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Chapter

Real-Time Scheduling Method 
for Middleware of Industrial 
Automation Devices
Hong Seong Park

Abstract

In this study, a real-time scheduling algorithm, which supports periodic and 
sporadic executions with event handling, is proposed for the middleware of indus-
trial automation devices or controllers, such as industrial robots and programmable 
logic controllers. When sensors and embedded controllers are included in control 
loops having different control periods, they should transmit their data periodically 
to the controllers and actuators; otherwise, fatal failure of the system including the 
devices could occur. The proposed scheduling algorithm manages modules, namely, 
the thread type (or .so type) and process type (or .exe type), for periodic execu-
tion, sporadic execution, and non-real-time execution. The program structures for 
the thread-type and process-type modules that can make the proposed algorithm 
manage the modules efficiently are suggested; then, they are applied in periodic 
and sporadic executions. For sporadic executions, the occurrences of events are first 
examined to invoke the execution modules corresponding to the events. The pro-
posed scheduling algorithm is implemented using the Xenomai real-time operating 
system (OS) and Linux, and it is validated through several examples.

Keywords: real-time scheduler, middleware, automation device, industrial robot, 
PLC, periodic execution, sporadic execution, thread type, process type

1. Introduction

Currently, there are many studies about Industry 4.0 [1–3], where numerous 
industrial automation devices such as industrial robots, programmable logic con-
trollers (PLCs), and industrial Internet of things (IIOT) are used. Manufacturing 
processes in smart factories have achieved increased flexibility through robots, 
PLCs, and smart devices, which enable the production of various types of products. 
Because the robots and PLCs used in these factories are working with humans, the 
safety of human workers is critical and should be guaranteed. Note that PLCs gen-
erally control conveyors and the flow of production processes. In particular, sensors 
and embedded controllers should transmit their data periodically to the control-
lers and actuators according to the preset control periods if they are included in 
control loops having different periods. If some data transmissions fail, fatal failure 
of the system including the devices could occur. Hence, real-time characteristics, 
namely, periodic and sporadic, are extremely important for those devices. The 
periodic characteristic is required for operating the manufacturing system stably 
and safely, whereas the sporadic characteristic is needed to cope with safety issues. 
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In addition, mobile manipulators, which consist of mobile platforms and industrial 
robots, can make the production line more flexible. If this flexibility is expanded to 
some extent, the manufacturing process can become reconfigurable. However, it is 
required that the production line is also reconfigurable. A conventional production 
line is based on a long conveyor system controlled by a PLC, which can obstruct 
the reconfigurability of the production line. Moreover, the PLC is one of the most 
important automation devices, and its functional specifications including motion 
controls are standardized [4–5]. Hence, it is currently being implemented in the 
software (SW) of embedded controllers and used widely in industrial fields such as 
smart factories and industrial robots.

In general, industrial robots used in factories utilize PLCs because they must be 
able to move parts from one cell to another or assemble parts in a cell. Thus, if the 
production line is composed of two or more cells, which are implemented as mov-
ing units based on robots and PLCs, the production line can be reconfigurable. This 
means that the industrial robot systems used in the lines must perform various types 
of functions such as manipulation and moving of parts. Hence, the controller of 
industrial robot systems used in lines manages the motion control SW for manipula-
tion and the PLC function for conveyors and grippers. Some current PLC products 
can simultaneously manage both conveyors and industrial robots but not all types 
of industrial robots [6, 7]. Industrial robots and PLCs can control both motion SW 
for manipulation and PLC functions. Furthermore, they should exchange data via 
communication among servers and various types of sensors because the program 
and measured data must be transmitted to other automation devices.

Information technology (IT) is at the center of these technologies. It is however 
difficult to integrate the rapidly developing IT with conventional robot systems 
and PLCs. Consequently, middleware technology has been studied for automation 
devices such as robots and PLCs [4–19]. The middleware used in automation devices 
manages the processes/threads related to manipulations, vision recognition, PLC 
functions, transmission of various types of data, safety, and security. This article 
focuses on the management of processes/threads, which is called real scheduling.

