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resumo 
 

 

Este trabalho teve como objetivos a produção, caracterização e aplicação de 
microelétrodos (MEs) de diamante como sensores amperométricos e 
potenciométricos em sistemas de corrosão nos quais a agressividade do meio 
e a presença de produtos de corrosão, constituem obstáculos que podem 
diminuir o desempenho, ou inviabilizar a utilização, de outros tipos de 
sensores. 
Os microeléctrodos são baseados em filmes finos de diamante dopado com 
boro (BDD – Boron Doped Diamond) depositados sobre fios de tungsténio 
afiados, através do método de deposição química a partir da fase vapor, 
assistida por filamento quente (HFCVD – Hot Filament Chemical Vapor 
Deposition). A otimização das diversas etapas de fabricação dos MEs deu 
origem ao desenvolvimento de um novo sistema de afiamento eletroquímico 
para obtenção destes fios e a várias opções para a obtenção dos filmes de 
diamante condutor e seu isolamento com resinas para exposição apenas da 
ponta cilíndrica.  
A qualidade cristalina dos filmes de diamante foi avaliada por espectroscopia 
de Raman. Esta informação foi complementada com uma caracterização 
microestrutural dos filmes de diamante por microscopia eletrónica de 
varrimento (SEM), em que se fez a identificação da tipologia dos cristais como 
pertencendo às gamas de diamante nanocristalino ou microcristalino.    
Os filmes de BDD foram utilizados na sua forma não modificada, com 
terminações em hidrogénio e também com modificação da superfície através 
de tratamentos de plasma RF de CF4 e O2 indutores de terminações C-F no 
primeiro caso e de grupos C=O, C-O-C e C-OH no segundo, tal como 
determinado por XPS.  
A caracterização eletroquímica dos MEs não modificados revelou uma 
resposta voltamétrica com elevada razão sinal/ruído e baixa corrente 
capacitiva, numa gama de polarização quasi-ideal com extensão de 3 V a 4 V, 
dependente dos parâmetros de crescimento e pós-tratamentos de superfície. 
Estudou-se a reversibilidade de algumas reações heterogéneas com os pares 
redox Fe(CN)6

3-/4-
 e FcOH

0/+
 e verificou-se que a constante cinética, k0, é mais 

elevada em elétrodos com terminações em hidrogénio, nos quais não se 
procedeu a qualquer modificação da superfície. Estes MEs não modificados 
foram também testados na deteção de Zn

2+
 onde se observou, por voltametria 

cíclica, que a detecção da redução deste ião é linear numa escala log-log na 
gama de 10

-5
-10

-2
 M em 5 mM NaCl. 

 

  



 

 
 

 

  



 
 

  

 

 

 

 

 

 

 

 

 

 

  

  

resumo (cont.) 
 

 

Realizaram-se também estudos em sistemas de corrosão modelares, em que 
os microeléctrodos foram usados como sensores amperométricos para mapear 
a distribuição de oxigénio e Zn

2+
 sobre um par galvânico Zn-Fe, com recurso a 

um sistema SVET (Scanning Vibrating Electrode Technique). Foi possível 
detetar, com resolução lateral de 100 µm, um decréscimo da concentração de 
O2 junto a ambos os metais e produção de catiões de zinco no ânodo. Contudo 
verificou-se uma significativa deposição de zinco metálico na superfície dos 
ME utilizados. 
Os MEs com superfície modificada por plasma de CF4 foram testados como 
sensores de oxigénio dissolvido. A calibração dos microeléctrodos foi efetuada 
simultaneamente por voltametria cíclica e medição óptica através de um 
sensor de oxigénio comercial. Determinou-se uma sensibilidade de ~0.1422 
nA/µM, com um limite de deteção de 0.63 µM. Os MEs modificados com CF4 
foram também testados como sensores amperométricos com os quais se 
observou sensibilidade ao oxigénio dissolvido em solução, tendo sido 
igualmente utilizados durante a corrosão galvânica de pares Zn-Fe. Em alguns 
casos foi conseguida sensibilidade ao ião Zn

2+
 sem que o efeito da 

contaminação superficial com zinco metálico se fizesse sentir. Os 
microeléctrodos tratados em plasma de CF4 permitem uma boa deteção da 
distribuição de oxigénio, exibindo uma resposta mais rápida que os não 
tratados além de maior estabilidade de medição e durabilidade. 
Nos MEs em que a superfície foi modificada com plasma de O2 foi possível 
detetar, por cronopotenciometria a corrente nula, uma sensibilidade ao pH de 
~51 mV/pH numa gama de pH 2 a pH 12. Este comportamento foi associado à 
contribuição determinante de grupos C-O e C=O, observados por XPS com 
uma razão O/C de 0,16. Estes MEs foram igualmente testados durante a 
corrosão galvânica do par Zn-Fe onde foi possível mapear a distribuição de pH 
associada ao desenvolvimento de regiões alcalinas causadas pela redução do 
oxigénio, acima da região catódica, e de regiões ácidas decorrentes da 
dissolução anódica do ânodo de zinco. Com o par galvânico imerso em 50 mM 
NaCl registou-se uma variação de pH aproximadamente entre 4,8 acima do 
ânodo de zinco a 9,3 sobre o cátodo de ferro. A utilização pioneira destes MEs 
como sensores de pH é uma alternativa promissora aos elétrodos baseados 
em membranas seletivas. 
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abstract 

 

This work was dedicated to the production, characterization and application of 
diamond microelectrodes (MEs) in corrosion systems as amperometric and 
potentiometric sensors in which the aggressive media and the presence of 
corrosion products can affect the performance, or even impede the use of other 
types of sensors. 
The MEs are based in boron doped diamond (BDD) thin films grown by HFCVD 
(Hot Filament Chemical Vapor Deposition) on top of sharp tungsten filaments. 
The optimization of the various ME fabrication steps gave origin to a novel 
electrochemical etching technique for the production of sharp metal wires and 
to multiple options for the growth of diamond films and their insulation with 
resins in order to expose only the cylindrical tip.  
The crystalline quality of the diamond films was evaluated with Raman 
spectroscopy. Complementary microstructural information was gathered by 
scanning electron microscopy (SEM), to identify the microcrystalline or 
nanocrystalline nature of the diamond coatings.  
The BDD films were used in the as-grown form, with hydrogen terminated 
surface and also with surface modification, by RF-plasma, using CF4 and O2 for 
inducing different surface terminations, C-F bonds in the first case and C=O, C-
O-C and C-OH in the second, as detected by XPS. 
The electrochemical characterization of the MEs revealed a voltammetric 
response with high signal-to-noise ratio and low capacitive current. The 
potential range of water stability varied from 3 V to 4V, depending on the 
growth parameters and surface treatments. Heterogeneous electron transfer 
kinetics were measured using the Fe(CN)6

3-/4-
 and FcOH

0/+
 redox couples and it 

was verified that the kinetic constant, k0, is higher for the as-grown MEs than 
for the modified ones. The as-grown MEs were used for the detection of Zn

2+
 

exhibiting a log-log linear response in the range of 10
-5

-10
-2

 M in 5 mM NaCl, by 
cyclic voltammetry. Studies in model corrosion systems were also performed in 
which the MEs were used as amperometric sensors to map the distribution of 
oxygen and Zn

2+
 above a corroding galvanic Zn-Fe couple, by using a SVET 

(Scanning Vibrating Electrode Technique) system. It was possible to detect 
with a lateral resolution of 100 µm, a decrease in O2 concentration above both 
metals and the release of zinc cations above the anode. However, a significant 
zinc deposition at the surface of the electrodes was observed. 
 

 

  



 

 
 

 

  



 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

  

abstract (cont.) 

 

The MEs modified by CF4 plasma were tested as dissolved oxygen sensors. 
The calibration of the microelectrodes was performed simultaneously by cyclic 
voltammetry and optical measurement with a commercial oxygen sensor. A 
sensitivity of ~0.1422 nA/µM was determined, with a detection limit of 0.63 µM. 
The fluorinated MEs were also tested during galvanic corrosion of Zn-Fe 
couples. In some cases sensitiveness to Zn

2+
 was also achieved without zinc 

contamination. The CF4 plasma treated MEs allow a good oxygen mapping, 
showing a faster response than the as-grown MEs, as well as higher 
measurement stability and longer lifetime. 
For the O2 plasma treated MEs it was possible to detect, by zero-current 
chronopotentiometry, a pH sensitivity of ~51 mV/pH in a pH 2 to pH 12 range. 
This behavior was attributed to the contribution of the C-O and C=O groups, 
observed by XPS with an O/C ratio of 0.16. These MEs were also tested during 
the galvanic corrosion of a Zn-Fe couple where it was possible to map the pH 
distribution deriving from the development of alkaline regions caused by 
oxygen reduction, above the cathode, and of acidic regions resulting from the 
anodic dissolution of zinc. With the galvanic couple immersed in 50 mM NaCl a 
pH variation was registered from ca. 4.8 above the zinc anode to 9.3 above the 
cathode. The innovative use of these MEs as pH sensors is a promising 
alternative to the selective membrane based MEs. 
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The study of electrochemistry and its applications involves chemical processes in which 

there is electron transfer across an interface. This interface usually exists between an 

electrically conducting solid, the electrode, and a solution, the electrolyte.  

The relevance of electrochemical science extends well into domains with large 

economic influence such as corrosion and common large-scale chemical processes 

such as electroplating, electrochemical sensors, batteries, fuel cells and electrochromic 

displays presenting electrochemical working mechanisms.  

Estimates on worldwide market research point to a cost of 1.66 billion (1012) euros due 

to corrosion alone in 2012 (over 3% of the world’s GDP), including maintenance, 

prevention, replacement of parts and interruption of services due to maintenance [1]. 

Forecasts for the global fuel cells market indicate a fast growing tendency from 583 

million euros in 2012 to 10.6 thousand million euros by 2022. Biosensors and chemical 

sensors are expected to present the most significant growth in the sensors market with 

an estimated value of 9.7 thousand million euros in 2011 growing to 15 800 million in 

2016 [2]. 

