the visible range, high surface-to-volume ratio and quantum confinement effect 
[6], amongst others, which have motivated intensive study of the semiconductor 
during the last two decades. ZnO is mostly known to crystalize as an n-type semi-
conductor, whereas synthesis of the p-type is not generally easy [1, 7].

ZnO is simple to synthesize; both chemical and physical techniques are used 
to produce excellent epitaxial films. The most commonly used techniques to grow 
epitaxial films of ZnO include electrodeposition, spray pyrolysis, sol–gel process, 
successive ionic layer adsorption and reaction (SILAR), RF sputtering, chemical 
bath deposition (CBD), spin coating, electron beam epitaxy, laser evaporation and 
ion beam sputtering, amongst others [7, 8]. Figure 2 illustrates the various synthetic 
techniques (chemical as well as physical) that are generally used to grow compound 
and alloys of ZnO. The choice of a particular technique would be guided by some 
factors such as the application intended for the synthesis, effectiveness of the 
technique and cost implication [10, 11]. ZnO has been identified as one of the semi-
conductors with the largest number of novel nanostructures such as nanocombs, 
nanorings, nanohelixes/nanosprings, nanobelts, nanowires, nanorods, nanotubes, 
nanocages, etc., with a wide range of technological applications [12–15]. Novel 
applications of ZnO nanostructures include optical modulator waveguide, photonic 
crystals, surface acoustic wave filters, varistors, photodetectors, gas sensors, light-
emitting diode, photodiodes and solar cells, amongst others [12].

Photovoltaic (PV) application of ZnO nanostructures requires large internal 
surface area with porous and high surface roughness to support good penetra-
tion of electrolyte [13, 14]. Chemical techniques are very simple, much reliable 
and cost-effective for the synthesis of high-quality electrodes for PV application. 
Most especially, chemical bath deposition technique is very suitable for growing 
large area films of ZnO with fascinating properties for photoelectrochemical solar 
cells [15, 16]. This technique is suitable for growing ZnO nanostructures on many 
substrates including microscope glass and stainless steel [6].

In several applications such as optoelectronics, ZnO can be used as a comple-
ment or alternative to some semiconductors such as GaN, and many researches 
are ongoing globally to further improve the properties of the semiconductor [10]. 
Trying to control the unintentional n-type conductivity and to achieve p-type 

Figure 1. 
Hexagonal Wurtzite crystal structure of ZnO [1].
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that the porosity of the films increases upon thermal annealing at 673 K and with 
respect to increased concentration of Cu; thus, the water goes in to the pores and 
craves making contact angle hydrophilic [10, 28]. This means that the films would 
have large surface areas which for application such as DSSCs would mean better dye 
adsorption resulting to enhanced photo absorption. Also, lower values of contact 
angles are beneficial for electrolyte percolation through the porous film, which 
is very important for PEC solar cells. This result is in agreement with the earlier 
observations from XRD and SEM.

3.6 Photoelectrochemical (PEC) studies

Photoelectrochemical response of a solar cell is based on the junction between 
semiconductor and an electrolyte. The electrolyte plays an important role in PEC 
cell as a medium for charge transfer between the photoelectrode and counter 
electrode [10, 22].

The photoresponses of the CZO thin films were studied by forming typical 
configuration cells, n-CZO (stainless steel substrate)/0.1 M Na2SO4/platinum/
SCE. These PEC cells are easy to form, and many processing steps of p–n junction 
have been simplified or eliminated. Since the junction with liquid is formed sponta-
neously upon contact, irregular-shaped single crystal or thin films can be used [10, 
17]. The solution-based measurements allowed us to quickly test the quality of CZO 
film electrode as a solar cell material [10, 17].

Tyona et al. [10] reported the PEC performance of their CZO using cur-
rent–voltage (I-V) characteristics of the annealed CZO thin films in the dark and 
under illumination with 80 mW/cm2 as illustrated in Figure 12a–c. The anodic 

Figure 12. 
Current-potential (I-V) curves of CZO thin films showing current and potential in the dark and under 
illumination for (a) 1%, (b) 3% and (c) 5% Cu concentrations [10].
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photocurrent varied remarkably with the concentration of Cu in ZnO as reported 
with previous characterizations of the CZO. Figure 12b and c also represents the 
chopped light tests carried out in order to study the photosensitivity of CZO thin 
films. The photosensitivity confirmed that CZO absorber is an n-type material and 
is useful for the solar cell [10, 17]. The measured values of the PEC parameters with 
respect to Cu doping are shown in Table 2.

The photoelectrochemical measurement confirmed good photoactivities of the 
annealed CZO films prepared from simple CBD method. It is however observed that 
the photocurrent (short circuit current, ISC) conversion efficiency and fill factor 
of the CZO film for 5% Cu are relatively low. This may be due to more compressive 
strain in the films at higher doping level as earlier explained in XRD which probably 
leads to a less dense nanostructure as illustrated in Figure 7d and consequently low 
photoactivity. The photocurrent obtained in the present study is not useful for most 
practical applications requiring high values of current; however, it is well known 
that conversion efficiency of such film can be considerably improved by thermal, 
chemical and photoelectrochemical surface treatments [10, 17].