There are some middleware that can be used for automation devices [6–21]. 
Well-known examples are the CORBA [20], OPC-UA [21], the ones used in 
CoDeSys [6, 7] and TwinCAT [8], ROS [9, 10], OPRoS [11, 12], openRTM [13, 14], 
and OROCOS [15, 16]. Among these examples, the OPC-UA and ROS are a type 
of communication middleware. The ROS manages the execution periods of SW 
modules using the sleep function, but when SW modules are executed as a process 
type, it is difficult to keep the period of these modules accurate. Hence, most of 
the real-time operating systems (OSs) utilize the thread type to keep real-time 
characteristics. The CoDeSys and TwinCAT support a runtime system that executes 
control SW modules in real time, which is thought of as a type of middleware. Note 
that control SW modules used in the CoDeSys and TwinCAT are motion modules 
for manipulation and PLC functions. The ROS, OPRoS, openRTM, and OROCOS 
are types of middleware used in robot technology. The CORBA is the most famous 
middleware supporting communication and management of SW modules, but it is 
difficult to be implemented in automation devices due to the large size of SW.

The ROS is a popular open SW in the robot field and has been mainly imple-
mented on Linux, but the OPRoS, OROCOS, and openRTM are performed on vari-
ous types of OSs such as Windows, Linux, and real-time OS. The former executes 
SW modules as process types, whereas the latter executes SW modules as thread 
types. Note that general users can use the process type with ease but have dif-
ficulty in using the thread type because of its debugging issues and special format. 
However, the real-time characteristics of SW modules are kept more easily in the 
thread type. Hence, most of the real-time OSs provide only thread types of SW 
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modules for real time. Because the middleware is utilized in various types of OSs 
including real-time OSs, it should have a real-time scheduler, which can manage the 
SW modules in real-time whether they are of process type or thread type. Note that 
the OPRoS, OROCOS, and openRTM support only thread types of SW modules for 
real-time services.

Real-time services can be classified into periodic services and sporadic services. 
In particular, sporadic services of an SW module are processed as follows: the mid-
dleware checks the occurrence of an event and then executes the SW module related 
to that event. Hence, it is necessary for the middleware to support the event handling 
of sporadic services. Middleware systems applied to industrial robot controllers are 
the OPRoS and OROCOS, but they do not support sporadic services in real time.

Real-time schedulers of middleware are generally designed and developed based 
on the execution lifecycle (or state machine), which consists of some states such 
as IDLE, EXECUTING, DESTRUCTED, and ERROR and is described in the next 
section. Note that the execution lifecycle is applied only to thread-type SW modules 
but not to process-type SW modules. In other words, the scheduler controls state 
transitions to enter into the target state and then manage the real-time threads in a 
safe manner. However, it is difficult for process-type SW modules to be managed 
by middleware as seen in the ROS. Hence, the OPRoS, openRTM, and OROCOS 
manage only the thread-type modules. If the real-time scheduler processes the 
modules as independent threads, the overhead time including context switching can 
be critical in the case where the shorter period (e.g., 100 μs) is used. The overhead 
time needs to be reduced. In addition, it is necessary to consider the execution of 
process-type SW modules so that users can utilize the middleware easily.

Industrial automation devices used in Industry 4.0 should have flexibility, which 
can be provided by middleware with real-time schedulers and reliable communica-
tion. Real-time schedulers play important roles in supporting reliable and real-time 
communication. Real-time schedulers for industrial automation devices such as 
industrial robots [22] should have the following properties of P1–P6:

• (P1) support both process and thread types as execution models of SW modules.

• (P2) support periodic services and sporadic services as real-time services.

• (P3) support non-real-time service if necessary.

• (P4) keep jitters within the minimum bound.

• (P5) support the user-defined priority for each SW module.

• (P6) support the configuration of the SW modules that users can set up.

Examples of processes and threads can be motor control modules, multiple 
robot control modules, kinematic modules, path planning modules, PLC modules, 
human-robot interaction modules, and object recognition modules. Motor control 
modules are executed according to different periods, and PLC modules can be 
performed cyclically or periodically.

