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Chapter

Polycrystalline Diamond 
Characterisations for High End 
Technologies
Awadesh Kumar Mallik

Abstract

Characterisations of polycrystalline diamond (PCD) coatings have routinely 
been done over the past three decades of diamond research, but there is less num-
ber of reports on some of its very unique properties. For example, diamond is the 
hardest known material and, in probing such hard surfaces with any indenter tip, 
it may lead to damage of the instrument. Due to such chances of experimental 
accidents, researchers have performed very few attempts in evaluating the mechani-
cal properties of PCDs. In the present work, some of these very special properties 
of diamond that are less reported in the literature are being re-investigated. PCDs 
were characterised by photoluminescence (PL), Fourier transform infrared (FTIR) 
spectroscopy, transmission electron microscope (TEM), and X-ray diffraction 
(XRD) techniques. The diamond surface was also polished to bring the as-grown 
micron level of surface roughness (detrimental for wear application) down to few 
hundreds of nanometer. The tribological properties of such polished and smooth 
surfaces were found to be appropriate for wear protective coating application. This 
chapter revisits some of the unreported issues in the synthesis and characterisation 
of PCD coatings grown on Si wafer by the innovative 915 MHz microwave plasma 
chemical vapour deposition (MPCVD) technique.

Keywords: CVD diamond, polishing, characterisations, properties

1. Introduction

CVD grown diamond is an important class of material [1–6]. The characteristic 
of such material is very much dependant on the CVD processing conditions [7–21] 
and as well as on the post-processing steps that are equally significant for the 
efficient use of this material in engineering applications [22–26]. There are environ-
ments where it is exposed to heat under extreme conditions or it is rubbed against 
hard ceramic surfaces. Diamond is the hardest known material with very low co-
efficient of friction which naturally makes it a suitable tribological surface [27–29].

But the as grown diamond surface is very rough in nature which is required to 
be planarised before putting into real environments. It is well understood nowadays 
that the diamond nucleation and growth takes place first by coalescence of the 
seeded layer on the substrate surface and then on top of which diamond crystals 
grown in columnar fashion. Such vertical growth of crystals causes the top surface 
to be very rough and simultaneously there may be some inherent porosity present 
due to rise of such vertical columns. On the other hand, the nucleation side of the 



Diamonds in Scientific Research and High Technology

2

freestanding diamond may have some porosity due to random coalescence of the 
islands during CVD processing. There is no such report of studying the surface 
area and porosity of CVD grown polycrystalline diamond (PCD). Here, it has been 
attempted for the first time to evaluate the pore size that may be present in the 
diamond coatings grown by CVD, using Brunauer-Emmett-Teller (BET) technique.

Moreover, tribological action may cause rise of temperature under humid 
atmospheric condition for diamond material to degrade. So it is necessary for the 
CVD grown diamond to be well characterised for the wear and friction applications 
[30–34]. Thermal stability has been studied so far by many authors [35–37] but 
it lacks proper assessment of oxidation temperature [38–40] since only standard 
furnaces have been used so far. Here, thermo-gravimetric analysis (TGA) and dif-
ferential scanning calorimeter (DSC) techniques have been used for the first time 
ever to pinpoint the augmentation of oxidation.

Methane or other precursor gas compositions [41–45] determine the defects 
present inside the diamond crystals. For example, high methane concentration 
may cause many CVD growth defects which render the grown coating to become 
black/grey; whereas the cleaner processing conditions of low methane percentages 
etc. may cause the diamond coating to be white or transparent. Similarly boron or 
nitrogen in the precursor gases [46] make the diamond blue [47] or yellow [48–50] 
in colour due to the substitutional atomic defects [51, 52] introduced in the diamond 
lattice [53, 54]. Such substitutional defects are studied by [55] photoluminescence 
(PL) [56–58], Fourier transform infra-red (FTIR) spectroscopy techniques [59], 
whereas the point, line, plane or volume defects during CVD growth can be viewed 
under transmission electron microscopes (TEM) [60–68]. Post-processing steps 
such as annealing [69, 70] may be required to remove some of these defects [71]. 
Annealing [72–76] also makes the diamond to become purer in respect of graphitic 
inclusions. Raman spectra [77–79] reveal the phase purity of CVD grown diamonds 
[80–86]. Polishing is routinely done to reduce as-grown diamond surface roughness 
[87]. Tribology of such polished surfaces has been studied in detail but there is lack 
of literature [88–90] against silicon nitride ceramics [91] under machine oil lubrica-
tion [92]. Moreover, due to very hard and rough top surface of CVD grown PCD, 
researchers are hesitant to probe the as-grown PCD surface with their expensive 
Berkovich or other indenters [93–95]. In effect, there is not much literature [96–100] 
available which describes the mechanical properties [101, 102] of CVD grown PCDs.