The strong development of nanotechnology and biotechnology has created demand for 

research on novel sensors that can meet today’s necessities but always regarding those 

of tomorrow. Electrochemical sensors can generally provide high sensitivity and 

accuracy at low cost. Adequate selection of an electrode material involves considering 

the nature of its working environment. Often these can be quite aggressive, exhibiting 

very high or very low pH, which requires chemical and microstructural stability along 

with robustness and corrosion resistance. In biological media electrodes may become 

easily unusable by adsorption of certain substances and compounds such as electrically 

insulating films or biomolecules. Amperometric sensors frequently struggle with the 

need to catalyze a particular redox process at a given potential, yielding a measurable 

and reproducible current without interference of background signals arising from 

unwanted capacitance in the circuit or competing electrochemical reactions. 

Diamond, regarded for a long time only as a highly insulating material, has been 

reinvented by doping with elements such as boron, sulfur, nitrogen and phosphorus, to 

work as a semiconductor or quasi-metal, widening the span of applications. Thus, as an 

electrochemical sensor or electrode, research on doped diamond has been growing 
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significantly since the mid 90’s, especially due the advantages of its use in comparison 

to traditional electrode materials such as glassy carbon or platinum. Good sensitivity, 

reproducibility, and both fast and easy-to-measure signal response are valued 

characteristics for an electrode. Diamond electrodes can meet these requirements and 

in some cases surpass the electrochemical behavior of metal electrodes or other carbon 

electrodes (glassy carbon, carbon fiber, etc.). 

Electrodes of this material display minimal background response, enabling selective 

measurement of the pretended signal. This behavior origins from a low double-layer 

capacitance density (~10 μF.cm−2), chemically inert surface comparing e.g. with other 

carbon electrodes which may present high concentration of redox active groups on the 

surface which translate into background peaks or pseudo-capacitive background in 

voltammetry data. Another very important feature is the range of electrical potential 

without decomposition of the solvent. Taking the universal example of water, hydrogen 

evolution starts at negative potentials whilst oxygen evolution occurs at positive 

potentials. The magnitude of these currents is variable but in most cases electroanalysis 

is restricted to the small potential window defined by the range for which such currents 

are insignificant and electrode operation is possible. For a platinum electrode this 

window is narrow, around 1.5 V. In contrast water decomposition tends to be very slow 

at diamond electrodes, enabling signal recording of redox processes to be widened to a 

3-5 V potential window depending on the diamond synthesis parameters and surface 

conditioning.  

Electrode fouling is common in electrodes displaying polar, hydrophilic surfaces (e.g. 

glassy carbon). In contrast, the diamond surface, normally hydrophobic, and with 

absence of reactive groups can provide a rather inert surface with fouling resistance, 

even in biological media. Hence, diamond electrodes are more predisposed to present 

both capability to work in harsh environments and a long term stability.  

In the beginning a well-defined plan was established for this work. Diamond 

microelectrodes were planned to be produced on the basis of boron doped 

nanocrystalline diamond. The final electrode design would consist of bilayer all-diamond 

microelectrodes (Figure 1.1). After adequate characterization, these probes would be 
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used for studying the performance of corrosion protective coatings with self-healing 

character. Trials for bio-applications would be performed as well. 

The real working course, however, was balanced by a logical sequence defined during 

the progress of the work, along with all the variables involved in the accomplishment of 

each task.  

 

 

Figure 1.1 – Idealized diamond microelectrode fabrication sequence. 

 

The diagram in Figure 1.2 provides a description of the author’s line of thought and 

helps the reader to follow the mind map of this work. The course of action taken led to 

the fulfillment of much of the initial objectives, while expanding the range of applicability 

of diamond MEs. 

The present document aggregates the most relevant information gathered during these 

past few years and is structured in three main chapters, besides this brief Introduction 

(Chapter 1) and the final ones regarding the main Conclusions (Chapter 5) and the 

immediate future work (Chapter 6). Chapter 2 gives a theoretical background of the 

most relevant topics that constitute the scope of this work.  Chapter 3 is dedicated to all 

the fabrication procedures involving diamond microelectrodes, from substrate 

preparation to electrical insulation and, besides important information acquired from 

reference authors, it includes one submitted paper (Chapter 3.3), deriving from a patent 
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application submitted to INPI (Instituto Nacional de Propriedade Industrial) 

(“ELECTROCHEMICAL ETCHING DEVICE, METHOD FOR ELECTROCHEMICAL 

ETCHING AND THEIR USE”, nº 106894) and one paper (Chapter 3.6) published during 

the early stages of the present development.  

 

 

Figure 1.2 – Work sequence. 

 

The practical application of diamond microelectrodes in corrosion systems is the main 

content of Chapter 4 where, apart from a theoretical background regarding aqueous 

corrosion and relevant localized electrochemical techniques, the main body 

corresponds to the full content of two published papers (Chapter 4.3 and Chapter 4.5) 

and another recently submitted (Chapter 4.4).   
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2.1. Microelectrodes 

When the size of an electrode becomes close to the size of the electric Helmholtz 

double layer its behavior significantly deviates from conventionally sized electrodes, 

with some associated advantages. Until today there is not much agreement in what 

concerns the definition of a microelectrode (ME), probably because it has been 

changing over time [3]. Different terminologies can be found in the literature cataloguing 

microelectrodes in different size ranges from 10 nm - 100 µm. The theoretical 

considerations involving such small sensors are related to the mass transport regime 

and the kinetic parameters of an experiment. The official IUPAC definition [4] of a 

microelectrode states that: 

 

“Microelectrode is any electrode whose characteristic dimension is, under the given 

experimental conditions, comparable to or smaller than the diffusion layer thickness, δ. 

Under these conditions, a steady state or a pseudo steady state (cylindrical electrodes) 

is attained”. 

 

Although one acknowledges the above mentioned to be true, it is a somewhat broad 

definition if a concise document is to be written. Thus, for the sake of simplicity and 

because a characteristic dimension of ≤ 25 µm has been considered by some reference 

authors [5], from hereon we will adopt this same dimension for defining a 

microelectrode. 

By having such operation size, MEs display fast double-layer charging, reduced ohmic 

loss, and high diffusion limited mass-transport rates by working in the steady state 

regime. For diffusion-controlled processes, minimal ohmic drop is achieved at the 

steady-state limit [6]. 

 

2.1.1. Electrochemistry at microelectrodes 

Oxidation and reduction of redox-active analytes at an electrode surface will generate a 

concentration gradient between the interfacial region and the bulk solution. These 

processes involve electron transfer across the interface and the rate at which it takes 
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place determines the heterogeneous electron-transfer (ET) rate constant, k0. If this 

kinetic constant is large it means that ET is fast and mass transport is the limiting step 

of the reaction. Electrode reactions can be accompanied by three mass transport 

processes: 

 

Diffusion – consists on the spontaneous movement of species due to the existence of a 

concentration gradient, normally from higher to lower concentration zones in order to 

establish equilibrium. It is a thermodynamically driven process that can be 

mathematically formalized by equating the chemical potential and the frictional force 

acting on the analyte species. 

 

Convection – this process is due to the influence of external agents and can be naturally 

driven or forced. Natural convection can derive from, e.g., thermal agitation or density 

gradients, while stirring or flow movement are common forms of forced convection.  

 

Migration – This type of transport is based on the movement of charged species by 

action of an electric field.  

 

The Nernst-Plank equation relates the unidirectional diffusion of a species j to these 

three modes of mass transfer (Eq. 2.1) 

 

         
      

  
 

   

  
    

     

  
                               (Eq. 2.1) 

 

where Jj (x) represents the one-dimensional flux for species j at distance x from the 

electrode, Dj is the diffusion coefficient, zj is the charge, Cj is the concentration for the 

species j, )(x is the rate at which a volume element moves in solution,         ⁄  is the 

concentration gradient, and         ⁄  is the potential gradient.  

Upon application of a potential step that can promote steady-state, diffusion controlled 

electrolysis, it is important to acknowledge the current dependence with time and 

electrode size. Taking a uniformly accessible spherical electrode in a solution in which 

only a redox-active species is present with a concentration, Cj, in an electrolytic 
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solution, the solution of Fick’s second law in spherical coordinates (Eq. 2.2) describes 

the concentration gradient that can be found at the electrode surface [6, 7]. 
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]                                              (Eq. 2.2) 

 

 

Boundary conditions: 
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Where r is the radial distance from the electrode center. By applying Laplace transforms 

to this equation, one can obtain the following current-time dependence: 

 

     
      

 
 

         

        
                      (Eq. 2.3) 

 

where n is the number of electrons transferred in the redox reaction, F is Faraday's 

constant, D is the diffusion coefficient, A is the geometric electrode area, C is the 

analyte concentration, r is the electrode radius and t is the forward scanning time [7]. 

This equation reveals a time dependent term and a time-independent one. Hence 

different mass transport regimes can be found for different time scales.  

For short times (fast scan rates) (Eq. 2.4) the thickness of the diffusion layer without 

reactants is very small in comparison to the electrode that appears as an infinite plane 

(Fig. 2.1). Mass transport will occur by linear diffusion at such short times and the 

second term of equation (Eq. 2.4) will be much larger than the first one (Eq. 2.5).  

 

   
         

        
                     (Eq. 2.4) 

 

    
      

 
                       (Eq. 2.5) 
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For longer times the contribution from the second term in Eq. 2.3 will lose its relevance 

on behalf of the first one (Eq. 2.5). At this time scale the thickness of the double layer 

will be larger and the shape of the microelectrode will become increasingly important, 

with radial diffusion occurring predominantly (Fig. 2.1). Under these conditions the 

current achieves a steady-state value, because the rate of electrolysis is equal to the 

rate at which the redox-active species diffuse through the double layer to the electrode 

surface. Dividing equation 2.4 by equation 2.5 yields a dimensionless parameter Dt/r0
2 

which indicates the time span at which the steady-state current contribution prevails 

over the transient response. Therein, it can be observed that achieving steady state with 

large scale electrodes is not impossible but becomes unpractical because of the long 

experimental time scale that would be necessary. Due to the enhanced mass transport 

to and from the microelectrode, a steady-state voltammetric experiment is characterized 

by a sigmoidal current-potential relationship [7]. Conversely to the peaked shape on 

conventional large scale electrodes, Figure 2.1a, which reflects the depletion of 

reactants near the electrode surface, a sigmoidal curve translates the attainment of a 

plateau current value that derives from the limiting rate of analyte that continuously 

reaches the electrode surface by diffusion through the double-layer (Figure 2.1b). 