This study proposes a real-time scheduler that satisfies the properties listed 
above. To reduce the overhead time among threads, the proposed scheduler calls 
directly the related methods (or functions) of modules in the thread type, where 
the modules are loaded in .so type in Linux. In addition, it checks the event occur-
rences to process the corresponding SW modules as sporadic services and then 
invokes the corresponding SW modules if the related event condition is satisfied. 
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For this purpose, the middleware provides an event handling function. This study 
implements the proposed scheduler using Xenomai [23]. Some examples are given 
to validate the proposed scheduler and show that the worst-case jitters in thread/
process types of modules are kept within the minimum bound and that the middle-
ware is performed on Xenomai and Linux.

In Section 2, the requirements of real-time schedulers for middleware of indus-
trial automation devices are proposed. The real-time scheduling algorithm and the 
program structures for periodic and sporadic executions are suggested, where those 
executions based on the state machine are related to the thread-type modules. In 
Section 3, some examples are presented to validate the proposed scheduler. Finally, 
the conclusions drawn are given in Section 4.

2. Real-time scheduler for middleware of industrial automation devices

2.1 Requirements

In industrial automation devices, such as industrial robots and PLCs for process 
control, most of the SW modules should be executed periodically. Obviously, PLCs 
used in discrete I/O controls such as control of conveyors are executed cyclically. 
Moreover, embedded controllers used in automation devices can execute both 
manipulation control of industrial robots and control of digital I/Os. Because SW 
modules used in those automation devices may have different execution periods, it 
is necessary to set the execution periods smoothly according to the target applica-
tions. For example, let us consider SW modules A, B, and C in application 1, which 
are executed at periods of 10, 30, and 20 ms, respectively. The same modules can be 
executed at periods of 15, 60, and 30 ms in application 2. The period of a module 
can vary depending on the application even though the same module is used; thus, 
it is necessary to set the period smoothly. In general, two terms, namely, basic 
period and macro period, are utilized in periodic applications. The former is com-
puted using the greatest common divisor of the periods of the modules in the given 
application, whereas the latter is computed using their least common multiple.

The proposed real-time scheduler is designed and implemented to satisfy the 
following requirements, which are derived from properties P1–P6 mentioned in 
Section 1:

• Should support periodic services, sporadic services, and non-real-time 
services.

• Periodic/sporadic services are divided into thread and process types, and the 
corresponding information should be provided.

• Should support the process types of legacy SW modules, which can be per-
formed in periodic, sporadic, and non-real-time modes.

• Should be triggered by an event so that sporadic services are performed.

• The event condition is enrolled so that the event handling function can be pro-
cessed. If the enrolled event condition is satisfied, the corresponding sporadic 
service is invoked, regardless of the type (whether process type or thread type).

• The event handling function is executed periodically to check the event 
conditions.
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• Periodic services have the highest priority and sporadic services the next 
priority. Periodic modules and sporadic modules can have different priorities as 
independent modules, regardless of the type.

• Should use a timer-based operation mode to keep jitters of thread and pro-
cesses within the minimum bound.

• Should utilize a configuration file written in XML so that users can provide 
information related to the SW module to the middleware.

Particularly note that events considered in this study are not hardware-driven 
types because the middleware is executed over the OS. The scheduler in the next 
subsection is proposed based on these requirements.

2.2 Algorithm for real-time scheduler

The information for users to provide to the middleware is listed below:

• Module types (thread or process)

• Service/operation mode (periodic, sporadic, or non-real-time)

• Module name (file name)

• Period (for periodic service) or deadline (for sporadic service)

• Priority (lower priority or higher)

• Property (input parameters needed to execute the file)

The middleware reads the XML file containing this information and processes it 
accordingly.

An example of a file in which the above information is stored is shown in 
Figure 1, and its file name is module.xml written in XML. Note that the time unit 
in the file is nanosecond (ns).

Figure 2 shows a brief algorithm of the proposed real-time scheduler. In main() 
function, the algorithm reads the configuration file named module.xml and builds 
two tables, i.e., periodic scheduling table and sporadic scheduling table, according 
to the computed basic period and priorities of modules. After that, the method 
“scheduler()” and the basic period are set to link to the timer interrupt and then 
are periodically executed according to the basic period. The method scheduler() 
manages the periodic and sporadic threads and processes. The periodic and spo-
radic processes are managed via signals of scheduler(). Non-real-time modules are 
executed after the thread of scheduler() has linked to the timer interrupt routine. 
That is, the execution of the non-real-time modules is independent of the proposed 
real-time scheduler. The scheduler does not manage the non-real-time modules to 
reduce the computation time.