Characterisation [103–107] of the CVD grown PCDs is very essential besides its 
synthesis. Some techniques which are frequently used for powder samples like, BET 
surface area analysis, TGA-DSC, Zetasizer particle size measurements are being 
reported here for the first time, for CVD polycrystalline diamond coatings. Moreover, 
black and white grades of diamond have been grown [108–110] and characterised 
so far, but their corresponding growth defects have not frequently been reported 
[111–113]. Here, authors have tried to elucidate the CVD growth defects that are 
present in their CVD grown diamonds. Afterwards, the PCD samples were polished 
to make them effective for tribological applications. Later on, such polished diamond 
surfaces have been mechanically characterised for studying tribological action [114] 
against silicon nitride balls under machine oil lubricants for the first time.

2. Materials and methods

2.1 Processing of polycrystalline diamond (PCD)

Polycrystalline diamond samples were fabricated with CSIR-CGCRI based 
DT1800 microwave plasma enhanced CVD (MPCVD) reactor on single crystal Si 
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wafers [115]. Deposition was carried out for 4–10 days to grow 0.5–0.8 mm thick 
diamond coatings. Reactor pressure and temperature were maintained in between 
110 and 120 Torr and 900–1100°C, respectively. 1–3% methane in hydrogen gas 
mixture was used for growing diamond coatings with 9 kW input microwave 
power. Afterwards, PCDs were made freestanding by wet chemical etching of Si 
wafers with 1:1:1 ratio solution of HF:HNO3:CH3COOH [116]. Such freestanding 
diamond wafers were cut in 6 mm diameter smaller discs by laser cutter (Hallmark 
Plus model. Nd-YAG lamp pumped laser with 10 watt power at 1064 nm wave-
length). The diamond sample was then hot mounted to polish the as-grown rough 
surface [117]. Mechanical polishing was done using Leco, Germany polisher and 
subsequently CP4 model, Bruker, USA machine was used for chemo-mechanical 
polishing of the PCD samples. Metal bonded diamond disc and Cu-bonded dia-
mond discs were used with different grit sizes for mechanical polishing with water 
as cooling agent. On the other hand, the chemo-mechanical polishing of diamond 
samples was carried out against alumina ceramic disc using K2S2O8 solution and 
concentrated sulphuric acid along with diamond pastes. Separately, annealing of 
few diamond samples was also done at 600°C for 1 h in standard air furnace.

2.2 Physical characterisations of PCDs

The detonation nanodiamond (DND) particle size of the seeding slurry was 
measured by Malvern make Zetasizer instrument. Brunauer-Emmett-Teller 
(BET) surface area analyser (Quantachrome Instruments) was used to measure 
the surface area; and nitrogen adsorption isotherm (Barrett-Joyner-Halenda or 
BJH method) was used to measure the pore size and volume in the freestanding 
diamond coatings. The samples were degassed under vacuum at 100°C for 1 h prior 
to measurement. Thermogravimetric (TGA) and differential scanning calorimetry 
(DSC) analysis of the freestanding diamond sample was done at a heating rate of 
10°C min−1 on a simultaneous thermal analyser (STA 449F, Netzsch, Germany). 
X-ray diffractograms (XRD) were recorded in the 2θ range 30°−100° at a slow scan-
ning rate of 1° min−1 by an X-ray diffractometer (Philips X’Pert, The Netherlands) 
with Cu Kα radiation (at 40 kV and 40 mA). Transmission electron microscopy 
(TEM-Tecnai G2 30ST, FEI Company, USA) was used to evaluate the defects 
present inside the diamond lattice. FTIR/FIR spectrophotometer (Model: Frontier 
IRL 1280119, Perkin Elmer) attached with reflectance measurement arrangement 
with incident and reflectance angles set at 22.5°, was used for studying opaque and 
translucent PCD samples. The photoluminescence (PL) studies including emission 
and excitation measurements were carried out on a fluorescence spectrophotometer 
(Model: Quantum Master, enhanced NIR, from Photon Technologies International) 
using a xenon arc lamp of 60 W as a pump source. Raman spectra were obtained 
using a STR500, Cornes Technologies, (formerly known as Seki Technotron) micro-
Raman spectrometer, with excitation by argon ion (514.5 nm) laser. The resolution 
was about 1 cm−1 with 1200 grating size. In all the Raman experiments, the laser 
spot size was 1–2 μm and an exposure time of 20 s was used which was repeated 
thrice to acquire the Raman signals during each measurement.

