
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322443249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter

Spectral Analysis and Numerical
Investigation of a Flexible
Structure with Nonconservative
Boundary Data
Marianna A. Shubov and Laszlo P. Kindrat

Abstract

Analytic and numerical results of the Euler-Bernoulli beam model with a two-
parameter family of boundary conditions have been presented. The co-diagonal
matrix depending on two control parameters (k1 and k2) relates a two-dimensional
input vector (the shear and the moment at the right end) and the observation
vector (the time derivatives of displacement and the slope at the right end). The
following results are contained in the paper. First, high accuracy numerical approx-
imations for the eigenvalues of the discretized differential operator (the dynamics
generator of the model) have been obtained. Second, the formula for the number
of the deadbeat modes has been derived for the case when one control parameter,
k1, is positive and another one, k2, is zero. It has been shown that the number of
the deadbeat modes tends to infinity, as k1 ! 1þ and k2 ¼ 0. Third, the existence of
double deadbeat modes and the asymptotic formula for such modes have been
proven. Fourth, numerical results corroborating all analytic findings have been
produced by using Chebyshev polynomial approximations for the continuous
problem.

Keywords: matrix differential operator, eigenvalues, Chebyshev polynomials,
numerical scheme, boundary control

1. Introduction

The present paper is concerned with the spectral analysis and numerical inves-
tigation of the eigenvalues of the Euler-Bernoulli beam model. The beam is
clamped at the left end and subject to linear feedback-type conditions with a non-
dissipative feedback matrix [1, 2]. Depending on the boundary parameters k1 and
k2, the model can be either conservative, dissipative, or completely non-dissipative.
We focus on the non-dissipative case, i.e., when the energy of a vibrating system
is not a decreasing (or nonincreasing) function of time. In our approach, the initial-
boundary value problem describing the beam dynamics is reduced to the first order
in time evolution equation in the state Hilbert space H. The evolution of the system
is completely determined by the dynamics generator Lk1,k2 , which is an unbounded
non-self-adjoint matrix differential operator (see Eqs. (2), (3), and (8)). The
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eigenmodes and the mode shapes of the flexible structure are defined as the
eigenvalues (up to a multiple i) and the generalized eigenvectors of Lk1,k2 .

Based on the results of [1, 2], the dynamics generator has a purely discrete
spectrum, whose location on the complex plane is determined by the controls k1 and
k2. Having in mind the practical applications of the asymptotic formulas [3–5], we
discuss the case of k1 ≥0 and k2 ≥0, such that ∣k1∣þ ∣k2∣.0 (see Proposition 2). As
shown in [2], even though the operator Lk1,k2 is non-dissipative, for the case k1.0
and k2 ¼ 0 (or k1 ¼ 0 and k2.0), the entire set of eigenvalues is located in the
closed upper half of the complex plane C, which means that all eigenmodes are
stable or neutrally stable. (We recall that to obtain an elastic mode from an
eigenvalues of Lk1,k2 , one should multiply the eigenvalue by a factor i).

In the paper we address the question of accuracy of the asymptotic formulas for
the eigenvalues. Namely, under what conditions the leading asymptotic terms in for-
mulas (20) and (21) can be used for practical estimation of the actual frequencies of the
flexible beam? Numerical simulations show that the accuracy of the asymptotic
formulas is really high; the leading asymptotic terms can be used by practitioners
almost immediately, i.e., almost from the first vibrational mode. The second
question is concerned with the role of the deadbeat modes. A deadbeat mode is a
purely negative elastic mode that generates a solution of the evolution equation
exponentially decaying in time. The deadbeat modes are important in engineering
applications. As we prove in the paper, when the boundary parameter k1 is close to 1
(while k2 ¼ 0), the number of the deadbeat modes is so large that the corresponding
mode shapes become important for the description of the beam dynamics. More
precisely, the number of deadbeat modes tends to infinity as k1 ! 1þ.

We have also shown that there exists a sequence of values of the parameter k1,

i.e., k
nð Þ
1

n o∞

n¼1
, such that for each k1 ¼ k

nð Þ
1 there exist a finite number of deadbeat

modes and each corresponds to a double eigenvalue of the dynamics generator Lk1,k2 .

For each value k nð Þ
1 , the operator Lk1,k2 has a two-dimensional root subspace spanned

by an eigenvector and an associate vector. This result means that for a double

deadbeat mode (corresponding to k
nð Þ
1 ), there exists a mode shape and an associate

mode shape. This fact indicates that for some values of k1 and k2, there exists a
significant number of associate vectors of Lk1,k2 . Therefore, if one can prove that the
set of the generalized eigenvectors (eigenvectors and associate vectors together)
forms an unconditional basis for the state space, then construction of the
bi-orthogonal basis [6] would be a more complicated problem than for the case
when no associate vectors exist.

Finally, we mention that the feedback control of beams is a well-studied area
[6], with multiple applications to the control of robotic manipulators, long and
slender aircraft wings, propeller blades, large space structure [7, 8], and the
dynamics of carbon nanotubes [9]. The analysis of a classical beam model with
nonstandard feedback control law that originated in engineering literature
[4, 10–12] may be of interest for both analysts and practitioners.

This paper is organized as follows. In Section 1 we formulate the initial-
boundary value problem for the Euler-Bernoulli beam model. In Section 2, we
reformulate the problem as an evolution equation in the Hilbert space of Cauchy
data (the energy space). The dynamics generator Lk1,k2 , which is a non-self-adjoint
matrix differential operator depending on two parameters, k1 and k2, is the main object
of interest. The eigenvalues and the generalized eigenvectors of Lk1,k2 correspond to
the modes and the mode shapes of the beam. We also give numerical approxima-
tions and graphical representations of the eigenvalues of a discrete approximation
of the main operator (see Tables 1 and 2 and Figures 1 and 2). In Section 3, we
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study the deadbeat modes and derive the estimates for the number of the deadbeat
modes from below and above for different values of the boundary parameters (see
Figure 5). Section 4 is concerned with the asymptotic approximation for the set of
double deadbeat modes (see Tables 3 and 4 and Figures 6 and 7). In Section 5, we
outline the numerical scheme used for the spectral analysis of the finite-dimensional
approximation of the dynamics generator.

1.1 The initial-boundary value problem for the Euler-Bernoulli beam model
of a unit length

The Lagrangian of the system is defined by [10, 11]

1

2

Z 1

0
ϱ xð ÞA xð Þh2t x; tð Þ � E xð ÞI xð Þh2xx x; tð Þ
� �

dx, (1)

where h x; tð Þ is the transverse deflection, E xð Þ is the modulus of elasticity, I xð Þ is
the area moment of inertia, ϱ xð Þ is the linear density, and A xð Þ is the cross-sectional
area of the beam.