The middleware reads the configuration file such as module.xml in Figure 1 
and computes the basic period of 100 μs and the macro period of 600 μs. Using 
these two periods, the middleware generates the periodic scheduling table 
shown in Figure 3 and the sporadic scheduling table shown in Figure 4. Note 
that pRun() denotes the pointer of the function run(), which is described in 
Section 2.3.
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Figure 1. 
Module.xml file.
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In Figure 3, the index is the execution order. That is, four periodic modules are 
executed in the first period (index 0) starting at 0 μs. In the first period, control3.so 
is first executed, and control4.exe is executed last according to the priority in Figure 1.  
Control1.so is executed once every 600 μs, and control4.exe is executed once every 
300 μs. Obviously, the real-time scheduler distinguishes threads and processes and 
executes them properly. The sporadic scheduling table is shown in Figure 4. The 
sporadic modules are listed in order of priority in the table. For execution of the SW 
modules, the function pointers and the process IDs are stored according to the type 
(thread or process) in the scheduling table.

Figure 2. 
Brief algorithm for the proposed real-time scheduler.
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Figure 5. 
Execution lifecycle of thread-type SW module.

The thread modules are executed according to the execution lifecycle shown in 
Figure 5. After loading the thread-type SW modules, the module is initialized by the  
method initialize(), which is illustarted in Figure 8, and the module enters into the 
MW_INITIALIZE state. If the method start() is invoked, the module enters into 
the MW_START state. After all the thread-type modules enter into the MW_START 
states, execution of the real-time scheduling algorithm, scheduler() is started by 

Figure 3. 
Example of periodic scheduling table based on Figure 1.

Figure 4. 
Example of sporadic scheduling table based on Figure 1.
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invoking the method run(), which is also shown in Figure 8. The module is periodi-
cally called or receives signal at the MW_EXECUTING state. After completion of 
the module execution, the module invokes the method destroy() and then enters 
into the MW_DESTRUCT state, and consequently, the execution of the module is 
ended. In the MW_RECOVER state, some error handling is possible using recover-
related methods. Note that the scheduler directly calls or invokes the method run() 
of modules to reduce the OS overhead time such as context switching time.

Process-type modules are also executed, and they immediately wait for the 
period-starting signal. If a module receives signals from the scheduler, the module 
is re-executed from the waiting position.

The operation of the scheduler in Figure 2 is shown in Figure 6. In this figure, it 
can be observed that the non-real-time modules can be executed only when a suf-
ficient idle time remains in one period. The scheduler calls the run() method of the 
modules to reduce the overhead of controlling the threads or processes, where the 
run() method is shown in Figures 7 and 8. After the executions of periodic modules 
are finished in a period, the scheduler checks the event conditions of sporadic 
modules. If the condition is true, the scheduler calls the corresponding sporadic 
method for thread types and sends the signal to the sporadic module for process 

Figure 6. 
Operation of real-time scheduler for periodic, sporadic, and non-real-time services based on Figures 3 and 4.

Figure 7. 
Example of control scheme of real-time scheduler for periodic and sporadic modules.
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Figure 8. 
Program structure of thread-type periodic module.

type. Note that the modules are executed over the multicore CPU and modules with 
thread types and process types are executed on different cores. Hence, two types of 
modules can be executed at the same time.

Periodic and sporadic operations can be divided into thread type and process 
type as shown in Figure 6. The scheduler manages the SW modules according to 
their types. Figure 7 shows an example of a control scheme of a real-time scheduler 
for periodic and sporadic modules, where the thread-type modules are directly 
called by the scheduler and the process-type modules are executed by the signal 
from the scheduler. As shown in Figure 7, the periodic modules are executed first. 
The scheduler executes a module by calling the run() method of the corresponding 
module in the .so file, where the module has a thread type. To execute a process-
type module, the scheduler sends a signal to the process of the module. Note that 
process-type modules are executed independently of the scheduler as a type of 
process and the scheduler is also a type of process.