2.3 Mechanical and tribological characterisations of PCDs

Polished surfaces of the PCD samples were seen under a ZEISS Supra 35 
(Germany) field emission scanning electron microscope (FESEM) with EDAX 
attachment. Roughness of the PCD surfaces were evaluated by a contact pro-
filometer (Talysurf PGI 2000S, Taylor Hobson). The nanohardness and Young’s 
modulus were measured by nanoindentation technique applied to the plan section 
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of the CVD grown polycrystalline diamond polished and nucleation side surfaces. 
A typical load of 1000 mN was used for the nanoindentation experiments. A 
standard nanoindenter (Fischerscope H100XYP, Fischer, Switzerland) was used 
for this purpose. The nanoindenter machine was operated according to the DIN 
50359-1 standard. It offered a load range of 0.4–1000 mN. It was equipped with a 
Berkovich indenter. The indenter possessed a tip radius of 150 nm. The machine 
was used in ambient laboratory conditions (23 ± 4°C, 70 ± 5% relative humidity). 
The depth sensing resolution of the machine was 1 nm. The force-sensing resolu-
tion of the machine was 0.2 μN. The machine was calibrated with nanoindentation 
based independent evaluation of H ≈ 4.14 ± 0.1 GPa and E ≈ 84.6 ± 3.5 GPa of 
a BK7 Glass (Schott, Germany). This material was provided by the supplier as a 
standard reference block. A ball-on-disc tribometer assembly (NANOVEA) was 
used for highly accurate and repeatable wear friction testing in rotational modes. 
The counter-face was a Si3N4 ball which was attached to a load arm and the load 
arm was directly in contact with experimental PCD disc surface. 3 mm diameter 
Si3N4 ball was in circular motion with 5 N applied normal load against PCD surface 
using commercially available machine oil lubricant in ambient laboratory condi-
tion. The speed of the ball was 0.04 m/s. Optical microscope (Olympus BX 51, 
country) study was done after each tribological experiment to know the radius of 
worn out silicon nitride ball.

3. Results and discussion

3.1  Physical characterisations—DND seed particle size, PCD crystallinity, 
porosity, growth defects and thermal stability

Detonation nanodiamond (DND) suspension in dimethyl sulfoxide (DMSO) 
by 0.5 wt% is used as seeding slurry for CVD growth of polycrystalline diamond 
material [118]. Nucleation density determines the faster grain coalescence phe-
nomenon during chemical vapour deposition. It has been observed that DND seeds 
are much superior in enhancing nucleation of diamond than conventional micron 
size grits for seeding diamond nuclei on the foreign substrates [119]. The particle 
size of seeds is thus important in determining nucleation efficiency. One commer-
cially available DND in DMSO was used for seeding. Before using to make seeding 
suspension by mixing it with 3 parts of methanol, it was essential to know the exact 
particle size distribution of such suspensions. Dynamic light scattering (DLS), is a 
non-invasive, well-established technique for measuring the size and size distribu-
tion of molecules and particles. The Brownian motion of particles or molecules in 
suspension causes laser light to be scattered at different intensities. Analysis of these 
intensity fluctuations yields the velocity of the Brownian motion and hence the 
particle size using the Stokes-Einstein relationship. The DND seeding suspension 
was procured from a commercial supplier and it was being used from time to time 
over a period of 1 year. When the particle size was calculated from DLS technique 
using Malvern make Zetasizer, it was found that the original suspension has become 
agglomerated considerably. The fresh stock of commercial suspension came with 
25–30 nm DND particle size on its label but to our surprise after one long year in the 
shelf, the suspension only has 7% with original size of 25.56 nm whereas, 93% of 
the DND particles agglomerated to give an average size of 123.4 nm, as shown in the 
following Figure 1a. But such agglomeration does not appear to hinder its seeding 
efficiency.

The as-grown surfaces of the PCD coatings are very rough in nature which 
is labelled in Figure 1b. Cross-sectional microscopy image reveals columnar 
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growth of diamond crystals from the substrate side. The interface between the 
Si wafer and diamond columns consists of a very thin layer of diamond micro-
crystals [116] which were initially coalesced with each other to form a continu-
ous coating before diamond could grow vertically on top of them. Such thin 
crust layer on the nucleation side gives very poor XRD signals (top of Figure 1c) 
corresponding to diamond reflection planes, whereas, the peak intensities from 
the opposite as-grown surface (bottom one of Figure 1c) is very strong and 
characteristics of diamond cubic crystals. DND seeds initially formed islands 
which grow in a single layer until touching upon each other to form a continuous 
film. The diamond columns also do not grow exactly at 90° in the z direction. 
The adatoms from the plasma may add in a random way to produce some misori-
entation between the adjacent diamond columns. Moreover the top surface of 
diamond PCDs are very rough and sometimes appear porous. Such, (i) random 
coalescence of thin crust layer on the nucleation side, (ii) misorientation in 
between diamond columns and (iii) uneven as-grown surface of the diamond 
films, suggest that the CVD grown diamond may have some pores present in 
the freestanding coating. It is also true that in practice we assume that the CVD 
grown films are having 100% theoretical density but it is understood that that 
is not actually the case. So in order to know the pores that might present, BET 
surface area was calculated for the PCDs. Gas molecules are dosed into the 
sample chamber after cooling the solid down to a constant temperature in order 
to partially accumulate the gas molecules onto the solid surface which can be 
applied for the characterisation of surfaces as well as for the pore characterisa-
tion. The nitrogen adsorption at the temperature of liquid nitrogen (77 K) is 
standard method for such surface characterisation [120]. It is assumed that 
the nitrogen condenses onto the surface in a monolayer and so once the size of 
the gas atoms/molecules are known, the surface area can be estimated from the 
amount of adsorbed gas.

