
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

1

Chapter

Real-Time Scheduling Method
for Middleware of Industrial
Automation Devices
Hong Seong Park

Abstract

In this study, a real-time scheduling algorithm, which supports periodic and
sporadic executions with event handling, is proposed for the middleware of indus-
trial automation devices or controllers, such as industrial robots and programmable
logic controllers. When sensors and embedded controllers are included in control
loops having different control periods, they should transmit their data periodically
to the controllers and actuators; otherwise, fatal failure of the system including the
devices could occur. The proposed scheduling algorithm manages modules, namely,
the thread type (or .so type) and process type (or .exe type), for periodic execu-
tion, sporadic execution, and non-real-time execution. The program structures for
the thread-type and process-type modules that can make the proposed algorithm
manage the modules efficiently are suggested; then, they are applied in periodic
and sporadic executions. For sporadic executions, the occurrences of events are first
examined to invoke the execution modules corresponding to the events. The pro-
posed scheduling algorithm is implemented using the Xenomai real-time operating
system (OS) and Linux, and it is validated through several examples.

Keywords: real-time scheduler, middleware, automation device, industrial robot,
PLC, periodic execution, sporadic execution, thread type, process type

1. Introduction

Currently, there are many studies about Industry 4.0 [1–3], where numerous
industrial automation devices such as industrial robots, programmable logic con-
trollers (PLCs), and industrial Internet of things (IIOT) are used. Manufacturing
processes in smart factories have achieved increased flexibility through robots,
PLCs, and smart devices, which enable the production of various types of products.
Because the robots and PLCs used in these factories are working with humans, the
safety of human workers is critical and should be guaranteed. Note that PLCs gen-
erally control conveyors and the flow of production processes. In particular, sensors
and embedded controllers should transmit their data periodically to the control-
lers and actuators according to the preset control periods if they are included in
control loops having different periods. If some data transmissions fail, fatal failure
of the system including the devices could occur. Hence, real-time characteristics,
namely, periodic and sporadic, are extremely important for those devices. The
periodic characteristic is required for operating the manufacturing system stably
and safely, whereas the sporadic characteristic is needed to cope with safety issues.

Scheduling Problem - New Applications and Trends

2

In addition, mobile manipulators, which consist of mobile platforms and industrial
robots, can make the production line more flexible. If this flexibility is expanded to
some extent, the manufacturing process can become reconfigurable. However, it is
required that the production line is also reconfigurable. A conventional production
line is based on a long conveyor system controlled by a PLC, which can obstruct
the reconfigurability of the production line. Moreover, the PLC is one of the most
important automation devices, and its functional specifications including motion
controls are standardized [4–5]. Hence, it is currently being implemented in the
software (SW) of embedded controllers and used widely in industrial fields such as
smart factories and industrial robots.

In general, industrial robots used in factories utilize PLCs because they must be
able to move parts from one cell to another or assemble parts in a cell. Thus, if the
production line is composed of two or more cells, which are implemented as mov-
ing units based on robots and PLCs, the production line can be reconfigurable. This
means that the industrial robot systems used in the lines must perform various types
of functions such as manipulation and moving of parts. Hence, the controller of
industrial robot systems used in lines manages the motion control SW for manipula-
tion and the PLC function for conveyors and grippers. Some current PLC products
can simultaneously manage both conveyors and industrial robots but not all types
of industrial robots [6, 7]. Industrial robots and PLCs can control both motion SW
for manipulation and PLC functions. Furthermore, they should exchange data via
communication among servers and various types of sensors because the program
and measured data must be transmitted to other automation devices.

Information technology (IT) is at the center of these technologies. It is however
difficult to integrate the rapidly developing IT with conventional robot systems
and PLCs. Consequently, middleware technology has been studied for automation
devices such as robots and PLCs [4–19]. The middleware used in automation devices
manages the processes/threads related to manipulations, vision recognition, PLC
functions, transmission of various types of data, safety, and security. This article
focuses on the management of processes/threads, which is called real scheduling.

