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Abstract The surface water quality monitoring is an important concern of pub-6

lic organizations due to its relevance to the public health. Statistical methods are7

taken as consistent and essential tools in the monitoring procedures in order to8

prevent and identify environmental problems. This work presents the study case of9

the hydrological basin of the river Vouga, in Portugal. The main goal is discrimi-10

nate the water monitoring sites using the monthly dissolved oxygen concentration11

dataset between January 2002 and May 2013. This is achieved through the extrac-12

tion of trend and seasonal components in a linear mixed-effect state space model.13

The parameters estimation is performed with both maximum likelihood method14

and distribution-free estimators in a two-step procedure. The application of the15

Kalman smoother algorithm allows to obtain predictions of the structural com-16

ponents as trend and seasonality. The water monitoring sites are discriminated17

through the structural components by a hierarchical agglomerative clustering pro-18

cedure. This procedure identified different homogenous groups relatively to the19

trend and seasonality components and some characteristics of the hydrological20

basin are presented in order to support the results.21

Keywords Water quality assessment · State space modeling · Kalman smoother ·22

Classification · Structural components · River Vouga23

1 Introduction24

The surface water quality assessment is an important part of the environment25

monitoring, whose evaluation can predict the water quality and avoid public health26

problems of various types and levels. The existence of an effective and efficient27

water quality monitoring system prevents the pollution of both water and soil.28
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There are several factors that contribute to water quality, some factors are known,29

others are unknown, which is a grey system ([30]).30

Water quality monitoring procedures may be used in the decision-making pro-31

cess in order to support policy options. For this reason, several European Union32

(EU) countries have developed a national water quality system, considering char-33

acteristic structure of their own rivers and have used this type of indicators to34

evaluate the current situation of their water quality level. The management of35

water resources is regulated by EU directives and their transposition into na-36

tional legislation. For instance, in Portugal, the Law n. 58/2005 (Law of Water)37

ensures the transposition into national law the Directive n. 2000/60/CE (the Wa-38

ter Framework Directive, WFD), which creates the institutional framework for39

sustainable management of surface, interior waters, transitional, coastal and even40

groundwater. The Decree-Law n. 77/2006 complements the WFD by characteriz-41

ing the waters of a river basin. This regulatory instrument establishes the status42

of surface waters and groundwater and the ecological potential.43

The knowledge of the dynamics of water quality surface can be achieved by44

studying the respective hydrological basin and its unique characteristics. The wa-45

ter quality assessment is, in general, based in a network of water quality monitor-46

ing sites which provides real-time water-quality measurements from surface-water47

monitoring locations. These sites can be fixed stations (usually to characterize a48

watershed); on a temporary basis (for instance, during the summer at bathing49

beaches) or on an emergency basis. This work focuses on the water quality as-50

sessment based on a set of fixed stations located in the hydrological basin of the51

river Vouga, Portugal. In this case, there is periodical data as frequent as possible52

in order to identify changes or trends in water quality over time or to devaluate53

sporadic behavior in medium or long term analysis. Nevertheless, nowadays, the54

availability of knowledge about a watershed in a considerable period of time and55

with a reasonable spatial coverage enables a more efficient monitoring of water56

quality.57

It is in the context of both legal framework and a significant investment effort58

in the water quality monitoring infrastructures in the river Vouga basin, in Portu-59

gal, that it is important to characterize the existing network. Thus, an adequate60

research in order to characterize the network can identify potential redundancies61

of monitoring sites. The minimization of these redundancies can bring a better62

use of resources maintaining the effectiveness of the monitoring process. So, this63

work aims to contribute to a better knowledge of the dynamics of the watershed64

to help in decision-making processes technical and policy that may be adopted in65

the near future.66

An important role in the surface water quality monitoring is assigned to the67

dissolved oxygen (DO) concentration variable. Indeed, the amount of dissolved68

oxygen has been considered a relevant indicator of the water quality since it results69

from the impact of a set of environmental factors. These factors may be originate70

from a several conditions as the water temperature, air temperature and pressure,71

riverbed morphology, water cleanliness state, point and area sources of pollution72

of surface water, etc. Whence, several research is based on this variable.73

This work presents a characterization of the river Vouga watershed, in Portugal,74

based on records of the DO concentration, in mg/l, identifying similarities or dis-75

similarities between monitoring sites. The statistical methodology classifies water76

monitoring sites according to both trend and seasonality time series components.77



The River Vouga Hydrological Basin 3

For each component, the obtained homogenous groups will be analyzed accord-78

ing to the watershed hydrology characteristics. The statistical approach combines79

time series analysis with the usual discrimination techniques as the cluster analy-80

sis. The time series analysis is performed through a state space modeling approach81

combined with the Kalman smoother in order to extract structural components82

which are used to investigate space-time patterns in the water quality monitoring83

sites network.84

2 Literature review85

Several studies have been developed on the river Vouga watershed or, particu-86

larly, on the Ria de Aveiro lagoon. The main focus of these works is related with87

ecological systems in the Ria de Aveiro as the diversity of flora and fauna or the88

contaminants into aquatic ecosystems (see, e.g., [1]). [6] presents a study in order89

to identify point sources of pollution and to assess the surface water quality in90

the Antuã basin by monitoring physicochemical variables. However, an analysis91

to characterize the main hydrological basin of the river Vouga according to the92

water quality in the monitoring sites in a discrimination view point has not been93

addressed yet. This work aims at giving a contribution towards this direction.94

Several statistical techniques can be applied when the main goal is to charac-95

terize environmental variables through various temporal and spatial patterns. For96

instance, [12] presents a scheme for meteorological drought analysis at various tem-97

poral and spatial scales based on a spatial Bayesian interpolation of drought sever-98

ity derived from monthly precipitation data. [17] investigates both water quality99

evaluation in its time-space variations and the natural and anthropogenic origins of100

contaminants in surface or ground water. [4] presents the application of multivari-101

ate statistics for the interpretation of surface and groundwater data from Tarkwa.102