 

 

Figure 2.1 – Characteristic redox polarization curve shapes of macro and microelectrodes according to 

the type of established diffusion field (adapted from [6]).  

Macroelectrode Microelectrode

Redox
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2.1.1.1. Reduced Capacitance 

In the interfacial region between an electrode and an electrolytic solution there is 

formation of a double layer composed of ions establishing the electric neutrality 

between the electrode surface and the bulk solution. Analogy can be made with an 

electric circuit in which the double layer behaves as a capacitor which is charged when 

potential is varied in the electrolytic cell. In consequence, there is a delay in applying the 

desired potential, which is only reached when the double layer is charged. Moreover for 

short time experiments the overall current will be a mixture of Faradaic and charging 

components (Eq. 2.6). Hence it is important to minimize the complicating influence of 

the capacitive current, Ic, by reducing its magnitude and lowering the charging time [7].  

 

   
  

  
                 (Eq. 2.6) 

Cd, double layer capacitance 

Rc, cell resistance  

t, charging time 

  

Every double layer has a cell time constant, RuCd, where Ru is the uncompensated 

resistance and Cd is the double-layer capacitance. The cell time constant imposes a 

limit to the time scale that can be used in a given experiment. It is unreasonable to work 

on a time scale below 5RuCd and for full establishment of a potential step a value of at 

least 10RuCd must be considered [7]. The double layer capacitance is described by 

 

        
                        (Eq. 2.7) 

Cd
0
, specific capacitance 

 

Hence, since the double layer capacitance varies with the square of the electrode 

radius, reducing the size of the electrode from the millimeter to the micrometer range 

implies reducing the capacitance a million times [6,8]. 
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The electrode size also dictates the magnitude of the uncompensated resistance which 

is described by the following relation: 

 

   
 

    
                 (Eq. 2.8) 

 , solution conductivity 

 

In this case the variation is inversely proportional to the electrode radius and the 

uncompensated resistance will increase the smaller is the electrode. However, 

considering that the double layer capacitance varies with r2 the cell time constant RuCd 

will decrease proportionally to the electrode radius [8]. 

 

2.1.1.2. Ohmic Effects 

The ohmic load of the electrochemical cell means that the potential applied is 

diminished by an amount, iR. Hence, depending on the current magnitude and the cell 

resistance, strong distortions can be observed experimentally. The low currents 

observed at microelectrodes come, therefore, as an advantage since they often are in 

the pA to nA range. Considering the time-scale and dependence of resistance with 1/r, 

for short times the product iR will be directly proportional to the electrode radius, since 

the current varies with the electrode area, i.e. proportionally to r2. According to eq. 2.5, 

for long times iR will be independent of the electrode radius. This means that by working 

with small microelectrode currents, ohmic effects will be always minored, although in 

this case the transient regime becomes even more advantageous than the steady-state 

one [7].   
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2.2. The importance of geometry and the origin of non-ideal 

responses   

Shrinking the size of an electrode from millimeters to micrometers has important 

experimental implications. Reduced capacitance, negligible ohmic drop and working in 

the steady-state are more easily achievable with ME geometries in which all dimensions 

are small, instead of just one critical dimension, as is the case with cylinder and band 

MEs. Hence the most used ME geometries are disks, rings, ring-disks, hemispheres, 

spheres and cones (Figure 2.2) [9]. The ease of fabrication is even a more critical factor 

in the geometry selection. In fact, from the above, the disk geometry is among the most 

frequently used, but this shape is far from ideal because the enhanced mass transport 

at the circular edge of the disk tends to make the center less accessible to electroactive 

species. However, disk MEs have the enormous advantage of being easily made by 

simply sealing a metal wire in glass, which also makes them easy to clean by 

mechanical polishing [6,7].  

Figure 2.1 shows the shape of the expected voltammetric waves and corresponding 

diffusion profiles that result from the transition of large scale to microscale electrodes. 

However even if the size of a microelectrode and the scan rate of the experiment are 

low enough, the typical sigmoidal polarization curve may not be observed. Deviations 

from the ideal behavior often originate from imperfect sealing, which leads to 

unexpected capacitance and ohmic effects.  

Other cases include surface impurities or stray capacitance, which can be ignored with 

big electrodes or in low frequency measurements, but can contribute significantly when 

using microelectrodes because its magnitude is similar to that of the double-layer. 
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Figure 2.2 – Common microelectrode geometries and their steady-state current equations. 

 

The study of electrochemistry comprises three main variables: potential, current and 

time. The interdependence between the three is the origin of the various existing 

techniques. Potentiometry gives the measurement of ion activity at zero current of the 

sensing electrode vs. an adequate reference electrode, although constant current can 

also be used. Chronopotentiometry refers to potential measured as a function of time. 

Fast response, high selectivity and low detection limit are desirable qualities of a 

potentiometric sensor. 

Voltammetry deals with the measurement of current or potential by varying the potential 

or current, respectively, with time. Amperometry is the term applied if a fixed potential is 

used and if the measurement involves varying current with time, the technique is called 

chronoamperometry. These measurements require that the analyte is electroactive and 

it is desirable that the sensor exhibits a suitable potential range and that no 

decomposition is observed from the solvent. Coulometry and chronocoulometry can 
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also give valuable information as they consist on the measurement of transferred 

charge [10]. 

Considering their ambiguous definition throughout the years, there are a number of 

relevant milestones since the first use of microelectrodes, which can be dated back to 

some 70 years ago. After the introduction and success of the glass pH-selective 

electrodes by Cremer in 1906 [11], their miniaturization to microelectrodes has been 

propelled mainly by life scientists given the micrometer scale of cells, and the possibility 

of studying small volumes with minimum damage to the surrounding environment and 

resolved information [9]. Nowadays potentiometric microelectrodes are mainly based on 

liquid ionophore containing membranes that allow the measurement of more than fifty 

types of ions, in some cases with detection limits below 10-10 M [12]. Novel fabrication 

approaches are currently under research aiming at the substitution of liquid membranes 

by solid ones, promising simplified fabrication procedures and even lower limits of 

detection [12,13]. 

Novel materials for voltammetric microelectrodes have also been developed. The 

traditional use of metals such as platinum and gold has not ceased but their properties 

and assembling methods have taken a step further by using them in the form of 

nanoscale particles and as integrant parts of composite electrodes, particularly for 

taking advantage of their catalytic properties. New carbon materials have been 

discovered and reinvented, such is the case of carbon nanotubes (CNTs), graphene 

and diamond. Their use has given access to new mechanistic studies of biological 

processes and others. Besides the intrinsic characteristics of electrodes, a significant 

part of research on the development of electrodes is currently dedicated to electrode 

functionalization in order to detect complex molecules otherwise out of reach. Below is a 

brief summary of the characteristics of main state-of-the-art electrode types and an 

overview on new trends. 

 

2.2.1. Potentiometric microelectrodes 

Potentiometric probes are an acute analytical tool that provides quantitative chemical 

information on the activity of ions composing a sample solution. Cremer’s discovery of 

the pH-sensitive glass membrane electrode launched the research concerning other 
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ions [14]. The first sodium selective glass electrode was introduced by Eisenman and 

co-workers [15]. Pungor et al. [16] were the first to prepare reliable electrodes with 

selectivity to different ions, nowadays termed ion selective electrodes (ISE). This was 

achieved by embedding soluble inorganic precipitates in hydrophobic membranes, 

which exhibited near-Nernstian response towards different ionic species. The developed 

membranes were based on a cold vulcanized silicon rubber matrix and these electrodes 

were produced and commercialized on large scale. A variety of works followed, among 

which Frant and Ross introduced fluoride and calcium selective electrodes, the first 

based on lanthanum fluoride crystal and the latter on a liquid ion-exchanger [17]. A 

milestone was achieved by Simon and co-workers [18] by showing that neutral organic 

molecules could behave as selective complex forming ligands, the birth of today’s 

ionophores. The new neutral ionophore containing membranes excluded every ionic 

species except for the one compatible with host ligand chemistry, and was superior to 

the moderate selectivity of the existing ion-exchanger–based electrodes. The 

ionophores started by being dissolved in diphenyl ether and were later incorporated in 

plasticized PVC membranes [19,20]. In what regarded the preparation procedures, the 

work of Thomas describing the assembly of plasticized PVC membranes containing 

electrically charged and neutral ligands, was an important reference followed for many 

years [21]. Since then the main improvements have been related to selectivity and to 

the introduction of new ionophore cocktails for different ions. More than a decade ago, 

the identification of the factors restraining the detection limits for liquid membranes 

allowed a dramatic improvement in this area, of more than six orders of magnitude, 

allowing liquid membrane based ISEs to access the picomolar range [22]. Regardless, 

micropipette electrodes still suffer from complex fabrication, spontaneous leakage, 

fragility and short life time [23]. Consequently the current research trend on ISE 

development is related to finding electrodes with higher durability and requiring less 

maintenance. Simpler fabrication and higher levels of miniaturization are also on 

demand. Conducting polymers are currently the most promising materials for working as 

ion-to-electron transducers or even as the sensing membrane, which allows the 

fabrication of all-plastic ISEs [24,25].  
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2.2.2. Voltammetric/amperometric microelectrodes 

The measurement of current strongly brings up the advantages of using 

microelectrodes. The only advantage of using potentiometric microprobes is the degree 

of resolution, since signal intensity is size independent. Conversely, the microelectrode 

additional properties such as enhanced signal-to-noise ratio and negligible ohmic drop 

only manifest at current measuring MEs. Since voltammetry and amperometry both deal 

with measuring oxidation and reduction currents, the rate at which reactions of interest 

can proceed at an electrode surface, i.e. electrode kinetics, are a matter of interest. 

Metal microelectrodes generally exhibit the highest electron transfer rates. Platinum and 

gold are the most commonly used solid metal electrodes because of their superior 

chemical stability among metals. Also, their use is often related to the ability to catalyze 

certain reactions such as hydrogen evolution on platinum or oxygen evolution on gold 

[26]. Besides these noble metals, there is a considerable range of electrochemically 

interesting metals such as silver, palladium, iridium, tungsten, etc, which are well 

described in specialized literature [27]. However, the formation of oxide films under 

certain potential-pH conditions is a limiting factor for the use of metals and their catalytic 

properties can be a problem because they restrain the working potential range. 

Furthermore they easily undergo fouling, which is a strong inconvenient in highly 

demanding applications such as biotechnology, particularly in vivo.  

