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Abstract

Natural fiber composites are designed for different purposes including structural 
and non-structural ones. These natural fiber composites vary greatly in their proper-
ties including mechanical properties. Mechanical properties which include the 
tensile and flexural properties are highly dependent on factors such as matrix type, 
filler type, processing, post processing treatment and many more, factors which 
are quite application specific. However, many research works develop their natural 
fiber composite before considering the possible applications. This chapter intends to 
X-ray the factors that affect the mechanical properties as it relates to structural and 
biomedical applications and suggest ways of improving the mechanical properties.

Keywords: natural composites, mechanical properties, structural applications, 
property improvement

1. Introduction

In recent times, the application of natural fiber polymer composites (NFPCs) for 
structural purposes has increased [1–7]. In the past, carbon fibers and basalt fibers 
reinforced polymer composites were commonly used due to their high performance 
to cost and high strength to weight ratios [8–15]. However, due to fundamental 
concerns, such as high cost of materials, durability, bonding integrity and gap in the 
development of standards for practice of abrasing or wearing of machines among 
others, their uses have been limited [16–19]. More importantly is the environmental 
concerns, which has strengthened the call for complete replacement of all synthetic 
fibers. Hence, the increase in research output for possible replacement of synthetic 
fibers with natural fibers in polymer composites [20–22].

Structural materials required for structural applications encompass materials 
that are primarily for the purpose of stress transmission or support. Structural 
materials may be in transportation (aircraft and automobiles), construction 
(building and roads), or in components used for the purpose of protecting the body 
(helmets and body armor), energy production (turbine blades), etc. [23–25]. Also, 
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those used in microelectronics, are designed to meet specific performance require-
ments. Structural requirements may vary based on end use; hence the requirement 
for a material to be used for vehicle part may differ widely from what is required 
for manufacturing casing for electronic equipment. Generally, of more interest are 
the following properties: mechanical, thermal, electrical conductivity, dimension 
stability, water absorbability, etc. [26–31]. This work intends to critically review the 
mechanical requirements and suggest ways of improving the mentioned properties 
for structural and biomedical applications.

2. Mechanical properties of NFPCs

NFPCs are different depending on the type of polymers or fibers employed, the 
processing condition and the characteristic properties developed after processing 
[32, 33]. The use of these NFPCs for structural applications depends more on the 
mechanical properties. There are different mechanical evaluations carried out on a 
material and some are very specific to individual application. However, the general 
focus of most researchers is on a few tests including tensile test, flexural test, impact 
test, compression test and hardness. These few tests can describe the mechanical 
behavior of any material to a large extent and also gives an insight to other possible 
areas of applications.

2.1 Tensile properties

Tensile test is one of the fundamental and common types of mechanical test 
widely used for testing polymeric materials. It is also known as tension testing; it is 
used to determine the stress-strain behavior under tension [32]. In tensile testing, 
tensile force (pulling force) is applied to a material and the specimens’ response to 
that applied force (stress) is measured. Under this test condition, samples are sub-
jected to controlled tension until failure occurs. Tensile test determines how strong 
a material is and how long it can be stretched. Important information that can be 
obtained from tensile test includes; Young’s modulus, yield strength, percentage 
elongation and ultimate tensile strength (UTS).

2.2 Flexural properties

Flexural test is used to determine the capability of a material to resist bend-
ing forces applied perpendicularly to its longitudinal axis and often called the 
transverse beam test. Flexural test properties are among the major parameters 
used in assessing the suitability of composite materials for structural applications. 
Parameters such as flexural load, flexural Young’s modulus, flexural strength and 
deflection at break are measured and used to interpret the mechanical behavior 
under flexural stress.

2.3 Impact properties

Impact test is employed in assessing the impact strength, toughness and notch 
sensitivity of structural materials. In summary it is the capability of the material in 
question to withstand high rate loading. Toughness is the total of energy absorbed 
per unit volume of material before rupturing. The toughness is a measure of balance 
between strength and ductility of the material. Impact test is very critical for most 
polymer materials because it relates to the product performance and service life. It 
also influences other properties related to product safety and liability.
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2.4 Compressive properties

Compressive tests evaluate the materials behavior when subjected to uniaxial 
compression load at a relatively low and uniform loading rate. These tests are very 
important for product design analysis, especially materials for building purposes. 
Compressive strength and compressive Young’s modulus are the two major proper-
ties that are used; however, there are also compressive strain, deformation beyond 
yield point, and compressive yield stress.

2.5 Hardness properties

Hardness is that property of an engineering material which enables it to resist 
scratching, indentation, penetration and plastic deformation. It is a very significant 
property for any structural material from the engineering point of view, because 
hardness generally leads to increase in wear resistance by either erosion by water, oil 
and steam or friction.