Both cluster analysis and principal component analysis were used to analyze the103

water quality in [28] and [29] in order to evaluate the temporal/spatial variations104

and to identify potential pollution sources. The factorial analysis was used in [9]105

in order to explain and evaluate the correlation structure between observed vari-106

ables in water quality sampling stations and to identify relevant factors. [15] uses107

cluster analysis and linear models to describe hydrological space–time series of108

quality variables and to detect changes in surface water quality before and after109

the installation of wastewater treatment plants. [8] applied clustering techniques110

based on Kullback Information, measures that are obtained in the state space111

modeling process and, for each homogeneous group, forecast models were com-112

pared with traditional linear models through the mean squared error of forecasts.113

Two approaches for clustering of time series oriented to large set of time series114

were proposed in [14]; the first is an approach based on a modification of classic115

state-space modeling while the second is based on functional clustering. In these116

works the discrimination procedure is performed directly on the environmental117

variables. The cluster analysis has been usefully applied also in [19] in order to118

differentiate between efficient and inefficient farms using a clustering model based119

on the imperialist competitive algorithm.120

On the other hand, the DO concentration is a parameter frequently used to121

evaluate the water quality on different reservoirs and watersheds since it is strongly122

influenced by a combination of physical, chemical, and biological characteristics123



4 Marco Costa, Magda Monteiro

of streams. The DO is considered an index of water quality and was also used124

to estimate the effect of industrial and municipal effluents on the waters ([24],125

[25], [16]). With the same purpose, [22] validates a water quality model for the126

Ria de Aveiro, in order to better use it as a predictive tool in the study of the127

main water quality processes in the this lagoon, providing a sensitivity analysis128

of the model, which shows that the ocean remains the main source of oxygen129

as well as the main factor controlling the DO distribution throughout the main130

lagoon areas. Most recently, [27] uses dissolved oxygen (DO) indicators to calibrate131

the recharge potential analysis (RPA) parameters, which results indicated that132

defining the RPA parameters values based on DO indicators is necessary and133

important for accuracy. The ARIMA and ARFIMA models were applied in [3]134

to predict univariate DO time series for four water quality assessment stations at135

Stillaguamish River located in the state of Washington.136

On the one hand, the approach proposed in this work has the potential of com-137

bining the temporal modeling of water quality variables evolution with a clustering138

analysis. Furthermore this approach allows, at the same time, a global characteri-139

zation of water quality in the river basin and the identification of redundancies of140

water monitoring sites. On the other hand, the stochastic modeling is performed141

using a mixed linear state space model incorporating both fixed effects and ran-142

dom dynamics which has the advantage to model and forecast of non-stationary143

changes inherent in climate data ([20]). Other advantage of the State space ap-144

proach is that it takes into account possible measurement errors measures which145

are minimized through the Kalman smoothers.146

3 The river Vouga and data description147

The hydrologic regime involves a summer low flow condition and the dynamic of148

the coastal lagoon is dominated by tidal oscillation. Ria de Aveiro is characterized149

by its rich biodiversity as well as by an increasing pressure of the anthropogenic150

activities near its margins, namely building and land occupation, agricultural and151

industrial activities. This has resulted in a significant change of the lagoon mor-152

phology, and in a constant input of a large volume of anthropogenic nutrients as153

well as of contaminant loads, with the consequent negative impact in the water154

circulation, as well as in the water quality of the lagoon ([21]). The construc-155

tion, management and operation of Multi-municipality System Drainage of the156

Ria de Aveiro is of the responsibility of the SIMRIA - Integrated Sanitation of157

Municipalities of Ria, SA, which is a private company with majority public capi-158

tal (established by Decree-Law n. 101/97 of 26 April). The Ria de Aveiro lagoon159

is inserted in the hydrological basin called by Vouga/Ribeiras Costeiras in the160

SNIRH (Portuguese national information system for water resources). In the an-161

nual report 2012 published by SNIRH, it is mentioned that the industrial activities162

with more units that contribute to the sources of urban pollution in the Vouga163

watershed come from manufacture of leather, manufacture of metal products and164

non-metallic, wood and cork industry, chemical manufacturing, food industries-oil,165

pulp and paper industry and metallurgical industries.166

Vouga is a river situated in the center of Portugal and it rises at about 930m of167

altitude near the geodesic landmark Facho da Lapa, in Serra da Lapa, a mountain168

located in the district of Viseu; it flows 148 Km before empting into Ria de Aveiro.169
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legend 