Carbon electrodes can attenuate the drawbacks of metals. Their window of stability in 

aqueous and non-aqueous media tends to be much larger than that of metal electrodes 

and passivation or electrode fouling are much less favorable. Their main drawback is 

the kinetics of electron transfer, which tends to be slower than in metals, although the 

use of nanocarbon forms such as graphene and carbon nanotubes can exhibit fast 

kinetics [28]. 

For the above mentioned reasons, glass insulated platinum or carbon fiber 

microelectrodes, which were two of the most widely used ME types, now inspire more 

elaborated fabrication approaches based on composite materials. Other approaches 

seek specificity towards reactions of interest and involve functionalization with ligand 

molecules and compounds that can promote immobilization of species of interest and/or 

bridge electron transfer between electrode and analyte. Broadly speaking the most 
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interesting routes of microprobe fabrication are based in either metallic or carbon 

probes modified with metallic nanoparticles, CNTs, polymeric films or even enzymes. 

The 80s brought the introduction of Nafion coatings [29,30], which are only permeable 

to cations and were since then widely used for modification of carbon electrodes for 

brain research. The use of self-assembled monolayers, consisting of well-ordered and 

densely packed layers of organic molecules also became popular for altering chemical 

and electrochemical behavior of surfaces with most studies being dedicated to 

alkanethiols on gold [31,32]. The main advantage of self-assembled monolayers is the 

possibility to easily acquire different chemical functionalities allowing to control 

interfacial properties of an electrode at the molecular level [33]. These layers can exhibit 

a variety of distinct properties allowing them to work as organic semiconductors, 

electrochromic materials, photocatalytic materials, or even as immobilizers for 

molecules of interest [34].  

The popularization of nanomaterials evidenced the relevance of surface area in 

improving electron transfer and increasing limits of detection. Moreover they brought the 

possibility of easily assembling microelectrode or nanoelectrode arrays, which as 

individual MEs allow enhanced sensing ability [35–37]. Stabilized gold nanoparticles 

were the debut of nanosensors [38], with early on exceptional sensing performance. 

Another landmark was the appearance of carbon nanotubes which added outstanding 

electronic and mechanical properties to great surface area and possibility of 

functionalization [39]. The latest landmark on nanomaterials was the discovery of 

graphene, which like CNTs is a very promising carbon material [40].  

Evermore complex material combinations are being put together for the fabrication of 

more sensitive microsensors, as the following examples might suggest. Xu and 

coworkers reported the fabrication of platinum microelectrodes modified with gold 

nanoparticles for the detection of Cu(II) with in situ microwave activation [41]. The group 

of R.G. Compton reported the use of a palladium nanoparticle array supported on boron 

doped diamond for the detection of hydrazine [42]. They used the catalytic properties of 

the metal to reduce the potential at which hydrazine oxidizes at carbon electrodes and 

showed improved limit of detection and sensitivity. Tsai et al. recently showed that 

platinum microelectrodes modified with gold nanoparticles and a self-assembled 
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monolayer of 3-mercaptopropionic acid are suitable for dopamine monitorization in the 

brain with higher sensitivity that Nafion coated MEs and limit of detection on the 

nanomolar range [43]. Ross and Venton recently published an improved version of 

Nafion coated carbon fibers by the addition of carbon nanotubes [44]. The resulting 

combination of the ion-selectivity of Nafion with the fast kinetics provided by CNTs was 

an improved microsensor for the detection of adenosine without the interference of 

adenosine triphosphate (ATP). 
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2.3. Common electrode materials 

2.3.1. Platinum 

Platinum is the most commonly used metallic electrode for voltammetric studies. It is a 

very ductile metal with the advantage of having a thermal expansion coefficient similar 

the soda-lime-silica glass which is commonly used for the insulation of Pt electrodes. 

This metal can provide an inert, stable electrode in both aqueous and nonaqueous 

solutions provided that complexing agents are not present in solution. However, 

because of its electrocatalytic activity towards hydrogen adsorption and evolution, the 

negative potential limit of platinum electrodes in protic solvents is very low. Towards 

positive potentials, in water or oxygen containing solvents there is formation of an oxide 

film yielding potentially interfering voltammetric waves. In fact, the true ideally 

polarizable electrode behavior is restricted to about 0.2-0.3 V according to the surface 

state and microstructure of the used metal [26,27]. 

 

2.3.2. Gold 

Gold is another widely used electrode material. Of easy fabrication, these electrodes 

can exhibit a variety of geometries. One of the most interesting configurations is based 

on pure or transition metal-doped gold clusters. These assemblies of nanoparticles 

exhibit different properties from the bulk metal according to the particle size, geometry 

and/or added dopant. The use of gold, as well as platinum, is in part related to its 

electrocatalytic activity towards oxygen reduction.  

Gold exhibits an overpotential for hydrogen evolution reaction between that of platinum 

and mercury. In alkaline media it has electrocatalytic activity towards oxidation of 

carbohidrates. However, at positive potentials, gold forms an oxide layer and will 

undergo dissolution in the presence of complexing anions such as chloride and cyanide 

[26,27] .   
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2.3.3. Mercury 

Mercury is a liquid metal at room temperature which is convenient because it does not 

require any polishing or cleaning procedures. There are several configurations of 

mercury electrodes such as the hanging drop, the static drop or the controlled growth 

drop mercury electrodes. In opposition to platinum, mercury exhibits a large 

overpotential for hydrogen evolution and is therefore a very useful electrode for the 

study of cathodic processes. However, for positive potentials mercury is easily oxidized 

especially in the presence of complexing anions [26,27]. 

 

2.3.4. Carbon electrodes 

2.3.4.1. Highly oriented pyrolytic graphite  

Highly oriented pyrolytic graphite (HOPG) is a carbon material that is prepared by 

exposing pyrolytic graphite to conditions of high pressure and high temperature. 

Because of its smooth surface it is good for studying electrochemical reactions. In terms 

of electrical conductivity it is anisotropic presenting both metallic and semi-metallic 

conductivity depending on the direction. Its basal plane presents intrinsically low double-

layer capacitance density of 1-5 µF.cm-2 and consequently low background current. 

However, the more defective the basal plane is the more the double layer capacitance 

increases. Furthermore, the amount of exposed edge planes and carbon-oxygen 

functionalities also contribute for increasing the background current as well as the 

enabling of molecular adsorption. Hence, although it is a quite well known electrode 

material, its microstructure will define the overall electronic and electrochemical 

behavior [26,27]. 

 

2.3.4.2. Carbon fiber 

Carbon fibers are commercially available in diameters from ca. 1 to 40 µm, which 

readily puts them in the microelectrode scale. They can be produced from several 

starting materials such as polyacrylonitrile (PAN) and pitch or from wood derivatives like 

rayon and lignin. Another route is by gas-phase deposition from a carbon precursor. As 
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microelectrodes they are usually given a cylinder or disk geometry with glass insulation. 

The variety of existing synthesis routes and heat treatment procedures yield fibers with 

different microstructure and consequently different properties. Likewise, HOPG, a more 

ordered graphitized fiber will tend to present lower capacitive current as well as lower 

content of surface oxygen groups which minimizes adsorption. Hence carbon fibers 

usually undergo surface pretreatments to optimize their properties, such as a few 

voltammetric cycles in 1 M HCl. After such conditioning procedures, background 

currents and adsorption effects are minimized, and electron transfer kinetics for most 

redox systems are enhanced [26,27].  

 

2.3.4.3. Carbon nanotubes 

Carbon nanotubes are somewhat a maximization of basal planes order in carbon-

related materials. As for carbon fibers, their high aspect ratio makes them easily 

suitable for producing microelectrodes. Of interest, CNTs generally present higher 

sensitivities, lower limits of detection, and faster electron transfer (ET) kinetics than 

more common carbon electrodes. The CNT detecting performance depends on the 

synthesis method and post-synthesis treatments. There are three main routes for CNT 

synthesis all advantageously assisted by metallic catalyst particles: arc discharge, laser 

ablation/vaporization, and chemical vapor deposition (CVD). By engineering the catalyst 

particles and regulating the growth conditions, single walled (SW) or multiwalled (MW) 

CNTs can be grown. The structure helicity (i.e. chirality) of SWCNTs will determine their 

electronic behavior from metallic to semiconducting. For MWCNTs, the metallic 

behavior of at least one of the layers makes the whole tube structure to behave as a 

metallic conductor. Besides their electronic properties, CNTs complement their potential 

as sensors by exhibiting high electrical conductivity, high chemical stability, high 

mechanical strength, and high appetence for surface functionalization [45,46].   

However care must be taken as metals are used in their synthesis. Hence, after growth 

some harsh purification procedures are required, typically washing with acidic solutions, 

but still, it is not a totally efficient procedure with metal impurities remaining 

encapsulated inside the structures. Furthermore oxygen groups may be added to 
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exposed CNT edges or in-plane defects yielding the breakdown of the tubes and their 

shortening [45,46]. 
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2.4. Diamond and boron doped diamond 

2.4.1. The diamond structure 

Diamond is one of the carbon allotropes, characterized by being bound to the orbitals of 

four other carbon atoms by means of strong covalent sp3 bonds each with an energy of 

370 kJ.mol-1, forming a regular tetrahedron with equal angles of 109° 28' (Figure 2.3).  

 

Figure 2.3 – The diamond tetrahedral structure. (adapted from [46]) 

 

The diamond crystal structure is the face centered cubic Bravais lattice with a lattice 

constant of a = 3.567 Å. Each lattice site is populated by two atoms in the positions [0, 

0, 0] and [¼, ¼, ¼] within the cubic unit cell which altogether contains the equivalent to 

eight carbon atoms. The interatomic spacing is 1.54 Å, which is considerably small in 

comparison to other semiconducting materials (2.34 Å for Si). This close packing, 

optimum alignment and strong bonding make for the highest atomic density (1.76 x 1023 

cm-3) of any known solid [47]. 

This structure is among the stiffest, hardest and least compressible of all substances as 

well as one of the most chemically stable. 