It was found that white PCD is having less surface area compare to the black 
PCD (Table 1). Nitrogen adsorption and desorption isotherms measured at 77 K 
allow the determination of pore volume and sizes. It was similarly observed that 
both the values are higher for black colour PCD. So it is inferred that black PCDs are 
having more CVD growth defects which is giving bigger pores and higher amount 
of porosity—i.e. addition of carbon atoms into the diamond sp3 lattice is more 
incoherent.

Figure 1. 
(a) DND-DMSO seeding suspension particle size distribution; (b) cross-sectional SEM image of freestanding 
PCD; and (c) corresponding XRD signals from as-grown and nucleation side (NS).
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PCDs grown using 3% CH4 in H2 resulted in black colour (Figure 2a), whereas, 
the coatings were white translucent in nature (Figure 2b) when 1% CH4 was used. 
Colour of the freestanding diamond coatings vary due to the presence of defects 
inside the diamond lattice. For example when boron or nitrogen is substituting the 
carbon atoms, it results in blue or yellow colour of the diamond crystals. The PCD 
could become completely opaque or black in colour due to the presence growth 
defects like dislocations, twining, grain boundaries, stacking faults etc. [121]. 
Figure 2c and 2d shows transmission electron microscopy images of the line defects 
pinned at grain boundary in one such poorer variety of black diamonds grown using 
3% methane in hydrogen. On the other hand when 1% CH4 was used to deposit 
diamond, the crystals were less defective and could synthesise white transparent 
freestanding coatings as shown in Figure 2e.

The quality of white PCD sample was found to be very high by Raman 
Spectroscopy. It has been found that under atmospheric conditions, the CVD 
diamond sample could sustain up to 700°C furnace temperature, but 750°C was not 
tolerable for the diamond material to resist oxidation. As per available literature 
[38], the procedure to study the thermal stability is to heat the diamond sample 
in an environment controlled furnace, but such procedure does not pinpoint the 
oxidation temperature of diamond material. In order to know the exact oxidation 
temperature of the CVD diamond prepared by DT1800 reactor, it was decided to 
conduct TGA-DSC experiments.

Figure 3 shows the TGA curve for white PCD sample when heated from room 
temperature at constant heating rate of 10 K/min in air with alumina crucible up 

Figure 2. 
(a) Black grade PCDs, (b) white grade PCD, (c) bright-field TEM image of a black PCD grain with some 
dislocations pinned at the grain boundary. (d) Corresponding wide beam dark field (WBDF) image showing 
clearly discernible dislocations. Inset shows the two-beam condition used for imaging the dislocations, (e) 
bright-field TEM image of defect free White PCD grain with some twins and grain—boundaries.

PCD sample Surface area (m2/g) Pore volume (10−3 cc/g) Pore diameter (nm)

White 1.19 1.82 3.51

Black 4.17 6.74 3.72

Table 1. 
Freestanding PCD surface area and pore analysis.
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to 900°C. There was no change in weight until 700°C temperature was crossed, 
after which there was continuous drop in weight, losing 29.09% of the initial value. 
The corresponding DSC curve shows that the exact onset temperature for oxida-
tion reaction is 732°C, after drawing tangents. The weight loss can be attributed 
to the loss of carbon from diamond as gaseous by product of oxidation reaction. 
So, further to study the behaviour of CVD grown defects in PCD samples, they 
were heated in an air furnace at 600°C for 1 h. Such TGA-DSC curves confirm that 
annealed PCD samples do not undergo degradation on annealing and are good for 
studying the effect of heating on their internal defects.

