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Chapter

Segmenting Images Using
Hybridization of K-Means and
Fuzzy C-Means Algorithms
Raja Kishor Duggirala

Abstract

Image segmentation is an essential technique of image processing for analyzing an
image by partitioning it into non-overlapped regions each region referring to a set of
pixels. Image segmentation approaches can be divided into four categories. They are
thresholding, edge detection, region extraction and clustering. Clustering techniques
can be used for partitioning datasets into groups according to the homogeneity of
data points. The present research work proposes two algorithms involving hybridiza-
tion of K-Means (KM) and Fuzzy C-Means (FCM) techniques as an attempt to
achieve better clustering results. Along with the proposed hybrid algorithms, the
present work also experiments with the standard K-Means and FCM algorithms.
All the algorithms are experimented on four images. CPU Time, clustering fitness and
sum of squared errors (SSE) are computed for measuring clustering performance
of the algorithms. In all the experiments it is observed that the proposed hybrid
algorithm KMandFCM is consistently producing better clustering results.

Keywords: image segmentation, clustering, K-Means, Fuzzy C-Means,
hybridization, sum of squared error, clustering fitness

1. Introduction

Images are often the most important category among the available digital data.
In the recent years, image data is increasing and will continue increase in the near
future. Since it is difficult to deal with large amount of image data as the available
data increases, it becomes crucial to use the automated tools for various purposes in
connection to image data. The image processing provides wide range of techniques
to deal with the images. By using the image processing techniques, we can make the
work much easier not only for now, but also for the future when there will be more
data and more work to do on the images.

Image segmentation is an essential image processing technique that analyzes an
image by partitioning it into non-overlapped regions each region referring to a set
of pixels. The pixels in a region are similar with respect to some characteristic such
as color, intensity, or texture [1]. The pixels significantly differ with those in the
other regions with respect to the same characteristic [2–4]. Image segmentation
plays an important role in a variety of applications such as robot vision, object
recognition, medical imaging and etc. [5–7]. Image segmentation approaches can be
divided into four categories. They are thresholding, edge detection, region
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extraction and clustering. Clustering techniques can be used for data segmenting
image data as they are used for partitioning large datasets into groups according to
the homogeneity of data points.

In clustering, a given population of data is partitioned into groups such that
objects are similar to one another within the same group and are dissimilar to the
objects in other groups [8, 9]. There are different categories of clustering tech-
niques. These can be partitional (hierarchical and non-hierarchical), like K-means,
PAM, CLARA, CLARANs [10, 11]; model-based, like Expectation Maximization,
SOM, Mixture model clustering [12, 13]; or fuzzy-based like Fuzzy C-Means
[14, 15].

Partitional clustering techniques attempt to break a population of data into some
predefined number of clusters such that the partition optimizes a given criterion.

Formally, clusters can be seen as subsets of the given dataset. So, clustering
methods can be classified according to whether the subsets are fuzzy or crisp
(hard). In hard clustering, an object either does or does not belong to a cluster.
These methods partition the data into a specified number of mutually exclusive
subsets. However, in fuzzy-based clustering, the objects may belong to several
clusters with different degrees of membership [16].

It is studied in the literature that many researchers experimented with the Fuzzy
C-Means (FCM) algorithm in a wide variety of ways for achieving better image
segmentation results [1, 17]. In [18], a penalized FCM (PFCM) algorithm is
presented for image segmentation for handling noise by adjusting a penalty coeffi-
cient. The penalty term used here takes the spatial dependence of the objects into
consideration, which is modified according to the FCM criterion. In [19], a fuzzy
rule-based technique is proposed. It employs the rule-based neighborhood
enhancement system to impose spatial continuity by post-processing on the clus-
tering results obtained using FCM algorithm. In [20], a Geometrically Guided FCM
(GG-FCM) algorithm is proposed, which is based on a semi-supervised FCM tech-
nique for multivariate image segmentation. In [21], a regularization term was
introduced into the standard FCM to impose the neighborhood effect. In [22], this
regularization term is incorporated into a kernel-based fuzzy clustering algorithm.
In [23], this regularization) term is incorporated into the adaptive FCM (AFCM)
algorithm [24] to overcome the noise sensitivity of AFCM algorithm.