 

109º 28’
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2.4.2. CVD diamond 

Diamond obtained by chemical vapor deposition (CVD) is known as a very versatile 

material by exhibiting a combination of properties such as extreme hardness, highest 

thermal conductivity of any solid material as well highest dielectric strength (107 Vcm-1), 

optical transparency from the UV to the far infrared, and extreme chemical inertness, 

among others [48]. Although owing most of these properties to the high stability and 

strength of its sp3 bonded carbon tetrahedral coordination, CVD diamond is grown in 

metastable conditions, at sub-atmospheric pressures, by several techniques among 

which the hot filament chemical vapor deposition (HFCVD) is among the most 

commonly used ones [49]. By this technique, diamond films can be grown from 

thermally activated gas mixtures constituted of high hydrogen (~92-99.5%) and low 

carbon content hydrocarbons, usually methane (~0.5-20%) [50,51]. Besides methane 

and hydrogen, other gases such as O2, CF4, CCl4, CO2, Ar, etc. can be used [51–55]. 

The growth conditions for CVD diamond are confined to a very small region in the 

phase diagram of carbon (Figure 2.4).  

Although graphite is thermodynamically the stable species, this growth process is 

kinetically controlled as hydrogen has the important role of etching away the graphite 

and other sp2 bonded carbon phases, enabling the diamond deposition. Furthermore, 

hydrogen plays a fundamental role in the growth mechanism, being a central element in 

the so-called hydrogen abstraction reaction. This is the driving reaction behind diamond 

growth by HFCVD and consists basically on bonding of the methyl radicals, as building 

blocks to the formation of the C-C sp3 bonded crystalline network (Figure 2.5) [56].  
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Figure 2.4 – Diamond phase diagram evidencing the CVD growth window (adapted from [57]). 

 

 

Figure 2.5 – CVD Diamond growth mechanism, evidencing the role of atomic hydrogen (adapted from 

[58]). 
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2.4.3. Diamond surfaces 

In any electrochemical application, achieving a certain desired behavior is strongly 

connected with the surfaces and interfaces taking part in the process. Since these are 

end regions, in order to achieve energetic stability their structure and configuration are 

often different from that of the bulk material, giving rise to derivations from the intrinsic 

atomic arrangement of the material, a phenomenon called reconstruction. This 

truncation of the periodic arrangement of the crystal at the surface gives origin to 

distinct electronic states, the surface states. These are intrinsic to each material and 

specific to each crystallographic orientation [59].  

The three main crystallographic orientations of diamond are (100) (110) and (111). For 

all three, the carbon dangling bonds consist of π-electron systems which induce 

different density of surface states, with topology dependence. Surface reconstruction on 

the (100) faces consists on the formation of symmetric dimers arranged in rows with a 

distance of 2.52 Å between them [60]. The dimmer orbits present a gap of 1.3 eV 

between occupied and unoccupied states, with the occupied states being energetically 

placed within the valence band. Therefore there is no charge exchange between 

surface states and the bulk, which implicates that no surface band bending occurs as 

well [60].  

The (111) and (110) surfaces distinguish from (100) by the reconstruction arrangement 

of the dangling bounds, which form symmetric π-bonded chains but without 

dimerization. Therein (111) surfaces present a 2x1 reconstruction with a distance of 

4.37 Å between the chains while (110) surfaces do not exhibit reconstruction and have 

a distance of 3.57 Å between chains [60]. 

 

2.4.4. Surface hydrogen terminations of diamond 

As seen above, the surface atomic structure is normally observed in the form of a π-

bonded array ensuring the normal valence. However, the reactivity of these unsaturated 

bonds together with the normally abundant atomic hydrogen used for CVD diamond 

growth, leads to the formation of strong C-H bonds and CVD diamond is normally 

terminated with chemisorbed hydrogen atoms, even though some residual and weakly 
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chemisorbed hydrocarbons can persist even after the full growth process is properly 

performed. Upon passivation with hydrogen the (111) and (110) surfaces suffer no 

reconstruction and present almost perfect bulk termination. For (100) faces single-

bonded dimers are preserved forming the same geometry as for the clean reconstructed 

surface [59]. 

This surface character is quite stable, considering that temperatures of more than 800 

°C in vacuum or inert atmosphere are needed if the hydrogen is to be desorbed and the 

reconstructed surface restored. In air or in solution there is a different situation. The H-

terminated surface will remain relatively stable within a matter of a few days at room 

temperature, but increasing the timescale there is a clear tendency for surface oxidation 

in different forms such as ether and carbonyl groups or hydroxyl if there is significant 

moisture [61]. 

The same tendency can be verified during use. If diamond electrodes are submitted to 

strong polarization, i.e. near the anodic limit of the potential window, a replacement of 

hydrogen termination by oxygen functionalities is verified and the surface becomes 

much like as if it was submitted to an oxygen plasma [62,63]. 

 

2.4.4.1. Electron affinity and surface band bending 

Surface band bending consists on a variation of the electrostatic potential which then 

involves all energy levels, the valence band maximum (VBM), conduction band 

maximum (CBM) and core level. This potential variation occurs in a direction 

perpendicular to the surface and originates from an exchange of free charge (electrons 

or electron holes) between the surface and the bulk motivated by the adjustment of the 

chemical potentials between the bulk material and the surface states (intrinsic surface 

states, defects, or adsorbates) [60]. The charge density profile is governed by the Fermi 

occupation function and charge neutrality condition described by Poisson's equation. 

For moderately doped diamond (1016 dopants/cm3) the charge adjustment length 

corresponds to a fraction of a micrometer through which the space charge in the 

semiconductor is compensated by an equal amount of surface charge, which in turn 

depends on the two dimensional density of states (Figure 2.6).  
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Figure 2.6 – Surface band bending of diamond (adapted from [60]). 

 

2.4.4.2. Electron affinity 

Chemisorption at terminating surface bonds commonly gives origin to heteropolar 

bonds. These will exhibit a dipole defined by the different electronegativities between 

the carbon atoms from the diamond lattice and the surface-terminating atoms [19]. 

Differently from typical semiconductor elements, the electronegativity of carbon is higher 

than that of hydrogen, its most common terminal species. This causes a reduction in 

electron affinity in comparison to clean surfaces making it effectively negative, as is 

schematically shown in Figure 2.7. The second most important diamond termination, 

oxygen, has the opposite effect since it exhibits larger electronegativity than carbon 

[61,64]. 
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Figure 2.7 – Effect of varying the surface termination of diamond on the electron affinity. The energy 

diagrams originate from the different heteroatom terminations. The potential step eΔV reflects the 

variation imposed by the surface dipoles (adapted from [61]).  

 

2.4.4.3. Surface conductivity of diamond 

Given the wide band gap of diamond, this material would be expected to be a perfect 

insulator. However, in a work from 1989 Landstrass and Ravi [65] have observed that 

undoped diamond exhibits high conductance which progressively reduces upon 

annealing in vacuum. Although misinterpreted at the time, this phenomena was 

addressed by Maier et al. in 2000, who identified the importance of hydrogen surface 

termination and atmospheric adsorbates in the process [66]. Hydrogen termination of 

diamond has a double role. As carbon has higher electronegativity than hydrogen a 

surface dipole is generated upon hydrogen chemisorption leading to a negative electron 

affinity of -1.3 eV. In consequence, the usual large bandgap of 5.5 eV is lowered to 4.2 

eV. A thin atmospheric adsorbate layer, as it forms naturally on all surfaces exposed to 

atmosphere, provides a system that can extract electrons from diamond as long as the 

electron affinity of the physisorbed species approaches the referred 4.2 eV ionization 

energy. This is precisely the case considering typical atmospheric conditions with a pH 

of between 5 and 7, yielding a chemical potential for the atmospheric layer of -4.2 

to -4.3 eV, thus slightly lower than the valence band maximum (VBM) [61]. 
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The trigger mechanism for charge transfer is the redox reaction of hydronium 

conversion to hydrogen. After reaching chemical equilibrium between diamond and the 

adsorbate system, an upward band bending is caused by the energy leveling between 

the positive layer of holes and an equal amount of anions from the atmospheric layer 

(HCO3
-), confining the holes close to the surface and pinning the Fermi level below the 

valence band maximum explaining the surface conductivity of diamond [61]. 

Accounting for partial surface oxidation and the effect of water dipoles in the ionization 

energy, different couples other than H3O
+/H2 have been considered that can sustain the 

airborne surface conductivity such as O3/O2 + OH− and O2/OH-. Given the limited 

thermal stability of these species, other molecules were studied such as fullerene (C60) 

and fluorofullerenes, which provided clearer understanding on how surface conductivity 

depends only upon the energy difference between the VBM of hydrogen-terminated 

diamond, and the lowest unoccupied molecular orbit (LUMO) of the molecular adlayer. 

Hence, the properties of the diamond surface can be totally commuted by hydrogen 

chemisorption, presenting the lowest ionization potential among all semiconductors in 

spite of its large band-gap (Figure 2.8) [61]. 

 

 

Figure 2.8 – Comparison between band gaps and edge energies of different semiconductor materials 

including bare and H-terminated diamond. The valence band maximum of H-terminated diamond is 

located within the chemical potential window of the hydronium-redox couple (inset), enabling electron 

transfer to occur. μSHE is the electrochemical potential of the standard hydrogen electrode and EV is the 

valence band edge of hydrogenated diamond (adapted from [61]). 
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In fact, hydrogen is an example of what comes to be one of the most important 

characteristics of this material, the multiple application possibilities only by means of 

adequate functionalization. If displaying oxygen terminations instead of hydrogen, 

diamond will present a positive electron affinity of 1.7 eV, meaning a remarkable 3 eV 

shift in electron affinity, along with loss of surface conductivity and gain of hydrophilic 

character, just by using a different heteroatom. Others such as -F, -OH, -NH, -Cl have 

been reported [67–69].  

 

2.4.5. Doping of diamond 

The usual insulating character of diamond can be inverted by doping the carbon 

network with other atomic species enabling the growth of CVD diamond films with 

controlled properties, from p- or n- type semiconductivity to metallic conduction. The 

main efforts in this area have been made towards doping diamond with elements such 

as boron, nitrogen, phosphorus and sulfur, even though attempts with other less 

suitable species have been reported [70].  