Assuming that the beam is clamped at the left end x ¼ 0ð Þ and free at the right
end x ¼ 1ð Þ, and applying Hamilton’s variational principle to the action functional
defined by (1), we obtain the equation of motion

ϱ xð ÞA xð Þhtt x; tð Þ þ E xð ÞI xð Þhxx x; tð Þð Þxx ¼ 0, 0≤ x≤ 1, t.0, (2)

k1 ¼ 0, k2 ¼ 0:5, EI ¼ 1, ρ ¼ 0:1, N ¼ 64, εf ¼ 10�20

No. Numerical Analytic No. Numerical Analytic

1. �7988:1þ 237:00i �7988:1þ 237:00i 18. 28:860þ 13:515i 29:453þ 14:812i

2. �7020:6þ 222:19i �7020:6þ 222:19i 19. 123:16þ 29:723i 123:08þ 29:625i

3. �6115:5þ 207:37i �6115:5þ 207:37i 20. 279:13þ 44:431i 279:14þ 44:437i

4. �5272:8þ 192:56i �5272:8þ 192:56i 21. 497:61þ 59:250i 497:61þ 59:250i

5. �4492:5þ 177:75i �4492:5þ 177:75i 22. 778:50þ 74:062i 778:50þ 74:062i

6. �3774:7 þ 162:94i �3774:7 þ 162:94i 23. 1121:8þ 88:875i 1121:8þ 88:875i

7. �3119:3þ 148:12i �3119:3þ 148:12i 24. 1527:6þ 103:69i 1527:6þ 103:69i

8. �2526:3þ 133:31i �2526:3þ 133:31i 25. 1995:7 þ 118:50i 1995:7 þ 118:50i

9. �1995:7 þ 118:50i �1995:7 þ 118:50i 26. 2526:3þ 133:31i 2526:3þ 133:31i

10. �1527:6þ 103:69i �1527:6þ 103:69i 27. 3119:3þ 148:12i 3119:3þ 148:12i

11. �1121:8þ 88:875i �1121:8þ 88:875i 28. 3774:7 þ 162:94i 3774:7 þ 162:94i

12. �778:5þ 74:062i �778:5þ 74:062i 29. 4492:5þ 177:75i 4492:5þ 177:75i

13. �497:61þ 59:250i �497:61þ 59:250i 30. 5272:8þ 192:56i 5272:8þ 192:56i

14. �279:13þ 44:431i �279:14þ 44:437i 31. 6115:5þ 207:37i 6115:5þ 207:37i

15. �123:16þ 29:723i �123:08þ 29:625i 32. 7020:6þ 222:19i 7020:6þ 222:19i

16. �28:860þ 13:515i �29:453þ 14:812i 33. 7988:1þ 237:00i 7988:1þ 237:00i

17. �2:2 � 10�17 þ 4:6007i

Table 1.
Approximations of the eigenvalues for the discrete and “continuous” operators (K. 1).
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and the boundary conditions

h 0; tð Þ ¼ hx 0; tð Þ ¼ 0 and M 1; tð Þ ¼ Q 1; tð Þ ¼ 0, (3)

where M x; tð Þ and Q x; tð Þ are the moment and the shear, respectively [10]:

M x; tð Þ ¼ E xð ÞI xð Þhxx x; tð Þ and Q x; tð Þ ¼ Mx x; tð Þ: (4)

Figure 1.
Graphical representation of the eigenvalues of the discrete and “continuous” operators (K. 1).

k1 ¼ 1:3, k2 ¼ 1:2, EI ¼ 10, ρ ¼ 0:1, N ¼ 64, εf ¼ 10�20

No. Numerical Analytic No. Numerical Analytic

1. �25266� 229:07i �25266� 229:07i 18. 99:467 � 19:816i 98:177 � 14:317i

2. �22206� 214:76i �22206� 214:76i 19. 394:17 � 28:149i 394:26� 28:634i

3. �19344 � 200:44i �19344� 200:44i 20. 887:75� 42:983i 887:75� 42:951i

4. �16679� 186:12i �16679� 186:12i 21. 1578:6� 57:267i 1578:6� 57:268i

5. �14212� 171:81i �14212� 171:81i 22. 2466:9� 71:586i 2466:9� 71:585i

6. �11942� 157:49i �11942� 157:49i 23. 3552:5� 85:902i 3552:5� 85:903i

7. �9869:1� 143:17i �9869:1� 143:17i 24. 4835:6� 100:22i 4835:6� 100:22i

8. �7993:9� 128:85i �7993:9� 128:85i 25. 6316:0� 114:54i 6316:0� 114:54i

9. �6316:0� 114:54i �6316:0� 114:54i 26. 7993:9� 128:85i 7993:9� 128:85i

10. �4835:6� 100:22i �4835:6� 100:22i 27. 9869:1� 143:17i 9869:1� 143:17i

11. �3552:5� 85:902i �3552:5� 85:903i 28. 11942� 157:49i 11942� 157:49i

12. �2466:9� 71:586i �2466:9� 71:585i 29. 14212� 171:81i 14212� 171:81i

13. �1578:6� 57:267i �1578:6� 57:268i 30. 16679� 186:12i 16679� 186:12i

14. �887:75� 42:983i �887:75� 42:951i 31. 19344� 200:44i 19344� 200:44i

15. �394:17 � 28:149i �394:26� 28:634i 32. 22206� 214:76i 22206� 214:76i

16. �99:467 � 19:816i �98:177 � 14:317i 33. 25266� 229:07i 25266� 229:07i

17. 1:5 � 10�17 þ 7:7256i

Table 2.
Approximations of the eigenvalues for the discrete and “continuous” operators (K, � 1).
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Now we replace the free right-end conditions from Eq. (3) with the following
boundary feedback control law [2, 4]. Define the input and the output as

U tð Þ ¼ �Q 1; tð Þ; M 1; tð Þ½ �T and Y tð Þ ¼ ht 1; tð Þ; hxt 1; tð Þ½ �T, (5)

where T stands for transposition. The feedback control law is given by

U tð Þ ¼ KY tð Þ, (6)

where K is the 2� 2 feedback matrix. We select

K ¼ codiag �k2;�k1ð Þ, k1, k2 ≥0, (7)

Figure 2.
Graphical representation of the eigenvalues of the discrete and “continuous” operators (K, � 1).