4. Conclusions

This chapter examines ZnO and its numerous nanostructures and also consid-
ered doping as a measure for engineering the properties of ZnO for pre-determined 
applications. The chapter has also extensively reviewed the effect of Cu doping on 
structural, morphological and optical properties and surface wettability of chemi-
cal bath deposited ZnO thin films at various concentrations of Cu in the range 1–5% 
for PEC solar cell application. The review indicated that there were slight changes 
in the lattice parameters of the CZO electrodes which occurred due to the successful 
substitution of Zn2+ by Cu2+ and also enhancement in crystalline quality of the films 
at 3% Cu concentration due to the reduction in crystallographic defects in the film. 
A review of SEM studies showed densely grown nanorods over the varied range 
of Cu concentration, with the CZO nanorods of 3% having the most dense micro-
structures with average diameter approximately 125 nm. The density and diameter 
of the nanostructures demonstrated dependence on the amount of Cu dopant. A 
review of optical properties demonstrated that the incorporation of Cu dopant into 
ZnO introduced a shift in absorption edge of approximately 60 nm into the visible 
band for the CZO nanorods with 3% Cu content which is a significant enhancement 
in the optical properties of the films. Also, optical energy band gaps decrease from 
3.03 to 2.70 eV upon Cu doping. Surface wettability was adjudged hydrophilic for 
all the films, which implied high porosity, and the size of water contact angles show 
dependence on Cu content. Photoelectrochemical cell performance indicated an 
n-type photoactivity in sodium sulphate (Na2SO4) electrolyte which motivate to 
check its feasibility in solar cell applications.

ZnO 

electrodes

Photocurrent 

(ISC) [μA/cm2]

Photovoltage 

(Voc) [mV]

Imax  

(μA/cm2)

Vmax 

(mV)

Efficiency 

η (%)

Fill factor 

(FF)

Undoped 12.34 388.0 9.00 230.0 0.0030 0.43

CZO (1%) 40.00 774.0 28.00 631.0 0.0220 0.57

CZO (3%) 98.00 796.0 74.00 667.0 0.0620 0.63

CZO (5%) 16.00 768.0 13.00 52.0 0.0009 0.06

Table 2. 
Values of I-V measurement from PEC cells of CZO thin films [10].



Zinc Oxide Based Nano Materials and Devices

16

Author details

Tyona MD
Department of Physics, Benue State University, Makurdi, Benue State, Nigeria

*Address all correspondence to: dtyona@gmail.com; dtyona@bsum.edu.ng

Acknowledgements

I am grateful to Benue State University, Makurdi, for providing an enabling 
environment for this work.

Conflict of interest

I declare that there is no conflict of interest.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



17

Doped Zinc Oxide Nanostructures for Photovoltaic Solar Cells Application
DOI: http://dx.doi.org/10.5772/intechopen.86254

References

[1] Zhong LW. Zinc oxide 
nanostructures: Growth, properties 
and applications. Journal of Physics. 
Condensed Matter. 2004;16:R829-R858

[2] Chow L, Lupan O, Chai G, Khallaf H, 
Ono L, Roldan K, et al. Synthesis 
and characterization of Cu-doped 
ZnO one-dimensional structures for 
miniaturized sensor applications with 
faster response. Sensors and Actuators 
A. 2013;189:399-408

[3] Drici A, Djeteli G, Tchangbedgi G, 
Deruiche H, Jondo K, Napo K, et al. 
Structured ZnO thin films grown 
by chemical bath deposition for 
photovoltaic applications. Physica Status 
Solidi (a) Banner. 2004;201:1528-1535

[4] Li Y, Gong J, Deng Y. Hierarchical 
structured ZnO nanorods on ZnO 
nanofibers and their photoresponse 
to UV and visible lights. Sensors and 
Actuators A: Physical. 2010;158:176-187

[5] Lao CS, Liu J, Gao P, Zhang L, 
Davidovic D, Tummala R, et al. ZnO 
nanobelt/nanowire Schottky diodes 
formed by dielectrophoresis alignment 
across Au electrodes. Nano Letters. 
2006;6:263-275

[6] Tyona MD, Osuji RU, Ezema FI, 
Jambure SB, Lokhande CD. Enhanced 
photoelectrochemical solar cells based 
on natural dye-sensitized Al-doped zinc 
oxide electrodes. Advances in Applied 
Science Research. 2016;7:18-31

[7] Vanaja A, Ramaraju GV, Srinivasa RK.  
Structural and optical investigation of Al 
doped ZnO nanoparticles synthesized by 
sol-gel process. Indian Journal of Science 
and Technology. 2016;9:23-28

[8] Cebulla R, Wndt R, Ellmer K. 
Al-doped zinc oxide films deposited 
by simultaneous RF and DC excitation 
of a magnetron plasma: Relationships 
between plasma parameters and 

structural and electrical film 
properties. Journal of Applied Physics. 
1998;83:1087-1095