2.6 Crashworthiness

This is the degree to which a vehicle or aircraft will protect its occupant from 
the effect of an accident [34]. It is the most important concept in vehicle defect 
cases. That is, the ability to prevent injuries to the occupant in the event of collision. 
Therefore, crashworthiness focuses on occupant protection to reduce fatality in the 
case of an accident. Different criteria can be used to determine crashworthiness 
depending on the nature of the impact and vehicle involved [35].

In general for composites, these properties depend on other factors such as fiber 
length, fiber weight percentage content and the extent of polymer/fiber interac-
tions as will be discussed later.

3. Natural fiber polymer composites in structural purposes

Natural fiber reinforced polymer composites are attracting widespread interest 
for purposes which are sensitive to the materials weight, because their strength and 
stiffness combine well with their low density, however, their toughness is a major 
concern [36]. NFPCs are prepared using plant fiber as fillers, which are hydrophilic 
in nature and do not interact well with hydrophobic polymer matrix [37–39]. NFPCs 
are a set of important materials developed for numerous areas application; medical, 
pharmaceutical, food packaging, electronics, aerospace, automobile, construction, 
building, transport and many more [40–43]. This is because of the many unique 
qualities these materials possess or can be designed to possess. Qualities which 
include, but are not limited to; light weight, resistant to chemical attraction, resis-
tant to corrosion, ability to be molded to any shape, can be processed using existing 
technology, environmental friendliness and sustainability. That is why the interest 
in these materials has grown tremendously in the last two decades [36, 44–46].

Dweib et al. fabricated bio-based composites for roof structures in the form 
of paper sheets, entirely from cellulose fibers and soy oil-based resins [47]. These 
developed sheets were tested for structural unit beams and were established to 
have given the necessary strength and stiffness for consideration in roof construc-
tion. Also Bektas et al. manufactured panels with a density of 0.7 g/cm3 with a 
sunflower stalks percentage of 25, 50 and 75% fiber contents [48]. From the results 
of the mechanical tests, the panels were observed to have the required properties as 
required for general purpose-use particle board by normal standards.
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Wood fibers/plastic composites have been used in large quantities for applications 
in window and door frames, decks, docks and molded panel components [49–51]. 
Natural fiber composites have been used to replace asbestos in the building industry, 
because of their health related issues [52]. The European Union policy tagged “end of 
life vehicle (ELV)” regulations, promulgated in 2003 and amended in 2005 and 2010, 
projected reduction of the final waste to be disposed at the end of life of vehicles to 5% 
by the year 2015. In the stated regulations, 85% of material used in manufacture of the 
vehicle must be recoverable through reuse or through recycling mechanically [49, 53].  
This has generally increased interest and widespread use of NFPCs worldwide. It is 
noteworthy that this policy was promoted basically because of environmental and 
social concerns and not necessarily because of economic or technological reasons.

NFPCs durability and the availability of technology has allowed for large and 
complex shaped manufacturing of NFPCs, making them appealing in the auto-
mobile industries [54–56]. In Brazil, automobile industries consume, on average, 
10–12.7 kg of natural fiber reinforcement per vehicle. These are circulated through 
the vehicle, such as rear door liners, front doors, boot liners, parcel shelves, sun 
roof interior shields and headrests [54]. Although NFPCs have gained tremendous 
interest in the industries, their applications are not unconnected to their environ-
mental sustainability, low cost and renewability [57–60]. According to a review by 
Kiruthika [61], the challenge of replacing synthetic fibers completely in widespread 
applications is far from being overcome, with the improvement to the mechanical 
properties of composites being the major challenge.

4. Factors influencing the mechanical properties of NFPCs

NFPCs are prepared by compounding polymer matrix (either pristine or blend) 
with natural plant fibers. The fibers can be single or hybrid, microcellulose or 
nanocellulose. The natural fibers are made up of different chemical constituents 
and are exposed to different physical and chemical treatments, therefore, the prop-
erties of the resulting composites varied widely. Factors influencing their eventual 
composite(s) include the following:

4.1 Fiber type

Plant fibers are categorized based on the parts of the plant they are extracted 
from. Fibers can be extracted from the seeds, leaves or bast of the plants. Bast 
fiber is collected from the “inner bark” or the surrounding of the stem of certain 
dicotyledonous plants [61], like banana, flax, hemp, jute kenaf and ramie. These 
fibers have higher tensile strength and are mostly used in the packaging and paper 
industries [62, 63]. Sisal, pineapple and many others are extracted from the plant 
leaves while coir, cotton and abaca are examples of fibers extracted from plant seed. 
Generally, plant fibers give higher strength and stiffness; however their proper-
ties depend mainly on their structure and chemical composition. These invariably 
relate to the source of fibers, method of extraction, maturity, growing conditions, 
harvesting period, degree of retting and modification [64–67].