The program structures of thread-type and process-type modules are described 
in the next subsection.

2.3 Program structures for thread-type and process-type modules

Because the operation method of a thread-type periodic module is different from 
that of a process type, the program structure of the thread-type periodic module should 
be different from that of the process type, which are shown in Figures 8 and 9 respec-
tively. The method initialize() is executed immediately after the module is loaded in 
the memory. The methods start(), run(), destruct(), error(), and recover() are called 
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when events such as START, RUN, DESTRUCT, XXX_ERROR, and RECOVER occur, 
respectively, which are shown in Figure 5.

Users should insert proper codes into parts named user program. In general, a 
legacy program has a structure of a process type, which is simpler than that of a 
thread type. To use a legacy program on the proposed middleware, two functions 

Figure 9. 
Program structure of process-type periodic module.

Figure 10. 
Program structure of .so-type sporadic module.
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initPeriodExe() and waitPeriod() should be added in it. initPeriodExe() is a func-
tion for enrollment of the corresponding process to the scheduler, and waitPeriod() 
is a type of function to wait for a signal from the scheduler. Note that the scheduler 
sends a signal to a process when the corresponding process wants to be executed. 
Upon receiving the periodic signal, the module transitions from the waiting state to 
the executing state and then executes the main body, which is the part marked user 
periodic body in Figure 9. The module enters into the waiting state by the waitPe-
riod() function.

After the execution of periodic modules, the scheduler checks whether any 
events for sporadic modules have occurred. The modules corresponding to such 
events are listed in order of priority using EDF (earliest deadline first) method 
[6–9]. As shown in Figures 2 and 6, the scheduler checks periodically by calling 
or invoking the condition() function in Figures 10 and 11. If condition() returns 
a value of TRUE in Figure 10, the scheduler executes the corresponding .so-type 
module. The process-type sporadic module is designed so that it receives sporadic 
signals from the scheduler, checks its condition, and executes the user execution 
body if condition() is satisfied.

3. Evaluation

Experiments were performed using the test cases in Table 1 on a PC with the 
following specifications to validate the proposed scheduling algorithm:

Figure 11. 
Program structure of process-type sporadic module.
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• Ubuntu 14.04 LTS (64 bit), kernel: Linux 4.1.18

• Xenomai 3.0.3, ipipe-core-4.1.18

• CPU: Intel(R) Core(TM) i7–7700 CPU @ 3.60 GHz, four cores

The purpose of the experiments was to determine how the periodic modules are 
affected by the execution of all types of modules. Hence, the worst-case jitter and 
related jitter statistics are measured and analyzed. Let   J  n   ,   T  n   , and   P  n    denote the nth jit-
ter, the starting time of the n-th execution of the target, and the starting time of the 
nth period, respectively. The jitter considered in this article is calculated as follows:

   J  n   =  P  n   –  T  n   =  T  0   + n ∗ period–  T  n  ,  (1)

where   T  0    denotes the reference time of the target module and period, period 
denotes a basic period, and   P  n   =  T  0   + n ∗  period.

The modules were executed using a basic period of 100 μs. In Table 1, the type of 
measured module indicates whether the jitter was measured in a .so (thread) or .exe 
(process) module. The test results are also presented in Table 1 and Figures 12–19. 
Note that the jitter is computed using Eq. (1) and it is measured in a special module 
of periodic modules and the type of the measured module is given in Table 1.

Table 1 and Figures 12–19 show that the ranges of mean values and variances 
of the process-type periodic module in the test cases are -5.5519 μs to -5.991 μs 
and 11.598–12.438 μs, respectively. The ranges of mean values and variances of 
the thread-type periodic module in the test cases are -0.027 μs to -0.105 μs and 
0.716–3.772 μs, respectively. The worst-case jitter is 12.438 μs, which is measured in 
the process-type periodic module, and the jitter rate is 12.438% with respect to the 
basic period of 100 μs. The worst-case jitter measured in the thread-type periodic 

No. Test cases Test results

Number 

of periodic 

modules

Number of 

sporadic 

modules

Number 

of non- 

real-time 

modules

Type of 

measured 

module

Jitter 

mean (μs)