k2 ¼ 0, EI ¼ 1, ρ ¼ 1, N ¼ 64, εf ¼ 10�30

No. k1 ¼ 1þ 10�4 k1 ¼ 1þ 10�7 k1 ¼ 1þ 10�10

1. �222:22þ 155:56i �176:06þ 264:07i �106:90þ 372:41i

2. �133:38þ 124:45i �87:723þ 211:27i �2:4378 � 10�16 þ 254:44i

3. �64:540þ 93:396i �3:9609 � 10�18 þ 162:37i �3:0717 � 10�17 þ 123:66i

4. �9:8081þ 58:559i �5:7977 � 10�19 þ 116:23i �1:3012 � 10�17 þ 4:9349i

5. �7:7725 � 10�21 þ 5:0488i �6:3661 � 10�20 þ 44:182i �8:9232 � 10�18 þ 44:421i

6. 4:9365 � 10�21 þ 38:994i �6:0066 � 10�20 þ 4:9383i 8:9143 � 10�18 þ 44:406i

7. 7:8007 � 10�21 þ 4:8257i 6:0114 � 10�20 þ 4:9313i 1:3012 � 10�17 þ 4:9347i

8. 9:8081þ 58:559i 6:6801 � 10�20 þ 44:651i 2:9907 � 10�17 þ 123:09i

9. 64:540þ 93:396i 2:9381 � 10�18 þ 139:20i 1:1286 � 10�16 þ 234:06i

10. 133:38þ 124:45i 87:723þ 211:27i 3:2280 � 10�16 þ 315:13i

11. 222:22þ 155:56i 176:06þ 264:07i 106:90þ 372:41i

Table 3.
Eigenvalues closest to the imaginary axis as k1 ! 1þ.
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with k1, k2 being the control parameters. The feedback (6) can be written as

E 1ð ÞI 1ð Þhxx 1; tð Þ ¼ �k1ht 1; tð Þ and E xð ÞI xð Þhxx x; tð Þð Þxjx¼1 ¼ k2hxt 1; tð Þ: (8)

Finally, we arrive to the following initial-boundary value problem: the equation
of motion (2), the boundary conditions (3), and the standard initial conditions
h x;0ð Þ ¼ h0 xð Þ, ht x;0ð Þ ¼ h1 xð Þ:

Notice that the choice of a feedback matrix K defines whether the system is
dissipative or not. Indeed, let E tð Þ be the energy of the system, defined by
representation (1). Evaluating E t tð Þ on the solutions of Eq. (2) satisfying the left-end
conditions from Eqs. (3), we obtain

E t tð Þ ¼
Z 1

0
ϱ xð ÞA xð Þht x; tð Þhtt x; tð Þ þ E xð ÞI xð Þhxx x; tð Þhxxt x; tð Þ½ �x

¼ �ðE xð ÞI xð ÞhxxðxtÞÞxhtðxtÞ|x¼1 þ E 1ð ÞI 1ð Þhxx 1; tð Þhxt 1; tð Þ:
(9)

Taking into account Eqs. (4) and (6), we represent the right-hand side of Eq. (9)

as the dot product in R
2:

E t tð Þ ¼ �Q 1; tð Þht 1; tð Þ þM 1; tð Þhxt 1; tð Þ ¼ U tð Þ � Y tð Þ ¼ KY tð Þ � Y tð Þ: (10)

With the choice of K as in Eq. (7), we have

E t tð Þ ¼
0 �k2

�k1 0

� �

2ht 1; tð Þ
hxt 1; tð Þ

� �

� 2ht 1; tð Þ
hxt 1; tð Þ

� �

¼ � k1 þ k2ð Þht 1; tð Þhxt 1; tð Þ: (11)

Thus the system is not dissipative for all nonnegative values of k1 and k2.

2. Operator form of the problem

In what follows, we incorporate the cross-sectional area A xð Þ into the density,
write ρ xð Þ instead of ϱ xð ÞA xð Þ, and also abbreviate EI xð Þ � E xð ÞI xð Þ. Let H be the

k2 ¼ 0, EI ¼ 1, ρ ¼ 1, N ¼ 64, εf ¼ 10�30

# k1 ¼ 1� 10�4 k1 ¼ 1� 10�7 k1 ¼ 1� 10�10

1. �175:34þ 140:01i �129:20þ 237:56i �60:143þ 338:80i

2. �96:394þ 108:84i �50:206þ 186:90i �8:6602þ 240:01i

3. �36:896þ 78:778i �8:0431þ 121:15i �0:28608þ 123:37i

4. �6:0769þ 42:171i �0:23455þ 44:410i �0:0074192þ 44:413i

5. �0:11141þ 4:9324i �0:0035253þ 4:9348i �0:00011148þ 4:9348i

6. 0:11141þ 4:9324i 0:0035253þ 4:9348i 0:00011148þ 4:9348i

7. 6:0769þ 42:171i 0:23455þ 44:410i 0:0074192þ 44:413i

8. 36:896þ 78:778i 8:0431þ 121:15i 0:28608þ 123:37i

9. 96:394þ 108:84i 50:206þ 186:90i 8:6602þ 240:01i

10. 175:34þ 140:01i 129:20þ 237:56i 60:143þ 338:80i

Table 4.
Eigenvalues closest to the imaginary axis as k1 ! 1�.
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Hilbert space of two-component vector functions U xð Þ ¼ u0 xð Þ; u1 xð Þ½ �T equipped
with the following norm:

Uk k2H ¼ 1

2

Z 1

0
EI xð Þ u0″ xð Þj j2 þ ρ xð Þ u1 xð Þj j2
h i

x: (12)

Assuming that EI, ρ∈ C
2 0; 1ð Þ are positive functions, we obtain that the closure

of smooth functions U xð Þ ¼ u0 xð Þ; u1 xð Þ½ �T satisfying u0 0ð Þ ¼ u00 0ð Þ ¼ 0 will

produce the energy space H ¼ H2
0 0; 1ð Þ � L2 0; 1ð Þ. Here H2

0 0; 1ð Þ ¼ u∈H2 0; 1ð Þ :
�

u 0ð Þ ¼ u0 0ð Þ ¼ 0g, and the equality of function spaces is understood in the sense of
a Hilbert-space isomorphism.

Problem (2) with conditions (3) can be represented as the time evolution problem:

Ut x; tð Þ ¼ i Lk1,k2Uð Þ x; tð Þ and U x;0ð Þ ¼ u0 xð Þ; u1 xð Þ½ �T, (13)

where 0≥ x≥ 1, t≥0. The dynamics generator Lk1,k2 is given by the following
matrix differential expression:

Lk1,k2 ¼ �i

0 1

� 1

ρ xð Þ
∂
2

∂x2
EI xð Þ ∂

2

∂x2

� �

0

2

4

3

5, (14)

defined on the domain

D Lk1,k2ð Þ ¼ fU ¼ u0; u1ð ÞT ∈H : u0 ∈H4 0; 1ð Þ, u1 ∈H2
0 0; 1ð Þ; u1 0ð Þ ¼ u01 0ð Þ ¼ 0;

EI 1ð Þu0″ 1ð Þ ¼ �k1u1 1ð Þ; EI xð Þu0″ xð Þð Þ0
	

	

x¼1
¼ k2u1

0 1ð Þg: (15)

For any k1; k2ð Þ∈R
2, the adjoint operator L ∗

k1,k2 [13] is given by

L
∗
k1,k2 ¼ L�k2,�k1 , (16)

i.e., L ∗
k1,k2

is defined by the same differential expression (14) on the domain

described in Eq. (15), where k1 and k2 are replaced by �k2ð Þ and �k1ð Þ,
respectively. It follows from Eq. (16) that L0,0 is self-adjoint in H and thus L0,0 is
the dynamics generator of the clamped-free beam model. For the reader’s conve-
nience, we summarize the properties of Lk1,k2 from [1, 2] needed for the
present work.