4.2 Fiber length, orientation and weight percentage loading

NFPCs properties are affected by the length of the fibers used, their distribution, 
the percentage of the fiber volume or volume fraction and their orientation within 
the matrix. For polymer composites, stress is transferred by the matrix through the 
fibers both at the interface along the fiber length and at the ends of the fibers by 
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shear [68, 69]. Hence, the degree of load conveyed from the matrix to the fibers is 
a function of: (i) fiber length, which is referred to as critical fiber length or aspect 
ratio, (ii) orientation of the fibers and their direction relative to each other. If the 
fiber orientation and direction is not in the line of the applied stress, failure is bound 
to occur easily. Unidirectional fiber composites tend to transmit external stress bet-
ter, that is why hand laid fiber composites performs better mechanically [70, 71].

Depending on the fibers in the matrix’s orientation and direction, we can obtain 
three different types of reinforcement which include (i) longitudinally aligned 
fiber-filled composites, (ii) transversely aligned fiber-filled composites and (iii) 
randomly oriented short fiber composites [68, 72, 73]. While the longitudinally 
filled composites have low compression strength due to buckling of fibers and high 
tensile strength, the transversely filled composites on the other hand have low ten-
sile strength. However, in the randomly oriented composites, it is far more difficult 
to predict the mechanical properties, due to the complexities of the distribution of 
load along the interface of the fiber and the matrix. Hence, considerable control 
over such elements as orientation dispersion and aspect ratio of the fibers, consider-
able improvement in the mechanical properties of the composites can be attained.

In general, high performance NFPCs can be obtained mainly by using materials 
with high fiber content, hence the effect of fiber loading on the properties of the 
NFPCs is of great significance. Also it is noteworthy to mention that additional fiber 
content of the composites invariably causes to increased tensile properties [74, 75].

4.3 Fiber-matrix adhesion

The effect of fiber-matrix adhesion cannot be over emphasized. A good number 
of researchers have reported their experimental results on the effect or importance 
of a good and strong fiber-matrix adhesion in the fabrication of composites with 
good mechanical properties [76, 77]. The type of bonds existing at the fiber-matrix 
interface greatly influences the mechanical properties of any fabricated composites. 
For a good transmission of stress from the matrix to the fiber to occur, the bond 
existing among the two components must be strong [64]. Due to the hydrophilic 
nature of the natural fibers, the interaction between the fibers and the hydrophobic 
polymer matrix is very weak [4, 78, 79]. Hence, the need to modify the fibers and 
introduce organic moiety that makes them more hydrophobic is necessary.

Fiber-matrix interface has been described as the reaction zone which plays a 
significant role in characterizing the composites mechanical properties [80]. A poor 
interaction between the two surfaces leads to poor transmission of load and there-
fore poor mechanical performance [81–83]. In addition, plant fibers need chemical 
modification for the distention or enlargement of the crystalline region, removal of 
surface impurities and elimination of hydrophilic hydroxyl groups for improvement 
to some of its relative properties [68].

4.4 Choice of polymer matrix

Polymer matrix could be either a thermoset or a thermoplastic, with varying 
preparation procedures and conditions, the performances of polymer matrix are 
affected quite differently. Thermoset are made in such a way that they develop good 
bonding with the fibers, especially during curing stage. However, the processes 
involved are time and energy consuming. Although in the case of tensile loading 
of the composites, the significance of matrix is evident, some researchers have 
reported good improvement with the same fiber when the matrices are changed. 
However, for compressive, in-plane shear and inter-laminar strength, they are 
highly influenced by the type of matrix used [84].
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4.5 Processing conditions

The properties of NFPCS have been shown to vary from one processing technique 
to another [85–89]. Common techniques for the preparation of NFPCs include injec-
tion, extrusion, compression and resin transfer molding. These techniques use dif-
ferent processing conditions or parameters even when the materials being processed 
are the same. Changes in factors such as mixing speed, pressure and temperature can 
change the properties of the final product with any slight change [90]. For example, 
the preparation of sisal fiber polyester composites by employing both the compres-
sion molding and resin transfer molding technique (RTM) gave products with vary-
ing mechanical properties. The products of the RTM gave a composite with higher 
Young’s modulus, tensile strength and flexural strength than the product of the com-
pression molding [90]. Vacuum molding technique is one the simplest manufacturing 
methods for plastic materials [91]. It is suitably adapted for molding a required shape 
from a plastic sheet material. In this molding technique, a plastic sheet is heated up to 
its molding temperature using electric heat; it is then transferred to a molded shape. 
To obtain the shape, a vacuum is created between the mold and the sheet. Vacuum 
molding is an inexpensive method when compared to other molding methods. It has 
numerous application including, aircraft, skin tight packing, disposable tray and 
caps. It is a low cost methods already being employed in many areas of endeavors as 
mentioned. A lot of research work is being carried out on how to improve the vacuum 
forming method, for instance, vacuum-assisted resin transfer (VARI), also known 
as vacuum infusion process (VIP) which was reported by [92] to be considered as an 
attractive method for the production of NFPCs low cost and good performance. It 
uses low-cost one-sided tooling and injects low-viscosity resin into dry fiber that was 
performed under low pressure. The method was found to be economically suitable 
for the manufacturing of large composite structures, such as boat hull, wind turbine 
blade and aircraft structures with low or high volumes of production.