There are some middleware that can be used for automation devices [6–21].
Well-known examples are the CORBA [20], OPC-UA [21], the ones used in
CoDeSys [6, 7] and TwinCAT [8], ROS [9, 10], OPRoS [11, 12], openRTM [13, 14],
and OROCOS [15, 16]. Among these examples, the OPC-UA and ROS are a type
of communication middleware. The ROS manages the execution periods of SW
modules using the sleep function, but when SW modules are executed as a process
type, it is difficult to keep the period of these modules accurate. Hence, most of
the real-time operating systems (OSs) utilize the thread type to keep real-time
characteristics. The CoDeSys and TwinCAT support a runtime system that executes
control SW modules in real time, which is thought of as a type of middleware. Note
that control SW modules used in the CoDeSys and TwinCAT are motion modules
for manipulation and PLC functions. The ROS, OPRoS, openRTM, and OROCOS
are types of middleware used in robot technology. The CORBA is the most famous
middleware supporting communication and management of SW modules, but it is
difficult to be implemented in automation devices due to the large size of SW.

The ROS is a popular open SW in the robot field and has been mainly imple-
mented on Linux, but the OPRoS, OROCOS, and openRTM are performed on vari-
ous types of OSs such as Windows, Linux, and real-time OS. The former executes
SW modules as process types, whereas the latter executes SW modules as thread
types. Note that general users can use the process type with ease but have dif-
ficulty in using the thread type because of its debugging issues and special format.
However, the real-time characteristics of SW modules are kept more easily in the
thread type. Hence, most of the real-time OSs provide only thread types of SW

3

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

modules for real time. Because the middleware is utilized in various types of OSs
including real-time OSs, it should have a real-time scheduler, which can manage the
SW modules in real-time whether they are of process type or thread type. Note that
the OPRoS, OROCOS, and openRTM support only thread types of SW modules for
real-time services.

Real-time services can be classified into periodic services and sporadic services.
In particular, sporadic services of an SW module are processed as follows: the mid-
dleware checks the occurrence of an event and then executes the SW module related
to that event. Hence, it is necessary for the middleware to support the event handling
of sporadic services. Middleware systems applied to industrial robot controllers are
the OPRoS and OROCOS, but they do not support sporadic services in real time.

Real-time schedulers of middleware are generally designed and developed based
on the execution lifecycle (or state machine), which consists of some states such
as IDLE, EXECUTING, DESTRUCTED, and ERROR and is described in the next
section. Note that the execution lifecycle is applied only to thread-type SW modules
but not to process-type SW modules. In other words, the scheduler controls state
transitions to enter into the target state and then manage the real-time threads in a
safe manner. However, it is difficult for process-type SW modules to be managed
by middleware as seen in the ROS. Hence, the OPRoS, openRTM, and OROCOS
manage only the thread-type modules. If the real-time scheduler processes the
modules as independent threads, the overhead time including context switching can
be critical in the case where the shorter period (e.g., 100 μs) is used. The overhead
time needs to be reduced. In addition, it is necessary to consider the execution of
process-type SW modules so that users can utilize the middleware easily.

Industrial automation devices used in Industry 4.0 should have flexibility, which
can be provided by middleware with real-time schedulers and reliable communica-
tion. Real-time schedulers play important roles in supporting reliable and real-time
communication. Real-time schedulers for industrial automation devices such as
industrial robots [22] should have the following properties of P1–P6:

• (P1) support both process and thread types as execution models of SW modules.

• (P2) support periodic services and sporadic services as real-time services.

• (P3) support non-real-time service if necessary.

• (P4) keep jitters within the minimum bound.

• (P5) support the user-defined priority for each SW module.

• (P6) support the configuration of the SW modules that users can set up.

Examples of processes and threads can be motor control modules, multiple
robot control modules, kinematic modules, path planning modules, PLC modules,
human-robot interaction modules, and object recognition modules. Motor control
modules are executed according to different periods, and PLC modules can be
performed cyclically or periodically.

This study proposes a real-time scheduler that satisfies the properties listed
above. To reduce the overhead time among threads, the proposed scheduler calls
directly the related methods (or functions) of modules in the thread type, where
the modules are loaded in .so type in Linux. In addition, it checks the event occur-
rences to process the corresponding SW modules as sporadic services and then
invokes the corresponding SW modules if the related event condition is satisfied.

Scheduling Problem - New Applications and Trends

4

For this purpose, the middleware provides an event handling function. This study
implements the proposed scheduler using Xenomai [23]. Some examples are given
to validate the proposed scheduler and show that the worst-case jitters in thread/
process types of modules are kept within the minimum bound and that the middle-
ware is performed on Xenomai and Linux.

