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Chapter

Eight-by-Eight Spacetime Matrix
Operator and Its Applications
Richard P. Bocker and B. Roy Frieden

Abstract

A recent journal article by the authors introduced the eight-by-eight spacetime

matrix operator M̂ which played a key role in the formulation of Lorentz invariant
matrix equations for both the classical electrodynamic Maxwell field equations and
the quantum mechanical relativistic Dirac equation for free space. Those new
equations we referred to as the Maxwell spacetime matrix and the Dirac spacetime
matrix equations. These matrix equations will be briefly reviewed at the beginning

of this chapter. Next we will show how the same matrix operator M̂ plays a central
role in the matrix formulation of other fundamental equations in both electro-
magnetic and quantum theories. These include the electromagnetic wave and
charge continuity equations, the Lorentz conditions and electromagnetic potentials,
the electromagnetic potential wave equations, and the quantum mechanical
Klein-Gordon equation. In addition, a new generalized spacetime matrix equation,

again employing the operator M̂, will be described which is a generalization of the
Maxwell and Dirac spacetime matrix equations. We will explore time-harmonic
plane-wave solutions of this equation as well as the properties of these solutions.

Keywords: special theory of relativity, matrix operators, classical electrodynamics,
relativistic quantum mechanics, matter waves, electromagnetic waves, optics,
applied mathematics

1. Introduction

The eight-by-eight spacetime matrix operator M̂ plays a key role in the matrix
formulation of a number of well-known fundamental equations in both the fields of
classical electrodynamics and relativistic quantum mechanics (see [1]). The
spacetime matrix operator is defined by Eq. (1):

M̂ �

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4
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The partial derivative symbols are defined by the following:

∂1 �
∂

∂x
∂2 �

∂

∂y
∂3 �

∂

∂z
∂4 � 1

ic

∂

∂t
: (2)

The imaginary quantity i represents the square root of minus one, and the
physical quantity c corresponds to the speed of light in free space.

Eight compact matrix equations are listed in Table 1, each containing the

spacetime matrix operator M̂. Each of these equations, as well as the ket ∣ i vector
appearing in these equations, will be discussed in greater detail in the following
sections of this chapter. An excellent introduction to bra ∣h and ket ∣i vector
notation may be found in [2]. The Gaussian system of units (see [3], p. 781) is
employed throughout this chapter.

2. Eight-by-eight spacetime matrix operator properties

The spacetime matrix operator M̂, defined in Eq. (1), may also be expressed by
the following equation:

M̂ ¼ M1∂1 þM2∂2 þM3∂3 þM4∂4: (3)

The four eight-by-eight matrices Mμ, where μ ¼ 1; 2; 3;4, are simply referred to
as the spacetime matrices. These matrices have the following properties:

1. Each matrix Mμ is equal to its own multiplicative inverse

Mμ ¼ M�1
μ : (4)

2. These matrices satisfy the anti-commutation relation

MμMν þMνMμ ¼ 2δμνI: (5)

3. Each matrix Mμ is Hermitian

Mμ ¼ M†
μ: (6)

Compact matrix equation Compact matrix equation description

M̂∣ f i ¼ ∣oi Maxwell spacetime matrix equation for free space

M̂∣ f i ¼ ∣ ji Maxwell matrix equation with charges and currents

M̂M̂∣ f i ¼ M̂∣ ji Charge continuity and electromagnetic wave equations

M̂∣ai ¼ ∣ f i Lorentz conditions and electromagnetic potentials

M̂M̂∣ai ¼ ∣ ji Electromagnetic potential wave equations

M̂∣ϕi þ κ∣ϕi ¼ ∣oi Dirac spacetime matrix equation for free space

M̂M̂∣ϕi � κ2∣ϕi ¼ ∣oi Klein-Gordon spacetime matrix equation for free space

M̂∣ψi þ κ∣ψi ¼ ∣oi Generalized spacetime matrix equation for free space

Table 1.
Compact matrix equations where the spacetime matrix operator M̂ plays a central role.
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4.In addition

M̂M̂ ¼ M̂
2 ¼ I □2: (7)

The symbol δμν is the Kronecker delta, and I represents the eight-by-eight
identity matrix. The d’Alembertian (see [4], p. 290) and the Laplacian (see [4],
p. 15) operators are defined by

□2 � ∇2 � 1

c2
∂
2

∂t2
and ∇2 � ∂

2

∂x2
þ ∂

2

∂y2
þ ∂

2

∂z2
: (8)

Some authors use the □ symbol to represent the d’Alembertian operator.

3. Maxwell spacetime matrix equation

The Maxwell field equations play a fundamental role in both classical
electrodynamics and physical optics. The propagations of electromagnetic waves
through free space (see [4], pp. 514–522), nonconducting media (see [3],
pp. 295–309), thin-film optical filters [5], and solid-state crystalline materials [6]
are just a few examples where the Maxwell field equations play an important role.

3.1 Maxwell spacetime matrix equation for free space

An earlier eight-by-eight matrix representation of the Maxwell field equations
was first introduced by the authors back in 1993 [7]. An improved updated version

using the spacetime matrix operator M̂ was published recently [1]. For free space,
in the absence of charges and currents, this later version is given by

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4
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0
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¼

0

0

0
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: (9)

The compact matrix form of Eq. (9) is given by

M̂∣ f i ¼ ∣oi: (10)

The wave function ∣ f i is an eight-by-one ket vector containing, in general, six
nonzero scalar components associated with the electric field vector E ¼ E1 E2 E3ð Þ
and the magnetic induction vector B ¼ B1 B2 B3ð Þ. The elements (4,1) and (8,1) in
∣ f i have purposely been set equal to zero. The case when these two elements are
nonzero will be considered when the generalized spacetime matrix equation for free
space is discussed. The ket vector ∣oi represents the eight-by-one null vector.

The Maxwell spacetime matrix equation (9) when expanded is equivalent to two
divergences and two curl equations, namely,

∇ � E ¼ 0 and ∇ � B ¼ 0 (11)

3
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∇� Eþ 1

c

∂

∂t
B ¼ 0 and ∇� B� 1

c

∂

∂t
E ¼ 0: (12)

We recognize these four equations as the traditional Maxwell field equations
(Gaussian units) for free space in the absence of charges, currents, and ordinary
matter terms (see [8], pp. 362–368).