However for vacuum forming method the cycle time of production is still much 
affect by the cool rate and time, amount of pressure applied and the fiber content 
[93]. These factors can greatly affect the mechanical properties the final product.

4.6 Presence of void

The introduction of fibers into the matrix during processing is accompanied 
with the introduction of air and other volatile substances. These substances which 
are mostly trapped in the fibers may form voids in the composites after processing 
and curing along the individual fibers. This can negatively affect the composites 
mechanical properties. In addition, the rate of cooling during processing can also 
result to the formation of voids [73]. When the void content is too high, it leads 
to greater affinity for water diffusion, lowering fatigue resistances and increased 
disparity in mechanical properties [94].

4.7 Thermal stability

The importance of the stability in the preparation of the composites cannot be 
over emphasized as it affects the mechanical properties considerably. The different 
components of plant fibers are sensitive to different range of temperatures, i.e., 
hemicellulose, cellulose, pectin [95, 96]. Most fibers start degrading thermally 
at 220°C, thereby limiting the composites thermally [68]. In recent reports, the 
thermal stability of these fibers were greatly improved by removing maximally 
the lignin, hemicellulose and other alkaline soluble substances in the fiber through 
physical, chemical or biological means [97].
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In general, the above mentioned factors do not influence the mechanical 
properties of NFPCs individually or in isolation. Rather, in the fabrication of a 
composite, the cumulative effect of two or more of these factors may be responsible 
for the composites mechanical failures. Jain et al. evaluated the effect of inter-fiber 
interactions of different class of reinforced polymer composites on the mechanical 
properties and the relation to stress field [98]. The research findings highlighted 
the important role of microstructural arrangement in the determination of the final 
response of the composites. They reportedly concluded that the local fiber matrix 
arrangement and their neighborhood density are highly influenced and sensitive to 
the stress and overall strain energy.

5. Methods for improving mechanical properties of NFPCs

There are different methods which can be employed for mechanical properties 
improvement of NFPCs. These methods are not rigid formulas that once applied 
will result in massive enhancements, rather improving mechanical properties of 
NFPCs is an active area which is ongoing. Mechanical improvement in one area of 
application may not necessarily yield the same result in another area of application. 
For example, improving stiffness of a material might be good for the construction 
and building industries but may not be required or worthwhile for biomedical 
applications, as it might prefer improvement in flexibility and toughness. Therefore 
all possible options will be provided; it is left for the researchers to select as appro-
priate. Furthermore, these methods can be combined to produce synergistic effect.

5.1 Surface modification

There are many literatures and reviews on the benefits of surface modifica-
tion of natural fibers to the enhancement of fibers mechanical properties and by 
extension, the composites [99–101]. The mechanical properties of plant fibers 
depend greatly on the chemical structure, chemical composition and the structural 
arrangement of cellular fibrils [101]. Other factors such as climatic conditions, age, 
extraction procedures, growth condition and time of harvest also influence the 
mechanical properties of natural fibers. All these affect the percentage composition 
of cellulose in the fibers. Furthermore, the hemicelluloses and lignin are less ther-
mally stable compared to cellulose, modification is one way of reducing the percent-
age content of hemicelluloses and lignin or even eliminating them completely.

Graphical sample of cellulose structure which consists of amorphous 
(untreated) and crystalline (treated) regions is shown in Figure 1 [69]. There exist 
strong intra-molecular hydrogen bonds with large molecules in the crystalline 
regions of the cellulose ensuring the crystalline region is very compact and this 
makes it difficult for chemical penetration. On the other hand, the amorphous 
region is loose and allows penetration for possible modification.

Surface modification of plant fibers involves the treatment given to the plant fibers 
in order to increase its cellulose content, improve its interaction with the polymer 
matrix and also improve their mechanical, thermal and dimensional stability proper-
ties. Surface modification can be physical, chemical or biological [11, 21, 79, 102, 103].