In Section 2, the requirements of real-time schedulers for middleware of indus-
trial automation devices are proposed. The real-time scheduling algorithm and the
program structures for periodic and sporadic executions are suggested, where those
executions based on the state machine are related to the thread-type modules. In
Section 3, some examples are presented to validate the proposed scheduler. Finally,
the conclusions drawn are given in Section 4.

2. Real-time scheduler for middleware of industrial automation devices

2.1 Requirements

In industrial automation devices, such as industrial robots and PLCs for process
control, most of the SW modules should be executed periodically. Obviously, PLCs
used in discrete I/O controls such as control of conveyors are executed cyclically.
Moreover, embedded controllers used in automation devices can execute both
manipulation control of industrial robots and control of digital I/Os. Because SW
modules used in those automation devices may have different execution periods, it
is necessary to set the execution periods smoothly according to the target applica-
tions. For example, let us consider SW modules A, B, and C in application 1, which
are executed at periods of 10, 30, and 20 ms, respectively. The same modules can be
executed at periods of 15, 60, and 30 ms in application 2. The period of a module
can vary depending on the application even though the same module is used; thus,
it is necessary to set the period smoothly. In general, two terms, namely, basic
period and macro period, are utilized in periodic applications. The former is com-
puted using the greatest common divisor of the periods of the modules in the given
application, whereas the latter is computed using their least common multiple.

The proposed real-time scheduler is designed and implemented to satisfy the
following requirements, which are derived from properties P1–P6 mentioned in
Section 1:

• Should support periodic services, sporadic services, and non-real-time
services.

• Periodic/sporadic services are divided into thread and process types, and the
corresponding information should be provided.

• Should support the process types of legacy SW modules, which can be per-
formed in periodic, sporadic, and non-real-time modes.

• Should be triggered by an event so that sporadic services are performed.

• The event condition is enrolled so that the event handling function can be pro-
cessed. If the enrolled event condition is satisfied, the corresponding sporadic
service is invoked, regardless of the type (whether process type or thread type).

• The event handling function is executed periodically to check the event
conditions.

5

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

• Periodic services have the highest priority and sporadic services the next
priority. Periodic modules and sporadic modules can have different priorities as
independent modules, regardless of the type.

• Should use a timer-based operation mode to keep jitters of thread and pro-
cesses within the minimum bound.

• Should utilize a configuration file written in XML so that users can provide
information related to the SW module to the middleware.

Particularly note that events considered in this study are not hardware-driven
types because the middleware is executed over the OS. The scheduler in the next
subsection is proposed based on these requirements.

2.2 Algorithm for real-time scheduler

The information for users to provide to the middleware is listed below:

• Module types (thread or process)

• Service/operation mode (periodic, sporadic, or non-real-time)

• Module name (file name)

• Period (for periodic service) or deadline (for sporadic service)

• Priority (lower priority or higher)

• Property (input parameters needed to execute the file)

The middleware reads the XML file containing this information and processes it
accordingly.

An example of a file in which the above information is stored is shown in
Figure 1, and its file name is module.xml written in XML. Note that the time unit
in the file is nanosecond (ns).

Figure 2 shows a brief algorithm of the proposed real-time scheduler. In main()
function, the algorithm reads the configuration file named module.xml and builds
two tables, i.e., periodic scheduling table and sporadic scheduling table, according
to the computed basic period and priorities of modules. After that, the method
“scheduler()” and the basic period are set to link to the timer interrupt and then
are periodically executed according to the basic period. The method scheduler()
manages the periodic and sporadic threads and processes. The periodic and spo-
radic processes are managed via signals of scheduler(). Non-real-time modules are
executed after the thread of scheduler() has linked to the timer interrupt routine.
That is, the execution of the non-real-time modules is independent of the proposed
real-time scheduler. The scheduler does not manage the non-real-time modules to
reduce the computation time.

The middleware reads the configuration file such as module.xml in Figure 1
and computes the basic period of 100 μs and the macro period of 600 μs. Using
these two periods, the middleware generates the periodic scheduling table
shown in Figure 3 and the sporadic scheduling table shown in Figure 4. Note
that pRun() denotes the pointer of the function run(), which is described in
Section 2.3.