While p-type doping of diamond is well established, n-type doping of diamond is hard to 

achieve [71]. From group V elements, many options have been attempted, mainly with 

nitrogen and phosphorus. Nitrogen has an atomic radius close to carbon and can be 

easily integrated as a substitutional donor in the diamond lattice. It is however a deep 

donor with an energy of 1.7 eV below the conduction band making it unsuitable for 

semiconductor devices. Phosphorus is also a deep donor but with a much lower energy 

than nitrogen, 0.6 eV. Yet it has a large covalent radius in comparison to carbon and its 

uptake in diamond is in a highly non-equilibrium state, with very low doping efficiency, 

especially in the tight (100) lattice. For the (111) orientation, doping levels between 1016 

and 1020 have been achieved [61,72,73]. Furthermore hydrogen passivation is a further 

complication, as it is for other dopants. Although not fully understood or sufficiently 

consistent, doping by phosphorus is currently the most valid and successful route for 

gathering n-type semiconductivity of diamond [74].  
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More complex solutions have been considered as are the cases of sulfur and a boron–

deuterium complex, which yield n-type conduction with shallow donor levels of 0.38 eV 

and 0.23 eV, respectively, but there is a lack of reproducibility [61]. 

Conversely p-type diamond is well studied and applied. Boron, with a covalent radius of 

0.88 Å, similar to carbon with its 0.77 Å is easily incorporated in substitutional sites of 

the diamond lattice. It has a shallow acceptor level of 0.37 eV above the valence band 

(Figure 2.9), although this energy becomes lower with impurity band formation at higher 

boron concentrations [75,76]. There are a number of boron containing precursors such 

as diborane, trimethylborane, triethylborane, boron trioxide, boric acid and others 

[50,77]. 

Besides the role as boron source, the impact of adding boron compounds to the normal 

C/H gas compostion of diamond has been studied, although the observations are strictly 

dependent on the deposition method and the composition of the doping compounds 

[78].     

Theoretical studies and experimental studies indicate that the growth rate of boron 

doped diamond can vary in function of the type of boron precursor and its concentration, 

which is also true for the doping efficiency. The formation of boron-hydrogen 

compounds like BH3, BH2, and BH induces a variation in the concentration of important 

radicals for diamond formation such as atomic hydrogen and CH3, thereby usually 

diminishing the deposition rate [78–80]. There are also consequences for the crystalline 

quality of the films, which have been reported to exhibit considerable amorphization with 

increasing fractions of sp2 carbon associated [77]. In contrast, other authors disagree 

reporting improved crystalline quality for boron doped diamond films [81].  

The relationship between the B/C ratio of the gas phase and that of the crystalline 

network of the diamond films is, again, not straightforward. The variation is usually not 

linear and relationships of the boron concentration in the films varying with the square of 

the boron concentration in the gas phase have been measured by reference authors 

[78]. Other relationships include maximum doping effectiveness at a B/C ratio of about 

10000 ppm in the gas phase [82,83]. 

The contradictory findings concerning some observations related to boron doping can 

be sustained by some of the variables involving the growth of boron doped CVD 
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diamond: (i) HFCVD and microwave plasma assisted CVD (MPCVD) are the most 

common growth techniques and the carbon radicals leading to diamond growth are 

partially different for both [49,84]: (ii) the reactor geometry (e.g. disposition of gas inlets 

and outlets) determines the gas distribution profile and ultimately the homogeneity of 

the diamond films [85–87] (iii) diborane gas (B2H6) is without doubt the simplest, most 

efficient boron precursor available (only B and H), but it is also extremely toxic and 

explosive, which leads to different precursor choices for many laboratories [88]; (iv) the 

other available precursors frequently contain oxygen, which has a strong influence in 

the CVD process and in the final properties of the diamond films [89,90].  

Although a general trend can be reached, the above mentioned factors will dictate the 

reproducibility of observations between research groups and the probability of success 

of a given diamond based device.  

 

2.4.5.1. Conductivity mechanisms in boron doped diamond 

The conductivity of boron doped diamond has been ascribed to two different models. 

One model describes electron transfer as occurring via impurity states within the band 

gap of diamond. These are associated to overlapping wave functions of neighboring 

boron atoms. Hence, with a high enough density of states impurity bands will form 

(Figure 2.9). The rate of electron transfer will depend on the density of states with a 

corresponding energy in relation to the potential of the redox couple of interest. Lattice 

hydrogen is also believed to contribute to the impurity bands. This is because surface 

states are considered to be defects or impurity spots at the surface or near surface. 

Therein, boron, hydrogen, oxygen or carbon inclusions may be responsible for 

mediating electron transfer between the valence band and the target redox system. The 

mechanism per se is believed to consist on multiple electron hopping and the 

heterogeneous kinetics are dependent on the rate of tunneling of electrons and holes to 

the redox species. The available density of states will depend on the dopant 

concentration, which controls the rate of carrier migration and, consequently, the rate of 

electron transfer is also directly related with it. Excessive impurity concentration can 

lead to carrier scattering and therefore lower the mobility [91].   
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Figure 2.9 - Boron acceptor level in the diamond bandgap and effect of boron concentration. (adapted 

from [92]) 

 

A second model adopts a perspective which describes the boron doped diamond 

surface as having non-uniform boron dopant distribution. Hence there will be sites 

exhibiting fast heterogeneous electron transfer and others exhibiting slow transfer, 

depending on the dopant concentration. This is in agreement with the different capability 

for boron uptake of each crystal orientation: the (111) and (110) planes can 

accommodate about five to ten times more boron than the (100) (this topic is further 

discussed in section 2.5.2). Discontinuity sites like grain boundaries and edges are also 

believed to uptake high dopant concentrations that do not contribute for conductivity. 

The result of this is that electron transfer rate will be heterogeneously distributed along 

the surface and its magnitude given by the average of the whole surface. 

Hence, this alternative model is focused on the availability of active sites with sufficient 

dopant concentration providing for electron transfer, rather than on carrier migration 

[91].  
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The seemingly simple substitution of an atom with valence of 4 by an atom of valence of 

3, with generation of an electronic hole that enables charge mobility can, however, be 

quite complex. The interaction of boron, carbon and hydrogen in a polycrystalline matrix 

has been studied both in theory and practice. The thermodynamic stability of boron in 

diamond, the formation of complexes besides simple C-B bonding, as well as 

compensating effects are central issues in understanding boron doped diamond [93–

95]. 

Compensation arises from the presence of defects and residual impurities. It consists 

on the trapping of electrons or holes by those impurities, thereby reducing the free 

carrier concentration. Minimization of compensating defects is therefore a major issue 

concerning the achievement of reasonable carrier densities, especially when 

considering that only a fraction of the dopant is thermally activated at room temperature 

[96]. Other important consequence of high impurity concentration is the reduction of 

carrier mobility by ionized-impurity scattering [97]. 
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2.5. Diamond electrochemistry 

The application of diamond films for electrochemical purposes dates back to 1987 by 

Pleskov and co-workers [98]. By heavily doping this material it can become a 

degenerate semiconductor and exhibit a metal-like behavior [99]. Perhaps the most 

remarkable property of diamond electrodes is the extremely wide potential window of 

water stability, of 3 V or more, which is larger than for any other material [70] (Figure 

2.10). Its background current is also remarkable being lower than that of other well 

established and widely used carbon electrodes (HOPG, glassy carbon, etc.) [100].   

The amplitude of its potential window is intimately related with its normal hydrogen 

surface termination. Hydrogen and oxygen evolution resulting from the decomposition of 

water are known to depend on the adsorption of intermediates, which is not favorable to 

occur on diamond surfaces. Hence, very high overvoltages are required to drive the 

water electrolysis, which is quite useful for studying reactions occurring at potentials 

within this potential window [101]. 

 

 

Figure 2.10 – Polarization curves of a) good quality diamond; b) low quality diamond; c) platinum; and d) 

HOPG in 0.5 M H2SO4. (adapted from [102]) 

 

Like for water electrolysis, the surface termination will dictate, as well, the electrode 

kinetics for driving other reactions. Oxygen terminations, among many others, are also 
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possible in diamond and have a dramatic impact on the behavior of diamond electrodes, 

especially because the surface becomes hydrophilic.   

Another feature of diamond is its high resistance to corrosion, even in polarization for 

extensive periods in solutions of 1 M HNO3+0.1 M HF or 1 M HNO3+2 M NaCl, between 

the potentials of hydrogen and oxygen evolution, showing absence of microstructural 

degradation. The same is not true for other carbon electrodes under the same 

conditions [101].  

 

2.5.1. The influence of diamond semiconductor nature  

Considering an “ideal” semiconductor electrode, the potential drop observed in the 

Helmholtz layer at interfaces is smaller than that observed in the space-charge layer of 

the bulk material. This means that the valence band maximum and conduction band 

minimum energy edges are “pinned” at the surface and the surface free carrier 

concentration is independent of the doping level. In the same way the electron transfer 

kinetics are also independent of doping [101]. This effect is not observed in diamond. 

The potential distribution at the diamond/electrolyte interface depends on the doping 

level, and in the same way the rate of electron transfer is also proportional to the dopant 

concentration.  

The redox kinetics are also dependent on the equilibrium potentials of redox couples, 

and it was observed that the higher their energy in the gap, the more irreversible the 

reaction becomes on diamond electrodes. The correspondence between physical 

electronic energies and electrode potential is given by eE = 4.44 + ε, where e is the 

electron charge, E is the electrode potential in V vs the standard hydrogen electrode 

(SHE), and ε is the electrochemical potential in eV. This is the equivalent to saying that 

redox couples with more negative potentials have higher energies at which there is a 

lack of charge carriers in diamond, and the corresponding redox reactions will behave 

more irreversibly. This effect is more pronounced the lower the doping level of diamond 

[83,101]. 
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2.5.2. The influence of the crystallographic orientation and surface 

morphology 

The incorporation of impurities, such as boron atoms by doping, does not proceed 

equally for each of the three main crystallographic orientations of diamond. It has been 

demonstrated, by growing diamond films with specific orientation that the reversibility of 

redox reactions is strongly conditioned by the crystallographic nature. The (111) and 

(110) planes can accommodate boron more easily and, thus (100) planes grown and 

doped in the same conditions tend to exhibit boron concentrations one order of 

magnitude lower. In a study performed by Pleskov et al. [103], with the [Ru(NH3)6]
2+/3+ 

and [Fe(CN)6]
3−/4− redox couples, shown in Figure 2.11 it can be observed that for the 

(111) and (110) diamond orientations, although the oxidation and reduction reactions 

proceed irreversibly, the anodic and cathodic peaks are well distinguishable and mirror 

each other, whereas for the (100) diamond the peaks are barely observable. Comparing 

the charge transfer coefficients for the anodic and cathodic reactions, α and β, 

respectively (recalling that they correlate the variation in barrier height for electron 

transfer with the variation in potential), it was verified that the (111) planes exhibit 

values of 0.40 for α and 0.44 for β, similarly to a metal, whereas the coefficients for 

(110) planes were closer to that of a semiconductor (0.2 and 0.23). This means that 

both redox reactions will proceed with decreasing delay by the following diamond crystal 

orientation order: (111)>(110)>(100) [101].  

