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Chapter

On the Stabilization of Infinite
Dimensional Semilinear Systems
El Hassan Zerrik and Abderrahman Ait Aadi

Abstract

This chapter considers the question of the output stabilization for a class of
infinite dimensional semilinear system evolving on a spatial domain Ω by controls
depending on the output operator. First we study the case of bilinear systems, so we
give sufficient conditions for exponential, strong and weak stabilization of the
output of such systems. Then, we extend the obtained results for bilinear systems
to the semilinear ones. Under sufficient conditions, we obtain controls that
exponentially, strongly, and weakly stabilize the output of such systems. The
method is based essentially on the decay of the energy and the semigroup approach.
Illustrations by examples and simulations are also given.

Keywords: semilinear systems, output stabilization, feedback controls,
decay estimate, semigroups

1. Introduction

We consider the following semilinear system

_z tð Þ ¼ Az tð Þ þ v tð ÞBz tð Þ, t≥0,

z 0ð Þ ¼ z0,

�

(1)

where A : D Að Þ⊂H ! H generates a strongly continuous semigroup of
contractions S tð Þð Þt≥0 on a Hilbert space H, endowed with norm and inner product

denoted, respectively, by ∥:∥ and :; :h i, v :ð Þ∈Vad (the admissible controls set) is a
scalar valued control and B is a nonlinear operator from H to H with B 0ð Þ ¼ 0 so
that the origin be an equilibrium state of system (1). The problem of feedback
stabilization of distributed system (1) was studied in many works that lead to
various results. In [1], it was shown that the control

v tð Þ ¼ � z tð Þ;Bz tð Þh i, (2)

weakly stabilizes system (1) provided that B be a weakly sequentially continuous
operator such that, for all ψ ∈H, we have

BS tð Þψ ; S tð Þψh i ¼ 0, ∀t≥0 ) ψ ¼ 0, (3)

and if (3) is replaced by the following assumption
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ðT

0
∣ BS sð Þψ ; S sð Þψh i∣ds≥ γ∥ψ∥2, ∀ψ ∈H for some γ;T >0ð Þ, (4)

then control (2) strongly stabilizes system (1) [2].
In [3], the authors show that when the resolvent of A is compact, B self-adjoint

and monotone, then strong stabilization of system (1) is proved using bounded
controls.

Now, let the output state space Y be a Hilbert space with inner product :; :h iY
and the corresponding norm ∥:∥Y , and let C∈L H;Yð Þ be an output operator.

System (1) is augmented with the output

w tð Þ≔Cz tð Þ: (5)

The output stabilization means that w tð Þ ! 0 as t ! þ∞ using suitable controls.
In the case when Y ¼ H and C ¼ I, one obtains the classical stabilization of the state.
If Ω be the system evolution domain and ω⊂Ω, when C ¼ χω, the restriction opera-
tor to a subregion ω of Ω, one is concerned with the behaviour of the state only in a
subregion of the system evolution domain. This is what we call regional stabilization.

The notion of regional stabilization has been largely developed since its closeness
to real applications, and the existence of systems which are not stabilizable on the
whole domain but stabilizable on some subregion ω. Moreover, stabilizing a system
on a subregion is cheaper than stabilizing it on the whole domain [4–8]. In [9], the
author establishes weak and strong stabilization of (5) for a class of semilinear
systems using controls that do not take into account the output operator.

In this paper, we study the output stabilization of semilinear systems by controls
that depend on the output operator. Firstly we consider the case of bilinear systems,
then we give sufficient conditions to obtain exponential, strong and weak stabiliza-
tion of the output. Secondly, we consider the case of semilinear systems, and then
under sufficient conditions, we obtain controls that exponentially, strongly, and
weakly stabilize the output of such systems. The method is based essentially on the
decay of the energy and the semigroup approach. Illustrations by examples and
simulations are also given.

This paper is organized as follows: In Section 2, we discuss sufficient conditions
to achieve exponential, strong and weak stabilization of the output (5) for bilinear
systems. In Section 3, we study the output stabilization for a class of semilinear
systems. Section 4 is devoted to simulations.

2. Stabilization for bilinear systems

In this section, we develop sufficient conditions that allow exponential, strong
and weak stabilization of the output of bilinear systems. Consider system (1) with
B : H ! H is a bounded linear operator and augmented with the output (5).

Definition 1.1 The output (5) is said to be:

1. weakly stabilizable, if there exists a control v :ð Þ∈Vad such that for any initial
condition z0 ∈H, the corresponding solution z tð Þ of system (1) is global and
satisfies

Cz tð Þ;ψh iY ! 0, ∀ψ ∈Y, as t ! ∞,

2. strongly stabilizable, if there exists a control v :ð Þ∈Vad such that for any initial
condition z0 ∈H, the corresponding solution z tð Þ of system (1) is global and
verifies
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∥Cz tð Þ∥Y ! 0, as t ! ∞,

and

3. exponentially stabilizable, if there exists a control v :ð Þ∈Vad such that for any
initial condition z0 ∈H, the corresponding solution z tð Þ of system (1) is global
and there exist α, β>0 such that

∥Cz tð Þ∥Y ≤ αe�βt∥z0∥, ∀t>0:

Remark 1. It is clear that exponential stability of (5) ) strong stability of (5) )
weak stability of (5).