Proposition 1:

1.Lk1,k2 is an unbounded operator with compact resolvent, whose spectrum
consists of a countable set of normal eigenvalues (i.e., isolated eigenvalues,
each of finite algebraic multiplicity [6, 13]).

2. For each k1; k2ð Þ∈R
2, ∣k1∣þ ∣k2∣.0, the operator Lk1,k2 is a rank-two

perturbation of the self-adjoint operator L0,0 in the sense that the operators

L
�1
k1,k2 and L

�1
0,0 exist and are related by the rule

L
�1
k1,k2 ¼ L

�1
0,0 þ T k1,k2 , (17)

where T k1,k2 is a rank-two operator. A similar decomposition is valid for the
adjoint operator, i.e.,
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L
�1
k1,k2


 � ∗
¼ L

�1
0,0 þ T

∗
k1,k2 , T

∗
k1,k2 ¼ T �k2,�k1 : (18)

From now on, we assume that the structural parameters are constant. In the case
of variable parameters, the spectral asymptotics will have the same leading terms
and remainder terms depending on parameter smoothness.

Proposition 2: Assume that k1, k2.0 and k1k2 6¼ EIρ. Let

K ¼ k1 þ k2
A� k1k2=A

, A ¼
ffiffiffiffiffiffiffiffi

EIρ
p

, and ∣K∣ 6¼ 1: (19)

The following asymptotic approximations for the eigenvalues λn (as ∣n∣ ! ∞) of
the operator Lk1,k2 hold:

1. If 1, ∣K∣,∞, then for ∣n∣ ! ∞ one has

λn ¼ sign Knð Þ
ffiffiffiffiffi

EI

ρ

s

πnð Þ2 � 1

4
ln 2 Kþ 1

K� 1

� �

þ iπnln
Kþ 1

K� 1

� �� �

þ O ne�π∣n∣

 �

: (20)

2. If 0,K, 1, then for n ! ∞ one has

λn ¼ sign Knð Þ
ffiffiffiffiffi

EI

ρ

r

2nþ1
2 π


 �2 � 1

4
ln 2 Kþ 1

K� 1

� �

þ iπ
2nþ 1

2

� �

ln
Kþ 1

K� 1

� ��

þO ne�π∣n∣

 �

:

�

(21)

First of all, we address the question of accuracy of the asymptotic formulas (20)
and (21). By its nature, formula (20) (as well as formula (21)) means that for any
small ε.0, one can find a positive integer N, such that all eigenvalues λn with
∣n∣ ≥N þ 1 satisfy the estimate

λn � sign Knð Þ
ffiffiffiffiffi

EI

ρ

s

πnð Þ2 � 1

4
ln 2 Kþ 1

K� 1

� �

þ iπnln
Kþ 1

K� 1

� �� �

	

	

	

	

	

	

	

	

	

	

≤ ε (22)

for the case when 1, ∣K∣,∞ and

λn � sign Knð Þ
ffiffiffiffiffi

EI

ρ

s

2nþ 1

2
π

� �2

� 1

4
ln 2 Kþ 1

K� 1

� �

þ iπ
2nþ 1

2

� �

ln
Kþ 1

K� 1

� �

" #	

	

	

	

	

	

	

	

	

	

≤ ε

(23)

for the case when 0, ∣K∣, 1. The following important question holds: From
which index N can the eigenvalues be approximated by the leading asymptotic terms with
acceptable accuracy? In other words, can one claim that the asymptotic formulas
(20) and (21) are valuable to practitioners, or are they just important mathematical
results of the spectral analysis?

The results of numerical simulations (see Tables 1 and 2 and Figures 1 and 2)
show that the asymptotic formulas are indeed quite accurate. That is, if one places
on the complex plane the numerically produced sets of the eigenvalues, then the
theoretically predicted distribution of eigenvalues can be seen almost immediately.
To obtain these results, we used the numerical procedure based on Chebyshev
polynomial approximations [14–16], as outlined in Section 5.

8

Matrix Calculus



In Figures 1 and 2, we represent the graphical distribution of the eigenvalues
corresponding to the discretized operator (“numerical” eigenvalues) and the lead-
ing asymptotic terms from Eqs. (20) and (21) (“analytic” eigenvalues). In Tables 1
and 2, the numerical values of the corresponding graphical points on Figures 1 and
2 are listed. We have used the following notations: N ¼ 64 is the number of grid
points on 0; 1½ �, and εf is the filtering parameter as described in Eq. (69). It can be

easily seen from the graphs and tables that the two sets of data coincide almost
immediately, i.e., the leading asymptotic terms in the approximations are very close
to the numerically approximated eigenvalues.

Figure 3 shows the sub-domains of the k1, k2-plane, which correspond to differ-
ent intervals for the values of K defined by Eq. (19). On the sub-domain with dark
gray color K such that ∣K∣. 1, i.e., to evaluate the asymptotic approximation for the
eigenvalues, one needs formula (20), while on the complementary sub-domain, one
needs formula (21).

3. The deadbeat modes

An eigenvalue λn of the dynamics generator Lk1,k2 is called a deadbeat mode if
λn ¼ iβn, βn.0. If the corresponding eigenfunction is Φn xð Þ, then the evolution
problem (13) has a solution given in the form eiλntΦn xð Þ ¼ e�βntΦn xð Þ, which tends
to zero without any oscillation.

As shown in paper [2], for the case when one of the control parameters is zero
and the other one is positive, the entire set of the eigenvalues is located in the closed
upper half plane. This result is not obvious since the operator is not dissipative; in
fact, it requires a fairly nontrivial proof. However, due to this fact, we assume that
any deadbeat mode can be given in the form iβ, with β.0. To deal with the
deadbeat modes analytically, we rewrite the spectral equation Lk1,k2Φð Þ xð Þ ¼ λΦ xð Þ
in the form of an equivalent problem for an operator pencil [17] as

EIφ0000 xð Þ ¼ λ2ρφ xð Þ, φ 0ð Þ ¼ φ0 0ð Þ ¼ 0,

EIφ00 1ð Þ ¼ �iλk1φ 1ð Þ, EIφ000 1ð Þ ¼ iλk2φ
0 1ð Þ:

(24)

Figure 3.
Regions of K on the k1, k2-plane, A ¼ ffiffiffiffiffiffiffiffi

EIρ
p ¼ 1.
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If λn and φn xð Þ are an eigenvalue and eigenfunction of the pencil (24), then λn is

also an eigenvalue of Lk1,k2 with the eigenfunction Φn xð Þ ¼ 1
iλn

φn xð Þ;φn xð Þ
h iT

.