The same trend was observed for single crystal deposition, which confirms that the 

diamond growth habit is determinant in the incorporation of boron into substitutional 

carbon sites, consequently influencing the overall electrochemical behavior of single 

and polycrystalline diamond. 

The same group presented a study [104] on the influence of the surface roughness of 

diamond, and showed that it is also influential on the progress of redox reactions. 

Experimentally, the study was performed by growing diamond on top of titanium 

substrates with different roughness, which yielded the corresponding roughness for the 

diamond films on top. It was shown that for polycrystalline diamond films with higher 

roughness, the charge transfer when using the [Fe(CN)6]
3−/4− couple is improved and the 
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redox reaction will consequently proceed with lower ΔEp (anodic to cathodic peak 

separation), i.e. more reversibly. Furthermore the films grown with higher roughness 

showed increased mechanical stability and lower background current [101]. 

 

 

Figure 2.11 – Cyclic voltammetry with single crystal diamond grown with different orientations in a) 10 mM 

K3Fe(CN)6 + 10 mM K4Fe(CN)6  in 2.5 M H2SO4 and b) 5 mM Ru(NH3)6Cl2 + 5 mM Ru(NH3)6Cl3 in 100 

mM NaCl. (adapted from [103]). 

 

2.5.3. The influence of film thickness, grain size and sp2 content 

It has been suggested that the electrochemical behavior of diamond thin films is 

different for films with varying grain size and thickness. The reason for this is, 

simultaneously related to the amount of exposed sp2 carbon material, which tends to be 

higher for smaller grain size and thinner diamond films. In solutions containing the 

[Fe(CN)6]
3−/4− couple, higher transfer coefficients were determined for films smaller 

crystallite size and lower thickness. Higher differential capacitance was also observed 

[71].  

Similar results have been demonstrated by Duo et al. [105], by testing diamond-graphite 

composite electrodes with sp2 impurity dispersions on top of polycrystalline diamond 

K3Fe(CN)6
3-/4- Ru(NH3)6

2+/3+

a b
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films. The redox couples 1,4-benzoquinone/hydroquinone and [Fe(CN)6]
3−/4− were used 

to show that in cyclic voltammetry experiments, the electrodes with higher sp2 content 

showed a more reversible behavior, indicating sp2 phases as a major path for charge 

transfer [105].  

Contrasting information was gathered in a recent study using field emission scanning 

electron microscopy (FE-SEM) and intermittent contact scanning electrochemical 

microscopy (IC)-SECM to study the electrochemical behavior of polycrystalline boron 

doped diamond films towards the redox couples FcTMA2+/+ (ferrocenylmethyl trimethyl-

ammonium) and Ru(NH3)6
3+/2+. In this study it was demonstrated that the electron 

transfer coefficient, k0, is related to the local density of states in the diamond crystals, 

which is regulated by the boron concentration. Furthermore it was clarified that 

heterogeneous electron transfer activity does not depend on excess boron or sp2 

carbon in the grain boundaries [106]. 

 

2.5.4. The influence of surface termination 

2.5.4.1. Oxygen terminated diamond 

After hydrogen termination, carbon-oxygen groups are the most commonly found in 

diamond films, most probably because they are very stable and are the outcome of 

exposure to atmospheric oxidizing conditions. 

Structurally speaking, the divalence of oxygen can make two C-O covalent bonds with 

half the atomic density of hydrogen at (100) the faces. This minimizes the steric 

restraints and no reconstruction is necessary, although at high temperatures with 

strongly oxidizing conditions the surface becomes unstable and disordered. Two 

bonding configurations have been proposed: (i) the top-site model with one oxygen 

double bonded to each surface carbon, and (ii) the bridge-site model with two single 

oxygen bonds connecting adjacent surface carbon atoms [59]. 

At the (111) surfaces oxygen can chemisorb both the clean and hydrogenated 

configuration and bonding occurs maintaining the geometry of the clean surface.  

In order to correctly interpret electrochemical results, an overall balance regarding the 

surface condition prior to oxygen bonding, and also of the used oxidation method is 



Diamond Microelectrodes for Corrosion Studies 

 

46 
 

needed [59]. The electronic structure of oxidized diamond differs considerably from the 

hydrogenated one. Its positive electron affinity of 1.7 eV yields an ionization potential of 

7.2 eV suppressing the surface conductivity observed at hydrogenated diamond. 

Conversely the surface becomes hydrophilic which represents a significant impact in the 

electrochemical behavior although with dependence upon the oxidation method [61]. 

The most common approaches for diamond oxidation are anodic polarization in strong 

acid and exposure to oxygen plasma. Both can yield differently bonded oxygenated 

structures affecting mainly selectivity and the kinetic constant towards certain redox 

species [68,107,108]. Surface oxidation influences the heterogeneous electron transfer 

kinetics, making it more sluggish for some redox species, whereas for others it is 

enhanced. A fair example comes from the detection of dopamine in the presence of 

excess ascorbic acid, for which the oxidation wave for dopamine is less than 100 mV 

below that of ascorbic acid when using H-terminated diamond [109]. Upon anodic 

oxidation of the surface, it is found that the ascorbic-acid signal is shifted to much higher 

positive potentials than dopamine, evidencing an enhancement in selectivity that can 

arise from surface oxidation treatment [107,109]. Sensitivity to pH is another 

characteristic that will be discussed in this document and was only verified after plasma 

oxidation of H-terminated diamond in the present work. 

 

2.5.4.2. Fluorine terminated diamond  

Fluorine presents the highest electronegativity among all elements. Upon submitting 

diamond to fluorination treatments its electrochemical behavior is substantially different 

from hydrogenated or oxygen terminated diamond. For example it opens the possibility 

of extending the working potential window from 3 to 5 V [110]. Contrary to hydrophilic 

oxygenated diamond surfaces, the chemical bonding and rearrangement induced by 

fluorine on the diamond network determines that it becomes strongly hydrophobic [110–

112]. 

An early work by Freedman [113] on fluorine chemisorption on diamond by the use of 

an atomic beam reports it causes opening of carbon dimer bonds and surface 

reconstruction. Furthermore, the tight (100) diamond lattice surface would be disordered 

upon fluorination. Such hindrance was predicted not to be present in (111) surfaces 
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which would be partially reconstructed to the bulk-like arrangement. Also reported was a 

coverage lower than for hydrogen on both (100) and (111) surfaces and lack of thermal 

stability [113]. 

Different conclusions were drawn in later simulation studies by Tiwari et al. who 

determined that fluorine can provide a 100% coverage being energetically stable for the 

main diamond surface orientations with thermal stability at high temperatures [114]. 

Hadenfeldt et al. [115] have confirmed these predictions experimentally along with the 

enhancement of halogen chemisorption to hydrogenated diamond surfaces in 

comparison to the clean state. In their detailed study from 2001 [116] Kealey et al., 

accounted for the diverse microstructural sites of polycrystalline diamond putting in 

evidence the steric limitations of fluorine bonding to diamond carbon and determined 

that in discontinuity regions like edges and boundaries the formation of CF2, and 

possibly CF3 surface groups is more favorable, while C-F bonds have higher 

thermodynamic stability at diamond crystal faces.  

Ferro et al. [117] verified that boron doped diamond films submitted to CF4 plasma 

exhibit both a surface and sub-surface fluorinated structure and hypothesized that 

surface layer rearrangement can follow the initial chemical modification. They achieved 

the same results even from direct growth of fluorinated diamond, with even further in 

depth fluorine penetration, of tenths on nm, elucidating that this can provide higher 

stability in comparison to purely surface modified films. Although available information is 

somewhat inconsistent this probably derives from the various fluorination methods 

available. Fluorinated diamond can inclusively be grown directly by CF4 introduction in 

the gas chemistry. 

Electrochemically speaking, an extension of the already great quasi-ideal polarization 

window is consistently the main reported effect of diamond fluorination, which was 

attributed to the poor interaction between adsorbed intermediates at the fluorinated 

diamond interface. An evaluation of the extent of this hydrophobic nature was presented 

by Karlsson et al. [112] by submitting textured micro- and nanocrystalline diamond films 

to a C4F8/SF6/Ar plasma treatment. They measured contact angles of the order of 160º, 

confirming the possibility of producing superhydrophobic diamond surfaces. 
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Another so far universal observation on fluorinated diamond electrodes is their slow 

kinetic response. In comparison to as-grown, H- terminated diamond, the kinetic 

constant, k0, is lower by one order of magnitude for the Eu3+/ Eu2+ and Fe3+/Fe2+ redox 

couples and by three orders of magnitude for the more surface sensitive Fe[CN]6
3-

/Fe[CN]6
4- [117]. Given its hydrophobicity and poor interaction of F-terminated diamond 

towards hydrogen and hydroxyl radicals, a scarce interaction with water is obviously 

implied.  

This repulsion from the surface probably results in more compact arrangement of the 

solvation layer around the species of interest leading to a decrease in electron transfer 

rates, further determined by the molecular structure of each redox analyte. 

The stability of C-F bond and the sub-surface depth profile of fluorinated diamond 

support the idea that it can present long term stability, longer life service under extreme 

polarization, possibly showing adequacy for processes such as electrosynthesis [67]. 
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2.6. Applications of diamond microelectrodes  

Although the use of diamond electrodes for electrochemical applications has become 

increasingly attractive in the last two decades, their first use in the form of 

microelectrodes dates to 1998 by Cooper and co-workers [118]. Back then, diamond 

was grown by microwave plasma assisted chemical vapor deposition (MPCVD) on top 

of tungsten wires. After insulation in glass capillary the microelectrodes where tested by 

cyclic voltammetry with 1 mM ferrocene in acetonitrile, showing a steady state current 

behavior with a scan rate of 10 mV/s and good reversibility. The water stability window 

was held from -1.8 to 1.4 V. 