3.2 Spectroscopy: FTIR, PL and Raman—PCD defects and annealing effects

3.2.1 FTIR studies

The FTIR reflectance spectra of as grown PCD samples, white PCD and black 
PCD, together with white PCD sample after being annealed at 600°C for 1 h are 
presented in Figure 4. The spectra reveal the presence of a broad absorption 
peak in the range 1745–2840 cm−1 in white PCD sample which may be attributed 
to the characteristic two phonon absorption of diamond [122, 123] and it is 
seen to be almost absent in black PCD sample. However, this peak disappears 
completely in annealed white PCD sample with simultaneous appearance of a 
new peak at 1090 cm−1. Interestingly, the peak at 1090 cm−1 is observed to be 
more intense in as prepared black PCD sample. This peak marks the presence 
of N-defects in diamond lattice [123]. Thus, it can be stated that the as grown 
white PCD sample contains less nitrogen defects as compared to black PCD and 
is of better quality in terms of non-diamond inclusions. As a result characteristic 
carbon-carbon bond absorption vibrational modes are more distinct in white 
PCD as compared to black PCD, which has many internal planar and volume 
defects as already observed in Figure 2. But, annealing at 600°C results in the 
growth of atomic defect centres in white PCD sample. As the nitrogen impu-
rity centres grow at the expense of carbon replacement in the lattice, intrinsic 
absorption band due to diamond is weakened while the vibrational band due to 
N-defects intensifies.

In addition, a third distinct peak is noticed at around 1490 cm−1 in both as 
grown white PCD and annealed sample which may be assigned to absorption due 

Figure 3. 
TGA and DSC curves for heating CVD diamond in air.
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to H-centres trapped in the lattice [124]. In black PCD sample this peak is seen to 
be extremely weak in nature. This may be explained on the basis of the processing 
condition of the two samples. White PCD was grown with 1% methane and 99% 
hydrogen whereas black PCD was grown with 3% methane and 97% hydrogen. 
Thus use of more hydrogen precursor during the CVD process may have resulted 
in trapping of H-centres in the lattice of white PCD. For further confirmation of 
the presence of impurity centres, photoluminescence study of these samples was 
performed.

3.2.2 Photoluminescence studies

Photoluminescence is a characteristic property of several defect centres in lattice 
and is thus a confirmatory tool for the presence of defects especially in diamonds. 
In an attempt to have detailed information regarding non-diamond inclusions, the 
photoluminescence spectra of all the samples were recorded under excitation of 
270 nm wavelength and the spectra is presented in Figure 5.

The spectra reveal the presence of seven distinct peaks at 470, 496, 567, 625, 
689, 734 and 767 nm respectively. Pezzagna et al. [125] suggests that small PL 
signal for neutral nitrogen vacancy centres is present at 575.67 nm, but for the 
negatively charged nitrogen vacancy centre, the PL peaks are observed at 637 nm 
with multiple phonon replica thereafter. It is also well known that silicon vacancy 
centre emits strong PL signal at 738 nm and a weak replica at 758 nm [121, 126]. 
Although nitrogen vacancy centres are best photo emitters for diamond but it 
has strong photon-phonon interactions which is responsible for broad emission 
spectrum from 600 to 850 nm. That may be the reason for us not getting the 
nitrogen vacancy signal exactly at the theoretical values in Figure 5. The peaks 
at the 567, 625 and 689 nm can be attributed to nitrogen vacancy centres, but not 
definitively. Similarly the peaks at 734 and 767 nm in Figure 5 can be assigned to 
silicon vacancy centres but again, it is a complex defect centre with an impurity 
atom and vacancy—so the peaks are not always reproducible at identical posi-
tions. Surprisingly there are two more peaks in Figure 5 at 470 and 496 nm which 
are typically found for Ni-related defect centres—but usually reported for HPHT 
synthetic diamonds [127]. It is not yet known about the origin of such PL peaks 
in CVD grown diamonds. Although the presence of the peaks can be identified 
in all the three samples, variation in the peak intensity indicates the difference in 

Figure 4. 
FTIR spectra of different PCD samples.
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quality of the samples. It is observed that black PCD sample exhibits the stron-
ger peak intensity as compared to that of white PCD. This indicates white PCD 
contains lesser defect centres and is of better quality as compared to black PCD 
which is in accordance with the FTIR results. However, upon annealing white 
PCD sample is seen to exhibit strongest peak as compared to as prepared white 
PCD and black PCD samples. This signifies that the concentration of defects in 
white PCD is enhanced upon annealing which may be explained as due to possible 
aggregation of defect centres. At elevated temperature, the vacancy in a lattice 
becomes mobile and moves through the crystal and aggregates [128]. Vacancies 
upon encounter with isolated impurity atoms (nitrogen, silicon), forms the 
aggregation of defect centres thus resulting in enhanced luminescence.