2.1 Exponential stabilization

The following result provides sufficient conditions for exponential stabilization
of the output (5).

Theorem 1.2 Let A generate a semigroup S tð Þð Þt≥0 of contractions onH and if the

condition:

1. R e C ∗CAy; yh ið Þ≤0, ∀y∈D Að Þ, where C ∗ is the adjoint operator of C,

2. ∥CS tð Þy∥Y ≤ α∥Cy∥Y and ∥CBy∥Y ≤ β∥Cy∥Y , for some α, β>0,

3. there exist T, γ >0 such that

ðT

0
∣ C ∗CBS tð Þy; S tð Þyh i∣dt≥ γ∥Cy∥2Y ,∀y∈H, (6)

hold, then there exists ρ>0 for which the control

v tð Þ ¼ �ρsign C ∗CBz tð Þ; z tð Þh Þð

exponentially stabilizes the output (5).
Proof: System (1) has a unique mild solution z tð Þ [10] defined on a maximal

interval 0; tmax½ � by the variation of constants formula

z tð Þ ¼ S tð Þz0 þ
ðt

0
v sð ÞS t� sð ÞBz sð Þds: (7)

From hypothesis 1, we deduce

d

dt
∥Cz tð Þ∥2Y ≤ � 2ρ ∣ C ∗CBz tð Þ; z tð Þh i∣:

Integrating this inequality, we get

∥Cz tð Þ∥2Y � ∥Cz 0ð Þ∥2Y ≤ � 2ρ

ðt

0
∣ C ∗CBz τð Þ; z τð Þh i∣dτ: (8)

It follows that

∥Cz tð Þ∥Y ≤∥Cz0∥Y : (9)
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For all z0 ∈H and t≥0, we have

C ∗CBS tð Þz0; S tð Þz0h i ¼ C ∗CBz tð Þ; z tð Þh i � C ∗CBz tð Þ; z tð Þ � S tð Þz0h i
þ C ∗CB S tð Þz0 � z tð Þð Þ; S tð Þz0h i:

Using hypothesis 2 and (9), we have

∣ C ∗CBS tð Þz0; S tð Þz0h i∣ ≤ ∣ C ∗CBz tð Þ; z tð Þh i∣þ 2ραβ∥C z tð Þ � S tð Þz0ð Þ∥Y∥Cz0∥Y :

It follows that from (7) and condition 2 that

∣ C ∗CBS tð Þz0; S tð Þz0h i∣ ≤ ∣ C ∗CBz tð Þ; z tð Þh i∣þ 2ρα2β2T∥Cz0∥
2
Y : (10)

Integrating (10) over the interval 0;T½ � and replacing z0 by z tð Þ and using (6),
we deduce that

γ � 2ρα2β2T2
� �

∥Cz tð Þ∥2Y ≤
ðtþT

t
∣ C ∗CBz sð Þ; z sð Þh i∣ds: (11)

It follows from the inequality (8) that the sequence ∥Cz nð Þ∥Y decreases and that
for all n∈N, we have

∥Cz nTð Þ∥2Y � ∥Cz nþ 1ð ÞTð Þ∥2Y ≥ 2ρ

ð nþ1ð ÞT

nT

∣ C ∗CBz sð Þ; z sð Þh i∣ds:

Using (11), we deduce

∥Cz nTð Þ∥2Y � ∥Cz nþ 1ð ÞTð Þ∥2Y ≥ 2ρ γ � 2ρα2β2T2
� �

∥Cz nTð Þ∥2Y :

Taking 0< ρ<
γ

2α2β2T2, we get

∥Cz nTð Þ∥2Y ≥ 2ρ 1þ 2ρ γ � 2ρα2β2T2
� �� �

∥Cz nþ 1ð ÞTð Þ∥2Y :

Then

∥Cz nTð Þ∥2Y ≤
1

Mn ∥Cz0∥
2
Y :

where M ¼ 1þ 2ρ γ � 2ρα2β2T2
� �� �

> 1.
Since ∥Cz tð Þ∥Y decreases, we deduce that

∥Cz tð Þ∥Y ≤
ffiffiffiffiffi

M
p

e
�ln Mð Þ

2T t∥z0∥,∀t≥0,

which gives the exponential stability of the output (5).
Example 1 On Ω ¼�0, 1½, we consider the following system

∂z x; tð Þ
∂t

¼ Az x; tð Þ þ v tð Þz x; tð Þ Ω��0, þ∞½
z x;0ð Þ ¼ z0 xð Þ Ω,

8

<

:

(12)

where H ¼ L2 Ωð Þ and Az ¼ �z. The operator A generates a semigroup of con-

tractions on L2 Ωð Þ given by S tð Þz0 ¼ e�tz0. Let ω be a subregion of Ω. System (12) is
augmented with the output