For electromagnetic waves, time-harmonic plane-wave solutions of the form

E r; tð Þ ¼ Eo exp i k � r� ωtð Þf g and B r; tð Þ ¼ Bo exp i k � r� ωtð Þf g (13)

will next be substituted back into the previous four vector equations. This yields
the following set of equations:

k � Eo ¼ 0 and k � Bo ¼ 0 (14)

k� Eo ¼ þω

c
Bo and k� Bo ¼ �ω

c
Eo: (15)

The quantities k and ω correspond to the wave vector and the angular frequency
associated with the electromagnetic wave; r and t represent the position vector and
the instantaneous time. From the preceding equations, we find the vectors Eo, Bo,
and k are mutually perpendicular. That is,

k⊥Eo Eo ⊥Bo k⊥Bo: (16)

These properties represent transverse electromagnetic waves. We also obtain the
important results

Eo ¼ Bo (17)

and

ω ¼ kc λf ¼ c where ω ¼ 2πf k ¼ 2π=λ: (18)

The quantities k, f, and λ represent the wave number, the frequency, and the
wavelength, respectively, associated with the electromagnetic wave. So for free
space, the magnitudes of the electromagnetic field vectors Eo and Bo are equal, a
well-known result in electromagnetic wave propagation. Recall we are using
Gaussian units.

3.2 Maxwell spacetime matrix equation with charges and currents

The Maxwell spacetime matrix equation, with the addition of charge and current
terms [1], is given by

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4
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¼ 4π

c

Je1
Je2
Je3
cρm
iJm1

iJm2

iJm3

�icρe
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: (19)
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The compact matrix form of the Maxwell spacetime matrix equation is given by

M̂∣ f i ¼ ∣ ji: (20)

Eq. (19), when expanded, is equivalent to two divergences and two curl equa-
tions. The resulting four vector equations are referred to as the microscopic Max-
well field equations (see [8], pp. 283–290). They are given by

∇ � E ¼ þ4πρe and ∇ � B ¼ þ4πρm (21)

∇� Eþ 1

c

∂

∂t
B ¼ � 4π

c
Jm and ∇� B� 1

c

∂

∂t
E ¼ þ 4π

c
Je: (22)

The various scalar and vector quantities appearing in the microscopic Maxwell
vector equations are the electric field vector E ¼ E1 E2 E3ð Þ, the magnetic induction
vector B ¼ B1 B2 B3ð Þ, the electric current density vector Je ¼ Je1 Je2 Je3ð Þ, the
magnetic current density vector Jm ¼ Jm1 Jm2 Jm3ð Þ, the electric charge density ρe,
the magnetic charge density ρm, and the speed of light c in free space. Both magnetic
charge and magnetic current density (see [8], pp. 283–290) have been included in
the Maxwell vector equations for purposes of completeness. They, of course, may
be set equal to zero since hypothetical magnetic monopoles have not been
discovered in nature. The ket vector ∣ f i represents the eight-by-one column vector
on the left-hand side of Eq. (19). The ket vector ∣ ji corresponds to the eight-by-one
column vector on the right-hand side of Eq. (19) multiplied by the factor 4π=c.

3.3 Charge continuity and electromagnetic wave equations

Charge continuity equations for electric (see [8], p. 15) and magnetic charges as
well as the electromagnetic wave equations involving electric and magnetic charges
and currents may be easily obtained by simply multiplying both sides of the Max-
well spacetime matrix equation in compact form (20) by the spacetime matrix

operator M̂. That is,

M̂M̂∣ f i ¼ M̂∣ ji: (23)

Expanding this single matrix equation yields the charge continuity and electro-
magnetic wave equations:

∇ � Je þ
∂

∂t
ρe ¼ 0 and ∇ � Jm þ ∂

∂t
ρm ¼ 0 (24)

□
2E ¼ 4π

c2
∂

∂t
Je þ 4π∇ρe þ

4π

c
∇� Jm and □

2B ¼ 4π

c2
∂

∂t
Jm þ 4π∇ρm � 4π

c
∇� Je:

(25)

3.4 Lorentz conditions and electromagnetic potentials

By using the spacetime matrix operator M̂, we can determine the relationship
between electromagnetic fields and vector-scalar potentials as well as determine
expressions for the Lorentz conditions (see [9], pp. 179–181) in a single matrix
equation. The following matrix equation provides the desired relation:
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�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4
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iE3

0

B1

B2

B3

0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (26)

The compact matrix form of Eq. (26) is given by

M̂∣ai ¼ ∣ f i: (27)

The ket vector ∣ai corresponds to the eight-by-one column vector on the
left-hand side of Eq. (26). Equation (26), when expanded, yields the Lorentz
conditions and the relationship between electromagnetic fields and potentials:

∇ �Ae þ
1

c

∂

∂t
ϕe ¼ 0 and ∇ �Am þ 1

c

∂

∂t
ϕm ¼ 0 (28)

E ¼ �∇ϕe �
1

c

∂

∂t
Ae � ∇�Am and B ¼ �∇ϕm � 1

c

∂

∂t
Am þ ∇�Ae: (29)

The new scalar and vector quantities appearing in the above equations are the
electric vector potential Ae ¼ Ae1 Ae2 Ae3ð Þ, the magnetic vector potential
Am ¼ Am1 Am2 Am3ð Þ, the electric scalar potential ϕe, and the magnetic scalar

potential ϕm. So again we see how the eight-by-eight spacetime matrix operator M̂
plays a central role in tying together important electromagnetic relations.

3.5 Electromagnetic potential wave equations

It is well-known that the electromagnetic vector and scalar potentials satisfy
wave equations (see [9], pp. 179–181). This can be easily shown by multiplying both

sides of Eq. (27) by the spacetime matrix operator M̂. This gives

M̂M̂∣ai ¼ M̂∣ f i: (30)

Next replace the term M̂∣ f i by the ket vector ∣ ji using Eq. (20). This yields

M̂M̂∣ai ¼ ∣ ji: (31)

Expanding this single matrix equation yields eight partial differential equations
which can be easily combined to form the following four potential wave equations:

□2ϕe ¼ �4πρe and □2ϕm ¼ �4πρm (32)

□
2Ae ¼ � 4π

c
Je and □

2Am ¼ �4π

c
Jm: (33)

The single compact matrix (Eq. (31)) is therefore equivalent to these four
potential wave equations.
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4. Dirac spacetime matrix equation

The nonrelativistic Schrödinger wave equation (see [10], pp. 143–146) plays a
fundamental role in quantum mechanical phenomena where the spin property of
nonrelativistic particles may be ignored. This equation is usually first met in modern
physics textbooks. However, when a particle with half-integer spin and/or moving
at relativistic speeds is involved, the relativistic Dirac equation [11] comes into play.