3.2.3 Raman spectroscopy

The diamond peak positions of both the white and black annealed PCD 
samples are at 1328.45 cm−1 which is a downshift from the theoretical peak posi-
tion for single crystal diamond as shown in Figure 6. Down shift of spectra is due 
to the tensile stress inside the lattice (thermal stress due to expansion mismatch 
with the Si substrate does not exist as the PCDs are freestanding) [129]. Now on 
the other hand, a-C (amorphous carbon) hump centre is around 1486 cm−1 for 
white annealed PCD but such diamond like carbon (DLC) phase centre shifts to 
1560 cm−1 for the black annealed PCD sample. So this a-C hump central position 
change may be an indication of the nature of predominant amorphous carbon phase 
that is present in the samples. It is essentially trans-polyacetylene (TPA) for white 
annealed sample; whereas, the non-diamond carbon inside black annealed PCD is 
primarily graphitic carbon. The ratio of peak intensities of diamond to DLC gives 
estimation about the quality of the deposited diamond coating. Now to calculate 
the area under the curve, corresponding to the sp3 phase, the integration has been 
carried out from 1300 to 1360 cm−1, which therefore would take into account of any 
upshift/downshift of the diamond peaks and disordered graphite that might also 
contaminate the coating. The integrated area for DLC phase is calculated from 1450 
to 1600 cm−1. As expected the quality of white annealed diamond (41%) has found 
to be better than the quality of the black annealed PCD (33%) sample. The FWHM 
value of diamond peak is also better for the white annealed PCD (4.62 cm−1) than 
the black annealed PCD (7.38 cm−1), as found from the analysis of the curves in 
Figure 6.

Figure 5. 
Photoluminescence spectra of PCD samples.
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3.3 Mechanical characterisations: PCD polishing, nanoindentation and tribology

3.3.1 Polished PCD surfaces

Annealed samples were different from the PCD samples that were polished for 
mechanical property and tribology studies. Polishing was done to reduce the as 
grown surface roughness (Figures 2b and 7a) which were in the order of 3–4 μm. 
Before starting polishing experiments, the white as grown PCDs were characterised 
by Raman spectroscopy (Figure 7b). It was found that the as-grown diamond 
samples were having tensile stress of about 0.8 GPa (calculated from the peak shift 
data). It also had some non-diamond impurity in the form of TPA which gives very 
little undulations around 1508 cm−1. The FWHM was calculated to be 5.5 cm−1 at 
the diamond peak position. But when the Raman spectra were taken from the same 
white as-grown PCD sample after polishing, there is considerable enhancement of 
diamond peak intensity with appearance of graphitic D peak—giving shoulder to 
the sp3 peak position, centred around 1329 cm−1. Tensile stress appears to increase 
on the surface of the same white PCD sample up to 1.34 GPa after polishing action. 
Moreover, the a-C hump becomes apparent in the polished sample which was not 
prominently present in the un-polished white PCD sample. The centre of a-C 
hump is around 1492 cm−1, which indicates that the non-diamond composition was 
essentially trans-polyacetylene (TPA). FWHM of the diamond peak increases for 
the polished sample (7.65 cm−1) which also confirms the degradation of the quality 
of the original (55%) white PCD surfaces after polishing (26%). Figure 7c shows 
the EDAX signals received from such polished surfaces under electron microscope. 
It can be seen that the carbon peak is not predominant due its low atomic weight. 
There are prominent peaks corresponding to metal elements like Fe, Bi, which 
might came from the metal bonded polishing discs. Moreover there are oxygen 
and sulphur elemental peaks also present, which are essentially from the oxidising 
chemicals used during chemo-mechanical polishing.

In order to reveal the morphology of polished diamond surfaces, Figure 8 is 
provided with successive higher magnification images up to 25kX. It can be seen 
that there are longitudinal polishing marks, as shown by double headed arrows. 
Essentially the area under observation is covered with wear debris generated 
during both mechanical and chemo-mechanical polishing. Due to abrasive action 
of the polishing materials, fine particles were generated, which, when reacted 
with the polishing chemicals, were oxidised to dislodge diamond particles from 

Figure 6. 
Raman spectra of freestanding annealed PCD samples.
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the as-grown rough surfaces. Thus the final microstructures were like wear debris 
compressed under polishing load with intermediate pores and cracks. Some 
regions were very smooth with grooves present inside, whereas, their adjacent 
areas were very rough with scattered particles spread all over. It appears that such 
unclean top surface after polishing has to be annealed/chemically cleaned in order 
to remove non-diamond impurities and wear debris, before putting into use for 
technological application.

3.3.2 Hardness and elastic modulus

Nanoindentation was carried out on black and white PCD samples, both on the 
polished surfaces and on the mirror smooth nucleation sides (NS). Altogether four 
PCD surfaces were indented, as shown in Figure 9. The roughness of each surfaces 
are labelled in each Figure 9.