Scheduling Problem - New Applications and Trends

6

Figure 1.
Module.xml file.

7

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

In Figure 3, the index is the execution order. That is, four periodic modules are
executed in the first period (index 0) starting at 0 μs. In the first period, control3.so
is first executed, and control4.exe is executed last according to the priority in Figure 1.
Control1.so is executed once every 600 μs, and control4.exe is executed once every
300 μs. Obviously, the real-time scheduler distinguishes threads and processes and
executes them properly. The sporadic scheduling table is shown in Figure 4. The
sporadic modules are listed in order of priority in the table. For execution of the SW
modules, the function pointers and the process IDs are stored according to the type
(thread or process) in the scheduling table.

Figure 2.
Brief algorithm for the proposed real-time scheduler.

Scheduling Problem - New Applications and Trends

8

Figure 5.
Execution lifecycle of thread-type SW module.

The thread modules are executed according to the execution lifecycle shown in
Figure 5. After loading the thread-type SW modules, the module is initialized by the
method initialize(), which is illustarted in Figure 8, and the module enters into the
MW_INITIALIZE state. If the method start() is invoked, the module enters into
the MW_START state. After all the thread-type modules enter into the MW_START
states, execution of the real-time scheduling algorithm, scheduler() is started by

Figure 3.
Example of periodic scheduling table based on Figure 1.

Figure 4.
Example of sporadic scheduling table based on Figure 1.

9

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

invoking the method run(), which is also shown in Figure 8. The module is periodi-
cally called or receives signal at the MW_EXECUTING state. After completion of
the module execution, the module invokes the method destroy() and then enters
into the MW_DESTRUCT state, and consequently, the execution of the module is
ended. In the MW_RECOVER state, some error handling is possible using recover-
related methods. Note that the scheduler directly calls or invokes the method run()
of modules to reduce the OS overhead time such as context switching time.

Process-type modules are also executed, and they immediately wait for the
period-starting signal. If a module receives signals from the scheduler, the module
is re-executed from the waiting position.

The operation of the scheduler in Figure 2 is shown in Figure 6. In this figure, it
can be observed that the non-real-time modules can be executed only when a suf-
ficient idle time remains in one period. The scheduler calls the run() method of the
modules to reduce the overhead of controlling the threads or processes, where the
run() method is shown in Figures 7 and 8. After the executions of periodic modules
are finished in a period, the scheduler checks the event conditions of sporadic
modules. If the condition is true, the scheduler calls the corresponding sporadic
method for thread types and sends the signal to the sporadic module for process

Figure 6.
Operation of real-time scheduler for periodic, sporadic, and non-real-time services based on Figures 3 and 4.

Figure 7.
Example of control scheme of real-time scheduler for periodic and sporadic modules.

Scheduling Problem - New Applications and Trends

10

Figure 8.
Program structure of thread-type periodic module.

type. Note that the modules are executed over the multicore CPU and modules with
thread types and process types are executed on different cores. Hence, two types of
modules can be executed at the same time.

Periodic and sporadic operations can be divided into thread type and process
type as shown in Figure 6. The scheduler manages the SW modules according to
their types. Figure 7 shows an example of a control scheme of a real-time scheduler
for periodic and sporadic modules, where the thread-type modules are directly
called by the scheduler and the process-type modules are executed by the signal
from the scheduler. As shown in Figure 7, the periodic modules are executed first.
The scheduler executes a module by calling the run() method of the corresponding
module in the .so file, where the module has a thread type. To execute a process-
type module, the scheduler sends a signal to the process of the module. Note that
process-type modules are executed independently of the scheduler as a type of
process and the scheduler is also a type of process.

The program structures of thread-type and process-type modules are described
in the next subsection.

2.3 Program structures for thread-type and process-type modules

Because the operation method of a thread-type periodic module is different from
that of a process type, the program structure of the thread-type periodic module should
be different from that of the process type, which are shown in Figures 8 and 9 respec-
tively. The method initialize() is executed immediately after the module is loaded in
the memory. The methods start(), run(), destruct(), error(), and recover() are called

11

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

when events such as START, RUN, DESTRUCT, XXX_ERROR, and RECOVER occur,
respectively, which are shown in Figure 5.