4.1 Dirac spacetime matrix equation for free space

Using the spacetime matrix operator M̂, the authors introduced in their most
recent publication [1] a modified version of the traditional Dirac equation, referred
to as the Dirac spacetime matrix equation. In the absence of electromagnetic poten-
tials [11], the Dirac spacetime matrix equation for free space is given by

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4
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: (34)

The compact matrix form of Eq. (34) is given by

M̂∣ϕi þ κ∣ϕi ¼ ∣oi: (35)

The wave function ∣ϕi is an eight-by-one ket vector containing, in general, six
nonzero scalar components associated with two vector quantities U ¼ U1 U2 U3ð Þ
and L ¼ L1 L2 L3ð Þ. The elements (4,1) and (8,1) in ∣ϕi have purposely been set
equal to zero. The case when these two elements are nonzero will also be considered
when the generalized spacetime matrix equation for free space is discussed later in
this chapter. The ket vector ∣oi represents the eight-by-one null vector. The con-
stant κ is defined by

κ � moc=ℏ: (36)

Here mo represents the rest mass of the matter-wave particle under consider-
ation, c again is the speed of light in free space, and ℏ is equal to the Planck constant
h divided by 2π.

The Dirac spacetime matrix equation (34) when expanded is equivalent to eight
partial differential equations. These eight equations can be rewritten as two diver-
gence and two curl equations [1], namely,

∇ �U ¼ 0 and ∇ � L ¼ 0 (37)

∇�U ¼ � 1

c

∂

∂t
L� iκL and ∇� L ¼ þ 1

c

∂

∂t
U� iκU: (38)

We refer to these equations as the Dirac spacetime vector equations for free
space. It is noted that these equations resemble the four Maxwell field equations for
free space in the absence of charge, current, and ordinary matter terms.
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The simplest solutions of these vector equations are time-harmonic plane-wave
solutions of the form

U r; tð Þ ¼ Uo exp i p � r� Etð Þ=ℏf g and L r; tð Þ ¼ Lo exp i p � r� Etð Þ=ℏf g: (39)

The quantities p and E correspond to the linear momentum and the total energy
of the associated matter-wave particle; r and t represent the position vector and the
instantaneous time. For particles with nonzero rest mass mo, the following special
theory of relativity equations (see [10], pp. 21–25) may also be useful:

E ¼ γmoc
2 p ¼ γmov where γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
q

β ¼ v=c: (40)

The quantities γ and β are known as the Lorentz factor and the speed parameter,
respectively. The symbol v represents the relativistic speed of the matter-wave
particle. Substitution of the preceding time-harmonic plane-wave solutions back
into the Dirac spacetime vector equations yield the following set of vector equations
for matter waves:

pc �Uo ¼ 0 and pc � Lo ¼ 0 (41)

pc� Uo ¼ þE
γ � 1ð Þ
γ

Lo and pc� Lo ¼ �E
γ þ 1ð Þ
γ

Uo: (42)

From the previous equations we find the three vectors Uo, Lo, and pc are
mutually perpendicular. That is,

pc⊥Uo Uo ⊥Lo pc⊥Lo (43)

These properties represent transverse waves. In addition, we also obtain the
important result:

γ þ 1ð Þ U2
o ¼ γ � 1ð Þ L2

o: (44)

The magnitudes of the vectors Uo and Lo are related through the Lorentz factor
γ, which depends on the speed parameter β, which ultimately depends on the speed
v of the nonzero rest-mass particle. Note, for γ much greater than unity, character-
istic of a relativistic particle, the magnitudes of the vectors Uo and Lo are nearly
equal. On the other hand, for γ close to unity, characteristic of a nonrelativistic
particle, the magnitude of the vector Lo is much greater than the magnitude of the
vector Uo. One other important result is

E2 ¼ p2c2 þm2
oc

4 which implies E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2c2 þm2
oc

4
q

: (45)

The � sign is associated with the quantum mechanical energy E of a matter-
wave particle, like a half-integer spin electron. This was first interpreted by Paul A.
M. Dirac. He recognized the negative energy levels predicted by his relativistic
equation could not be ignored. This led to his concept of a hole theory of positrons.
For a detailed discussion on negative energy states (see [11]).

4.2 Klein-Gordon spacetime matrix equation

The Klein-Gordon equation (see [12], pp. 118–129) is yet another quantum
mechanical relativistic equation which is the field equation of the quanta associated
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with spin-less (spin-0) particles. An example of a spin-less particle is the recently
discovered Higgs boson.

A version of the Klein-Gordon equation can be easily derived by simply starting
with the compact matrix form of the Dirac spacetime matrix equation for free

space, namely, Eq. (35). Multiply both sides by the spacetime matrix operator M̂.
This gives

M̂M̂∣ϕi þ κM̂∣ϕi ¼ ∣oi: (46)

Next replace the term M̂∣ϕi with �κ∣ϕi using Eq. (35). We obtain

M̂M̂∣ϕi � κ2∣ϕi ¼ ∣oi: (47)

We refer to this equation as the Klein-Gordon spacetime matrix equation for

free space. Using the fourth property of the spacetime matrix operator M̂, it can be
easily shown that Eq. (47) is equivalent to the following two equations involving the
vectors U and L:

□2U� κ2U ¼ 0 and □2L� κ2L ¼ 0: (48)

Therefore, the vectors U and L also satisfy Klein-Gordon type equations.

5. Generalized spacetime matrix equation

In this section, we will introduce for the first time a new matrix equation where

again the spacetime operator M̂ plays a central role. We will refer to this equation as
the generalized spacetime matrix equation for free space.