[9] Seshan K. Handbook of Thin-Film 
Deposition Processes and Techniques: 
Principles, Methods, Equipment and 
Applications. Second ed. New York, 
U.S.A: William Andrew Publishing 
Norwich; 2002. pp. 344-356

[10] Tyona MD, Osuji RU, Asogwa PU, 
Jambure SB, Ezema FI. Structural 
modification and band gap tailoring 
of zinc oxide thin films using copper 
impurities. Journal of Solid State 
Electrochemistry. 2017;21:2629-2637

[11] Snure M, Tiwari A. Band-gap 
engineering of Zn1<xGaxO nanopowders: 
Synthesis, structural and optical 
characterizations. Journal of Applied 
Physics. 2008;104:073707-073705

[12] Singhal S, Kaur J, Namgyal T, 
Sharma R. Cu-doped ZnO 
nanoparticles: Synthesis, structural 
and electrical properties. Physica B. 
2012;407:1223-1226

[13] Dom R, Lijin RB, Kim HG, 
Borse PH. Enhanced solar 
photoelectrochemical conversion 
efficiency of ZnO:Cu electrodes 
for water-splitting application. 
International Journal of Photoenergy. 
2013;2013:9-20

[14] Zhou Z, Kato K, Komaki T, 
Yoshino M, Yukawa H, Morinaga M, 
et al. Electrical conductivity of 
Cu-doped ZnO and its change with 
hydrogen implantation. Journal of 
Electroceramics. 2003;11:73-79

[15] Jongnavakit P, Amornpitoksuk P, 
Suwanboon S, Ndiege N. Preparation 
and photocatalytic activity of Cu-doped 
ZnO thin films prepared by the sol-gel 
method. Applied Surface Science. 
2012;258:8192-8198



Zinc Oxide Based Nano Materials and Devices

18

[16] Tyona MD, Osuji RU, Ezema FI. A 
review of zinc oxide photoanode films 
for dye-sensitized solar cells based on 
zinc oxide nanostructures. Advanced 
Nano Research. 2013;1:43-58

[17] Shinde NM, Dubal DP, Dhawale DS, 
Lokhande CD, Kim JH, Moon JH. Room 
temperature novel chemical synthesis 
of Cu2ZnSnS4 (CZTS) absorbing layer 
for photovoltaic application. Materials 
Research Bulletin. 2012;47:302-307

[18] Machado G, Guerra DN, Leinen D,  
Ramos-Barrado JR, Marotti RE, 
Dalchiele EA. Indium doped 
zinc oxide thin films obtained by 
electrodeposition. Thin Solid Films. 
2005;490:124-131

[19] Tyona MD, Jambure SB, 
Lokhande CD, Banpurkar AG, Osuji RU, 
Ezema FI. Dye-sensitized solar cells 
based on Al-doped ZnO photoelectrodes 
sensitized with rhodamine. Materials 
Letters. 2018;220:281-284

[20] Becerril M, Silva-López H, 
Guillén-Cervantes A, Zelaya-
Ángel O. Aluminum-doped ZnO 
polycrystalline films prepared 
by co-sputtering of a ZnO-Al 
target. Revista Mexicana de Física. 
2014;60:27-31

[21] Muthukumaran S, Gopalakrishnan R.  
Structural, FTIR and photoluminescence 
studies of Cu doped ZnO nanopowders 
by coprecipitation method. Optical 
Materials. 2012;34:1946-1953

[22] Babikier M, Wang D, Wang J, Li Q , 
Sun J, Yan Y, et al. Cu-doped ZnO 
nanorod arrays: The effects of copper 
precursor and concentration. Nanoscale 
Research Letters. 2014;9:199-207

[23] Thakur S, Sharma N, Varkia A, 
Kumar J. Structural and optical 
properties of copper doped ZnO 
nanoparticles and thin films. 
Advances in Applied Science Research. 
2014;5:18-24

[24] Shannon RD. Revised effective 
ionic radii and systematic studies of 
interatomic distances in halides and 
chalcogenides. Acta Crystallogr. Sect. A. 
1976;32:751-767

[25] Mkawi EM, Ibrahim K, Ali MKM, 
Farrukh MA, Mohamed AS. The effect 
of dopant concentration on properties 
of transparent conducting Al-doped 
ZnO thin films for efficient Cu2ZnSnS4 
thin-film solar cells prepared by 
electrodeposition method. Applied 
Nanoscience. 2015;3:56-67

[26] Mani GK, Rayappan JBB. Influence 
of copper doping on structural, 
optical and sensing properties of 
spray deposited zinc oxide thin films. 
Journal of Alloys and Compounds. 
2014;582:414-419

[27] Sun RD, Nakajima A, Fujushima A, 
Watanabe T, Hashimoto K. 
Photoinduced surface wettability 
conversion of ZnO and TiO2 thin films. 
The Journal of Physical Chemistry. B. 
2001;105:1984-1991

[28] Sun H, Luo M, Weng W, Cheng K, 
Du P, Shen G, et al. Room-temperature 
preparation of ZnO M nanosheets 
grown on Si substrates by a seed-layer 
assisted solution route. Nanotechnology. 
2008;19:125603-125610