However, it is found in the literature that a very less attention is paid towards
the hybridization of clustering techniques for partitioning the datasets.

The present research work aims at developing hybrid clustering algorithms
involving K-Means and Fuzzy C-Means (FCM) techniques for achieving better
clustering results. As part of hybridization, two algorithms are developed, KMFCM
and KMandFCM. The KMFCM algorithm first performs K-Means on the dataset
and then performs FCM using the results of K-Means. The KMandFCM algorithm
performs K-Means and FCM in the alternative iterations.

All the experiments are carried out using the datasets that are related to four
images. For performance evaluation, CPU time, clustering fitness and sum of
squared error (SSE) are taken into consideration.

The following sections provide a detailed discussion of K-Means (KM), Fuzzy
C-Means (FCM), KMFCM and KMandFCM algorithms.

2. The K-Means (KM) algorithms

Partitional clustering methods are appropriate for the efficient representation of
large datasets [11]. These methods determine k clusters such that the data objects in
a cluster are more similar to each other than to the objects in other clusters.

2
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The K-Means is a partitional clusteringmethod, which partitions a given dataset into
a pre-specified number, k, of clusters [25]. It is a simple iterativemethod. The algorithm
is initialized by randomly choosing k points from a given dataset as the initial cluster
centers, i.e., cluster means. The algorithm iterates through two steps till its convergence:

1.Data assignment: this step partitions the data by assigning each data object to its
closest cluster center.

2.Updating the cluster centers: update the center of each cluster based on the
objects assigned to that cluster.

The algorithm for K-Means is as follows [26]. Here, k represents the number of
clusters, d represents the number of dimensions or attributes, Xi represents the ith
data sample, μj (j = 1, 2, …, k) represents the mean vector of cluster Cj, t is the
iteration number. For termination condition the algorithm computes percentage
change, Eq. (2). The algorithm terminates when Percentage change < α. Here, α is
assumed to be 3 since it is negligible.

KM algorithm

1.Select k vectors randomly from the dataset as the initial cluster centers, μj (j = 1,
2, …, k). Set the current iteration t = 0.

2.Assign each vector,Xi, to its closest cluster center using Euclidean distance, Eq. (1).

d Xi; μj

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑d
l¼1 xil � μjl

� �2
r

(1)

3.Update mean vectors μj ( j = 1, …, k).

4.Compute Percentage change as follows

Percentage change ¼
∣Ψt �Ψtþ1∣

Ψt
� 100 (2)

where Ψt is the number of vectors assigned to new clusters in tth iteration and
Ψt + 1 is the number of vectors assigned to new clusters in (t + 1)th iteration.

5.Stop the process if Percentage change < α, otherwise set t = t + 1 and repeat the
steps 2–4 with the updated parameter.

The K-Means uses Euclidean distance as a proximity measure for determining
the closest cluster to which a data object is assigned [13]. The algorithm stops when
the assignment of data points to the clusters no longer changes or some other
criterion is satisfied. The K-Means is a widely used algorithm for clustering and it
requires less CPU time. However, it mainly suffers from detecting the natural
clusters that have non-spherical shapes or widely different sizes or densities [25].

3. The Fuzzy C-Means (FCM) algorithms

Fuzzy-based clustering techniques focus on modeling uncertain and vague
information that is found in the real world situations. These techniques deal with
the clusters whose boundaries cannot be defined sharply [14, 15]. By fuzzy-based
clustering, one can know if data objects fully or partially belong to the clusters based
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on their memberships in different clusters [27]. Among the fuzzy-based clustering
methods, Fuzzy C-Means (FCM) is the most well-known algorithm as it has the
advantage of robustness for obscure information about the clusters [1, 28].