5.1 Big unanswered questions and mysteries in physics and astronomy

The number of unanswered questions and mysteries regarding the universe
from the smallest to the largest, in the fields of physics and astronomy, is
unimaginable. There are many references, too numerous to list here, which address
this topic. However, an excellent comprehensive list of unsolved problems in phys-
ics appears in [13] for various broad areas of physics. These areas include general
physics, quantum physics, cosmology, general relativity, quantum gravity, high-
energy physics, particle physics, astronomy, astrophysics, nuclear physics, atomic
physics, molecular physics, optical physics, classical mechanics, condensed matter
physics, plasma physics, and biophysics. The following is a partial list of some of the
most important questions and mysteries being addressed today by physicists and
astronomers around the globe:

How did the universe begin and what is the ultimate fate of the universe?
Is the universe infinite or just very big?
Why is there more matter than antimatter in the universe?
What came before the big bang?
Why are the galaxies distributed in clumps and filaments?
Are there additional dimensions?
Is spacetime fundamentally continuous or discrete?
How can we create a quantum theory of gravity?
What is dark energy and dark matter?
Do dark gravity, dark charge, and dark antimatter exist?
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What happens inside a black hole and do naked singularities exist?
Why does time seem to flow only in one direction?
Is time travel really possible?
Is string theory or M-theory a viable theory of everything?
What kind of physics underlies the standard model?
Are there really just three generations of leptons and quarks?
Do gravitons exist?
Are protons unstable?
Do magnetic monopoles exist?
What are the masses of neutrinos?
Do the quarks or leptons have any substructure?
Do tachyons exist and can information travel faster than light?
Why do the particles have the precise masses they do?
Do fundamental physical constants vary over time?
Why are the strengths of the fundamental forces what they are?
Do parallel universes exist and is there a multiverse?
Was our spatially 3-D universe formed out of a vacuum by a 2-D hologram?
Was the hologram formed by a flow of information? If so, what form?
Does pair production formed, spontaneously, out of a vacuum?
Are they likewise formed out of a flow of information?
Do life processes, such as ion flows through cell membranes, form likewise as
flows of information?

As we can see, even with all of the discoveries made over the past several
hundred years, there is so much we do not understand and so much yet to be
discovered about our universe and possibly beyond.

So far we have described the first seven compact matrix equations listed in

Table 1 where the spacetime matrix operator M̂ plays a fundamental role. We
found that each of these seven equations correspond to a variety of fundamental
equations, in both classical electrodynamics and relativistic quantum mechanics. In
the next subsection, we will discuss in detail the eighth compact matrix equation
listed in Table 1. This eighth equation is associated with a new matrix equation
which we will refer to as the generalized spacetime matrix equation for free space.
As we will see, there are several theoretical implications resulting from our study of
the generalized spacetime matrix equation which perhaps may be added as unan-
swered questions or mysteries to the preceding list.

5.2 Generalized spacetime matrix equation for free space

We define the generalized spacetime matrix equation for free space by the
following equation:

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

þ κ

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼

0

0

0

0

0

0

0

0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (49)
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The compact matrix form of Eq. (49) is given by

M̂∣ψi þ κ∣ψi ¼ ∣oi: (50)

This is the eighth compact matrix equation in Table 1. Note the similarity
between the generalized spacetime matrix equation for free space and the Dirac
spacetime matrix equation for free space (34) when κ ¼ moc=ℏ and the Maxwell
spacetime matrix equation for free space (9) when κ ¼ 0. In those equations we
purposely set the (4,1) and (8,1) elements in the ket vectors identically equal to zero.
Doing so allowed us to convert those matrix equations to vector equations (involving
three-dimensional vectors only) which are described in greater detail in [1].

In Eq. (49), we no longer restrict elements (4,1) and (8,1) to be equal to zero.
The wave function ∣ψi can be thought of as being composed of two four-
dimensional vectors Δ ¼ Δ1 Δ2 Δ3 Δ4ð Þ and Ω ¼ Ω1 Ω2 Ω3 Ω4ð Þ. The implications
by avoiding the earlier restrictions on elements (4,1) and (8,1) will be investigated
shortly. We will find some new predictions and surprises by removing these
restrictions.

5.3 Eigenvalue spacetime matrix equations

Our primary goal now is to determine the properties of time-harmonic
plane-wave solutions satisfying the generalized spacetime matrix (Eq. (49)) for free
space. The approach we will take is to cast Eq. (49) into an eigenvalue equation and
use the methods of linear algebra to determine the set of orthonormal eigenvectors
and corresponding eigenvalues satisfying this eigenvalue equation. (For an excel-
lent book on linear algebra and the solution of eigenvalue equations; see [14],
pp. 189–190.) For now let κ ¼ moc=ℏ, the same constant in the Dirac spacetime
matrix equation. Later on we will look at the special case when κ ¼ 0.

We first multiply Eq. (49) by the factor ℏcM4. The matrixM4 is the fourth of the
spacetime matrices first introduced in Eq. (3). After doing so, with minor algebraic
manipulation, we obtain the following matrix equation:

ℏc

�κ 0 0 0 0 þ∂3 �∂2 þ∂1

0 �κ 0 0 �∂3 0 þ∂1 þ∂2

0 0 �κ 0 þ∂2 �∂1 0 þ∂3

0 0 0 �κ �∂1 �∂2 �∂3 0

0 þ∂3 �∂2 þ∂1 þκ 0 0 0

�∂3 0 þ∂1 þ∂2 0 þκ 0 0

þ∂2 �∂1 0 þ∂3 0 0 þκ 0

�∂1 �∂2 �∂3 0 0 0 0 þκ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼ iℏ
∂

∂t

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (51)

The compact matrix form of this equation is given by

Ĥ∣ψi ¼ iℏ
∂

∂t
∣ψi: (52)

This equation has the same identical form as the nonrelativistic Schrödinger

equation (see [12], pp. 118–129). However, the Hamiltonian matrix operator Ĥ is
entirely different. This equation represents the canonical form of the generalized
spacetime matrix (Eq. (49)).
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For time-harmonic plane-wave solutions, the ket vector ∣ψimay be expressed as

∣ψi ¼ ∣ψ oi exp þi p � r� Etð Þ=ℏ½ �: (53)

Again the quantities p and E correspond to the linear momentum vector and the
total energy; r and t represent the position vector and the instantaneous time. After
substituting the eight-by-one ket vector ∣ψi back into Eq. (51), we obtain the
following eigenvalue equation:

pc

�μ 0 0 0 0 þiα3 �iα2 þiα1

0 �μ 0 0 �iα3 0 þiα1 þiα2

0 0 �μ 0 þiα2 �iα1 0 þiα3

0 0 0 �μ �iα1 �iα2 �iα3 0

0 þiα3 �iα2 þiα1 þμ 0 0 0

�iα3 0 þiα1 þiα2 0 þμ 0 0

þiα2 �iα1 0 þiα3 0 0 þμ 0

�iα1 �iα2 �iα3 0 0 0 0 þμ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼ E

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (54)

We will refer to Eq. (54) as the eigenvalue spacetime matrix equation. The
compact matrix form of Eq. (54) is represented by

H∣ψi ¼ E∣ψi: (55)

The eight-by-eight matrix H is Hermitian which implies the eigenvalues E are
real (see [14], p. 222). The following equations define various quantities appearing
in Eq. (54):

μ � moc
2=pc and p � p α1 α2 α3ð Þ: (56)

The quantity p is the magnitude of the linear momentum vector p, and α1, α2, α3
represent the direction cosines, associated with the direction of the linear momen-
tum vector p.