Fig. 1 Hydrological basins of mainland Portugal (source SNIRH)

Fig. 2 Water monitoring sites locations in the hydrological basin of river Vouga
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Table 1 Descriptive statistics of dissolved oxygen concentration between January 2002 and
May 2013

Site abbrev obs min max average st dev

Agadão AGA 111 5.8 11.0 8.74 1.26
Carvoeiro CAR 112 6.2 11.0 8.79 1.18
Alombada ALO 113 6.1 11.0 8.90 1.08
Captação Burgães BUR 122 6.5 12.6 9.40 1.16

Captação Rio Ínsua INS 122 6.4 12.4 9.31 1.05
Ponte Redonda RED 112 4.6 11.5 8.88 1.22
Frossos FRO 110 4.5 11.0 8.17 1.22
Pampilhosa PAM 100 4.3 12.0 7.95 1.68
Ponte São João de Loure LOU 112 5.4 11.0 8.24 1.25
Ponte Vale Maior MAI 112 6.2 12.0 8.62 1.12

Ponte Águeda AGU 111 5.1 11.0 8.39 1.20
São Tomé TOM 118 5.0 11.0 7.88 1.16
Aç. Maeira MAE 115 5.6 11.0 8.50 1.20
Aç. Rio Alfusqueiro ALF 113 2.9 12.0 7.80 1.75
Pindelo Milagres MIL 110 4.6 12.0 8.16 1.42
Ponte Antim ANT 113 0.8 12.0 7.38 2.05
Ponte Pouves POU 115 2.6 11.0 8.27 1.46
Ponte Vouzela VOZ 109 1.8 13.0 8.10 1.91
São João Serra SER 115 6.0 12.0 8.70 1.18
São Miguel Mato MAT 111 4.3 12.0 8.44 1.53
Vouguinha VOG 114 5.4 11.0 8.42 1.35
Estarreja EST 114 3.4 11.0 7.62 1.32
Perrães PER 111 4.6 9.8 7.19 1.17
Ponte Canha (Vouga) CAN 114 2.6 10.1 6.89 1.92
Ponte Minhoteira MIN 112 0.7 10.0 7.73 1.50
Ponte Requeixo REQ 111 3.9 11.0 7.13 1.52

The watershed of the Vouga is the second largest basin of watercourses that run170

exclusively in Portuguese territory comprising a total area of 3706 Km2. More171

specifically, the Vouga basin is located in the transition zone between the North172

and South of Portugal, i.e., between the watersheds of the Douro at north and173

Mondego at south (see Fig.1).174

The average flow of fresh water that flows into the Ria de Aveiro is about175

40 m3/s. The Vouga and Antuã rivers are the main sources of fresh water, with176

average annual flow of 24 m3/s and 2.4 m3/s, both rivers belonging to the Vouga177

watershed ([23]). The main tributaries of the River Vouga are, from upstream to178

downstream the River Mel, the Sul River, the Varoso, the river Teixeira, the river179

Arões, the river Mau and the Caima river on the right bank. On its left bank180

the river Ribamá, the Marnel, and the river Águeda with its major tributary, the181

Alfusqueiro.182

The dissolved oxygen concentration is available in a set of water monitoring183

sites in the hydrological basin of river Vouga. However, some problems arise in the184

statistical modeling, namely, some water monitoring sites have few data or missing185

values. On the other hand, due to the lack of economic resources or some other186

factor, the data collection was discontinued in some sites. In the SNIRH system187

there are 78 water-monitoring sites registered on the hydrological basin of the river188

Vouga. Unfortunately, the data collection is not continuous or some stations were189

deactivated at some time. Relatively to the DO concentration 26 stations have a190
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significant data set until May 2013 (the last month available in the system). These191

water monitoring sites are represented in the Figure 2.192

Data available in the SNIRH system is not temporal equidistant, that is, in193

some sites and for some months there are more than one measurement (for in-194

stance, two measurements for the same site in different days of the same month).195

The format of original dataset is improper to the statistical analysis, so it was196

changed to producing monthly data. The adopted methodology to produce the197

time series used to the purposes of this study is based on the average of mea-198

surements. When in a month/year there were more than one measurement it was199

considered their average to that month/year. Authors consider that an improve-200

ment in the data collection is desirable to increase statistical analyses accuracy.201

However, these improvements can only be applied to future collections of mea-202

surements. On the other hand, the way the data was collected does not jeopardize203

the results obtained in this work once, in general, data collection in the network204

has been followed a monthly scheme. That is, given the annual calendar and other205

constraints (holidays, weather conditions, etc.), the collection of samples remained206

monthly and, whenever possible, at the same time of the month at each water207

monitoring site.208

Table 1 presents the descriptive statistics of the monthly DO concentration be-209

tween January 2002 and May 2013 according to the final dataset. An exploratory210

analysis shows that, in general, data are not normally distributed. Indeed, in some211

water monitoring sites, observations are leptokurtic. This fact must be taken in212

consideration in the modeling procedures since the Gaussian distribution is a usual213

assumption in several statistical analyses. Moreover, the box-plots of data identi-214

fied several moderate outliers in many sites, almost all in the left tail.215

All graphical representations of the times series of the DO concentration show216

that there is a seasonal pattern. The monthly averages of each month (empirical217

seasonal coefficients) of the year indicate that DO concentration is greater in the218

winter months and lower in the summer months. This result is due to the hydro-219

meteorological conditions since the DO concentration is largely influenced by the220

precipitation amount and temperature. Furthermore, the variances of observations221

within each month of the year vary and they tend to be greater in winter months222