Chemical modification involves chemical reaction with the fiber components, 
thereby making them soluble so that they can be removed by repeated washing. 
Alkali treatment also known as mercerization involve the use of alkali solution to 
dissolve all soluble contents of the fibers including wax, oil, pectin, lignin and some 
part of hemicelluloses [11, 104–107]. Alkali treatment makes the fibers surface 
rougher and reduce the fibers to fibrils [108, 109]. It improves the aspect ratio and 
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creates room for mechanical interlocking in composites [23, 110–112]. To improve 
chemical interactions in NFPCs which may lead to improved mechanical properties, 
more chemical treatments are required other than alkali treatment. Another advan-
tage of alkali treatment is that it exposes the OH group on the cellulose chains which 
can again be utilized for further chemical modification in some cases and in others it 
can allow for chemical treatment to introduce functional groups onto the surfaces of 
the fibers. These functional groups can then be used for chemical interaction during 
the preparation of the composites [27, 113, 114]. Such chemical treatments include 
silane, sodium silicate, oxidization treatments with DCP, or KMnO4 treatments.

Biological methods involve the degradation by biological organism of all other 
components of the fiber except the cellulose. This is because the cellulose is highly 
crystalline and so cannot be easily degraded. Biological treatments are more envi-
ronmentally friendly, produces more crystalline cellulose with better mechanical 
and thermal properties and it is cost effective. However, it is laborious and time 
consuming [115–121].

Physical methods of surface modification involve the use of plasma and corona 
treatment to change the fiber surface physically. This helps to create rough surfaces 
that are beneficial for mechanical interlocking [122–124]. However, plasma treat-
ment can be used to introduce chemical functionality onto the fibers so that they 
can undergo chemical reaction with the polymer matrix [122–124]. Surface treat-
ment introduces rigidity and stiffness to the fibers and by extension, the composites 
will be suitable for possible structural applications in industries such as building, 
aerospace marine, packaging, automobile, etc.

Liu et al. [125] reported the improved mechanical characteristics, resulting from 
alkali treatment on Indian grass fiber used as reinforcement. The tensile Young’s modu-
lus of grass fiber reinforced composites treated with 30 wt% alkali improved by 60%, 
while their impact and flexural strengths improved by 30 and 40% respectively when 
compared to the 30 wt% raw fiber refeinforced composites. The structural and mor-
phological changes of alkali modified kenaf fibers modified using: 3, 6 and 9% NaOH 
solutions were reported by Edeerozey et al. [126]. From their SEM results, it was found 
that 6% and 9% NaOH treatment gave better results. However, the 9% NaOH treatment 
was considered to be too strong for the fibers, as it led to low tensile properties.

Figure 1. 
Schematic diagram showing the crystalline (a)/amorphous (b) regions in a fiber material [69].
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5.2 Blending

Polymer blends have been defined as the combination of two or more polymers, 
prepared to enhance the properties of the products as well as to lessen the cost. 
Blends of polymer can simply be viewed as a polymer alloy. Therefore, blending 
is the mixing of two or more distinct polymers, in a way that gives a new material 
which has properties that are slightly different from the singular polymers involved. 
Polymer blending is a versatile procedure to obtain new polymer materials with 
characteristics far better than the individual polymers [127, 128]. It is a well-recog-
nized option to solving emerging problem related to application requirements.

The ability to combine existing polymers into new one with superior qualities 
that are commercially acceptable makes blending a better option [129]. There are 
large numbers of polymer blends reported in literature by researchers in academ-
ics and industry [130–132]. Polymer blending can give rise to miscible or phase 
separated blends. For miscible blends, mixing approaches a molecular dimensional 
scale and the properties of the new polymer blend are more like those of a single 
polymer. While phase separated blends still exhibit the different properties of the 
polymers involved [133–136]. Although, miscibility is extremely rare in blends, the 
advantage of miscible blends over phase separated blends is in the property profile, 
especially mechanical properties. Most phase separated blends exhibit inconsis-
tency in their mechanical properties due to the poor adhesion at the interface of the 
blend phases. However, researchers have developed specific methods by which these 
phase separation problems can be alleviated [129]. Hence, polymer matrix can be 
designed to suit the required properties expected of the composites. Blending also 
helps to modify the matrix with specific chemical functionality that could be added 
deliberately to enable good interaction between the fibers and the blended matrix. 
Many researchers have shown that the performance properties of blends can be 
heightened significantly by reinforcing them with either synthetic or natural fibers 
[137–141]. However, bio-fiber reinforcements have gained ground in recent time 
because of their numerous advantages over glass and carbon fibers [142].

According to Linares et al. [143], polymer blends have a recognized potential to 
produce high performance materials, however the polymer combination must be 
carefully selected. Müller-Buschbaum et al. [144] showed that blend composition 
has great influence on surface topography which is just one of the many factors that 
may affect the properties of the blend. Therefore, in the preparation of any blend, 
the selection of complementary polymers that will give the right kind of material 
hybrid with the required properties is the most important step. For a biodegradable 
polymer that will be green in all its ramifications, a blend of biopolymer material 
with a biodegradable counterpart is highly desirable. Among these, are: polycap-
rolactone, polybutylene succinate, etc. The use of blend started some decades ago 
[145], however, in the present day, the understanding of miscibility has undergone 
several changes [146]. The broad range of application of polymer materials requires 
varying properties according to the specific application area. With homopolymers, 
the range usually calls for special surface treatment or in some cases new polymer 
synthesis for each and every application. However, an economical alternative could 
be the preparing blends from specifically designated homopolymers [144].