In FCM, a dataset is grouped into k clusters, where every data object may relate
to every cluster with some degree of membership to that cluster [16]. The mem-
bership of a data object towards a cluster can range between 0 and 1 [29]. The sum
of memberships for each data point must be unity.

The FCM iterates through two phases for converging to a solution. First, each
data object will be associated with a membership value for each cluster, and second,
assigning the data object to the cluster with the highest membership value [2].

The algorithm for FCM is given below [30]. Here, U is the k � N membership
matrix. While computing the cluster centers and updating the membership matrix
at each iteration, the FCM uses membership weight, m. For most data 1.5 ≤ m ≤ 3.0
gives good results [29]. In all our experiments, we take m = 1.25.

FCM algorithm

1.Initialize parameters: select k vectors randomly as cluster means; set initial

membership matrix U
0ð Þ
k X N, set the current iteration t = 0.

2.Assign each data object Xi to clusters using the membership matrix.

3.Compute jth cluster center as follows:

μj
tþ1 ¼

∑N
i¼1 uji

� �m
Xi

∑N
i¼1 uji

� �m (3)

4.Compute new membership matrix using

uji
tþ1 ¼ ∑

k

l¼1

Xi � μj
t

�

�

�

�

�

�

2

Xi � μl
tk k2

0

B

@

1

C

A

1 m�1=
2

6

6

4

3

7

7

5

�1

(4)

5.Assign each data object Xi to clusters using the membership matrix.

6.Compute Percentage change using Eq. (2).

7.Stop the process if the Percentage change is <α. Otherwise, set t = t + 1 and
repeat the steps 3–7 with the updated parameters.

FCM is widely studied and applied in geological shape analysis [31], medical diag-
nosis [32], automatic target recognition [33], meteorological data [28], pattern recog-
nition, image analysis, image segmentation and image clustering [34–36], agricultural
engineering, astronomy, chemistry [37], detection of polluted sites [38] and etc.

4. Hybridization involving K-Means and FCM techniques

The partitional [11] and fuzzy-based [16] methods are widely applied clustering
techniques in several areas. The partitional clustering methods do hard clustering,
where the dataset is partitioned into a specified number of mutually exclusive sub-
sets. The K-Means, as a partitional clustering method is found in the research
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literature as widely applied technique in a variety of experiments. While clustering
the data, the K-Means aims at minimizing the local distortion [39, 40]. However, K-
Means is ideal if the data objects are distributed in well-separated groups.

In fuzzy-based clustering, objects are not forced to fully belong to one cluster.
Here, an object may belong to many clusters with varying degrees of membership.
This membership can range between 0 and 1 indicating the partial belongingness of
objects to the clusters [16]. Fuzzy clustering techniques help in understanding if the
data objects fully or partially belong to clusters depending on their memberships [27].
In FCM, each data object belongs to each cluster with some degree of membership
that ranges between 0 and 1 [29]. Here, clusters are treated as fuzzy sets. In general,
introducing the fuzzy logic in K-Means is the Fuzzy C-Means algorithm [41].

The following sub-section discusses two algorithms that apply hybridization of
K-Means (KM) and Fuzzy C-Means (FCM) clustering techniques [42]. These algo-
rithms are KMFCM and KMandFCM. The KMFCM algorithm first performs K-
Means on the given dataset and then performs the FCM using the results of K-
Means. The KMandFCM algorithm performs K-Means and FCM in the alternative
iterations on the given dataset. The detailed discussion of these hybrid algorithms is
presented in the following subsections.

4.1 The KMFCM algorithm

The proposed hybrid clustering algorithm KMFCM first performs the K-Means
(KM) technique completely on the given dataset. Using the resulted cluster centers
of KM as cluster seeds, the FCM is performed on the given dataset till termination.
Here, to run the first iteration of the FCM, the cluster centers and the membership
matrix are calculated based on the results of KM. The remaining iterations continue
as in the FCM algorithm.

The algorithm for the KMFCM is given below. Here, KM-Step is the K-Means
step and FCM-Step is the Fuzzy C-Means step.