5.4 Wave propagation along the +z direction for κ ¼ moc=ℏ

Without loss of generality, let us consider matter-wave propagation along the +z
direction, that is,

p ¼ p 0 0 1ð Þ: (57)

Eq. (54) reduces to the following simplified form:

�Eo 0 0 0 0 þipc 0 0

0 �Eo 0 0 �ipc 0 0 0

0 0 �Eo 0 0 0 0 þipc

0 0 0 �Eo 0 0 �ipc 0

0 þipc 0 0 þEo 0 0 0

�ipc 0 0 0 0 þEo 0 0

0 0 0 þipc 0 0 þEo 0

0 0 �ipc 0 0 0 0 þEo

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼ E

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(58)
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where

Eo � moc
2: (59)

The matrix in Eq. (58) is an eight-by-eight square matrix. A compact matrix
version of Eq. (58) may be expressed as follows:

H∣ψni ¼ En∣ψni n ¼ 1, 2, 3, :::8: (60)

At this point we are now in a position to determine eight eigenvectors ∣ψni and
the corresponding eigenvalues En satisfying the eigenvalue (Eq. (58)). We chose to
use the matrix software program MATLAB [15] for determining the eigenvalues
and eigenvectors. As it turns out, there are only two unique eigenvalues given by

Eþ ¼ þE and E� ¼ �E where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
o þ p2c2

q

: (61)

From the special theory of relativity (see [10], pp. 21–25), the following relations
may also be of use:

E ¼ γEo p ¼ γmov pc ¼ γβEo γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
q

β ¼ v=c: (62)

As before, γ and β are referred to as the Lorentz factor and speed parameter,
respectively. For each of the two eigenvalues, there are four unique eigenvectors.
The eight eigenvectors ∣ψni form an orthonormal set, that is,

ψmjψnh i ¼ δmn: (63)

The symbol δmn represents the Kronecker delta. In Table 2 is a summary of the
eigenvalues and orthonormal eigenvectors satisfying the eigenvalue spacetime
matrix (Eq. (58)).

The constants a and b appearing in Table 2 are defined by

a �
ffiffiffi

2
p

2

ffiffiffiffiffiffiffiffiffiffiffi

γ þ 1

γ

s

a2 þ b2 ¼ 1 b �
ffiffiffi

2
p

2

ffiffiffiffiffiffiffiffiffiffiffi

γ � 1

γ

s

: (64)

Inspection of the contents of Table 2 reveals the following important results:

1. ∣ψ1i and ∣ψ2i represent transverse waves with positive energy þγEo.

2. ∣ψ3i and ∣ψ4i represent transverse waves with negative energy �γEo.

3. ∣ψ5i and ∣ψ6i represent non-transverse waves with positive energy þγEo.

4.∣ψ7i and ∣ψ8i represent non-transverse waves with negative energy �γEo.

For wave propagation in the +z direction, the transverse waves have eigenvector
solutions ∣ψi where elements (3,1), (4,1), (7,1), and (8,1) are identically equal to
zero. In other words, Δ ¼ Δ1 Δ2 0 0ð Þ and Ω ¼ Ω1 Ω2 0 0ð Þ. For this case, Δ1, Δ2

and Ω1, Ω2 correspond to the x and y components. Thus, for wave propagation in
the +z direction, the transverse wave solutions only have x and y vector components
characteristic of a transverse wave in three dimensions.
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On the other hand, for wave propagation in the +z direction, the non-transverse
waves have eigenvector solutions ∣ψi where elements (1,1), (2,1), (5,1), and (6,1)
are identically equal to zero. That is to say, Δ ¼ 0 0 Δ3 Δ4ð Þ and Ω ¼ 0 0 Ω3 Ω4ð Þ.
This implies, Δ3 and Ω3 represent z-components. Δ4 and Ω4 represent the fourth
components (unknown origin) in a four-dimensional space. Thus, for wave propa-
gation in the +z direction, the non-transverse wave solutions have a z vector com-
ponent (longitudinal in nature) and a fourth vector component (neither transverse
nor longitudinal in nature, perhaps a “time” component) of a non-transverse wave
in four dimensions.

5.5 Traditional Dirac equation

The authors, in their most recent publication [1], indicated solutions of their
Dirac spacetime matrix equation for free space could be mapped into solutions
satisfying the traditional Dirac matrix equation. We wish to explore this in greater
detail. The traditional Dirac equation, in the absence of electromagnetic potential
terms, is given by

þ∂4 0 �i∂3 �∂2 � i∂1

0 þ∂4 þ∂2 � i∂1 þi∂3

þi∂3 þ∂2 þ i∂1 �∂4 0

�∂2 þ i∂1 �i∂3 0 �∂4

2

6

6

6

4

3

7

7

7

5

Σ1

Σ2

Σ3

Σ4

2

6

6

6

4

3

7

7

7

5

þ κ

Σ1

Σ2

Σ3

Σ4

2

6

6

6

4

3

7

7

7

5

¼

0

0

0

0

2

6

6

6

4

3

7

7

7

5

(65)

This equation corresponds to the special case employing the Dirac representa-
tion (see [12], pp. 694–706) for details. The compact matrix form of Eq. (65) is
given by

D̂∣σi þ κ∣σi ¼ ∣oi: (66)

The Dirac matrix operator D̂ represents the four-by-four matrix operator on
the left-hand side of Eq. (65), ∣σi is the four-by-one ket vector appearing twice

En E1 E2 E3 E4 E5 E6 E7 E8

E +γEo +γEo �γEo �γEo +γEo +γEo �γEo �γEo

∣ψni ∣ψ1i ∣ψ2i ∣ψ3i ∣ψ4i ∣ψ5i ∣ψ6i ∣ψ7i ∣ψ8i

Δ1 0 +b 0 +a 0 0 0 0

Δ2 +ib 0 +ia 0 0 0 0 0

Δ3 0 0 0 0 +b 0 +a 0

Δ4 0 0 0 0 0 +ib 0 +ia

Ω1 �a 0 +b 0 0 0 0 0

Ω2 0 �ia 0 +ib 0 0 0 0

Ω3 0 0 0 0 0 �a 0 +b

Ω4 0 0 0 0 �ia 0 +ib 0

Table 2.
Eigenvalues and orthonormal eigenvectors associated with the generalized spacetime matrix equation for wave
propagation in the +z direction when κ ¼ moc=ℏ.
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on the left-hand side, and ∣oi is the four-by-one null ket vector appearing on the
right-hand side. For time-harmonic plane-wave solutions, the ket vector ∣σi may be
expressed as