([10]). This result indicates the existence of variance heterogeneity instead of the223

usual homocedasticity assumed in several models.224

4 A linear mixed-effect state space model225

A preliminary work was performed based on the water monitoring site of Carvoeiro226

data ([11]). This work showed that when a linear regression model, which incor-227

porated a linear trend and seasonal coefficients, is applied, the residual series does228

not present a white noise behavior. In fact, the sample autocorrelation function229

(ACF) and the partial autocorrelation function (PACF) showed that residual se-230

ries follows an autoregressive process of order 1, AR(1), that is, there is a temporal231

correlation structure which were not explained by the linear model.232

Thus, other models have to be considered in order to incorporate the structural233

components of the DO concentration as well as the time correlation structure. A234

proper choice is a linear mixed-effect state space (LMESS) modeling framework.235

The LMESS models have been applied in several modeling works ([20], [31]) with236
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good results. On the one hand, static statistical models with fixed effects are237

unlikely to have a good predictive accuracy, particularly in situations where the238

predictor and predictand relationship changes over time ([20]). On the other hand,239

the usual linear regression models are homocedastic which is a strong constraint240

regarding the results of the exploratory analysis. Thus, the LMESS allows to com-241

bine the simplicity of linear models with a temporal dynamic structure usually242

associated to the environmental variables.243

Let Yt, with t = 1, 2, ..., n, be the DO concentration variable in a water mon-244

itoring site. The LMESS is specified by two equations: the observation equation245

and the state equation. The observation equation is given by246

Yt = βt+ stXt + et (1)

where Yt is the observed DO concentration at time t in a monitoring site, β is247

a slope parameter, st = stmod 12 = si, with i = 0, ..., 11, corresponding to the248

monthly seasonal coefficient (0- December, 1-January, ..., 11-November) and et is249

a white noise process (E(et) = 0, var(et) = σ2
e for all t and cov(et, er) = 0 for all250

t 6= r). In addiction, Xt is an unobservable random variable, the state, which is251

assumed to follow an autoregressive process of order 1, AR(1), according to the252

state equation253

Xt = µ+ φ(Xt−1 − µ) + εt (2)

where µ is a parameter, φ is the transition parameter and variables εt are a white254

noise process (E(εt) = 0, var(εt) = σ2
ε for all t and cov(εt, εs) = 0 for all t 6= s).255

It is assumed that the processes et and εt are uncorrelated, E(etεs) = 0 for all t256

and s. When the state process {Xt} is stationary, that is |φ| < 1, the parameter257

µ represents the mean of the process.258

The model defined by Eq. (1) and Eq. (2) can be interpreted as a linear re-259

gression model which incorporates a stochastic calibration factor in the seasonal260

component. In fact, the component stXt includes the usual seasonal coefficients261

which are calibrated through a stochastic factor Xt. This formulation incorporates262

the heterocedasticity which was identified in the exploratory analysis. Indeed, it263

was checked, in an empirical analysis, that the monthly standard deviations of the264

detrended time series were greater in the months with a higher value of the DO265

concentration (winter months). Moreover, the LMESS model includes the usual266

linear trend.267

The observation equation of the LMESS model (1)-(2) can be rearranged in268

order to emphasize the seasonal coefficients with the desirable property
∑11

i=0 si =269

0 as270

Yt = αXt + βt+ s∗tXt + et (3)

where α = 1
12

∑11
i=0 si and s∗t = st − α.271

This formulation is equivalent to Eq. (1) but it is more useful for interpretation272

and modeling purposes. Indeed, this formulation shows a trend component, Tt =273

αXt + βt, with a constant slope but with a stochastic intercept and a stochastic274

seasonal component, St = s∗tXt, based on the overall seasonal coefficients but275

that allows its calibration dynamically. As the states Xt are unobservable random276

variables they must be predicted. This is done through the Kalman smoother277

([26]). As usual, X̂t|t−1, X̂t|t and X̂t|n represent the one-step-ahead forecast, the278

filtered prediction and the smoother prediction of Xt based on time up to t− 1, t279

and n, respectively.280
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Table 2 Estimates of slopes and seasonal coefficients from the method of least squares