5.3 Compatibilization

Compatibilization is described as the addition of a chemical substance 
to an immiscible or phase separated blend that help increase their stability. 
Compatibilizers are also referred to as coupling agents. They react at the interface 
of the blend to stabilize the phases. That is, they help to improve the compatibility 



Renewable and Sustainable Composites

10

between the two phases and increase miscibility [146]. The high interfacial tension 
caused by coalescence phase separated blends can be reduced by the compatibil-
izers, allowing a continuous flow of externally applied stress from the matrix to 
the fibers [130]. Compatibilization can be done by (i) introduction of specific 
interacting groups, (ii) in-situ polymerization grafting, (iii) addition of a ternary 
polymeric component, (iv) addition of block co-polymers of the blend polymers, 
(v) interpenetrating networks of crosslinked system and (vi) using reactive 
compatibilization methods [147–150]. For instance, polyhydoxyether of bisphenol 
A (Phenoxy: PHE) a non-reactive compatibilizer has been noted in some reports to 
have provided improved interfacial adhesion between immiscible and marginally 
compatible polymer blends [129]. Specifically, the addition of PHE to some poly-
mers blends led to the blends yielding improved dispersion of the polymers within 
the blend, gave uniform injection molded surfaces and considerably increased the 
notched impact strength of the blends (polysulfone (PDF)/ABS; PSF/PA, PMMA/
PA6 and PHE/PBT) [129, 151, 152]. Also reactive compatibilizers can be design to 
react with the fiber when introduced during processing. This method will involve 
modifying the fiber surfaces prior to the composite preparation. If successful, 
this method has the capability to improve interfacial interaction and subsequently 
improve mechanical properties.

5.4 Addition of nanoparticles

The use of nanoparticles to enhance the properties of NFPCs have been widely 
reported [99, 153, 154]. Nanoparticles are inorganic materials which possess a very 
high surface to volume ratio in which one or its entire dimension is less than 100 nm 
[155]. The addition of these nanoparticles influences the crystallization process 
during the solidification of the polymer composites leading to improved mechanical 
and thermal properties. These particles can be modified to selectively interact with 
a particular phase of the composites in a controlled manner [23, 156–158]. They can 
also be modified to act as a compatibilizer and react with both the matrix and the 
fibers to bring about good interaction and a better composite with stress transfer 
behavior.

Vargas et al. [159] reported the influence of nanofilters on some properties of 
polypropylene including mechanical properties. Their findings revealed that the 
nanofilters, in the presence of PP grafted MA, improved the tensile strength and 
Young’s modulus properties which are indicative of the synergistic effect between 
the nanoparticles and compatibilizers. According to Lee and Youn [160], the 
addition of layered silicates worsened tensile properties of PP nanocomposites 
prepared by them. Similar investigation was presented by Rault et al. revealing that 
the addition of a maximum 1 wt% led to improvement in tensile properties but 
above the maximum, the silicate nanoparticle caused difficulties for processing the 
composites due to the formation of aggregates [161]. However, Joshi et al. [162] has 
reported improvement in tensile properties of PP/nanoclay composites. Therefore, 
we can conclude with certainty that there are other factors interfering in the posi-
tive influence expected from the addition of nanoparticle such as clay. According 
the Vargas et al. [159], fibers geometry plays a vital role in determining the com-
posites eventual properties. Nanoparticles of different shapes and sizes were used 
to prepare polyamide 6 (PA6) composites in some research work conducted by 
Vlasveld et al. [163]. Their findings revealed that the rheological properties of the 
composites samples were highly dependent on the aspect ratio of the nanoparticle 
used. Therefore utmost care must be taken when the option of nanoparticles are 
being considered. Other nanoparticles have been used and their influence on the 
mechanical properties have been positive and very encouraging [164, 165].
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5.5 Hybridization

Hybrid composites involve the combination of two or more different types, 
shapes or sizes of reinforcement in one composite material [166]. The hybrid 
composite properties have been reported to depend on many factors such as; fibers 
individual property, fiber-matrix compatibility, roughness of fiber surfaces, orien-
tation of fibers and the extent of their intermingling [167]. Recently, investigations 
on the hybrid composites properties were based on the natural/synthetic fibers, 
natural/natural fiber and natural/synthetic/additive modified reinforced polymer 
composites. The popularity of these types of composites are increasing rapidly 
owning to their capability to provide freedom to tailor the composites and realizing 
properties that cannot be obtained in fabricated composites containing singular 
type reinforcement [21, 79].