∣σi ¼ ∣σoi exp þi p � r� Etð Þ=ℏ½ �: (67)

Substituting this time-harmonic plane-wave solution back into the traditional
Dirac equation (65) ultimately leads to the corresponding eigenvalue equation:

pc

þμ 0 þα3 �iα2 þ α1

0 þμ þiα2 þ α1 �α3

þα3 �iα2 þ α1 �μ 0

þiα2 þ α1 �α3 0 �μ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

Σ1

Σ2

Σ3

Σ4

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼ E

Σ1

Σ2

Σ3

Σ4

2

6

6

6

6

6

4

3

7

7

7

7

7

5

: (68)

For the special case of wave propagation in the +z direction, the preceding
eigenvalue equation reduces to the following simplified form:

þEo 0 þpc 0

0 þEo 0 �pc

þpc 0 �Eo 0

0 �pc 0 �Eo

2

6

6

6

6

6

4

3

7

7

7

7

7

5

Σ1

Σ2

Σ3

Σ4

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼ E

Σ1

Σ2

Σ3

Σ4

2

6

6

6

6

6

4

3

7

7

7

7

7

5

: (69)

Again using the matrix software MATLAB, the four orthonormal eigenvectors
and corresponding eigenvalues satisfying Eq. (69) are listed in the Table 3.

The quantities a and b appearing in Table 3 are defined by

a �
ffiffiffi

2
p

2

ffiffiffiffiffiffiffiffiffiffiffi

γ þ 1

γ

s

a2 þ b2 ¼ 1 b �
ffiffiffi

2
p

2

ffiffiffiffiffiffiffiffiffiffiffi

γ � 1

γ

s

: (70)

Note, the quantities a and b appearing in the traditional Dirac equation eigen-
vectors listed in Table 3 are the same a and b quantities appearing in the generalized
spacetime matrix equation eigenvectors listed in Table 2 for κ ¼ moc=ℏ.

En E1 E2 E3 E4

E þγEo þγEo �γEo �γEo

∣σni ∣σ1i ∣σ2i ∣σ3i ∣σ4i

Σ1 �
ffiffi

2
p

2 a �
ffiffi

2
p

2 a þ
ffiffi

2
p

2 b þ
ffiffi

2
p

2 b

Σ2 �
ffiffi

2
p

2 a þ
ffiffi

2
p

2 a þ
ffiffi

2
p

2 b �
ffiffi

2
p

2 b

Σ3 �
ffiffi

2
p

2 b �
ffiffi

2
p

2 b �
ffiffi

2
p

2 a �
ffiffi

2
p

2 a

Σ4 þ
ffiffi

2
p

2 b �
ffiffi

2
p

2 b þ
ffiffi

2
p

2 a �
ffiffi

2
p

2 a

Table 3.
Eigenvalues and orthonormal eigenvectors associated with the traditional Dirac equation for wave propagation
in the +z direction when κ ¼ moc=ℏ.

15

Eight-by-Eight Spacetime Matrix Operator and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.86982



5.6 Linear transformation equation

For the special case of a matter wave traveling through free space in the + z
direction, we found the orthonormal set of eigenvectors and corresponding eigen-
values, for both the generalized spacetime matrix (Eq. (49)) and the traditional
Dirac equation (65), when κ ¼ moc=ℏ. These two sets of orthonormal eigenvectors
are related [1] through the following linear transformation matrix equation:

Σ1

Σ2

Σ3

Σ4

2

6

6

6

4

3

7

7

7

5

¼
ffiffiffi

2
p

2

0 0 0 0 þ1 �i þ1 �i

0 0 0 0 þ1 þi �1 �i

�1 þi �1 þi 0 0 0 0

�1 �i þ1 þi 0 0 0 0

2

6

6

6

4

3

7

7

7

5

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (71)

The compact matrix form of Eq. (71) is given by

∣σi ¼ Z∣ψi: (72)

When we substitute each the eight eigenvectors ∣ψni from Table 2 back into
Eq. (71), we obtain the following results:

1. The four transverse eigenvectors in Table 2 map into the four eigenvectors in
Table 3:

∣σ1i ¼ Z∣ψ1i ∣σ2i ¼ Z∣ψ2i ∣σ3i ¼ Z∣ψ3i ∣σ4i ¼ Z∣ψ4i: (73)

2. The four non-transverse eigenvectors in Table 2 map into the same four
eigenvectors in Table 3:

∣σ1i ¼ Z∣ψ5i ∣σ2i ¼ Z∣ψ6i ∣σ3i ¼ Z∣ψ7i ∣σ4i ¼ Z∣ψ8i: (74)

Therefore, whether we use the four transverse eigenvector solutions or the
four non-transverse eigenvector solutions satisfying the generalized spacetime
matrix (Eq. (49)), the same four eigenvector solutions satisfying the traditional
Dirac equation (65) are obtained using Eq. (71). It is noted the four transverse
eigenvector solutions could have been obtained from the four Dirac vector
equations (37) and (38).

5.7 Wave propagation along the +z direction for κ=0

For the special case of wave propagation in the +z direction, when κ ¼ 0,
time-harmonic plane-wave solutions satisfying the generalized spacetime matrix
equation for free space (49) yield the set of eigenvectors and eigenvalues presented
in Table 4. The eight eigenvectors ∣ψni also form an orthonormal set, that is,

ψmjψnh i ¼ δmn: (75)
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The constants a and b appearing in Table 4 are now defined by

a �
ffiffiffi

2
p

2
a2 þ b2 ¼ 1 b �

ffiffiffi

2
p

2
(76)

Inspection of the contents of Table 4 reveals the following important results:

1. ∣ψ1i and ∣ψ2i represent transverse waves moving with speed þc.

2. ∣ψ3i and ∣ψ4i represent transverse waves moving with speed �c.

3. ∣ψ5i and ∣ψ6i represent non-transverse waves moving with speed þc.

4.∣ψ7i and ∣ψ8i represent non-transverse waves moving with speed �c.