site β̂ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

AGA -0.0081 10.83 10.78 10.33 10.65 9.51 8.86 8.33 8.17 8.26 8.64 9.61 10.55
AGU -0.0067 10.56 10.09 9.97 9.29 9.03 7.98 7.85 7.77 7.89 7.88 9.09 10.15
ALF -0.0129 10.87 10.52 9.94 9.82 9.13 8.02 7.55 7.42 7.11 7.29 8.91 9.91
ALO -0.0036 10.33 9.99 9.72 9.38 9.01 8.37 8.60 8.39 8.48 8.47 9.30 10.14
ANT -0.0064 10.27 9.72 9.46 9.24 8.85 7.60 6.13 4.70 5.36 7.12 8.34 9.06
BUR -0.0080 11.20 10.84 10.75 10.2 9.57 9.20 9.07 9.04 8.90 9.79 10.21 10.97
CAN -0.0139 9.23 9.97 9.74 8.79 8.68 7.96 6.97 6.13 6.05 6.10 7.39 8.93
CAR -0.0020 10.34 10.11 9.68 9.11 8.70 7.90 8.29 8.97 8.07 7.98 9.10 10.08
EST 0.0008 9.03 8.88 8.35 7.85 7.12 6.92 7.42 7.22 6.86 5.90 7.65 8.71
FRO -0.0046 9.92 9.87 9.57 9.01 8.29 7.35 7.61 7.97 7.52 7.44 8.59 9.83
INS -0.0070 10.81 10.52 10.49 10.13 9.35 9.23 8.91 9.26 9.03 9.68 9.82 10.54

LOU -0.0038 9.90 9.80 9.41 8.96 8.52 7.80 7.47 7.28 7.38 7.61 8.24 10.07
MAE -0.0037 10.29 9.72 9.80 9.22 8.83 7.99 8.06 7.57 7.56 8.26 8.91 9.30
MAI -0.0051 10.30 10.26 9.75 9.25 8.78 8.12 8.11 8.52 8.17 8.02 9.11 10.14
MIG -0.0058 10.71 10.13 9.85 9.72 9.22 8.59 8.37 7.31 7.51 7.83 8.86 9.73
MIN 0.0028 8.92 9.11 8.73 8.01 7.31 6.90 7.04 7.11 6.63 5.64 7.46 8.98
PAM -0.0169 11.10 10.75 10.48 9.91 9.22 7.68 8.07 8.01 8.79 8.04 8.87 9.54
PER -0.0103 9.11 9.27 8.97 7.99 8.11 7.38 6.96 6.99 7.13 7.22 8.08 8.91
PIN -0.0062 10.49 9.61 9.67 9.22 9.01 8.09 7.76 6.82 6.62 7.55 8.40 8.93

POU -0.0039 10.21 9.88 9.56 9.28 8.94 8.16 8.00 6.81 7.67 8.21 8.17 9.55
RED -0.0071 11.01 10.53 10.23 9.69 9.58 8.88 8.33 8.27 8.26 8.76 9.81 10.78
REQ 0.0062 8.39 8.53 8.06 7.17 6.63 5.96 5.74 5.36 5.49 5.57 6.66 7.93
SER -0.0052 10.12 10.00 9.85 9.77 9.12 8.56 8.20 7.87 8.14 8.80 9.44 9.64

TOM -0.0068 9.51 9.24 9.26 8.66 8.35 7.80 7.63 7.53 7.63 7.49 8.08 8.48
VOG -0.0049 10.84 9.89 9.84 9.48 9.03 8.17 7.73 7.19 7.50 7.90 9.00 9.38
VOZ -0.0011 10.91 9.72 9.19 9.41 8.61 7.32 7.32 6.61 5.85 7.72 8.67 9.47

5 Adjustment of the LMESS model to the DO concentration281

The LMESS model formulated in (1)-(2) contains a set of unknown parameters282

that must be estimated from data for each of the 26 times series. These parameters283

are Θ = {β, si, µ, φ, σ2
ε , σ

2
e}, with i = 0, 1, ..., 11 relatively to the twelve months284

of the year. Parameters estimation of state space models is performed usually by285

the maximum likelihood estimation. In the mixed-effect state space model fitting286

context, [20] implemented the EM algorithm assuming the normality of errors, and287

developing the updating equations for the M-step associated to the fixed effects288

parameters.289

We consider a classical decomposition approach ([5], p. 23) which combines the290

least square estimation of the fixed-effects parameters with an estimation method291

focused on state space models. So, in a first step, for each time series it was292

applied the method of least squares in order to estimate the slope β and the293

seasonal coefficients si, with i = 0, ..., 11 (corresponding to December, January, ...,294

November) through the model295

Yt = βt+

11∑
i=0

dt,isi + ωt (4)
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where ωt is the stochastic error, si the seasonal coefficients, with i = 0, ..., 11 and296

dt,i is a dummy variable defined as,297

dt,i =

{
1 if i = tmod 12
0 otherwise.

(5)

The estimates of β and si, with i = 0, ..., 11, are obtained through the least298

squares method and are presented in Table 2. The analysis of the trend estimates299

will be performed after the global adjustment of the model and in the clustering300

procedure.301

The second step of the modeling procedure adjusts the state space framework302

to the observations detrended by the regression modeling, Y ∗t = Yt− β̂t. However,303

data set has missing values in all monitoring sites in the period of 137 monthly304

measurements (see Table 1) which varies between an 11% up to 27% rate of ob-305

servations. This is a problem to the implementation of the KF algorithm since it306

is performed based on the one step-ahead predictions. Thus, the linear model ob-307

tained in the first step was considered as a baseline model to complete the original308

database. This methodology is simple and removes the problem of missing values309

and does not change the data structure. Nevertheless, this procedure implies a310

more careful reading of the inferential results that may be achieved, especially if311

the aim is to get accurate forecasts, which is not the case in this work. However,312

if a more accurate methodology is needed, the Kalman smoother and the EM313

algorithm can be combined to estimate missing values ([2]).314

After this procedure, the parameters {µ, φ, σ2
ε , σ

2
e} of the state space models315

must be estimated for each site. Usually, in the state space framework the pa-316

rameters are estimated through the likelihood estimation (ML) performed by the317