Fiber-based hybrid composites have been reported to have improved proper-
ties compared with the unhybridized composites having single reinforcement 
[168–170]. Many research reports have shown that the addition of synthetic fibers 
at various amount to form hybrid fibers have composites of better-quality, espe-
cially in respect to their mechanical properties [171–179]. According to Ashik and 
Sharma [180], in one of their reviews, they listed some factors that may impact 
the mechanical properties of natural fiber hybrid polymeric composites, with the 
processing parameters featuring as one of the factors. Also, Nunna et al. [181] 
listed fiber content, fiber treatment, and the environmental conditions as some of 
the conditions that affect the properties of hybrid composites. For hybrid natural/
synthetic fibers, it has been reported that as wt% of the synthetic fiber rises, the 
mechanical properties also rises. However, at a certain wt% of the synthetic fiber 
content added, the properties of the composites mechanical properties starts 
dropping and this may be ascribed to poor interfacial adhesion, high fiber-to-fiber 
contact, and poor wettability.

Mishra et al. [182] prepared hybrid glass fiber (GF) and pineapple leaf fiber 
(PLF) polyester composite with a total fiber content of 25 wt%. The tensile strength 
was observed to have increased as the GF was increased from 0 to 7.5 wt% to 
approximately 70 MPa, after which the strength started dropping. The flexural 
strength kept increasing as glass content increased from 4.3 to 12.9 wt%, in the 
hybrid biocomposite. The authors also prepared a similar hybrid biocomposite, but 
this time with 30 wt% total fibers (sisal and glass fibers). They reportedly observed 
a major improvement in tensile strength as the GF content was increased to 
5.7 wt%. After this, the tensile strength was almost static even as the GF content was 
increased above this value. A similar trend was observed for the flexural strength. 
However, comparing the hybrid biocomposites with the biocomposites containing 
only pineapple or sisal fibers, the hybrid showed better improvement. Nevertheless, 
more evidence is available to show that the overall properties of hybrid composites 
depend greatly on (i) the percentage elongation at break and (ii) Young’s modulus 
of the reinforcing fibers present.

Shahzad [183] presented the impact and fatigue properties of hybrid biocom-
posites of hemp and chopped strand mat glass fibers using unsaturated polyester 
resin as the matrix. Two different variations of hybrids composites were prepared. 
The first denoted with “A” containing 35.8 wt% hemp fiber and 11.1 wt% GF, 
while the second denoted with “B” had 36.6 wt% and 11.3 wt% hemp and glass 
fibers respectively. From the results, “A” had 70.1 ± 10.2 MPa, 8.3 ± 0.4 GPa and 
1.31 ± 0.25% for tensile strength, Young’s modulus and strain to failure respec-
tively, while “B” showed 81.6 ± 3.7 MPa, 7.7 ± 0.3 GPa and 1.73 ± 0.08% for 
tensile strength, Young’s modulus and strain to failure improvement respectively 
when compared with biocomposites reinforced only with hemp fibers, having 
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46.4 ± 4.6 MPa, 7.2 ± 0.9 and 1.03% respectively. The increase in the percentage of 
GF led to the observed increase in tensile strength and better strain to failure in “B” 
as compare to “A.” The hemp fiber is a low strain to failure fiber while the glass fiber 
is a high strain to failure fiber. Their combination, leads to enhance strain to failure 
composites. This is referred to as “hybrid effect” and it has being well observed 
in hybrid composites. Therefore the increase in strain to failure of the hemp-glass 
fiber composites can be attributed to the hybrid effect. Also, there was an observed 
improvement in the fatigue strength of hybrid biocomposites while the fatigue sen-
sitivity showed no improvements when compared to hemp only fiber composites.

Hybrid of glass/natural fibers have been reported to have improved impact, 
tensile and flexural strength [182]. Furthermore, Velmurugan and Manikandan 
[184] reported that good strength, especially mechanical strength is achieved when 
the synthetic fiber is placed at the ends of the composite for laminated composites.

In another research work, Ahmed and Vijayarangan [185] prepared composites 
with jute only and jute/glass fibers hybrid reinforced polyester composites, keep-
ing the total weight fraction of fibers constant at 42 wt%. From their results, the 
composites consisting of 40:60 ratio of jute:glass fibers, the reinforced hybrid 
laminate gave an increase in the tensile strength, Young’s modulus, flexural strength 
and flexural Young’s modulus of 53, 30, 31 and 62% respectively over those of the 
jute only fiber composites. They further indicated that in the event properties, 
environmental impact and costs were to be considered, composites with 60:40 fiber 
fraction of jute:glass fibers ratio gave optimum material combination. This clearly 
highlights that the type of matrix and/or fiber, method of preparation, fiber content 
and fiber modification have a huge impact on the mechanical properties of hybrid 
biocomposites. 