Users should insert proper codes into parts named user program. In general, a
legacy program has a structure of a process type, which is simpler than that of a
thread type. To use a legacy program on the proposed middleware, two functions

Figure 9.
Program structure of process-type periodic module.

Figure 10.
Program structure of .so-type sporadic module.

Scheduling Problem - New Applications and Trends

12

initPeriodExe() and waitPeriod() should be added in it. initPeriodExe() is a func-
tion for enrollment of the corresponding process to the scheduler, and waitPeriod()
is a type of function to wait for a signal from the scheduler. Note that the scheduler
sends a signal to a process when the corresponding process wants to be executed.
Upon receiving the periodic signal, the module transitions from the waiting state to
the executing state and then executes the main body, which is the part marked user
periodic body in Figure 9. The module enters into the waiting state by the waitPe-
riod() function.

After the execution of periodic modules, the scheduler checks whether any
events for sporadic modules have occurred. The modules corresponding to such
events are listed in order of priority using EDF (earliest deadline first) method
[6–9]. As shown in Figures 2 and 6, the scheduler checks periodically by calling
or invoking the condition() function in Figures 10 and 11. If condition() returns
a value of TRUE in Figure 10, the scheduler executes the corresponding .so-type
module. The process-type sporadic module is designed so that it receives sporadic
signals from the scheduler, checks its condition, and executes the user execution
body if condition() is satisfied.

3. Evaluation

Experiments were performed using the test cases in Table 1 on a PC with the
following specifications to validate the proposed scheduling algorithm:

Figure 11.
Program structure of process-type sporadic module.

13

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

• Ubuntu 14.04 LTS (64 bit), kernel: Linux 4.1.18

• Xenomai 3.0.3, ipipe-core-4.1.18

• CPU: Intel(R) Core(TM) i7–7700 CPU @ 3.60 GHz, four cores

The purpose of the experiments was to determine how the periodic modules are
affected by the execution of all types of modules. Hence, the worst-case jitter and
related jitter statistics are measured and analyzed. Let J n , T n , and P n denote the nth jit-
ter, the starting time of the n-th execution of the target, and the starting time of the
nth period, respectively. The jitter considered in this article is calculated as follows:

 J n = P n – T n = T 0 + n ∗ period– T n , (1)

where T 0 denotes the reference time of the target module and period, period
denotes a basic period, and P n = T 0 + n ∗ period.

The modules were executed using a basic period of 100 μs. In Table 1, the type of
measured module indicates whether the jitter was measured in a .so (thread) or .exe
(process) module. The test results are also presented in Table 1 and Figures 12–19.
Note that the jitter is computed using Eq. (1) and it is measured in a special module
of periodic modules and the type of the measured module is given in Table 1.

Table 1 and Figures 12–19 show that the ranges of mean values and variances
of the process-type periodic module in the test cases are -5.5519 μs to -5.991 μs
and 11.598–12.438 μs, respectively. The ranges of mean values and variances of
the thread-type periodic module in the test cases are -0.027 μs to -0.105 μs and
0.716–3.772 μs, respectively. The worst-case jitter is 12.438 μs, which is measured in
the process-type periodic module, and the jitter rate is 12.438% with respect to the
basic period of 100 μs. The worst-case jitter measured in the thread-type periodic

No. Test cases Test results

Number

of periodic

modules

Number of

sporadic

modules

Number

of non-

real-time

modules

Type of

measured

module

Jitter

mean (μs)

Jitter

variance

(μs)

Worst-

case jitter

(μs)

.so .exe .so .exe

1 1 0 0 0 0 Thread −0.027 0.000839 3.772

2 15 0 0 0 0 Thread 0.127 0.002037 2.933

3 5 3 0 0 0 Thread −0.042 0.001263 2.793

4 5 3 0 0 0 Process −5.723 19.480341 11.598

5 5 3 11 0 0 Thread 0.033 0.001174 0.716

6 5 3 11 0 0 Process −5.580 19.624376 11.614

7 5 3 5 6 0 Thread −0.105 0.001633 1.405

8 5 3 5 6 0 Process −5.991 21.136330 12.438

9 5 3 5 5 8 Thread 0.007 0.001424 1.104

10 5 3 5 5 8 Process −5.519 20.617964 11.758

Table 1.
Test cases for evaluation of scheduling algorithm.