KMFCM algorithm

1.KM-Step: select k vectors randomly from the dataset as the initial cluster
centers μj (j = 1, …, k). Set the current iteration t = 0.

2.Assign each data object Xi to its closest cluster center using Eq. (1).

3.Update cluster centers μj (j = 1, …, k) and set t = t + 1.

4.Compute Percentage change using Eq. (2).

5.If Percentage change ≥ α, repeat steps 2–4.

6.FCM-Step: compute the membership matrix U
tð Þ
k X N using Eq. (4) based on the

results of KM-Step.

7.Assign data objects to clusters using membership matrix.

8.For each cluster Cj, compute the center μj (j = 1, …, k) using Eq. (3)

9.Compute Percentage change using Eq. (2).

10.Stop the process if Percentage change <α. Otherwise, set t = t + 1 and repeat
steps 6–9.
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4.2 The KMandFCM algorithm

Clustering in KMandFCM is performed by executing K-Means and the FCM
techniques in alternative iterations on the given dataset till termination. The first
iteration is performed using K-Means assuming some randomly selected data points
as cluster centers. The second iteration is performed using FCM technique. For this
iteration the cluster means, covariance matrices and the membership matrix are
calculated using the results of first iteration. Third iteration is performed using K-
Means technique. This iteration computes cluster means using results obtained
from the second iteration. In this way, clustering is performed using K-Means and
FCM in the alternative iterations till termination.

The algorithm for the proposed KMandFCM algorithm is given below. Here,
KM-Step is the K-Means step and FCM-Step is the Fuzzy C-Means step.

KM and FCM algorithm

1.Select k vectors randomly from the dataset as initial cluster centers μj (j = 1,…, k).
Set the current iteration t = 0.

2.KM-Step: assign each vector Xi to its closest cluster center using Eq. (1).

3.FCM-Step: set t = t + 1.

4.For each cluster Cj, compute the center μj using Eq. (3)

5.Compute the new membership matrix U
tð Þ
k X N using Eq. (4)

6.Assign data objects to clusters using the membership matrix.

7.Compute Percentage change using Eq. (2).

8.Stop the process if Percentage change < α. Otherwise, set t = t + 1.

9.KM-Step: For each cluster Cj, compute new center μj using Eq. (3).

10.Assign each vector Xi to its closest cluster center using Eq. (1).

11.Compute Percentage change using Eq. (2).

12.Stop the process if Percentage change < α. Otherwise, go to step 3.

For all the algorithms, i.e., KM, FCM, KMFCM, KMandFCM, the same
termination condition, Eq. (2), is used.

5. Performance evaluation measures

For performance evaluation of algorithms, CPU time in seconds, sum of squared
error [12] and clustering fitness [43] are taken into consideration and are calculated
for all the algorithms.

5.1 Sum of squared errors

The objective of clustering is to minimize the within-cluster sum of squared
error (SSE). The lesser the SSE, the better the goodness of fit is. The sum of squared
error [12] for the results of each clustering algorithm is computed using the Eq. (5)

6
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SSE ¼ ∑
k

j¼1
∑

Xi ∈Cj

Xi � μj

� �2
(5)

Here, Xi is the ith data object in the dataset, μj (j = 1, …, k) is the center of the
cluster Cj, and k is the number of clusters.

5.2 Clustering fitness

The main objective of any clustering algorithm is to generate clusters with
higher intra-cluster similarity and lower inter-cluster similarity. So, it is also
important to consider inter-cluster similarity while evaluating the clustering per-
formance. In the present work, clustering fitness is also considered as a perfor-
mance criterion, which requires the calculation of both intra-cluster similarity and
inter-cluster similarity. The computation of clustering fitness also requires the
experiential knowledge, λ. The computation of clustering fitness results in higher
value when the inter-cluster similarity is low and results in lower value for when the
inter-cluster similarity is high. Also that to make the computation of clustering
fitness unbiased, the value of λ is taken as 0.5 [43].