For wave propagation in the +z direction, the transverse waves have eigenvector
solutions ∣ψi where elements (3,1), (4,1), (7,1), and (8,1) are identically equal to
zero. In other words, Δ ¼ Δ1 Δ2 0 0ð Þ and Ω ¼ Ω1 Ω2 0 0ð Þ. For this case, Δ1, Δ2

and Ω1, Ω2 correspond to the x and y components. Thus, for wave propagation in
the +z direction, the transverse wave solutions only have x and y vector compo-
nents, characteristic of a transverse wave in three dimensions. Only those waves
propagating at a speed in free space of +c represent real electromagnetic waves.

On the other hand, for wave propagation in the +z direction, the non-transverse
waves have eigenvector solutions ∣ψi where elements (1,1), (2,1), (5,1), and (6,1)
are identically equal to zero. That is to say, Δ ¼ 0 0 Δ3 Δ4ð Þ and Ω ¼ 0 0 Ω3 Ω4ð Þ.
This implies, Δ3 and Ω3 represent z-components. Δ4 and Ω4 represent the fourth
components in a four-dimensional space. Thus, for wave propagation in the +z
direction, the non-transverse wave solutions have a z vector component (longitu-
dinal in nature) and a fourth vector component (neither transverse nor longitudinal
in nature) of a non-transverse wave in four dimensions. Perhaps there is new
physics regarding these additional solutions.

En E1 E2 E3 E4 E5 E6 E7 E8

pnc þpc þpc �pc �pc þpc þpc �pc �pc

∣ψni ∣ψ1i ∣ψ2i ∣ψ3i ∣ψ4i ∣ψ5i ∣ψ6i ∣ψ 7i ∣ψ8i

Δ1 0 þb 0 þa 0 0 0 0

Δ2 þib 0 þia 0 0 0 0 0

Δ3 0 0 0 0 þb 0 þa 0

Δ4 0 0 0 0 0 þib 0 þia

Ω1 �a 0 þb 0 0 0 0 0

Ω2 0 �ia 0 þib 0 0 0 0

Ω3 0 0 0 0 0 �a 0 þb

Ω4 0 0 0 0 �ia 0 þib 0

vn v1 v2 v3 v4 v5 v6 v7 v8

þc þc �c �c þc þc �c �c

Table 4.
Eigenvalues and orthonormal eigenvectors associated with the generalized spacetime matrix equation for wave
propagation in the +z direction when κ ¼ 0.
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5.8 Unresolved issues regarding the generalized spacetime matrix equation

The eigenvectors and eigenvalues associated with the generalized spacetime
matrix equation, for the special case of a time-harmonic plane-wave propagating in
free space in the +z direction, have been determined for both κ ¼ moc=ℏ and κ ¼ 0.
The following are the key points found in this analysis:

1. For the case when κ ¼ moc=ℏ, we found there were four orthonormal
eigenvectors (two having positive energy eigenvalues þγEo and two having
negative energy eigenvalues �γEo) describing waves having transverse
properties. From Table 2, each of these four eigenvectors have components
Δ3 ¼ Δ4 ¼ Ω3 ¼ Ω4 ¼ 0: Using the linear transformation equation (71), these
eigenvectors map nicely into four orthonormal eigenvectors satisfying the
traditional Dirac equation.

2. For the case when κ ¼ moc=ℏ, we found there were also four orthonormal
eigenvectors (again two having positive energy eigenvalues þγEo and two
having negative energy eigenvalues �γEo) describing waves having non-
transverse properties. From Table 2, each of these four eigenvectors have
components Δ1 ¼ Δ2 ¼ Ω1 ¼ Ω2 ¼ 0: Again, using the linear transformation
equation (71), these four eigenvectors map nicely into the same four
orthonormal eigenvectors satisfying the traditional Dirac equation as
mentioned in Case 1.

3. Therefore, for the case when κ ¼ moc=ℏ, the generalized spacetime matrix
equation (49) for free space provides eight orthonormal eigenvector solutions
(both transverse and non-transverse) which map into four orthonormal
eigenvector solutions satisfying the traditional Dirac equation (65).

4.For the case when κ ¼ 0, we found there were four orthonormal
eigenvectors (two associated with waves propagating in free space with
speed +c and two associated with waves propagating in free space with
speed -c) describing waves having transverse properties. From Table 4, each
of these four eigenvectors have components Δ3 ¼ Δ4 ¼ Ω3 ¼ Ω4 ¼ 0: For
the case of transverse waves propagating with +c, these eigenvectors are
associated with real electromagnetic waves predicted by the traditional
Maxwell equations.

5. For the case when κ ¼ 0, we found there were also four orthonormal
eigenvectors (two associated with waves propagating in free space with speed
+c and two associated with waves propagating in free space with speed -c)
describing waves having non-transverse properties. From Table 4, each of
these four eigenvectors has components Δ1 ¼ Δ2 ¼ Ω1 ¼ Ω2 ¼ 0:

6.The generalized spacetime matrix equation for κ ¼ 0 when Δ4 � 0 and Ω4 � 0
is simply the Maxwell spacetime matrix equation for free space. The
generalized spacetime matrix equation for κ ¼ moc=ℏ when Δ4 � 0 and Ω4 � 0
is simply the Dirac spacetime matrix equation for free space. In addition, the
Dirac spacetime matrix equation for free space is equivalent to the four Dirac
spacetime vector equations (37) and (38) for free space resembling the four
Maxwell vector equations (11) and (12) for free space.
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In the de Broglie-Bohm picture of quantum mechanics, Hardy [16] and Bell [17]
suggest empty waves represented by wave functions propagating in spacetime,
but not carrying energy or momentum, can exist. This same concept was called
ghost waves or ghost fields by Albert Einstein (see [18]). The controversy as to
whether matter waves correspond to real waves or ghost waves has been and is
still a subject of debate and controversy.

In Section 5.1, we mentioned that the number of unanswered questions and
mysteries regarding the universe from the smallest to the largest, in the fields of
physics and astronomy, is unimaginable. Allowing the elements Δ4 and Ω4 to have
nonzero values in the generalized spacetime matrix equation certainly raises a
number of unanswered questions. The following is the author’s list of 12 unan-
swered questions and mysteries regarding our analysis of the generalized spacetime
matrix equation for free space:

For relativistic quantum mechanics—matter waves:
What class of particles do the transverse eigenvectors represent?
Do the transverse eigenvectors represent real or ghost waves?
What class of particles do the non-transverse eigenvectors represent?
Do non-transverse eigenvectors represent real or ghost waves?
Are the transverse and non-transverse eigenvectors equivalent in some way?