EM algorithm assuming that the disturbances et and εt are normally distributed.318

Table 3 presents parameters estimates from ML estimation. However, the analysis319

of the innovations series, η̂t = Yt−(β̂t+ ŝtX̂t|t−1), resulted in the state space mod-320

els fitting showed that the Gaussian distribution is rejected in several cases (see321

p-values of both the Kolmogorov-Smirnov and the Shapiro-Wilk tests in Table 3).322

Thus, other approach was considered in order to avoid distribution assumptions323

in the errors distributions.324

A non-parametric approach was applied taking distribution-free estimators325

(DF) based on the generalized method of moments (GMM) proposed by [7] for uni-326

variate state space models and later generalized to multivariate state space models327

in [16]. While the ML method assumes the normality of errors, which is not a328

reasonable assumption in certain environmental variables ([18]), the distribution-329

free estimators does not have distributions assumptions and, in addition, only330

depend on the lags between observations. Table 3 presents parameters estimates331

distribution-free estimators. Note that, in general, the ML method overestimates332

the autoregressive parameters and underestimates the state equation error vari-333

ance relatively to the DF estimators ([7]).334

Thus, since we are interested in the extraction of structural components (trend335

and seasonality) we take the mixed-effect state space model with the DF estimates.336

Indeed, the filtered prediction of the DO concentration can be interpreted as a pre-337

diction where several variations besides the structural components are minimized,338

as the instrumental errors from the devices or human errors (six water monitor-339

ing sites are automatic, INS, MIN, LOU, MAI, AGU and TOM). Additionally,340
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Table 3 Estimates of the state space parameters and p-values of both Kolmogorov-Smirnov
(K-S) and Shapiro-Wilk tests to the assumption of Gaussian distribution of innovations in the
ML estimation.

ML DF ML

site µ̂ φ̂ σ̂2
ε · 10−3 σ̂2

e µ̂ φ̂ σ̂2
ε · 10−3 σ̂2

e K-S S-W

AGA 0.986 0.824 0.430 0.455 0.987 0.330 4.592 0.151 0.070 0.003
AGU 1.002 0.677 0.863 0.273 1.002 0.339 4.427 0.048 0.000 0.000
ALF 0.991 0.719 0.881 0.844 0.990 0.300 9.380 0.313 0.015 0.324
ALO 1.004 0.746 0.922 0.412 1.004 0.559 2.131 0.356 0.000 0.000
ANT 0.992 0.776 0.936 0.855 0.991 0.361 15.58 0.288 0.046 0.020
BUR 0.994 0.332 4.026 0.100 0.994 0.340 4.092 0.094 0.059 0.564
CAN 0.993 0.756 1.330 0.964 0.992 0.299 15.472 0.320 0.200 0.008
CAR 1.001 0.591 2.892 0.455 1.001 0.585 3.423 0.151 0.015 0.002
EST 1.002 0.735 1.376 0.668 1.003 0.446 7.755 0.401 0.000 0.000
FRO 1.001 0.534 2.842 0.171 1.001 0.493 4.051 0.096 0.000 0.002
INS 0.994 0.715 0.836 0.383 0.994 0.328 3.969 0.127 0.023 0.022
LOU 1.007 0.770 0.892 0.348 1.008 0.420 4.766 0.120 0.001 0.019
MAE 1.002 0.697 1.814 0.340 1.003 0.440 4.968 0.149 0.006 0.008
MAI 1.002 0.675 1.694 0.215 1.002 0.609 2.553 0.157 0.026 0.035
MIG 0.992 0.729 1.180 0.823 0.991 0.303 8.515 0.358 0.015 0.066
MIN 1.000 0.805 1.034 0.829 1.002 0.470 9.065 0.601 0.000 0.000
PAM 0.996 0.844 0.888 0.610 0.998 0.344 6.938 0.262 0.200 0.020
PER 0.990 0.629 1.273 0.309 0.990 0.381 4.055 0.176 0.004 0.000
PIN 1.008 0.711 1.997 0.400 1.007 0.371 6.974 0.111 0.070 0.046
POU 0.994 0.800 0.652 0.819 0.992 0.222 6.921 0.468 0.000 0.000
RED 0.997 0.706 0.975 0.316 0.998 0.407 3.861 0.114 0.000 0.000
REQ 1.008 0.823 1.128 0.630 1.008 0.439 9.235 0.334 0.200 0.147
SER 0.997 0.340 7.076 0.001 0.997 0.381 6.161 0.066 0.000 0.025
TOM 1.002 0.797 0.592 0.557 1.002 0.496 1.264 0.590 0.006 0.019
VOG 1.000 0.615 2.442 0.334 1.000 0.353 6.703 0.067 0.000 0.001
VOZ 1.003 0.788 0.539 0.815 1.003 0.155 11.729 0.269 0.001 0.006

series of innovations of the fitted models have a behavior of a white noise process341

validating models adjustments.342

6 Discrimination procedures343

The Kalman smoother allows predicting the state Xt taking into account all avail-344

able data with the smallest mean square error within all linear estimators. These345

predictions are used to compute smoothers predictions of the two main structural346

components of the DO concentration: the trend and the seasonality, defined as347

follows,348

T̂t|n = α̂X̂t|n + β̂t (6)

and349

Ŝt|n = ŝ∗t X̂t|n. (7)