At least 10 nanoindentations were made along a line for the plan sections of each 
CVD grown polycrystalline diamond surfaces, at an applied load of 1000 mN. The 
time to reach the peak load was kept at 30 s for all the nanoindentation experiments. 
The unloading time was also kept same as the loading time. The experimental 
conditions for all the nanoindentation measurements were kept identical. From 

Figure 7. 
(a) area scan of polished white PCD sample; (b) Raman spectra of as-grown and polished PCD samples; (c) 
EDAX signals from the scan area in (a) of the polished PCD sample.
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the experimentally measured load (P) versus depth of penetration (h) data, the 
nanohardness and Young’s modulus values are evaluated for all PCD samples. Oliver 
and Pharr method [130] was utilised to evaluate the nanohardness and Young’s 
modulus values.

The experimentally measured load (P) versus depth (h) plots for the plan sections of 
four different types of CVD grown polycrystalline diamond surface samples are shown 

Figure 8. 
SEM images of unclean polished white PCD sample at successive higher magnifications.

Figure 9. 
Four different PCD surfaces probed with nanoindenter.
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in Figure 10. In general, all the P-h plots were smooth in nature. An important observa-
tion from these data was that at comparable loads, the P-h plots of Black PCD NS, White 
PCD polished and Black PCD polished were much steeper than those of the White PCD 
NS sample. Moreover, at comparable loads the depth of penetration data recorded for 
the Black PCD NS, White PCD polished and Black PCD polished samples was much 
smaller than those of the White PCD NS sample. These data (Figure 10) indicated that 
nanohardness of Black PCD NS, White PCD polished and Black PCD polished would 
be higher than that of White PCD NS samples. The P-h plots obtained for White PCD 
NS samples showed more of the plastic deformation behaviour (Figure 10) compared 
to Black PCD NS, White PCD polished and Black PCD polished. However, the P-h plots 
obtained for Black PCD NS, White PCD polished and Black PCD polished samples 
showed more of the elasto-plastic deformation behaviour.

The nanohardness (H) of the PCD samples is shown in Table 2. Results show that 
the polished PCD surfaces have much higher hardness compare to their correspond-
ing nucleation side, as expected. Black PCD has almost 5 GPa less hardness than white 
PCD polished surface, may be due to the presence of softer carbon phases other than 
diamond. But on the other hand, their corresponding nucleation sides are show-
ing opposite trend—black PCD NS being harder than White PCD NS. It is already 
understood from our previous results and discussion that the black PCDs are having 
more CVD growth defects than white PCDs. Presence of such defects make the poorer 
variety diamond coatings black or grey in colour; their Raman signals become differ-
ent as well as their other spectral data. Figure 1b and c shows that the as grown side 
is different from the nucleation side. Nucleation side has thin crust like layer whereas 
the as-grown side is having extended ends of the elongated diamond columnar crys-
tals. From nanoindentation data, it is being revealed that the nucleation side of black 
quality diamond is harder which may be because of the presence of harder diamond 
like carbon phases than their white variety. Corresponding average Young’s modulus 
(E) values showed the similar trend as nanohardness. The samples can be ranked 
in the increasing order of elastic modulus as follows: White PCD NS > Black PCD 
NS > Black PCD polished> White PCD polished. The hardness and elastic modulus 
results found in the present work are in agreement with the literature [93, 105] values.

3.3.3 Tribological properties

In order to understand the efficacy and necessity of the polishing method 
adopted in the present work, the white PCD sample was chosen for further 

Figure 10. 
Load vs. depth plots of nanoindentation PCD samples.
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tribological studies. Both the polished and the corresponding opposite nucleation 
side were made to rotate against 3 mm diameter Si3N4 counter-face ball under 
machine oil lubrication. The coefficient of friction was found to be very low in 
compare to our earlier study of the similar polished/unpolished diamond surfaces 
against alumina balls [131]. Here also the diamond surfaces do not wear, but 
the counter body Si3N4 wears out, although not as severe as alumina ball which 
worn out under dry and SBF lubricating conditions by travelling half of the 
distance travelled by Si3N4 balls in the present case. The polished side of white 
PCD sample is rougher than their corresponding nucleation side (Figure 9a and 
b). So, as expected the COF values were found to be higher (~0.08) for polished 
white PCD surface than the nucleation side of white PCD sample (~0.03). The 
Hertzian contact pressure was calculated to be 26.2 GPa when 3 mm diameter ball 
was made to rotate against PCD disc surfaces under 5 N normal load as shown in 
schematic Figure 11a. The worn out ball was investigated under optical microscope 
(Figure 12) and the wear data was calculated as described in authors previous 
work [131]. It was found that the wear rate for the polished white PCD surface is 
very small 4.08 × 10−7 mm3/N m and the wear rate for its corresponding nucleation 
side is much higher 3.95 × 10−5 mm3/N m. The hardness of the polished side was 
found ~28 GPa, whereas its nucleation side was much softer with ~10 GPa nano-
hardness. It is counter-intuitive that the counterbody Si3N4 wears out more against 
the softer diamond nucleation surface than while rubbing against the hard pol-
ished surface. In order to explain this apparent anomaly, it was necessary to know 
the hardness of Si3N4 from commercial supplier’s database and it was found to be 
10–12 GPa. Such comparable hardness values of diamond nucleation surface and 
Si3N4 counterbody might have caused nanodiamonds that are present in loosely 
held colonies [118] on the nucleation side to come out under abrasive wear action 
of silicon nitride. Such nanodiamonds that come out from the soft nucleation side 
under abrasive wear action may cause the Si3N4 counterbody to further wear out 
severely, since nanodiamonds are very hard particles.