Jitter 

variance 

(μs)

Worst- 

case jitter 

(μs)

.so .exe .so .exe

1 1 0 0 0 0 Thread −0.027 0.000839 3.772

2 15 0 0 0 0 Thread 0.127 0.002037 2.933

3 5 3 0 0 0 Thread −0.042 0.001263 2.793

4 5 3 0 0 0 Process −5.723 19.480341 11.598

5 5 3 11 0 0 Thread 0.033 0.001174 0.716

6 5 3 11 0 0 Process −5.580 19.624376 11.614

7 5 3 5 6 0 Thread −0.105 0.001633 1.405

8 5 3 5 6 0 Process −5.991 21.136330 12.438

9 5 3 5 5 8 Thread 0.007 0.001424 1.104

10 5 3 5 5 8 Process −5.519 20.617964 11.758

Table 1. 
Test cases for evaluation of scheduling algorithm.
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Figure 14. 
Jitters in test case 3.

Figure 12. 
Jitters in test case 1.

Figure 13. 
Jitters in test case 2.
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module is 2.933 μs, which is the result of test case 2, and the jitter rate is 2.933% with 
respect to 100 μs.

For the thread-type periodic module, as the load increases, the variation 
amount of jitters also increases; however, the worst-case jitter does not exceed 
4 μs, and the change in the jitter variances is not significant. For the process-type 
periodic module, as the load increases, the variation amount of jitters increases 
significantly; however, the worst-case jitter does not exceed 12.5 μs, and the 
changes in the jitter variances and worst-case jitters are not large. The test results 
in Table 1 and Figures 11–18 indicate that the proposed scheduling algorithm 
can be efficiently used by industrial automation devices even for various types of 
applications.

It is evident from the results in Table 1 and Figures 12–19 that the basic period 
is maintained very satisfactorily in all test cases. This means that the proposed 

Figure 15. 
Jitters in test case 4.

Figure 16. 
Jitters in test case 5.



Scheduling Problem - New Applications and Trends

16

Figure 19. 
Jitters in test case 10.

Figure 18. 
Jitters in test case 9.

Figure 17. 
Jitters in test case 6.



17

Real-Time Scheduling Method for Middleware of Industrial Automation Devices
DOI: http://dx.doi.org/10.5772/intechopen.86769

scheduler can work effectively in various situations. Moreover, it can be observed 
from the test results that the process-type periodic module has a greater effect on 
jitters than the thread-type and the sporadic modules. Hence, it is better to use the 
thread-type than the process-type for periodic modules. If the process-type mod-
ules as legacy modules are utilized, it is necessary to reduce their number.

4. Conclusion

This study proposed a real-time scheduling algorithm for middleware of 
industrial automation devices or controllers such as industrial robots and PLCs. 
The proposed algorithm strictly maintains the periods and supports both periodic 
and sporadic executions with event handling. It has managed modules, namely, the 
thread type (or .so type) and process type (or .exe type), for periodic execution, 
sporadic execution, and non-real-time execution. This study provided the program 
structures of the thread-type and process-type modules for periodic and sporadic 
services to manage them efficiently. For sporadic services, the scheduler checks 
for the occurrence of events using the condition() method in the sporadic modules 
before invoking the corresponding module.

The proposed scheduling algorithm was implemented using the Xenomai 
real-time OS and Linux, and it was validated through some test cases. The worst-
case jitters measured in the thread-type periodic module and the process-type 
periodic module were 2.933 and 12.438 μs, respectively, where the jitter rates were 
2.933 and 12.438% with respect to the basic period of 100 μs. The basic period was 
maintained very satisfactorily without missing any periods in all the test cases. The 
test results showed that the proposed scheduler could work well in various situa-
tions. Furthermore, it is better to use the thread-type module than the process-type 
module when periodic modules are used. It was demonstrated that the proposed 
scheduling algorithm could be used for the middleware of industrial automation 
devices or controllers.

In future research, the proposed scheduling algorithm will be tested to handle 
periodic modules, sporadic events, and non-real-time modules in multicore sys-
tems, manage process-type periodic modules with smaller worst-case jitters, and 
support various types of OSs.
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