Dynamic properties inherent in each site allow identifying patterns in order to350

discriminate the water quality monitoring sites. This discrimination may not be351

the same based on each component (trend and seasonality). Two procedures are352

intended to identify patterns in each one of the structural components previously353

predicted.354
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Fig. 3 Dendrogram (top) and the agglomeration coefficients (bottom) of the extracted trend
component based on the Ward’s method

A hierarchical agglomerative clustering procedure is adopted since it is the355

most common approach in discrimination and it is typically illustrated by a den-356

drogram, which makes the analysis of results more easy. It is considered a hier-357

archical agglomerative cluster analysis performed by means of Ward’s method.358

Ward’s method uses a variance approach to evaluate the distances between clus-359

ters, in an attempt to minimize the sum of squares of any two clusters that can be360

formed at each step ([13]). Ward’s minimum variance criterion minimizes the total361

within-cluster variance. At each step the pair of clusters with minimum between-362

cluster distance is merged. The initial cluster distances in Ward’s minimum vari-363

ance method are computed through the squared Euclidean distance.364
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Fig. 4 Graphical representation of the solution with four clusters to the trend discrimination
(top) and the monthly average within each cluster (bottom)

6.1 Discrimination using the trend component365

Figure 3 represents the dendrogram and the agglomeration coefficients of the fil-366

tered predictions of the trend component. Different levels were considered to cut367

the dendrogram and the resulting hierarchical structures were analyzed in the368

context of the basin. The solution that is considered acceptable and has an in-369

terpretation in the basin context indicates four main clusters. This solution is370
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Fig. 5 Total annual precipitation in mm (data is based on the SNIRH)

geographically represented in Fig 4 with the monthly average of the DO concen-371

tration considering all the monitoring sites in each group.372

On the one hand, this solution is reasonable since the number of clusters is373

small and follows from the agglomeration schedule (see Fig 3). On the other hand,374

the total annual precipitation in the region has an unequal distribution (see Fig 5).375

As is well known, the hydrological conditions and the drainage areas are relevant376

characteristics which influence the water quality. In this case, greater amount of377

precipitation leads to a higher levels of DO concentration ([16]).378

Considering that the cluster analysis produces homogenous groups of moni-379

toring sites, a linear trend was adjusted to each cluster in order to estimate the380

global linear trend of each group. Table 4 presents the least squares estimates381

with the associated empirical 95% confidence intervals of both interceptions and382

slopes of the global linear trends of each cluster. All clusters are discriminated by383

the interceptions since all empirical confidence interval are disjuncted. Moreover,384

this discrimination reflects the different average levels of each clusters. Clusters385

II, III and IV have statistically significant negative slopes with similar empirical386

confidence intervals while in the cluster I the slope estimate is not statistically sig-387

nificant, i.e., in this cluster the average level of the DO concentration is constant.388

Cluster I has only two monitoring sites: Captação Burgães (BUR) e Captação389

Rio Ínsua (INS). This cluster corresponds to the sites with the highest DO concen-390

tration levels, i.e., has the best water quality. In the other extreme, cluster IV with391

the monitoring sites CAN, TOM, PER, REQ, EST, MIN and ANT has the overall392
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Table 4 Least squares estimates with the empirical 95% confidence intervals of interceptions
and slopes of global linear trends of clusters.

intercept slope
cluster estimate C.I. 95% estimate C.I. 95%

I 9.850 [9.705, 9.994] -0.00097 [-0.00279,0.00085]
II 9.088 [9.019, 9.158] -0.00118 [-0.00206,-0.00030]
III 8.783 [8.698, 8.869] -0.00113 [-0.00221,-0.00005]
IV 7.769 [7.680, 7.858] -0.00114 [-0.00226,-0.00002]

smallest values of the DO concentration. This cluster, which has the worst level of393

the DO concentration, i.e. the worst water quality in view of the DO, contains a set394

of monitoring sites located mainly in the industrial areas. In the site of Estarreja395

(EST) there are several chemical industries, which can justified the poor quality of396

surface water quality. For instance, the monitoring site of Ponte Minhoteira (MIN)397

is located to a downstream from two industrial cities (São João da Madeira and398

Oliveira de Azeméis) where there are a strong manufacture of shoes and associated399

products. On the other hand, the majority of these sites correspond to locations400

with a greater population density, thus, with a more intensive human activities.401

In Ponte Requeixo (REQ) are located the main industrial activities of the city of402

Aveiro, the capital district.The site that does not have these characteristics is the403