CVD diamond surfaces sliding against silicon nitride balls reportedly give high 
COF values under dry lubricating conditions [91]. Researchers have tried com-
mercial soybean-derived biodiesel lubricant [132] to improve the performance of 
the combustion engine. They could achieve 0.07 as the minimum value of COF 
when trying self-mated diamond coated Si3N4 material. They used 86 m of sliding 
distance under 2.5–4.5 GPa initial Hertzian contact pressures. Recently a graph-
eme coating has also been applied on top of microcrystalline diamond surfaces to 
improve the COF values against Si3N4 balls under reciprocating actions [133]. 0.04 
was the minimum achievable COF value. The researchers could notice wear track 
on such grapheme coated diamond flat surfaces. The calculated wear rate of the 
counterface Si3N4 ball from the measurement of the ball scar diameter was found 
to be in the order of 10−5 mm3/N m. This same group of researchers also conducted 
a tribo-map of diamond films [134] against silicon nitride ceramics sliding in air, 
but under reciprocating action (present paper reports circular motion). The normal 

Samples Hardness (GPa) Young’s modulus (GPa)

White PCD NS 10.82 ± 0.39 231.72 ± 8.24

White PCD polished 28.50 ± 2.78 1000.06 ± 157.61

Black PCD NS 14.71 ± 2.70 350.32 ± 84.79

Black PCD polished 23.17 ± 4.04 719.72 ± 189.07

Table 2. 
Mechanical properties of PCD samples.
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load was 2–6 N, sliding speed was 0.13–0.3 m/s. They reported 0.07 as the best 
possible COF value with nanocrytsalline diamond, which was increased to 0.11, 
when the diamond film became microcrystalline. They also could observe worn out 
diamond film surface; and profilometer scan wear volume data revealed wear rate 
less than 10−7 mm3/N m. Bogatov et al. [135] also reported >10−7 mm3/N m wear 
rate of diamond film sliding against silicon nitride ball (ball characteristics were 
same as used in the present work) with 0.12 COF after 24,000 sliding cycles. But in 
the our present experiments with diamond disc, no wear track could be seen on the 
diamond disc surfaces sliding against silicon nitride balls—as also it was observed 
against alumina balls in authors’ previous paper [131]. Only the balls worn out 
and the presented wear data of balls are in tandem with the reported literatures. 

Figure 11. 
(a) Schematic of ball-on-disc tribometer and (b) corresponding friction curves.

Figure 12. 
Wear scar diameters on counterbody Si3N4 ball against white PCD (a) polished surface and (b) nucleation side 
surface.
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Moreover, the lowest COF of ~0.03 obtained using machine oil lubricant in the 
present paper appears to be better than liquid bio-diesel or solid grapheme lubricant 
used for diamond coatings previously.

4. Conclusions

As-grown, annealed, polished CVD grown diamonds have been characterised 
adopting some new techniques which are conventionally used for powder bulk 
specimens. Use of TGA-DSC analysis could pinpoint the diamond oxidation 
temperature for the first time. Attempt has been made to quantify the porosity 
that might be present in the freestanding coating, which reduces the theoreti-
cal density values of CVD grown diamond. It has been found that the internal 
defects that are present inside diamond lattice determine the black or white 
nature of diamond coatings. Qualitative analysis of such defects that are present 
in different grades of PCDs (line, plane or volume defects) like dislocations, 
grain boundary, twining has been revealed by transmission electron microscope. 
Whereas, the other atomic defects, like nitrogen vacancy, atomic hydrogen, are 
revealed by FTIR and PL studies. Raman signals quantify the internal stress, 
crystallinity and the quality of the CVD grown diamond coatings. It has been 
found that after polishing the surface of diamond becomes very unclean due to 
contamination from the polishing consumables and generation of non-diamond 
carbon phases. Use of machine oil lubricant for tribological application of such 
polished diamond surfaces has found to be very effective in reducing the COF 
values considerably. However, the CVD grown diamond nucleation side pro-
duced best COF value of about 0.03 with 3.95 × 10−5 mm3/N m wear rate for the 
silicon nitride counterface.
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