(a) Intra-cluster similarity for the cluster Cj: it can be quantified via a function
of the reciprocals of intra-cluster radii within each of the resulting clusters. The
intra-cluster similarity [43] of a cluster Cj (1 = j = k), denoted as Stra(Cj), is
defined in Eq. (6)

Stra Cj

� �

¼
1þ n

1þ∑n
1dist Il;Centroidð Þ

(6)

Here, n is the number of items in cluster Cj, Ij (1 = j = n) is the jth item in cluster
Cj, and dist(Ij, Centroid) calculates the distance between Ij and the centroid of Cj,
which is the intra-cluster radius of Cj. To smooth the value of Stra(Cj) and allow for
possible singleton clusters, 1 is added to the denominator and numerator.

(b) Intra-cluster similarity for one clustering result C: it is denoted as Stra(C).
It is defined in Eq. (7), [43]

Stra Cð Þ ¼
∑k

1Stra Cj

� �

k
(7)

Here, k is the number of resulting clusters in C and Stra(Cj) is the intra-cluster
similarity for the cluster Cj.

(c) Inter-cluster similarity: it can be quantified via a function of the reciprocals of
inter-cluster radii of the clustering centroids. The inter-cluster similarity [43] for
one of the possible clustering results C, denoted as Ster(Cj), is defined as Eq. (8)

Ster Cð Þ ¼
1þ k

1þ∑k
1dist Centroidj;Centroid

2� � (8)

Here, k is the number of resulting clusters in C, 1 = j = k, Centroidj is the centroid
of the jth cluster in C, Centroid2 is the centroid of all centroids of clusters in C. We
compute inter-cluster radius of Centroidj by calculating dist(Centroidj, Centroid

2),
which is distance between Centroidj, and Centroid2. To smooth the value of Ster(C)
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and allow for possible all-inclusive clustering result, 1 is added to the denominator
and the numerator.

(d) Clustering fitness: the clustering fitness [43] for one of the possible
clustering results C, denoted as CF, is defined as Eq. (9)

CF ¼ λ� Stra Cð Þ þ
1� λ

Ster Cð Þ
(9)

Here, λ (0 < λ < 1) is an experiential weight, Stra(C) is the intra-cluster similar-
ity for the clustering result C and Ster(C) is the inter-cluster similarity for the
clustering result C. To avoid biasedness in our experiments, λ is assumed to be 0.5.

6. Experiments and results

Experimental work has been carried out on the system with Intel(R) Core(TM)
i3-5005U CPU@2.00GHz processor speed, 4GB RAM, Windows 7 OS (64-bit) and
using JDK1.7.0_45. Separate modules are written for each of the above discussed
methods to observe the CPU time for clustering any dataset by keeping the cluster
seeds same for all methods. I/O operations are eliminated and the CPU time
observed is strictly for clustering of the data.

Along with the newly developed hybrid algorithms, experiments are also
conducted with the algorithms for standard K-Means (KM) and Fuzzy C-Means
(FCM) for performance comparison. All the algorithms are executed using datasets
that are related to four images. The details of these images are available in Table 1.

The medical images used in the present experiment are heart image [44] and
kidneys image [45] (Figures 1 and 2). The experiments are also carried out using
two benchmark images. They are Baboon and Lena images [46] (Figures 3 and 4).

Below is the brief description of medical images.
The Heart is a medical image obtained from biology data repository [44]. It is in

“jpeg” format. The ‘Kidneys’ is a colored MRI scan of a coronal section through a
human abdomen, showing the front view of healthy kidneys and liver [45]. It is in
‘jpeg’ format. The Baboon and Lena are benchmark test images that are found
frequently in the literature [46]. These are all in uncompressed “tif” format.

All the algorithms for standard K-Means (KM), standard Fuzzy C-Means
(FCM), KMFCM and KMandFCM are executed on each image data with varying
number of clusters (k = 10, 11, 12, 13, 14, 15). For all algorithms, same cluster seeds
are used. Same termination condition Eq. (2) is used for all the experiments. The
details of CPU time, clustering fitness and SSE of each algorithm for the all images
are given in the following sub-sections (Tables 2–13). The results are also projected
in their respective graphs (Figures 5–16).