To solve problem (24), we first redefine the spectral and control parameters to

eliminate ρ and EI from Eq. (24). We define ~λ, ~k1, and
~k2 by λ ¼

ffiffiffiffiffiffiffiffiffiffi

EI=ρ
p

~λ and
~kj ¼

ffiffiffiffiffiffiffiffi

EIρ
p

kj, j ¼ 1, 2. Substituting these relations into Eq. (24) and eliminating the

“tilde,” we obtain the following Sturm-Liouville eigenvalue problem:

φ0000 xð Þ ¼ λ2φ xð Þ, φ 0ð Þ ¼ φ0 0ð Þ ¼ 0, φ00 1ð Þ ¼ �iλk1φ 1ð Þ, φ000 1ð Þ ¼ iλk2φ
0 1ð Þ:
(25)

The solution of Eq. (25) satisfying the left-end boundary conditions
φ 0ð Þ ¼ φ0 0ð Þ ¼ 0 can be written in the form

φ λ; xð Þ ¼ A λð Þ cosh
ffiffiffi

λ
p

x

 �

� cos
ffiffiffi

λ
p

x

 �h i

þ B λð Þ sinh
ffiffiffi

λ
p

x

 �

� sin
ffiffiffi

λ
p

x

 �h i

:

(26)

Substituting formula (26) into the right-end boundary conditions of Eq. (25),
one gets a system for the coefficients A λð Þ and B λð Þ:

A λð Þ 1þ ik1ð Þcosh
ffiffiffi

λ
p

� 1� ik1ð Þ cos
ffiffiffi

λ
p� �

þ
B λð Þ 1þ ik1ð Þsinh

ffiffiffi

λ
p

� 1� ik1ð Þ sin
ffiffiffi

λ
p� �

¼ 0,

A λð Þ 1� ik2ð Þsinh
ffiffiffi

λ
p

� 1þ ik2ð Þ sin
ffiffiffi

λ
p� �

þ
B λð Þ 1� ik2ð Þcosh

ffiffiffi

λ
p

þ 1þ ik2ð Þ cos
ffiffiffi

λ
p� �

¼ 0:

(27)

Let Δ λð Þ be the determinant of the matrix of coefficients for A λð Þ and B λð Þ in
Eqs. (27). System (27) has nontrivial solutions if and only if Δ λð Þ ¼ 0, i.e.,

1þ k1k2ð Þ þ 1� k1k2ð Þcosh
ffiffiffi

λ
p

cos
ffiffiffi

λ
p

þ i k1 þ k2ð Þsinh
ffiffiffi

λ
p

sin
ffiffiffi

λ
p

¼ 0: (28)

Theorem 1: The following results hold in the case when k1.0 and k2 ¼ 0.
Similar results hold in the case when k1 ¼ 0 and k2.0.

1. For 0, k1, 1, the deadbeat modes do not exist.

2. For k1 ¼ 1, there exist infinitely many deadbeat modes given explicitly by

λn ¼ μ2n, μn ¼ xn 1þ ið Þ, xn ¼
π

2
2nþ 1ð Þ, n ¼ 0; 1; 2,…: (29)

3. For any k1. 1, there exist a finite number N k1ð Þ of deadbeat modes. Each
mode has the form λ ¼ μ2, μ ¼ x 1þ ið Þ, where x is a root of the function

H x; k1ð Þ � 2þ 1þ k1ð Þ cos 2xþ 1� k1ð Þcosh 2x, x.0: (30)

Let X k1ð Þ ¼ 1
2π cosh

�1 1þ 4
k1�1


 �

, and then N k1ð Þ satisfies the estimate

2 X k1ð Þ½ � þ 1≤ N k1ð Þ≤ 2 X k1ð Þ½ � þ 3: (31)

HenceN k1ð Þ ! ∞ as k1 ! 1þ. (By X½ �we denote the greatest integer less than or
equal to X).
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Proof: Let μ ¼
ffiffiffi

λ
p

¼ x 1þ ið Þ, x.0. Taking into account the relations

2cosh μ cos μ ¼ cosh 1þ ið Þμþ cosh 1� ið Þμ,
2i sinh μ sin μ ¼ cosh 1þ ið Þμ� cosh 1� ið Þμ,

we reduce Eq. (28) to the following form:

2þ 1þ k1ð Þ cos 2xþ 1� k1ð Þcosh 2x ¼ 0, x.0: (32)

It can be readily seen that if 0, k1, 1, then 2þ 1þ k1ð Þ cos 2x.0 and
1� k1ð Þcosh 2x.0, which means that Eq. (32) has no solutions. Statement (1) is
shown. Statement (2) follows immediately if one considers Eq. (32) for k1 ¼ 1.

To prove Statement (3), we rewrite Eq. (32) in the form

cosh 2x ¼ 2

k1 � 1
þ 1þ 2

k1 � 1

� �

cos 2x, x.0, k1. 1: (33)

The left-hand side of Eq. (33) is monotonically increasing, while the right-hand

side is sinusoidal, with maximum 1þ 4
k1�1


 �

and minimum �1ð Þ, and period π. So

the graphs of the left- and right-hand side have intersections only on the interval

0; 12 cosh
�1 1þ 4

k1�1


 �h i

. There are two intersections for each full period of the

Figure 4.
Left- and right-hand side of Eq. (33) for different values of k1.

Figure 5.
Estimates and actual count of deadbeat modes based on numerical simulations.

11

Spectral Analysis and Numerical Investigation of a Flexible Structure with…
DOI: http://dx.doi.org/10.5772/intechopen.86940



right-hand side that fits into the above interval (Figure 4). As it can be seen in
Figure 4, one should add at least one more intersection for the first half-period after
the full periods. Depending on the value of k1, the two graphs can have two
intersections, one tangential intersection or no intersections on the second half-
period. This leads to estimate (31). ■

A graphical illustration of the result of Theorem 1 is shown in Figure 5.

4. Structure of the deadbeat mode set

The main result on the existence and distribution of double roots of the function
H x; k1ð Þ is presented in the statement below.