4
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w tð Þ≔ χωz tð Þ, (13)

where χω : L2 Ωð Þ ! L2 ωð Þ, the restriction operator to ω and χ ∗
ω is the adjoint

operator of χω. Conditions 1 and 3 of Theorem 1.2 hold, indeed: we have

χ ∗
ω χωAy; y

� �

¼ �∥χωy∥
2
L2 ωð Þ ≤0, ∀y∈L2 Ωð Þ,

and for T ¼ 2, we have

ð2

0
χ ∗
ω χωBe

�ty; e�ty
� �

dt ¼
ð2

0
e�2tdt

ð

ω

yj j2dx ¼ 1

2
� 1

2e4

� 	

∥χωy∥
2
L2 ωð Þ:

We conclude that for all 0< ρ< e4�1
16e4 , the control

v tð Þ ¼
�ρ if ∥χωz tð Þ∥2

L2 ωð Þ 6¼ 0,

0 if ∥χωz tð Þ∥2
L2 ωð Þ ¼ 0,

 

exponentially stabilizes the output (13).

2.2 Strong stabilization

The following result will be used to prove strong stabilization of the output (5).
Theorem 1.3 Let A generate a semigroup S tð Þð Þt≥0 of contractions on H and

B : H ! H is a bounded linear operator. If the conditions:

1. R e C ∗CAψ ;ψh ið Þ≤0, ∀ψ ∈D Að Þ,

2.R e C ∗CBψ ;ψh i Bψ ;ψh ið Þ≥0, ∀ψ ∈H, hold, then control

v tð Þ ¼ � C ∗CBz tð Þ; z tð Þh i
1þ ∣ C ∗CBz tð Þ; z tð Þh i∣ , (14)

allows the estimate

ðT

0
j C ∗CBS sð Þz tð Þ; S sð Þz tð Þh ijds

� 	2

¼ O

ðtþT

t

C ∗CBz sð Þ; z sð Þh ij j2
1þ ∣ C ∗CBz sð Þ; z sð Þh i∣ ds

 !

, as t ! þ∞:

(15)

Proof: From hypothesis 1 of Theorem 1.3, we have

1

2

d

dt
∥Cz tð Þ∥2Y ≤R e v tð Þ C ∗CBz tð Þ; z tð Þh ið Þ:

In order to make the energy nonincreasing, we consider the control

v tð Þ ¼ � C ∗CBz tð Þ; z tð Þh i
1þ ∣ C ∗CBz tð Þ; z tð Þh i∣ ,

so that the resulting closed-loop system is

_z tð Þ ¼ Az tð Þ þ f z tð Þð Þ, z 0ð Þ ¼ z0, (16)
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where

f yð Þ ¼ � C ∗CBy; yh i
1þ ∣ C ∗CBy; yh i∣By, for all y∈H

Since f is locally Lipschitz, then system (16) has a unique mild solution z tð Þ [10]
defined on a maximal interval 0; tmax½ � by

z tð Þ ¼ S tð Þz0 þ
ðt

0
S t� sð Þf z sð Þð Þds: (17)

Because of the contractions of the semigroup, we have

d

dt
∥z tð Þ∥2 ≤ � 2

C ∗CBz tð Þ; z tð Þh i Bz tð Þ; z tð Þh i
1þ ∣ C ∗CBz tð Þ; z tð Þh i∣ :

Integrating this inequality, we get

∥z tð Þ∥2 � ∥z 0ð Þ∥2 ≤ � 2

ðt

0

C ∗CBz sð Þ; z sð Þh i Bz sð Þ; z sð Þh i
1þ ∣ C ∗CBz sð Þ; z sð Þh i∣ ds:

It follows that

∥z tð Þ∥≤∥z0∥: (18)

From hypothesis 1 of Theorem 1.3, we have

d

dt
∥Cz tð Þ∥2Y ≤ � 2

C ∗CBz tð Þ; z tð Þh ij j2
1þ ∣ C ∗CBz tð Þ; z tð Þh i∣ :

We deduce

∥Cz tð Þ∥2Y � ∥Cz 0ð Þ∥2Y ≤ � 2

ðt

0

C ∗CBz sð Þ; z sð Þh ij j2
1þ ∣ C ∗CBz sð Þ; z sð Þh i∣ ds: (19)

Using (17) and Schwartz inequality, we get

∥z tð Þ � S tð Þz0∥≤∥B∥∥z0∥ T

ðt

0

C ∗CBz sð Þ; z sð Þh ij j2
1þ ∣ C ∗CBz sð Þ; z sð Þh i∣ ds

 !1
2

, ∀t∈ 0;T½ �: (20)

Since B is bounded and C continuous, we have

∣ C ∗CBS sð Þz0; S sð Þz0h i∣ ≤ 2K∥B∥∥z sð Þ � S sð Þz0∥∥z0∥þ ∣ C ∗CBz sð Þ; z sð Þh i∣, (21)

where K is a positive constant.
Replacing z0 by z tð Þ in (20) and (21), we get

∣ C ∗CBS sð Þz tð Þ; S sð Þz tð Þh i∣ ≤ 2K∥B∥2∥z0∥
2 T

Ð tþT
t

〈C ∗CBz sð Þ;z sð Þ〉j j2
1þ∣ C ∗CBz sð Þ;z sð Þh i∣ ds


 �1
2

þ ∣ C ∗CBz tþ sð Þ; z tþ sð Þh i∣, ∀t≥ s≥0:

Integrating this relation over 0;T½ � and using Cauchy-Schwartz, we deduce

6
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ðT

0
∣ C ∗CBS sð Þz tð Þ; S sð Þz tð Þh i∣ds≤ 2K∥B∥2T

3
2 þ Tð 1þ K∥B∥∥z0∥

2
� �


 �

�
Ð tþT
t

〈C ∗CBz sð Þ;z sð Þ〉j j2
1þ∣ C ∗CBz sð Þ;z sð Þh i∣ ds


 �1
2
,

which achieves the proof.
The following result gives sufficient conditions for strong stabilization of the

output (5).
Theorem 1.4 Let A generate a semigroup S tð Þð Þt≥0 of contractions on H, B is a

bounded linear operator. If the assumptions 1, 2 of Theorem 1.3 and

ðT

0
∣ C ∗CBS tð Þψ ; S tð Þψh i∣dt≥ γ∥Cψ∥2Y , ∀ψ ∈H, for some T; γ >0ð Þ, (22)

holds, then control (14) strongly stabilizes the output (5) with decay estimate

∥Cz tð Þ∥Y ¼ O
1
ffiffi

t
p
� 	

, as t ! þ∞: (23)

Proof: Using (19), we deduce

∥Cz kTð Þ∥2Y � ∥Cz kþ 1ð ÞTð Þ∥2Y ≥ 2

ðk Tþ1ð Þ

kT

C ∗CBz tð Þ; z tð Þh ij j2
1þ ∣ C ∗CBz tð Þ; z tð Þh i∣ dt, k≥0:

From (15) and (22), we have

∥Cz kTð Þ∥2Y � ∥Cz kþ 1ð ÞTð Þ∥2Y ≥ β∥Cz kTð Þ∥4Y , (24)

where β ¼ γ2

2 2K∥B∥2T
3
2þT 1þK∥B∥∥z0∥

2ð Þ
� �2 :

Taking sk ¼ ∥Cz kTð Þ∥2Y , the inequality (24) can be written as

βs2k þ skþ1 ≤ sk, ∀k≥0:

Since skþ1 ≤ sk, we obtain

βs2kþ1 þ skþ1 ≤ sk, ∀k≥0:

Taking p sð Þ ¼ βs2 and q sð Þ ¼ s� I þ pð Þ�1 sð Þ in Lemma 3.3, page 531 in [11], we
deduce

sk ≤ x kð Þ, k≥0,

where x tð Þ is the solution of equation x0 tð Þ þ q x tð Þð Þ ¼ 0, x 0ð Þ ¼ s0.
Since x kð Þ≥ sk and x tð Þ decreases give x tð Þ≥0, ∀t≥0. Furthermore, it is easy to

see that q sð Þ is an increasing function such that

0≤ q sð Þ≤ p sð Þ,∀s≥0:

We obtain �βx tð Þ2 ≤ x0 tð Þ≤0, which implies that

x tð Þ ¼ O t�1
� �

, as t ! þ∞:
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Finally the inequality sk ≤ x kð Þ, together with the fact that ∥Cz tð Þ∥Y decreases,
we deduce the estimate (23).

Example 2 Let us consider a system defined on Ω ¼�0, 1½ by

∂z x; tð Þ
∂t

¼ Az x; tð Þ þ v tð Þa xð Þz x; tð Þ Ω��0, þ∞½

z x;0ð Þ ¼ z0 xð Þ Ω

z 0; tð Þ ¼ z 1; tð Þ ¼ 0 t>0,

8

>

>

>

>

<

>

>

>

>

:

(25)

where H ¼ L2 Ωð Þ, Az ¼ �z, and a∈L∞ð�0, 1½Þ such that a xð Þ≥0 a.e on �0, 1½ and
a xð Þ≥ c>0 on subregion ω of Ω and v :ð Þ∈L∞ 0;þ∞ð Þ the control function. System
(25) is augmented with the output

w tð Þ ¼ χωz tð Þ: (26)

The operator A generates a semigroup of contractions on L2 Ωð Þ given by

S tð Þz0 ¼ e�tz0. For z0 ∈L2 Ωð Þ and T ¼ 2, we obtain

ð2

0
χ ∗
ω χωBS tð Þz0; S tð Þz0

� �

dt ¼
ð2

0
e�2tdt

ð

ω

a xð Þ z0j j2dx≥ β∥χωz0∥
2
L2 ωð Þ,

with β ¼ c
Ð 2
0 e

�2tdt>0.
Applying Theorem 1.4, we conclude that the control

v tð Þ ¼ �
Ð

ω
a xð Þ z x; tð Þj j2dx

1þ
Ð

ω
a xð Þ z x; tð Þj j2dx

strongly stabilizes the output (26) with decay estimate

∥χωz tð Þ∥L2 ωð Þ ¼ O
1
ffiffi

t
p
� 	

, as t ! þ∞:

2.3 Weak stabilization

The following result provides sufficient conditions for weak stabilization of the
output (5).