5.6 Other factors

In the preparation of NFPCs, there are many other additives or processes that 
can also influence the final properties of the composites but are seldom considered, 
for example impurities in the polymer matrix are introduced via fibers addition. 
These elements can influence the process of crystallization, just like the nanopar-
ticles, although, this depends greatly on their chemical nature. Also it is worthy to 
mention that the annealing of the composites allows the crystals to grow to their 
maximum size. Thus, the temperature at which the materials are annealed is also 
very influential to the final properties of the composite obtained. Therefore from 
the selection of materials to the final product, care must be taken to achieve the 
properties desired.

Liu et al. [186] assessed the influence of processing method on the physical 
properties, especially mechanical properties, of kenaf fiber reinforced biocompos-
ites prepared using soy fiber. The compression molded specimens were observed to 
have similar Young’s modulus to those from injection molding at room temperature. 
However, at elevated temperature, the heat deflection temperature (HDT) and 
notched Izod impact strength were higher compared to those obtained from injec-
tion molded specimen. The improvements observed with the compression molded 
samples were attributed to a surge in Young’s modulus at high temperature and fiber 
bridging effects.

Generally, biomedical applications desire for fabrication of grafts which are 
biocompatible and enable cell differentiation and expression with apt mechanical 
properties, but the ability to achieve such mechanical capacity has been a challenge 
for decades. As over the years, the focus and efforts have been geared towards bio-
compatibility and not necessarily mechanical prowess. But the formation of stresses 
occurring in implant locations due to mechanically inept implant materials have 
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Figure 2. 
Illustration of potential application of collagen fibers embedded in a hydrogel bio-composite for medical 
applications with adjusted mechanical properties that provide support and allow motion and flexibility of the 
tissue under repair [187].

No. Patent title Patent no. Year

1. Medical balloon with incorporated fibers W0/2013/148399 2013

2. Polyester cool-fiber antibacterial pillow CN102715804 2012

3. Medical natural porous fiber filler and vacuum sealing drainage 
device thereof

CN102715983 2012

4. Manufacturing process of antibacterial bamboo pulp used for 
high-wet-modulus fiber

CN102677504 2012

5. Flushable moist wipe or hygiene tissue CN102665510- 2012

6. Far-infrared fiber fabric functional bellyband by utilizing 
nano-selenium, germanium and zinc elements traditional Chinese 
medicine

CN101703317 2010

7. Medical device for insertion into a joint US20090234459 2008

8. Medical device for insertion into a joint EU1896088 2008

9. Antiviral fiber and producing method and use thereof CN1609336 2006

10. Manufacturing of nano-fibers, from natural fibers, agro based 
fibers and root fibers

CA2437616 2005

11. Natural antibacterial material and its use CN461827 2003

12. Absorbable protective coatings for wound with the use of sponge 
and process for producing the same

W0/20021054998 2006

13. Medical prosthesis, especially for aneurysms, with a connection 
between its liner and its structure

EPOB18184 1998

Table 1. 
Summary of some patents published employing nature fibers for biomedical applications (adapted from 
Namvar et al. [188]).
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led to numerous implant failures and lead to investigations to improve mechanical 
properties of biomedical devices for diverse applications (Figure 2).

There have been quite a number of patents registered over the years of research-
ers employing natural fiber for biomedical applications and Table 1 presents a 
summary of some of these patents.

6. Conclusion

The natural fiber polymer composites have gained a lot of ground in terms of 
acceptance and applications. For these interests to increase continuously, the mate-
rials must be designed to meet certain requirements for their specific applicability. 
For structural applications, the most important property that is of concern is the 
mechanical properties as they help to predict the behavior of the materials under 
stress. As discussed in this chapter, NFPCs are being applied in the building and 
construction works, automobiles, aerospace, packaging, electronics and biomedical 
devices. The mechanical strength and toughness require by these various industries 
are quite different and can vary widely from one application to another. Even 
though the mechanical requirement varies, the factors that determine the mechani-
cal properties are the same. These factors include type of fibers used, source of 
the fibers, surface treatment and modification carried out on the fibers, type of 
polymer matrix used (pristine and blended), type of fiber-matrix bond formed, 
and the internal arrangement which depends on the type of curing treatment after 
processing or annealing. In addition to this list are the fiber length, fiber orienta-
tion and distribution, fiber loading or volume faction, the type of functionality 
present and the extent of modification. All these factors can be manipulated to give 
a combination of the right measure of mechanical strength and stiffness or tough-
ness required for the application it is being designed for. The use of compatibilizers 
and nanoparticles to modify the composites for specific purpose has been widely 
reported to improve the mechanical properties as well, but proper integrations must 
be considered. Furthermore, the use of hybrid fibers has also gained wide accep-
tance because of the improved stiffness and strength owing to the synergy observed 
in such fiber combination. The possibilities of NFPCs can be best imagined with the 
right improvement in their mechanical properties and this chapter has highlighted 
some of these benefits as presented by numerous research investigations across 
diverse fields.
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