Theorem 2: For a given k1. 1, the multiplicity of each root of H x; k1ð Þ does not
exceed 2. There exists a sequence k

nð Þ
1 ; n ¼ 0; 1; 2;…

n o

, such that the function

H x; k1ð Þ has a double root if and only if k1 ¼ k
nð Þ
1 for some n. So the original spectral

problem with k1 ¼ k
nð Þ
1 , k2 ¼ 0 has a double deadbeat mode λn ¼ μ2n ¼ 2ix2n. The

following asymptotic formulas hold

xn ¼
3π

4
þ πnþ P�1

n þO P�2
n


 �

, where Pn ¼ exp
3π

2
þ 2πn

� �

, (34)

and

k
nð Þ
1 ¼ 1þ 4P�1

n þO P�2
n


 �

: (35)

Proof: If x is a double root of H, then H x; k1ð Þ ¼ H0 x; k1ð Þ ¼ 0, i.e., separating the
real and imaginary parts, we have

2þ k1 þ 1ð Þ cos 2x� k1 � 1ð Þcosh 2x ¼ 0, (36)

k1 þ 1ð Þ sin 2xþ k1 � 1ð Þsinh 2x ¼ 0: (37)

Eliminating k1 from system given by (36) and (37), we obtain that the following
equation has to be satisfied:

G xð Þ � 1þ cos 2xð Þsinh 2xþ 1þ cosh 2xð Þ sin 2x ¼ 0, x.0: (38)

Rewriting Eq. (37) in the form k1 þ 1ð Þ sin 2x ¼ � k1 � 1ð Þsinh 2x, and taking into
account that k1. 1, we obtain that if x is the solution of Eq. (38), then sin 2x,0.

Now we show that when cos 2x,0 and sin 2x,0, i.e.,

π 2nþ 1ð Þ, 2x,
3π

2
þ 2πn, n∈ 0; 1; 2;…f g,

Eq. (38) does not have any solutions. Indeed, in the above range of x, we have

cos 2xþ sin 2x ¼
ffiffiffi

2
p

sin 2xþ π=4ð Þ, � 1 and ∣ sin 2x� cos 2x∣, 1. With such
estimates we obtain that

G xð Þ ¼ sin 2xþ sinh 2xþ 1

2
e2x cos 2xþ sin 2xð Þ þ 1

2
e�2x sin 2x� cos 2xð Þ, sin 2x,0,

(39)

which mean that Eq. (38) cannot be satisfied.
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Now we consider the case when cos 2x.0 and sin 2x,0, i.e.,

3π

2
þ 2πn, 2x, 2π nþ 1ð Þ, n∈ 0; 1; 2;…f g:

It is convenient to rewrite system given by (36) and (37) in the form
2x ¼ 3π=2þ 2πnþ s, where n∈ 0; 1; 2;…f g, 0, s, π=2. If g sð Þ � G 3π=4þ πnþ sð Þ,
then Eq. (38) generates the following equation for g:

g sð Þ � 1þ sin sð Þsinh 3π

2
þ 2πnþ s

� �

� 1þ cosh
3π

2
þ 2πnþ s

� �� �

cos s ¼ 0:

(40)

Let us show that for each n, Eq. (40) has a unique solution. For s ¼ 0 we have

g 0ð Þ ¼ sinh
3π

2
þ 2πn

� �

� 1� cosh
3π

2
þ 2πn

� �

,0,

and for s ¼ π=2 we have g π=2ð Þ ¼ 2sinh 2π nþ 1ð Þð Þ.0. Evaluating g0 we have

g0 sð Þ ¼ sin sþ 1þ 2 sin sð Þcosh 3π

2
þ 2πnþ s

� �

.0: (41)

Thus g sð Þ is a monotonically increasing function, such that g 0ð Þ,0, g π=2ð Þ,
which means that g has a unique root on 0; π=2½ �.

Finally we show that the multiplicity of a multiple root cannot exceed 2. Using a
contradiction argument, assume that there exists x0, such that in addition to
Eqs. (36) and (37), one has H00 x0; k1ð Þ ¼ 0, i.e., the multiplicity of x0 is at least 3.
The system H0 x0; k1ð Þ ¼ 0 and H00 x0; k1ð Þ ¼ 0 can be written as

k1 þ 1ð Þ sin 2x0 þ k1 � 1ð Þsinh 2x0 ¼ 0,

k1 þ 1ð Þ cos 2x0 þ k1 � 1ð Þcosh 2x0 ¼ 0:
(42)

Since k1. 1, the second equation of (42) yields cos 2x0,0. Also, since x0 is a
multiple root, we must have sin 2x0,0. Then 2x0 is in the third quadrant, which
means that G x0ð Þ 6¼ 0, as we have seen above. This contradicts our assumption that
x0 is a root of Eqs. (36) and (37).

To derive asymptotic distribution of the roots of Eq. (40), we check that with Pn

from Eq. (34), the following approximations are valid:

sin 2P�1
n


 �

¼ 2P�1
n þO P�3

n


 �

, cos 2P�1
n


 �

¼ 1� 2P�2
n þO P�4

n


 �

,

2sinh
3π

2
þ 2πnþ 2P�1

n

� �

¼ Pn þ 2þ P�1
n þO P�2

n


 �

,

2cosh
3π

2
þ 2πnþ 2P�1

n

� �

¼ Pn þ 2þ 3P�1
n þO P�2

n


 �

:

(43)

Evaluating g sð Þ from Eq. (40) for s ¼ 2P�1
n and using Eq. (43), we get

g 2P�1
n


 �

¼ 1þ sin 2P�1
n


 �� �

sinh
3π

2
þ 2πnþ 2P�1

n

� �

�

1þ cosh
3π

2
þ 2πnþ 2P�1

n

� �� �

cos 2P�1
n


 �

¼ 2P�1
n þO P�2

n


 �

:

(44)
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Representation (44) implies that there exists n0, such that for all n≥ n0, we have

g 2P�1
n


 �

.0. Taking into account that g 0ð Þ,0, we obtain that the root sn, n≥ n0, of

the function g sð Þ is located on the interval 0; 2P�1
n


 �

. To find the location of this root

more precisely [18], we use linear interpolation. Namely, substituting Eq. (43) into
the expression for g0 sð Þ from Eq. (41) yields

g0 2P�1
n


 �

¼ Pn

2
þO 1ð Þ: (45)

Replacing g sð Þ by the linear function tangential to g sð Þ at the point
2P�1

n ; g 2P�1
n


 �
 �

, and finding the root of this function, we get

sn ¼ 2P�1
n � g 2P�1

n


 �

g0 2P�1
n


 �þO P�2
n


 �

¼ 2P�1
n þO P�2

n


 �

: (46)

Having this approximation for sn, we immediately get

xn ¼
3π

4
þ πnþ sn

2
¼ 3π

4
þ πnþ P�1

n þO P�2
n


 �

: (47)

From the equation H xn; k
nð Þ
1


 �

¼ 0, we obtain the formula for k nð Þ
1 as

k
nð Þ
1 ¼ sinh 3π=2þ 2πnþ snð Þ þ cos sn

sinh 3π=2þ 2πnþ snð Þ � cos sn
: (48)