Theorem 1.5 Let A generate a semigroup S tð Þð Þt≥0 of contractions onH and B is a

compact operator. If the conditions:

1. R e C ∗CAψ ;ψh ið Þ≤0, ∀ψ ∈D Að Þ,

2.R e C ∗CBψ ;ψh i Bψ ;ψh ið Þ≥0, ∀ψ ∈H,

3. C ∗CBS tð Þψ ; S tð Þψh i ¼ 0, ∀t≥0 ) Cψ ¼ 0 hold, then control (14) weakly
stabilizes the output (5).

Proof: Let us consider the nonlinear semigroup Γ tð Þz0 ≔ z tð Þ and let tnð Þ be a
sequence of real numbers such that tn ! þ∞ as n ! þ∞.

From (18), Γ tnð Þz0 is bounded inH, then there exists a subsequence tϕ nð Þ
� �

of tnð Þ
such that

8
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Γ tϕ nð Þ
� �

z0 ⇀ψ , as n ! ∞:

Since B is compact and C continuous, we have

lim
n!þ∞

C ∗CBS tð ÞΓ tϕ nð Þ
� �

z0; S tð ÞΓ tϕ nð Þ
� �

z0
� �

¼ C ∗CBS tð Þψ ; S tð Þψh i:

For all n≥ , we set

Λn tð Þ≔
ðϕ nð Þþt

ϕ nð Þ

C ∗CBΓ sð Þz0;Γ sð Þz0h ij j2
1þ ∣ C ∗CBΓ sð Þz0;Γ sð Þz0h i∣ ds:

It follows that ∀t≥0, Λn tð Þ ! 0 as n ! þ∞.
Using (15), we get

lim
n!þ∞

ðt

0
∣ C ∗CBS sð ÞΓ tϕ nð Þ

� �

z0; S sð ÞΓ tϕ nð Þ
� �

z0
� �

∣ds ¼ 0:

Hence, by the dominated convergence Theorem, we have

ðt

0
∣ C ∗CBS sð Þψ ; S sð Þψh i∣ds ¼ 0:

We conclude that

C ∗CBS sð Þψ ; S sð Þψh i ¼ 0, ∀s∈ 0; t½ �:

Using condition 3 of Theorem 1.5, we deduce that

CΓ tϕ nð Þ
� �

z0 ⇀0, as n ! þ∞: (27)

On the other hand, it is clear that (27) holds for each subsequence tϕ nð Þ
� �

of tnð Þ
such that CΓ tϕ nð Þ

� �

z0 weakly converges in Y. This implies that ∀φ∈Y, we have

CΓ tnð Þz0;φh i ! 0 as n ! þ∞ and hence

CΓ tð Þz0 ⇀0, as t ! þ∞:

Example 3 Consider a system defined in Ω ¼�0, þ∞½, and described by

∂z x; tð Þ
∂t

¼ � ∂z x; tð Þ
∂x

þ v tð ÞBz x; tð Þ x∈Ω, t>0

z x;0ð Þ ¼ z0 xð Þ x∈Ω

z 0; tð Þ ¼ z ∞; tð Þ ¼ 0 t>0,

8

>

>

>

>

<

>

>

>

>

:

(28)

where Az ¼ � ∂z
∂x with domain

D Að Þ ¼ z∈H1 Ωð Þ j z 0ð Þ ¼ 0; z xð Þ ! 0 as x ! þ∞
� 

and Bz :ð Þ ¼
Ð 1
0 z xð Þdx :ð Þ is

the control operator. The operator A generates a semigroup of contractions

S tð Þz0ð Þ xð Þ ¼
z0 x� tð Þ if x≥ t

0 if x< t:

�

Let ω ¼�0, 1½ be a subregion of Ω and system (28) is augmented with the output

9
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w tð Þ ¼ χωz tð Þ: (29)

We have

χ ∗
ω χωAz; z

� �

¼ �
ð1

0
z0 xð Þz xð Þdx ¼ � z2 1ð Þ

2
≤0,

so, the assumption 1 of Theorem 1.5 holds. The operator B is compact and
verifies

χ ∗
ω χωBS tð Þz0; S tð Þz0

� �

¼
ð1�t

0
z0 xð Þdx

� 	2

, 0≤ t≤ 1:

Thus

χ ∗
ω χωBS tð Þz0; S tð Þz0

� �

¼ 0, ∀t≥0 ) z0 xð Þ ¼ 0, a:e on ω:

Then, the control

v tð Þ ¼ �
Ð 1
0 z x; tð Þdx


 �2

1þ
Ð 1
0 z x; tð Þdx


 �2 , (30)

weakly stabilizes the output (29).

3. Stabilization for semilinear systems

In this section, we give sufficient conditions for exponential, strong and weak
stabilization of the output (5). Consider the semilinear system (1) augmented with
the output (5).

4. Exponential stabilization

In this section, we develop sufficient conditions for exponential stabilization of
the output (5).