SNO Image Resolution No. of points No. of dimensions

1 Heart 341 � 367 125,147 3

2 Kidneys 473 � 355 167,915 3

3 Baboon 512 � 512 262,144 3

4 Lena 256 � 256 65,536 3

Table 1.
Medical Images.
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6.1 Observations with Heart image

K KM FCM KMFCM KM and FCM

10 0.21 0.30 1.36 0.19

11 0.21 0.32 1.48 0.20

12 0.25 0.40 1.61 0.20

13 0.09 0.35 1.58 0.22

14 0.14 0.39 1.73 0.23

15 0.36 0.43 2.15 0.26

Table 2.
CPU time of each clustering technique (Heart image).

Figure 1.
CPU time (Heart image).
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K KM FCM KMFCM KM and FCM

10 51.20 56.62 58.51 64.78

11 49.79 55.73 55.40 62.14

12 42.27 55.80 61.16 65.97

13 34.88 47.54 41.08 58.46

14 48.34 55.22 56.62 60.35

15 47.54 57.96 48.24 59.22

Table 3.
Clustering fitness of each clustering technique (Heart image).

Figure 2.
Clustering Fitness (Heart image).
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K KM FCM KMFCM KM and FCM

10 0.0163 0.0152 0.0148 0.0041

11 0.0150 0.0145 0.0074 0.0036

12 0.0173 0.0163 0.0059 0.0031

13 0.0185 0.0171 0.0285 0.0037

14 0.0142 0.0139 0.0113 0.0028

15 0.0138 0.0114 0.0241 0.0024

Table 4.
SSE of each clustering technique (Heart image).

Figure 3.
Sum of squared errors (Heart image).
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6.2 Observations with Kidneys image

K KM FCM KMFCM KM and FCM

10 0.09 0.68 1.58 0.55

11 0.13 0.41 1.83 0.26

12 0.81 0.58 2.64 0.46

13 0.08 0.47 2.07 0.30

14 0.24 0.60 2.40 0.31

15 0.65 1.78 2.22 1.06

Table 5.
CPU time of each clustering technique (Kidneys image).

Figure 4.
CPU time (Kidneys image).
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K KM FCM KMFCM KM and FCM

10 38.40 47.15 54.76 61.48

11 42.11 49.43 57.86 65.84

12 52.41 61.03 60.00 65.41

13 41.20 51.04 48.73 56.79

14 57.49 64.85 64.88 71.59

15 53.10 61.40 62.85 66.42

Table 6.
Clustering fitness of each clustering technique (Kidneys image).

Figure 5.
Clustering Fitness (Kidneys image).
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K KM FCM KMFCM KM and FCM

10 0.0281 0.0215 0.0129 0.0075

11 0.0265 0.0172 0.0114 0.0054

12 0.0249 0.0109 0.0140 0.0029

13 0.0123 0.0109 0.0191 0.0112

14 0.0144 0.0090 0.0067 0.0037

15 0.0115 0.0045 0.0028 0.0011

Table 7.
SSE of each clustering technique (Kidneys image).

Figure 6.
Sum of squared errors (Kidneys image).
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6.3 Observations with Baboon image

K KM FCM KMFCM KM and FCM

10 0.14 0.79 2.16 0.62

11 0.16 0.86 2.37 0.63

12 0.29 0.91 2.68 0.63

13 0.31 1.01 2.91 0.50

14 0.36 0.72 3.14 0.78

15 0.48 1.10 3.24 0.55

Table 8.
CPU time of each clustering method (Baboon image).

Figure 7.
CPU time (Baboon image).

15

Segmenting Images Using Hybridization of K-Means and Fuzzy C-Means Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.86374



K KM FCM KMFCM KM and FCM

10 30.22 32.17 36.02 39.07

11 22.28 29.71 37.36 39.49

12 28.70 32.63 35.13 39.57

13 31.28 33.47 40.39 42.28

14 25.92 29.49 37.77 39.81

15 36.48 38.16 34.43 39.98

Table 9.
Clustering fitness of each clustering method (Baboon image).