Substituting formulas (43) and (46) into formula (48), we obtain
representation (35). ■

Corollary 1: Let k1 ¼ k
nð Þ
1 for some n∈ℕ

þ∪ 0f g, and let xn be the corresponding

double root of the function H x; k
nð Þ
1


 �

. Then λ0 ¼ 2ix2n is an eigenvalue of the

operator L
k

nð Þ
1 ,00 , such that the geometric multiplicity of λ0 is 1 and its algebraic

multiplicity is 2. Therefore there exists a unique eigenvector Φ and one associate
vector Ψ, such that

L
k

nð Þ
1 ,0

Φ ¼ λ0Φ, L
k

nð Þ
1 ,0

Ψ� λ0Ψ ¼ Φ: (49)

Proof: It suffices to show that problem (24) does not have two linearly
independent eigenvectors corresponding to λ0 [18, 19]. Using contradiction argument
we assume that for some λ0 the boundary-value problem (25) with k2 ¼ 0 has two
linearly independent solutions ψ and χ. Each function satisfies the problem

φ0000 xð Þ ¼ λ20φ xð Þ, φ 0ð Þ ¼ φ0 0ð Þ ¼ 0, φ000 1ð Þ ¼ 0, φ00 1ð Þ ¼ iλ0k1φ 1ð Þ:
(50)

First we observe that ψ 1ð Þχ 1ð Þ 6¼ 0. Indeed, if ψ 1ð Þ ¼ 0, then we have

Z 1

0
ψ 00 σð Þj j2dσ ¼

Z 1

0
ψ 0000 σð Þψ σð Þdσ ¼ λ20

Z 1

0
ψ σð Þj j2dσ: (51)
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Since λ0 is purely imaginary, Eq. (51) is not valid. We define a new function:

g xð Þ ¼ ψ xð Þ � ψ 1ð Þ
χ 1ð Þ χ xð Þ: (52)

One can readily check that g satisfies the following boundary-value problem:

φ0000 xð Þ ¼ λ20φ xð Þ, φ 0ð Þ ¼ φ0 0ð Þ ¼ 0, φ 1ð Þ ¼ φ00 1ð Þ ¼ 0, (53)

and therefore

Z 1

0
g0
0
σð Þ

	

	

	

	

2
dσ ¼

Z 1

0
g0000 σð Þg σð Þσ ¼ λ20

Z 1

0
g σð Þj j2dσ: (54)

Eq. (54) is valid if and only if λ20.0; however, for a deadbeat mode, λ20,0. The
obtained contradiction means that for each double mode, there is one eigenfunction
and one associate function. ■

4.1 Deadbeat mode behavior as k1 ! 1

As k1 approaches 1, the spectral branches are moving upward and toward the
imaginary axis (Figures 6 and 7). As a result of this motion, eigenvalues approach
the imaginary axis at different rates depending on whether k1 approaches 1 from
above or below.

As follows from Table 3, the real parts of the eigenvalues decrease steadily as
k1 ! 1þ, to a point where the eigenvalue becomes a deadbeat mode. An increase in
the number of deadbeat modes can be seen as k1 ! 1þ, which is in agreement with
Statement (3) of Theorem 1. One can see from Table 3 that there are pairs of
modes such that the distance between them tends to zero as k1 ! 1þ. (Compare

modes no.5 and no.7 for ∣k1 � 1∣ ¼ 10�4, modes no.4 and no.7 for ∣k1 � 1∣ ¼ 10�6,

modes no.5 and no.8 for ∣k1 � 1∣ ¼ 10�8, and modes no.4 and no.7 for

∣k1 � 1∣ ¼ 10�10). Such behavior indicates convergence of the two simple deadbeat
modes to a double mode, which is consistent with Theorem 2.

Analyzing Table 4, one can see that the eigenvalues get closer to the imaginary
axis as k1 ! 1�. However the rate at which their real parts approach zero is

Figure 6.
Eigenvalues with ∣Reλ∣. 10 as k1 ! 1þ.
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significantly lower than in the case k1 ! 1þ. Even at k1 ¼ 1� 10�10, the eigenvalue

closest to the imaginary axis has a real part of about 10�4, which means that it is not
a deadbeat mode (see Statement (1) of Theorem 1).

The eigenvalues near the imaginary axis approach the same double deadbeat

modes in both cases when k1 ! 1� (see Statement (2) of Theorem 1). In conclusion,
one can claim that the eigenvalues are indeed approaching the imaginary axis;
however, the rate of this approach is different for k1 ! 1� and k1 ! 1þ. In the
former case, an eigenvalue’s distance from the imaginary axis decreases very slowly;
in the latter case, the eigenvalues quickly “jump” on the imaginary axis and turn
into deadbeat modes.

5. Outline of the numerical scheme

To carry out the numerical analysis of the differential operator Lk1,k2 , we use the
Chebyshev collocation method and cardinal functions [14–16].

Recall that the Nth Chebyshev polynomial of the first kind is defined by

TN ξð Þ ¼ cosNθ, � 1≤ ξ≤ 1 where ξ ¼ cos θ, θ∈ 0; π½ �: (55)

The cardinal functions, ψk ξð Þ, and the Chebyshev-Gauss-Lobatto (CGL) grid
points ξkf g are defined as follows:

ψk ξð Þ ¼ �1ð Þk 1� ξ2

 �

T0
N�1 ξð Þ

ck N � 1ð Þ2 ξ� ξkð Þ
, ξk ¼ cos

k� 1ð Þπ
N � 1

, for 1≤ k≤ N,

(56)

where coefficients ck are such that c1 ¼ cN ¼ 2 and ck ¼ 1 for 1, k,N. The

main property of cardinal functions is ψk ξj


 �

¼ δkj (using the Kronecker delta). The

family ψkf gNk¼1 forms a basis in the space of polynomials of degree N � 1ð Þ, i.e., if f
is such polynomial, then f and f 0 can be written in the forms

f ξð Þ ¼ ∑
N

k¼1

f ξkð Þψk ξð Þ and f 0 ξð Þ ¼ ∑
N

k¼1

f 0 ξkð Þψk ξð Þ: (57)

Figure 7.
Eigenvalues with ∣Reλ∣. 10 as k1 ! 1�.
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If f ¼ f ξ1ð Þ; f ξ2ð Þ; …; f ξNð Þ½ �T and g ¼ f 0 ξ1ð Þ; f 0 ξ2ð Þ; …; f 0 ξNð Þ
� �T

, then
g ¼ Df , where D is the Chebyshev derivative matrix with the elements

D11 ¼ �DNN ¼ 1þ 2 N � 1ð Þ2
6

, Dkk ¼ � ξk

2 1� ξ2k

 � for 1, k,N,

Dj,k ¼
cj �1ð Þjþk

ck ξj � ξk


 � for j 6¼ k:

(58)

5.1 Discretization of Lk1,k2

Rescaling the independent variable x as ξ ¼ 2x� 1, we rewrite the operator and
its domain, representations (14) and (15), in the form

Lk1,k2 ¼ �i

0 1

� 16

ρ ξð Þ
∂
2

∂ξ2
EI ξð Þ ∂

2

∂ξ2

� �

0

2

4

3

5, (59)

and

D Lk1,k2ð Þ ¼ f u0; u1ð ÞT ∈H : u0 ∈H4 �1; 1ð Þ, u1 ∈H2
0 �1; 1ð Þ; u1 �1ð Þ ¼ u01 �1ð Þ ¼ 0;

4EI 1ð Þu″0 1ð Þ ¼ �k1u1 1ð Þ; 4 EI ξð Þu″0 ξð Þ

 �0

	

	

	

ξ¼1
¼ k2u

0
1 1Þg,ð

(60)

where H ¼ H2
0 �1; 1ð Þ � L2 �1; 1ð Þ, equipped with the norm

Uk k2H ¼ 1

4

Z 1

�1
16EI ξð Þ u″0 ξð Þ

	

	

	

	

2 þ ρ ξð Þ u1 ξð Þj j2
h i

dξ: (61)

We approximate the action of Lk1,k2 on the finite-dimensional subspace HN ⊂H

of polynomials of degree at most N � 1ð Þ. Using the CGL grid and the cardinal
functions, we substitute for u0 and u1 their truncated expansions:

u0 ξð Þ≈ ∑
N

k¼1

Φkψk ξð Þ, Φk ¼ u0 ξkð Þ, u1 ξð Þ≈ ∑
N

k¼1

Θkψk ξð Þ, Θk ¼ u1 ξkð Þ: (62)

Let Φ and Θ be N-dim vectors and Ψ be a 2N-dim vector defined by

Φ ¼ Φ1; Φ2; …; ΦN½ �T, Θ ¼ Θ1; Θ2; …; ΘN½ �T, Ψ ¼
Φ

Θ

� �

: (63)

Let L be the finite-dimensional approximation of the differential operator Lk1,k2 .
The discretized operator L induced by Lk1,k2 can be given by

L ¼ �i

0 IN�N

�16
EI

ρ
D4 0

2

4

3

5, (64)

where IN�N is the N �N identity matrix and D is the derivative matrix (58).
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5.2 Incorporating the boundary conditions

Discretization of the boundary conditions in the domain description (60) yields

ΦN ¼ 0, DΦ½ �N ¼ 0, ΘN ¼ 0, DΘ½ �N ¼ 0,

4EI D2
Φ

� �

1
þ k1Θ1 ¼ 0, 4EI D3

Φ
� �

1
� k2 DΘ½ �1 ¼ 0:

(65)

Let rN, zN, lN ∈R
N be auxiliary row-vectors

rN ¼ 0 0 ⋯ 0 1½ �, zN ¼ 0 0 ⋯ 0 0½ �, lN ¼ 1 0 ⋯ 0 0½ �
(66)

and Dn
j designate the jth row of the nth derivative matrix Dn. Using Eqs. (66) we

represent Eqs. (65) as the following matrix equation:

KΨ �

rN zN

D1
N zN

zN rN

zN D1
N

4EID2
1 k1lN

4EID3
1 �k2D

1
1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

Φ

Θ

� �

¼ 0: (67)

K is called the boundary operator. Let KN be the kernel of K, i.e.,

KN ¼ v∈R
2N : Kv ¼ 0

� �

. We have to identify all eigenvalues of the operator L,

when its domain is restricted to KN . It is clear that KN is isomorphic to R
k with

k � dimKN ¼ dimHN � rankK ¼ 2N � 6. Let B be the matrix consisting of column

vectors that form an orthonormal basis in KN . It is clear that B
TB is the identity

matrix on R
k and BBT is the identity matrix on K. The following result holds: if λ is

an eigenvalue of the operator L, and the corresponding eigenvector Ψ satisfies

Eq. (67), then the same λ is an eigenvalue of the matrix BTLB

 �

. However, the

inverse statement is not necessarily true. Indeed, we observe that BBT is the identity
in KN , which is not equivalent to the identity in HN . Assume now that λ is an

eigenvalue of BTLB with corresponding eigenvector v∈R
k. If Ψ ¼ Bv, we have

BBTLΨ ¼ BBTLBv ¼ λBv ¼ λΨ, (68)

but BBTL 6¼ L, which indicates that fake eigenvalues may exist.

5.3 Filtering of spurious eigenvalues

In order to decide which eigenvalues of BTLB should be discarded, we impose

the following condition. Let Λ be the spectrum of BTLB and V be the set of its
eigenfunctions. We construct the set of “trusted” eigenvalues [14, 15], for some
εf .0 filtering precision, as

Λε ¼ λ∈Λ : LBvλ � λBvλk kC, εf ; for corresponding eigenvectorvλ ∈V
� �

, (69)

where �k kC is a discrete approximation to the integral norm defined in Eq. (61).
(The subscript C is short for Chebyshev). Using the CGL quadrature, we obtain the
following formula for the norm of a vector Ψ defined as in Eq. (63):
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Ψk kC ¼ π=4

N � 1
∑
N

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2k

q

16EI ξkð Þ D2
Φ

� �

k

	

	

	

	

2 þ ρ ξkð Þ Θkj j2
h i

:

6. Conclusions

In this work we have considered the spectral properties of the Euler-Bernoulli
beam model with special feedback-type boundary conditions. The dynamics gener-
ator of the model is a non-self-adjoint matrix differential operator acting in a
Hilbert space of two-component Cauchy data. This operator has been approximated
by a “discrete” operator using Chebyshev polynomial approximation. We have
shown that the eigenvalues of the main operator can be approximated by the
eigenvalues of its discrete counterpart with high accuracy. This means that the
leading asymptotic terms in formulas (20) and (21) can be used by practitioners
who need the elastic modes.

Further results deal with existence and formulas of the deadbeat modes. It has
been shown that for the case when one control parameter, k1, is such that k1 ! 1þ

and the other one k2 ¼ 0, the number of deadbeat modes approaches infinity. The
formula for the rate at which the number of the deadbeat modes tends to infinity

has been derived. It has also been established that there exists a sequence k
nð Þ
1

n o∞

n¼1

of the values of parameter k1, such that the corresponding deadbeat mode has a
multiplicity 2, which yields the existence of the associate mode shapes for the
operator Lk1,k2 . The formulas for the double deadbeat modes and asymptotics for

the sequence k
nð Þ
1

n o

as n ! ∞ have been derived.
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