Scheduling Problem - New Applications and Trends

14

Figure 14.
Jitters in test case 3.

Figure 12.
Jitters in test case 1.

Figure 13.
Jitters in test case 2.

15

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

module is 2.933 μs, which is the result of test case 2, and the jitter rate is 2.933% with
respect to 100 μs.

For the thread-type periodic module, as the load increases, the variation
amount of jitters also increases; however, the worst-case jitter does not exceed
4 μs, and the change in the jitter variances is not significant. For the process-type
periodic module, as the load increases, the variation amount of jitters increases
significantly; however, the worst-case jitter does not exceed 12.5 μs, and the
changes in the jitter variances and worst-case jitters are not large. The test results
in Table 1 and Figures 11–18 indicate that the proposed scheduling algorithm
can be efficiently used by industrial automation devices even for various types of
applications.

It is evident from the results in Table 1 and Figures 12–19 that the basic period
is maintained very satisfactorily in all test cases. This means that the proposed

Figure 15.
Jitters in test case 4.

Figure 16.
Jitters in test case 5.

Scheduling Problem - New Applications and Trends

16

Figure 19.
Jitters in test case 10.

Figure 18.
Jitters in test case 9.

Figure 17.
Jitters in test case 6.

17

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

scheduler can work effectively in various situations. Moreover, it can be observed
from the test results that the process-type periodic module has a greater effect on
jitters than the thread-type and the sporadic modules. Hence, it is better to use the
thread-type than the process-type for periodic modules. If the process-type mod-
ules as legacy modules are utilized, it is necessary to reduce their number.

4. Conclusion

This study proposed a real-time scheduling algorithm for middleware of
industrial automation devices or controllers such as industrial robots and PLCs.
The proposed algorithm strictly maintains the periods and supports both periodic
and sporadic executions with event handling. It has managed modules, namely, the
thread type (or .so type) and process type (or .exe type), for periodic execution,
sporadic execution, and non-real-time execution. This study provided the program
structures of the thread-type and process-type modules for periodic and sporadic
services to manage them efficiently. For sporadic services, the scheduler checks
for the occurrence of events using the condition() method in the sporadic modules
before invoking the corresponding module.

The proposed scheduling algorithm was implemented using the Xenomai
real-time OS and Linux, and it was validated through some test cases. The worst-
case jitters measured in the thread-type periodic module and the process-type
periodic module were 2.933 and 12.438 μs, respectively, where the jitter rates were
2.933 and 12.438% with respect to the basic period of 100 μs. The basic period was
maintained very satisfactorily without missing any periods in all the test cases. The
test results showed that the proposed scheduler could work well in various situa-
tions. Furthermore, it is better to use the thread-type module than the process-type
module when periodic modules are used. It was demonstrated that the proposed
scheduling algorithm could be used for the middleware of industrial automation
devices or controllers.

In future research, the proposed scheduling algorithm will be tested to handle
periodic modules, sporadic events, and non-real-time modules in multicore sys-
tems, manage process-type periodic modules with smaller worst-case jitters, and
support various types of OSs.

Acknowledgements

This work was partly supported by Korea Evaluation Institute of Industrial
Technology (KEIT) grant funded by the Korea government (MOTIE) (No.
10067414, development of real-time-assisting SW platform for industrial robot).

Scheduling Problem - New Applications and Trends

18

Author details

Hong Seong Park
Department of Electrical and Electronic Engineering, Kangwon National
University, South Korea

*Address all correspondence to: hspark@kangwon.ac.kr

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

19

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

References

[1] Rueßmann M, Lorenz M,
Gerbert P, Waldner M, Justus J,
Engel P, Harnisch M. Industry
4.0: The Future of Productivity
and Growth in Manufacturing
Industries. Boston Consulting
Group; 2015. Available from: https://
www.bcg.com/publications/2015/
engineered_products_project_business_
industry_4_future_productivity_
growth_manufacturing_industries.aspx

[2] Thoben K, Wiesner S, Wuest T.
Industrie 4.0 and smart
manufacturing—A review of research
issues and application examples.
International Journal of Automation
Technology. 2017;11:4-16. DOI:
10.20965/ijat.2017.p0004