Figure 8.
Clustering fitness (Baboon image).
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K KM FCM KMFCM KM and FCM

10 0.0080 0.0063 0.0059 0.0030

11 0.0073 0.0068 0.0037 0.0024

12 0.0099 0.0071 0.0053 0.0029

13 0.0065 0.0058 0.0070 0.0025

14 0.0087 0.0070 0.0041 0.0022

15 0.0069 0.0056 0.0027 0.0019

Table 10.
SSE of each clustering method (Baboon image).

Figure 9.
Sum of squared errors (Baboon image).
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6.4 Observations with Lena image

K KM FCM KMFCM KMandFCM

10 0.08 0.15 0.66 0.09

11 0.13 0.44 0.76 0.32

12 0.06 0.17 0.77 0.11

13 0.09 0.40 0.84 0.32

14 0.05 0.20 0.92 0.13

15 0.21 0.24 1.09 0.14

Table 11.
CPU time of each clustering method (Lena image).

Figure 10.
CPU time (Lena image).
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K KM FCM KMFCM KM and FCM

10 25.50 28.80 30.61 32.79

11 22.97 25.52 27.95 31.08

12 20.22 23.38 25.44 29.97

13 28.71 30.13 32.74 34.26

14 26.75 29.83 31.05 33.27

15 23.70 30.19 32.79 34.60

Table 12.
Clustering fitness of each clustering method (Lena image).

Figure 11.
Clustering fitness (Lena image).
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K KM FCM KMFCM KM and FCM

10 0.0147 0.0127 0.0093 0.0034

11 0.0245 0.0218 0.0099 0.0041

12 0.0246 0.0178 0.0077 0.0034

13 0.0144 0.0106 0.0060 0.0027

14 0.0135 0.0110 0.0062 0.0024

15 0.0130 0.0100 0.0049 0.0022

Table 13.
SSE of each clustering method (Lena image).

Figure 12.
Sum of squared errors (Lena image).
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6.5 Original images used for present experimentation

Figure 13.
Heart image.

Figure 14.
Kidneys image.
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6.6 Comparison of segmentation results on Baboon image

As an example of the present experiments for image segmentation, segmenta-
tion results for Baboon image for 10 clusters are presented here. These results are
generated by the above proposed hybrid clustering algorithms along with the stan-
dard K-Means and standard FCM algorithms.

Figure 15.
Baboon image.

Figure 16.
Lena image.
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For segmentation, here, each algorithm is executed using Baboon image data
assuming that the number of clusters is 10, i.e., k = 10. Each segment is represented
by each cluster. Separate color code is assigned to each cluster. The color codes are
red, yellow, green, blue, orange, black, white, gray, cyan and magenta. The
projections of all segmentation results generated by the algorithms are shown in
Figure 17. The original Baboon image also shown in the figure.

In all the experiments, it is observed that hybrid clustering algorithm
KMandFCM is showing better performance in terms of CPU, clustering fitness and
SSE than the other algorithms.

7. Conclusion

The present chapter notably includes the study of hybridization of popular
clustering algorithms, K-Means and FCM, and identifies the best hybridization
strategy. All experiments are carried out for segmenting four images, which include
two medical images also. For all the algorithms CPU time, clustering fitness and
sum of squared error (SSE) are taken into consideration while carrying out their
performance evaluation. In all the experiments that are conducted, the proposed

Figure 17.
Image segmentation results for Baboon image (for 10 Clusters).
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hybrid algorithm KMandFCM is exhibiting better performance in terms of CPU
time, Clustering Fitness (CF) and SSE.

In all experiments, it is also observed that the proposed hybrid clustering algo-
rithms are showing better performance than the standard K-Means and FCM algo-
rithms. Especially the KMandFCM algorithm has good results when compared to all
other algorithms. Thus, it could be concluded that the hybrid clustering algorithm
KMandFCM will have good application in other fields too.
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