Ponte Antim (ANT). This monitoring site is located in the municipality of São404

Pedro do Sul, rural area and with a small population density. However, in this area405

there is economic activities of poultry and lagomorphs slaughterhouses, which may406

explain the lower DO concentration levels associated to pollutant discharges into407

waterways.408

Cluster II and cluster III are distinguished by the precipitation amount in the409

respective drainage areas. Cluster II is located in the central area of the basin lo-410

cated downstream from two relevant areas with high value of precipitation amount411

while cluster III is located at upstream of the most rainier area, so is not influenced412

by these high values of precipitation (see Fig. 5). These precipitation patterns are413

associated to the topography of the region. Indeed, two locations with the highest414

annual amount of precipitation in the region correspond to northeast of the Serra415

da Freita mountain and to southeast of the Serra do Caramulo mountain.416

6.2 Discrimination using the seasonal component417

The discrimination of the water monitoring sites in order to the seasonal compo-418

nent shows that there are less differentiation. Fig. 6 shows the dendrogram and the419

agglomeration coefficients based on the Ward’s method. It is very clear two main420

groups: cluster I with the majority of the monitoring sites located in the west and421

the remain sites in Cluster II concentrated to east (see Fig. 7). The discrimination422

is evident in Fig. 7 where cluster I presents a seasonal component with a lower423

amplitude instead of cluster II that has a higher annual range.424

If we analyze the solutions with three or more clusters, the differences between425

clusters are essentially in the summer months. Indeed, even in the solution with426

two clusters the main differences are in the summer months. In cluster II, the427

seasonal component has values near of −2 in the summer month instead of −1 in428
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Fig. 6 Dendrogram (top) and the agglomeration coefficients (bottom) of the extracted sea-
sonality component based on the Ward’s method

cluster I. However, this discrepancy is not so significant in the winter months since429

the seasonal component varies, approximately, between 1.5 and 2, respectively in430

clusters I and II.431

On the one hand, if we want a parsimony solution, we consider that the so-432

lution with two groups is a reasonable discrimination solution mainly if we take433

into consideration that watershed of Vouga is a small hydrological basin. On the434

other hand, this solution is consistent with the annual average values of the real435

evapotranspiration in the region (see Fig. 8).436

7 Conclusions437

The linear mixed-effect state space approach shows to have versatility in order to438

incorporate the usual trend and seasonality components of water quality variables.439

This model combines the most useful properties of both multiple linear regression440
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Fig. 7 Graphical representation of the solution with two clusters to the seasonality discrimi-
nation (top) and the monthly average within each cluster (bottom)

and state space models. This versatility accommodates a type of heterocedas-441

ticity which is present in the DO concentration at the same time that it takes442

into account the time correlation, of first order. The proposed models were fitted443

through a two-step parameter estimation procedure, which used the least square444

method combined with the state space parameters estimators. This approach is445

simple since combines parameters estimation procedures that are usually applied,446

having no additional complexity. On the other hand, the Kalman filter predictors447

provided predictions to the structural components as the trend and seasonality,448

which were used to classify the water monitoring sites. The filtered predictions449
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Fig. 8 Annual average values of the real evapotranspiration in mm (data is based on the
SNIRH)

of these components allowed to identify homogeneous groups of monitoring sites450

relatively to both trend/level and seasonal components. The level discrimination451

procedure provided four clusters with different levels. These clusters correspond452

to a four water quality levels in terms of the DO concentration. Mainly, the poor453

water quality is associated to industrial areas and with higher population densi-454

ties while the major levels of the DO concentration are verified in the east of the455

hydrological basin, i.e., in the upstream locations or in areas with high levels of456

drained precipitation. Besides, the cluster I which has the higher level of457

DO concentration shows a constant average level whereas the remain-458

ing clusters have negative trend. The seasonal component is more related459

with environmental characteristics, as the real evapotranspiration, and less with460

human activities.An overall analysis of the models adjustments shows that the461

water quality has deteriorated in the sense of that the DO concentration has been462

decreasing slowly.463

In addition to a global characterization of the evolution of water464

quality in the basin, the cluster analysis identified potential redun-465

dancies monitoring sites. Homogeneous groups of monitoring sites in466

terms of the evolution of DO were identified in both trend and seasonal467

components. The strategy that will be adopted to reduce the number468

of stations implies a combination between the statistical results and469
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both environmental and operational technical decisions, which must be470

framed in the political decision-making process.471
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Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds537

pollution. Ecol Ind 7:315-328538

26. Shumway RH, Stoffer D (2006) Time series analysis and its applications: with R examples.539

New York, Springer540

27. Tsai JP, Chen YW, Chang LC, Chen WF, Chiang CJ, Chen YC (2015) The assessment541

of high recharge areas using DO indicators and recharge potential analysis: a case study of542

Taiwan’s Pingtung plain. Stoch Environ Res Risk Assess 29(3):815-832543

28. Varol M, Sen B (2009) Assessment of surface water quality using multivariate statistical544

techniques: a case study of Behrimaz Stream, Turkey. Environ Monit Assess 159:543-553545

29. Zhang Y, Guo F, Meng W, Wang X-Q (2009). Water quality assessment and source iden-546

tification of Daliao river basin using multivariate statistical methods. Environ Monit Assess547

152:105-121548

30. Zhang Y, Zhu C (2013) Water Quality Analysis in Jining City Using Clustering Methods.549

Nature Environment and Pollution Technology 12(4):685-690550

31. Zhou J, Han L, Liu S (2013) Nonlinear mixed-effects state space models with applications551

to HIV dynamics. Stat Probabil Lett 83(5):1448-1456552