For classical electrodynamics—electromagnetic waves:
What can be said about those waves propagating with speed -c?
Do these represent a new type of electromagnetic wave?
What can be said about those waves having a longitudinal component?
What can be said about those waves having a fourth component?
Could these be associated with undiscovered electromagnetic waves?

And two last questions:
Why do the Dirac and Maxwell vector equations resemble each other?

Does the spacetime matrix operator M̂ have more surprises in store?

6. Conclusions

1. The four classical electromagnetic microscopic Maxwell field equations have
been rewritten as a single matrix equation, referred to as the Maxwell

spacetime matrix equation, using the spacetime matrix operator M̂. The
Maxwell spacetime matrix equation is relativistic invariant under a Lorenz
transformation.

2. The square eight-by-eight matrix operator M̂ has several benefits as
summarized next. Other fundamental equations of electromagnetic theory
have also been expressed as single matrix equations using the spacetime matrix

operator M̂, namely, the electromagnetic wave and charge continuity
equations, the Lorentz conditions and electromagnetic potentials, and the
electromagnetic potential wave equations.

3. The traditional relativistic Dirac equation for free space has been expressed as a
new matrix equation, referred to as the Dirac spacetime matrix equation for

free space, using the same spacetime matrix operator M̂. The Dirac spacetime
matrix equation is also relativistic invariant under a Lorenz transformation.
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4.Solutions of the new Dirac spacetime matrix equation can be easily
transformed into solutions satisfying the traditional relativistic Dirac equation
using the linear transformation matrix Z.

5. The Dirac spacetime matrix equation is equivalent to four new relativistic
quantum mechanical vector equations. We referred to these equations as
the Dirac spacetime vector equations. In the absence of electromagnetic
potentials, these vector equations resemble the four classical electromagnetic
microscopic Maxwell field vector equations in the absence of charge and
current densities.

6.Multiplication of the Dirac spacetime matrix equation by the spacetime

matrix operator M̂ leads to the relativistic Klein-Gordon spacetime matrix
equation.

7. Four transverse orthonormal eigenvectors as well as the four non-transverse
orthonormal eigenvectors satisfying the Dirac spacetime matrix equation map,
via the linear transformation matrix Z, into the same set of four orthonormal
eigenvectors satisfying the traditional Dirac equation.

8.A new generalized spacetime matrix equation employing the operator M̂ was
introduced. This equation is a generalization of the Maxwell and Dirac
spacetime matrix equations for free space. We explored time-harmonic plane-
wave solutions of this equation as well as their properties. Some of results
obtained may suggest new physics.

Acknowledgements

We are most appreciative of the help by Ms. Trin Riojas of the Optical Sciences
Center in coordinating computer station inputs/outputs between authors and pub-
lishers. The past informal discussions with Dr. Arvind S. Marathay of the Optical
Sciences Center are also greatly appreciated. This research did not receive any
specific grant from funding agencies in the public, commercial, or not-for-profit
sectors.

20

Progress in Relativity



Author details

Richard P. Bocker1*† and B. Roy Frieden2†

1 San Diego State University, San Diego, California, United States of America

2 University of Arizona, Tucson, Arizona, United States of America

*Address all correspondence to: rp44bocker@gmail.com

†These authors contributed equally.

© 2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

21

Eight-by-Eight Spacetime Matrix Operator and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.86982



References

[1] Bocker R, Frieden B. A new matrix
formulation of the Maxwell and Dirac
equations. Heliyon. 2018;4(12):e01033.
DOI: 10.1016/j.heliyon.2018.e01033

[2]Messiah A. Quantum Mechanics.
New York: Dover; 2014. pp. 245-250.
ISBN: 13:9780486784557

[3] Jackson J. Classical Electrodynamics.
3rd ed. New York: Wiley; 1999. DOI:
10.1119/1.19136

[4] Lorrain P, Corson D, Lorrain F.
Electromagnetic Fields and Waves. 3rd
ed. New York: Freeman; 1988. ISBN: 10:
0716718235

[5]Macleod H. Thin-Film Optical Filters.
2nd ed. New York: McGraw-Hill; 1989.
pp. 1-312. ISBN: 0-07-044694-6

[6] Fowles G. Introduction to Modern
Optics. New York: Holt, Rinehart and
Winston; 1968. pp. 168-183. DOI:
10.1119/1.1975142

[7] Bocker R, Frieden B. Solution of the
Maxwell field equations in vacuum for
arbitrary charge and current
distributions using the methods of
matrix algebra. IEEE Transactions on
Education. 1993;36:350-356. DOI:
10.1109/13.241610

[8]Ohanian H. Classical
Electrodynamics. Boston: Allyn and
Bacon; 1988. ISBN-10:0205105289

[9] Jackson J. Classical Electrodynamics.
New York: Wiley; 1962. Library of
Congress, Catalog Card Number
62-8774

[10] Serway R, Moses C, Moyer C.
Modern Physics. Philadelphia: Saunders;
1989. ISBN: 0-03-004844-3

[11] Schiff L. Quantum Mechanics. 3rd
ed. New York: McGraw-Hill; 1968.
pp. 472-488. ISBN: 13: 978-0070552876

[12] Roman P. Advanced Quantum
Theory. Palo Alto: Addison-Wesley;
1965. ISBN-13: 9780201064957

[13]Wikipedia. List of Unsolved
Problems in Physics [Internet].
Available from: https://en.wikipedia.
org/wiki/List_of_unsolved_problems_
in_physics [Accessed: 29 April, 2019]

[14] Strang G. Linear Algebra and its
Applications. 2nd ed. New York:
Academic Press; 1976. ISBN: 0-12-
673660-X

[15]Gilat A. Matlab: An Introduction
with Applications. 5th ed. New York:
Wiley; 2014. ISBN: 9781118629864

[16]Hardy L. On the existence of empty
waves in quantum theory. Physics
Letters A. 1992;167:11-16. DOI: 10.1016/
0375-9601(92)90618-V

[17] Bell J. Six possible worlds of
quantum mechanics. Foundations of
Physics. 1992;22:1201-1215. DOI:
10.1007/BF01889711

[18] Selleri F, Van der Merwe A.
Quantum Paradoxes and Physical
Reality. Dordrecht: Kluwer; 1990. ISBN:
978-94-009-1862-7

22

Progress in Relativity