The following result concerns the exponential stabilization of (5).
Theorem 1.6 Let A generate a semigroup S tð Þð Þt≥0 of contractions on H and B be

locally Lipschitz. If the conditions:

1. R e C ∗CAy; yh ið Þ≤0, ∀y∈D Að Þ,

2.R e C ∗CBy; yh i By; yh ið Þ≥0, ∀y∈H,

3. there exist T, γ >0, such that

ðT

0
∣ C ∗CBS tð Þy; S tð Þyh i∣dt≥ γ∥Cy∥2Y , ∀y∈H, (31)

hold, then the control
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v tð Þ ¼
� C ∗CBz tð Þ; z tð Þh i

∥z tð Þ∥2
, if z tð Þ=¼ 0,

0, if z tð Þ ¼ 0,

8

<

:

(32)

exponentially stabilizes the output (5).
Proof: Since S tð Þð Þt≥0 is a semigroup of contractions, we have

d

dt
∥z tð Þ∥2 ≤ 2R e v tð Þ Bz tð Þ; z tð Þh ið Þ:

Integrating this inequality, and using hypothesis 2 of Theorem 1.6, it follows that

∥z tð Þ∥≤∥z0∥: (33)

For all z0 ∈H and t≥0, we have

C ∗CBS tð Þz0; S tð Þz0h i ¼ C ∗CBz tð Þ; z tð Þh i � C ∗CBz tð Þ; z tð Þ � S tð Þz0h i
þ C ∗CBS tð Þz0 � C ∗CBz tð Þ; S tð Þz0h i:

Since B is locally Lipschitz, there exists a constant positive L that depends on
∥z0∥ such that

∣ C ∗CBS tð Þz0; S tð Þz0h i∣ ≤ ∣ C ∗CBz tð Þ; z tð Þh i∣þ 2αL∥z tð Þ � S tð Þz0∥∥z0∥, (34)

where α is a positive constant.
Using (33), we deduce

∣ C ∗CBz tð Þ; z tð Þh i∣ ≤ ∣v z tð Þð Þ∣∥z tð Þ∥∥z0∥, ∀t∈ 0;T½ �: (35)

While from the variation of constants formula and using Schwartz’s inequality,
we obtain

∥z tð Þ � S tð Þz0∥≤L T

ðT

0
v z tð Þð Þj j2∥z tð Þ∥2dt

� 	

1
2

: (36)

Integrating (34) over the interval 0;T½ � and taking into account (35) and (36),
we get

Ð T
0 ∣ C ∗CBS tð Þz0; S tð Þz0h i∣dt≤ 2αT

3
2L2∥z0∥

Ð T
0 v z tð Þð Þj j2∥z tð Þ∥2dt


 �1
2

þ T
1
2∥z0∥

Ð T
0 v z tð Þð Þj j2∥z tð Þ∥2dt


 �1
2
:

Now, let us consider the nonlinear semigroup U tð Þz0 ≔ z tð Þ [1].
Replacing z0 by U tð Þz0 in (37), and using the superposition properties of the

semigroup U tð Þð Þt≥0, we deduce that

Ð T
0 ∣ C ∗CBS sð ÞU tð Þz0; S sð ÞU tð Þz0h i∣ds≤ 2αT

3
2L2∥U tð Þz0∥

�
Ð tþT
t v U sð Þz0ð Þj j2∥U sð Þz0∥2ds


 �1
2

þ T
1
2∥U tð Þz0∥

Ð tþT
t v U sð Þz0ð Þj j2∥U sð Þz0∥2ds


 �1
2

(37)
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Thus, by using (31) and (37), it follows that

γ∥CU tð Þz0∥Y ≤M

ðtþT

t
v U sð Þz0ð Þj j2∥U sð Þz0∥2ds

� 	

1
2

, (38)

where M ¼ 2αTL2 þ 1
� �

T
1
2 is a non-negative constant depending on ∥z0∥ and T.

From hypothesis 1 of Theorem 1.6, we have

d

dt
∥CU tð Þz0∥2Y ≤ � 2 v U tð Þz0ð Þj j2∥U tð Þz0∥2: (39)

Integrating (39) from nT and nþ 1ð ÞT, n∈Nð Þ, we obtain

∥CU nTð Þz0∥2Y � ∥CU nþ 1ð ÞTð Þz0∥2Y ≥ 2

ð nþ1ð ÞT

nT
v U sð Þz0ð Þj j2∥U sð Þz0∥2ds:

Using (38), (39) and the fact that ∥CU tð Þz0∥Y decreases, it follows

1þ 2
γ

M


 �2
� 	

∥CU nþ 1ð ÞTð Þz0∥2Y ≤∥CU nTð Þz0∥2Y :

Then

∥CU nþ 1ð ÞTð Þz0∥Y ≤ β∥CU nTð Þz0∥Y ,

where β ¼ 1

1þ2 γ

Mð Þ2
� �1

2
:

By recurrence, we show that ∥CU nTð Þz0∥Y ≤ βn∥Cz0∥Y .
Taking n ¼ E t

T

� �

the integer part of t
T, we deduce that

∥CU tð Þz0∥Y ≤Re�σt∥z0∥,

where R ¼ α 1þ 2 γ

M

� �2

 �1

2
, with α>0 and σ ¼ ln 1þ2 γ

Mð Þ2
� �

2T >0, which achieves the

proof.

4.1 Strong stabilization

The following result provides sufficient conditions for strong stabilization of the
output (5).