[3] MacDougall W. Industrie 4.0 smart
manufacturing for the future. Available
from: https://www.manufacturing-
policy.eng.cam.ac.uk/documents-folder/
policies/germany-industrie-4-0-smart-
manufacturing-for-the-future-gtai/
view

[4] IEC. IEC 61131-3 Programmable
controllers—Part 3: Programming
languages; 2013

[5] PLCopen Technical Committee 2.
Function Blocks for Motion Control:
Part 3—User Guidelines. 2013. Available
from: https://www.plcopen.org/system/
files/downloads/plcopen_motion_
control_part_3_version_2.0.pdf

[6] CODESYS Group. WHY CODESYS?
[Internet]. Available from: https://www.
codesys.com/the-system/why-codesys.
html

[7] Korobiichuk I, Dobrzhansky O,
Kachniarz M. Remote control of
nonlinear motion for mechatronic
machine by means of CoDeSys
compatible industrial controller.
Tehnički Vjesnik. 2017;24:1661-1667.
DOI: 10.17559/TV-20151110164217

[8] Beckhoff. TWINCAT-PLC and
motion control on the PC [Internet].
Available from: https://www.beckhoff.
com/twincat/

[9] OSRF Site [Online]. Available from:
www.ros.org

[10] Wei H, Shao Z, Huang Z, Chend R,
Guanb Y, Tanc J, et al. RT-ROS: A
real-time ROS architecture on multi-
core processors. Future Generation
Computer Systems. 2016;56:171-178.
DOI: 10.1016/j.future.2015.05.008

[11] Han S, Kim M, Park HS. Open
software platform for robotic services.
IEEE Transactions on Automation
Science and Engineering. 2012;9:
467-481. DOI: 10.1109/
TASE.2012.2193568

[12] OPRoS Site [Online]. Available
from: www.ropros.org

[13] OpenRTM Site [Online]. Available
from: www.openrtm.org

[14] Hasegawa R, Yawata N, Ando N,
Nishio N, Azumi T. Embedded
component-based framework for robot
technology middleware. Journal of
Information Processing. 2017;25:
811-819. DOI: 10.2197/ipsjjip.25.811

[15] OROCOS site [Online]. Available
from: www.orocos.org

[16] Rastogi N, Dutta P, Krishna V,
Gotewa KK. Implementation of an
OROCOS based real-time equipment
controller for remote maintenance
of tokamaks. In: Proceedings of the
Advances in Robotics; June 28-02
July 2017; New Delhi, India; DOI:
10.1145/3132446.3134900

[17] Muratore L, Laurenzi A, Hoffman EM,
Rocchi A, Caldwell DG, Tsagarakis NG.
XBotCore: A real-time cross-robot
software platform. In: 2017 First IEEE

Scheduling Problem - New Applications and Trends

20

International Conference on Robotic
Computing (IRC); 10-12 April 2017;
Taichung, Taiwan; DOI: 10.1109/
IRC.2017.45

[18] YARP site [Online]. Available from:
www.yarp.it

[19] Paikan A, Pattacini U, Domenichelli
D. A best-effort approach for run-time
channel prioritization in real-time
robotic application. In: 2015 IEEE/RSJ
International Conference on Intelligent
Robots and Systems (IROS); 28 Sept.-2
Oct. 2015; Hamburg, Germany.
2015. pp. 1799-1805. DOI: 10.1109/
IROS.2015.7353611

[20] Levine DL, Schmidt DC, Flores-
Gaitan S. CORBA measuring OS support
for real-time CORBA ORBs. In: 1999
Proceedings Fourth International
Workshop on Object-Oriented
Real-Time Dependable Systems;
27-29 Jan. 1999; Santa Barbara, CA,
USA. 1999. pp. 9-17. DOI: 10.1109/
WORDS.1999.806555

[21] OPC Foundation. PLCopen and
OPC Foundation: OPC UA Information
Model for IEC 61131-3. 2010

[22] Yu D, Park HS. Real-time
middleware with periodic service
for industrial robot. In: 2017 14th
International Conference on Ubiquitous
Robots and Ambient Intelligence
(URAI); 28 June-1 July 2017; Jeju, South
Korea. 2017. pp. 879-881. DOI: 10.1109/
URAI.2017.7992853

[23] Xenomai site [online]. Available
from: xenomai.org