Theorem 1.7 Let A generate a semigroup S tð Þð Þt≥0 of contractions on H and B be

locally Lipschitz. If the conditions:

1. R e C ∗CAy; yh ið Þ≤0, ∀y∈D Að Þ,

2.R e C ∗CBy; yh i By; yh ið Þ≥0, ∀y∈H,

3. there exist T, γ >0, such that

ðT

0
∣ C ∗CBS tð Þy; S tð Þyh i∣dt≥ γ∥Cy∥2Y , ∀y∈H, (40)
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hold, then the control

v tð Þ ¼ � C ∗CBz tð Þ; z tð Þh i, (41)

strongly stabilizes the output (5).
Proof: From hypothesis 1 of Theorem 1.7, we obtain

d

dt
∥Cz tð Þ∥2Y ≤ � 2 C ∗CBz tð Þ; z tð Þh ij j2: (42)

Integrating this inequality, gives

2

ðt

0
C ∗CBz sð Þ; z sð Þh ij j2ds≤∥Cz 0ð Þ∥2Y :

Thus

ðþ∞

0
C ∗CBz sð Þ; z sð Þh ij j2ds< þ∞, (43)

From the variation of constants formula and using Schwartz’s inequality, we
deduce

∥z tð Þ � S tð Þz0∥≤LT
1
2

ðT

0
C ∗CBz sð Þ; z sð Þh ij j2ds

� 	

1
2

: (44)

Integrating (34) over the interval 0;T½ � and taking into account (44), we obtain

ðT

0
∣ C ∗CBS sð Þz0; S sð Þz0h i∣ds≤ 2αL2T

3
2∥z0∥

2

ðT

0
〈C ∗CBz sð Þ; z sð Þ〉j j2ds

� 	

1
2

þ T
1
2
Ð T
0 〈C ∗CBz sð Þ; z sð Þ〉j j2ds


 �1
2
:

Replacing z0 by z tð Þ and using the superposition property of the solution, we get

ðT

0
∣ C ∗CBS sð Þz tð Þ; S sð Þz tð Þh i∣ds≤ 2αL2T

3
2∥z0∥

2

ðtþT

t
〈C ∗CBz sð Þ; z sð Þ〉j j2ds

� 	

1
2

þ T
1
2

ðtþT

t
〈C ∗CBz sð Þ; z sð Þ〉j j2ds

� 	

1
2

:

(45)

By (43), we get

ðtþT

t
∣ C ∗CBS sð Þz tð Þ; S sð Þz tð Þh i∣ds ! 0, as t ! þ∞: (46)

From (40) and (46), we deduce that ∥Cz tð Þ∥Y ! 0, as t ! þ∞, which
completes the proof.

Proposition 1.8 Let A generate a semigroup S tð Þð Þt≥0 of contractions on H, B be

locally Lipschitz and the assumptions 1, 2 and 3 of Theorem 1.7 hold, then the
control (41) strongly stabilizes the output (5) with decay estimate
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∥Cz tð Þ∥Y ¼ O t�
1
2


 �

, as t ! þ∞: (47)

Proof: Using (45), we get

ðT

0
∣ C ∗CBS sð ÞU tð Þz0; S sð ÞU tð Þz0h i∣ds≤ θ

ffiffiffiffiffiffiffiffi

ξ tð Þ
p

, (48)

where θ ¼ 2αTL2∥z0∥
2 þ 1

� �

T
1
2 and ξ tð Þ ¼

ðtþT

t
C ∗CBU sð Þz0;U sð Þz0h ij j2ds

� 	

.

From (40) and (48), we deduce that

ϱ
ffiffiffiffiffiffiffiffiffiffiffiffi

ξ nTð Þ
p

≥∥CU nTð Þz0∥2Y , ∀n≥0, (49)

where ϱ ¼ 1
γ
θ:

Integrating the above inequality gives

d

dt
∥CU tð Þz0∥2Y ≤ � 2 C ∗CBU tð Þz0;U tð Þz0h ij j2,

from nT to nþ 1ð ÞT, n∈Nð Þ and using (49), we obtain

∥CU nTð Þz0∥2Y � ∥CU nT þ Tð Þz0∥2Y ≥ 2ξ nTð Þ, ∀n≥0:

We obtain

ϱ2∥CU nT þ Tð Þz0∥2Y � ϱ2∥CU nTð Þz0∥2Y ≤ � 2∥CU nTð Þz0∥4Y , ∀n≥0: (50)

Let us introduce the sequence rn ¼ ∥CU nTð Þz0∥2Y , ∀n≥0:
Using (50), we deduce that

rn � rnþ1

r2n
≥

2

ϱ2
, ∀n≥0:

Since the sequence rnð Þ decreases, we get

rn � rnþ1

rn:rnþ1
≥

2

ϱ2
, ∀n≥0,

and also

1

rnþ1
� 1

rn
≥

2

ϱ2
, ∀n≥0:

We deduce that

rn ≤
r0

2r0
ϱ2
nþ 1

, ∀n≥0:

Finally, introducing the integer part n ¼ E t
T

� �

and from (42), the function
t ! ∥CU tð Þz0∥Y decreases. We deduce the estimate

∥Cz tð Þ∥Y ¼ O t�1=2

 �

, as t ! þ∞:
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4.2 Weak stabilization

The following result discusses the weak stabilization of the output (5).
Theorem 1.9 Let A generate a semigroup S tð Þð Þt≥0 of contractions on H, B be

locally Lipschitz and weakly sequentially continuous. If assumptions 1, 2 of
Theorem 1.7 and

C ∗CBS tð Þy; S tð Þyh i ¼ 0, ∀t≥0 ) Cy ¼ 0, (51)

hold, then the control

v tð Þ ¼ � C ∗CBz tð Þ; z tð Þh i, (52)

weakly stabilizes the output (5).
Proof: Let us consider ψ ∈Y and tnð Þ≥0 be a sequence of real numbers such that

tn ! þ∞, as n ! þ∞.
Using (42), we deduce that the sequence hn ¼ Cz tnð Þ;ψh iY is bounded.
Let hγ nð Þ be an arbitrary convergent subsequence of hn.

From (33), the subsequence z tγ nð Þ
� �

is bounded in H, so we can extract a subse-

quence still denoted by z tγ nð Þ
� �

such that z tγ nð Þ
� �

⇀φ∈H, as n ! þ∞.

Since C is continuous, B is weakly sequentially continuous and S tð Þ is continuous
∀t≥0, we get

lim
n!þ∞

C ∗CBS tð Þz tγ nð Þ
� �

; S tð Þz tγ nð Þ
� �� �

¼ C ∗CBS tð Þφ; S tð Þφh i:

From (46), we have

ðT

0
C ∗CBS sð Þz tγ nð Þ

� �

; S sð Þz tγ nð Þ
� �� �

ds ! 0, as n ! þ∞:

Using the dominated convergence Theorem, we deduce that

C ∗CBS tð Þφ; S tð Þφh i ¼ 0, for all t≥0,

which implies, according to (51), that Cφ ¼ 0, and hence hn ! 0, as t ! þ∞.
We deduce that Cz tð Þ;ψh iY ! 0, as t ! þ∞. In other words Cz tð Þ⇀0, as

t ! þ∞, which achieves the proof.
Example 4 Let us consider the system defined in Ω ¼�0, þ∞½ by

∂z x; tð Þ
∂t

¼ � ∂z x; tð Þ
∂x

þ v tð ÞBz x; tð Þ, x∈Ω, t>0,

z x;0ð Þ ¼ z0 xð Þ, x∈Ω,

8

<

:

(53)

where H ¼ L2 Ωð Þ, Az ¼ � ∂z
∂x with domain

D Að Þ ¼ z∈H1 Ωð Þ j z 0ð Þ ¼ 0; z xð Þ ! 0; as x ! þ∞
� 

, Bz ¼ ∣
Ð 1
0 z xð Þdx∣ the

control operator and v :ð Þ∈L2 0;þ∞ð Þ. The operator A generates a semigroup of
contractions

S tð Þz0ð Þ xð Þ ¼
z0 x� tð Þ, if x≥ t,

0, if x< t:

�

Let ω ¼�0, 1½ be a subregion of Ω and system (53) is augmented with the output
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w tð Þ ¼ χωz tð Þ: (54)

The operator B is sequentially continuous and verifies

χ ∗
ω χωBS tð Þz0; S tð Þz0

� �

¼ ∣

ð1�t

0
z0 xð Þdx∣

ð1�t

0
z0 xð Þdx, 0≤ t≤ 1:

Thus

χ ∗
ω χωBS tð Þz0; S tð Þz0

� �

¼ 0, ∀t≥0 ) z0 xð Þ ¼ 0 a:e x∈ �0, 1 , i:e χ �0,1 z0 ¼ 0:½½

Then, the control

v tð Þ ¼ �∣

ð1

0
z x; tð Þdx∣

ð1

0
z x; tð Þdx, (55)

weakly stabilizes the output (54).

5. Simulations

Consider system (53) with z x;0ð Þ ¼ sin πxð Þ, and augmented with the
output (54).

For ω ¼�0, 2½, we have
Figure 1 shows that the output (54) is weakly stabilized on ω with error equals

6:8� 10�4 and the evolution of control is given by Figure 2.
For ω ¼�0, 3½, we have
Figure 3 shows that the output (54) is weakly stabilized on ω with error equals

9:88� 10�4 and the evolution of control is given by Figure 4.

Figure 1.
The stabilization on ω ¼�0, 2½.
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Remark 2. It is clear that the control (55) stabilizes the state on ω, but do not
take into account the residual part Ω ω.

6. Conclusions

In this work, we discuss the question of output stabilization for a class of
semilinear systems. Under sufficient conditions, we obtain controls depending on
the output operator that strongly and weakly stabilizes the output of such
systems. This work gives an opening to others questions; this is the case of output
stabilization for hyperbolic semilinear systems. This will be the purpose of a future
research paper.

Figure 3.
The stabilization on ω ¼�0, 3½.

Figure 2.
The evolution control in the interval �0, 8�.
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Figure 4.
The evolution control in the interval �0, 12�.
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