This pioneer work was followed by others of greater complexity, mainly focused on 

biological research. By these days, a search under the title words “diamond” and 

“microelectrode” done on one of the largest scientific search engines will retrieve 62 

results. This is an average of less than 4 papers per year from 1998 until 2014. The 

most probable reason for this is the difficulty and skill required to fabricate and 

manipulate microelectrodes. Indeed, there are not many groups around the world 

reporting work on the subject.  

The group of G.M. Swain is probably the leader in this area, with an extensive work on 

the detection of catecholamines, such as norepinephrine or epinephrine, important 

neurotransmitters and regulators of other physiological processes [119]. Their 

monitoring in tissues and body fluids can be very important in fighting Parkinson’s 

disease and requires equipment of high sensitiveness and the use of reliable analytical 

techniques [120]. By continuous amperometry this group has reported the detection of 

substances such as: norepinephrine (NE), the principal neurotransmitter released from 

sympathetic nerves; serotonin ( 5-HT), a signaling molecule in the gastrointestinal tract; 

nitric oxide (NO), a gaseous signaling molecule and an inhibitory neurotransmitter 

responsible for the relaxation of muscles in the gut; histamine, a biogenic amine 

involved in immune responses and regulation of physiological functions in the gut, which 

acts as a neurotransmitter. By using fast scan voltammetry with diamond 

microelectrodes this group has also reported the detection of adenosine and serotonin 

(5-HT) [121]. Other reports include the detection of chlorinated phenols (water 
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pollutants) by capillary electrophoresis [122]. Good performance was shown by a 

diamond microelectrode without electrode fouling. 

A recent review by Luong et al. [123], includes a compilation of the many analytes 

detected by diamond macro and microelectrodes. Ions such as sulfide [124] and 

arseneite (III) [125] have been analyzed with detection limits of 23 µM and 0.5 ppb, 

respectively. In the former case an array was used, while for As(III) the diamond 

microelectrode was modified with platinum nanoparticles. The identification of 

adenosine was reported by Martin et al. with a detection limit of 10 nM [126]. 

Measurements in vivo have been reported with diamond microelectrodes being used for 

detecting histamine [127] and dopamine [128] with sensitive and stable response. 

Application of these probes has also been done in scanning electrochemical microscopy 

(SECM) measurements for imaging the activity of the bacteria E. coli [129]. 

A very recent report from Fierro et al. [130] demonstrates in vitro and in vivo detection of 

the reduced form of glutathione (GSH) by cyclic voltammetry and amperometry 

measurements. GSH is an indicator of oxidative stress in cells and exists in high 

concentration in cancerous tissues. 

Other interesting approaches to the use of diamond microelectrodes include the 

fabrication of diamond AFM-SECM probes for electrochemical studies and local imaging 

[131]. 

In our group research is being conducted to develop new diamond based solutions that 

allow the study of corrosion related processes. Good results have been gathered for the 

measurement of oxygen and pH with diamond microprobes, and the results are part of 

this work. The detection of metal ions such as Zn2+ has been achieved, although without 

enough reproducibility. Nevertheless they were also included in this document as a 

promising topic for future development.     
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3.1. Microelectrode fabrication  

The use of microelectrodes was pioneered by plant physiologists more than 60 years 

ago [5]. Only later, in the 1980’s, they were adopted by electrochemists mostly by the 

hands of Wightman [132] and Fleischmann [133]. Increased mass transport rates, 

reduced double layer capacitance, minimal ohmic losses and the possibility of 

measurements in high resistivity media are some of the reasons that motivated 

increasing numbers of fabrication techniques of both single microelectrodes and arrays. 

Furthermore their small dimension allows working in the steady-state, i.e., the 

electrolysis rate and the rate at which molecules diffuse to the electrode are equal. 

Consequently the steady-state limiting current is directly proportional to the analyte 

concentration, which simplifies the theoretical treatment for a number of electrode 

geometries, above such as the spherical, hemispherical, inlaid disks, inlaid rings, inlaid 

ring-disks and conical probes, as seen in Chapter 2.2 ( Figure 2.2) [9]. Several other 

geometries have been used but either they only allow reaching a quasi-steady state or 

they have only one small dimension as can be the case with band microelectrodes 

[134]. 

The fabrication of individual microelectrodes can follow different routes, which usually 

require skilled operators and it is frequent to find simpler methods for producing an 

entire array than a single probe. The following examples describe some of the most 

commonly used procedures for microelectrode fabrication. 

 

3.1.1. Practical aspects of fabrication 

When the size of a wire or fiber drops below 10 µm, the sealing step becomes less 

straightforward and the quality of the bond between electrode and insulator becomes 

crucial. One hundred percent success rate for ME fabrication is usually never expected 

or achieved whether using traditional fabrication methods or more high-tech devoted 

ones such as micro and nanolithography patterning [135]. 

The construction of a microelectrode and the choice for its geometry depends on its 

intended use. This in turn will define: i) the size tolerable for application; ii) the electrode 

material; iii) the compatibility of the insulating shroud or support with respect to the 
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electrode material and the stability of the insulator in the electrolyte; iv) the necessity or 

ability to reproducibly clean the electrode surface; v) the possibility of obtaining rigorous 

theoretical treatment of current potential curves for a given electrode geometry; vi) the 

molecular turnover required; vii) the need or desire for a technically simple method of 

construction [135]. 

The actual size of a ME can be important simply because not all MEs as assembled are 

small. A disk of 1 µm in diameter can be surrounded by 1-2 mm of glass or epoxy 

shroud. A band or line electrode may have a submicrometer width, yet be centimeters 

long and surrounded by several square centimeters of insulator. Specifying a 

characteristic dimension of the ME clarifies this point. The characteristic dimension 

refers to the width of exposed electrode material and typically is used in quantitative or 

approximate treatments of the current response of the ME [135].  

 

3.1.2. Fabrication approaches for some common microelectrode 

geometries 

3.1.2.1. Hemispherical and spherical MEs 

The hemispherical geometry is generally achieved by using mercury drops as the 

electroactive material. Mercury cannot, however, be deposited on every type of surface 

and iridium is generally the best available substrate for wetting. Platinum and carbon 

are alternatives, although not as good. Hence, mercury is reduced on the disk shaped 

tip of a wire, and the size of the growing hemisphere can be calculated by monitoring 

current and time or by direct observation on the optical microscope [9]. 

Spherical MEs usually consist of particle agglomerates. A common procedure is to 

promote the self-assembly of gold nanoparticles agglomerates. The process is 

mediated by the crosslinking agent, 1,9- nonanedithiol, at the tip of a glass micropipette 

coated with conductive carbon on the inside. Upon immersing the micropipette in the 

solution containing the gold particles, the cross-linking agent induces the formation of 

smooth agglomerates with the same properties of metallic gold [9].   
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3.1.2.2. Ring microelectrodes 

Assemblies with this geometry are among the simplest to fabricate. Usually the idea is 

to coat an insulating rod with a conductive layer and an insulating layer on top. Or 

inversely, to coat the inside of a capillary or other hollow structure with a conductive 

layer and filling the remaining volume in the center with an insulating material such as a 

resin. In both cases the final ring microelectrode can easily be exposed by a polishing or 

cutting procedure [9]. 

 

3.1.2.3. Conical microelectrodes 

The fabrication of conical microelectrodes has usually its root in electrochemical etching 

of a metal wire. It roughly consists in immersing the wire (anode) in an electrolyte 

solution along with a counter-electrode, and applying a sufficiently high potential to the 

cell causing the desired wire to anodically dissolve and thus acquire a pointed shape. 

Metals like Pt, Ir, Pt-Ir, Au, Ag and tungsten (W) are usually elected for sharpening. 

Different electrolytic solutions such as concentrated NaNO2, NaCN and NaOH can be 

used depending on the used metal wire [136,137]. The most widespread procedure can 

be described by centering a tungsten wire (anode) inside a platinum ring (cathode) 

[138]. The apparatus can be inside an electrolytic bath or can solely present a thin 

lamellae of etching solution supported by the platinum ring, usually of NaOH or KOH. By 

applying a few volts during some minutes the tungsten wire will be sharpened dropping 

off the portion of wire bellow the plane of the platinum ring containing the solution.  

 

3.1.3. Insulation methods 

After choosing the geometry of an electrode material the conductor must be 

transformed into a working representation of the geometry. To be useful the very small 

must be connected to the macroscopic world for ease of handling and to make electrical 

contact. So, almost all electrode MEs are supported on, or shrouded within an insulating 

material. Interfacial problems often arise between the conductor and the insulator that 

must be minimized for successful electrode performance. While this is true for shrouded 
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or supported electrodes of any size, compatibility between electrode and insulator is 

also critical [135]. The insulation step tends to be a bit more complicated. One approach 

is to insulate excluding a portion at the rear-end of the electrode structure, i.e., by 

dragging the electrode body basis-to-tip through a portion of molten glass, polymeric 

resin, wax, etc. [139]. Other, alternatives can even involve the use of torches both for 

etching, which is common for carbon fiber electrodes, and for insulating procedures 

[135].  

The fabrication of diamond microelectrodes is normally followed by the establishment of 

the necessary electrical connection, ensuring ohmic contacts. Several methods have 

been used for insulating the microelectrodes afterwards with most common sealings 

being made of various polymers including epoxy and nail varnish, glass, electrophoretic 

paint, etc. For metals, glass is very common, but for diamond microelectrodes, the 

surface roughness and the difference in thermal expansion difficult the task, even 

though it has been accomplished [101]. 

Polymers have been used to insulate diamond microelectrodes quite more extensively. 

A reliable, but skill demanding method consists in covering the whole surface and 

exposing the tip by touching it gently with paper soaked in a suitable solvent. The main 

drawback might be related with the chemical stability of the polymer given the extreme 

polarization potentials that are within the working range of diamond MEs. An alternative 

is the use of electrophoretic paint. The method consists on polarizing the ME so that the 

change in pH around it will cause the paint (polymer) to precipitate. Cathodic and anodic 

paints are commercially available. Although these organic coatings have the advantage 

of shrinking after cure, leaving a small diamond tip exposed, if the film is too rough, the 

coating will also shrink throughout the whole electrode body resulting in incomplete 

insulation. The process can be repeated but in the end, the diamond tip might remain 

covered. Since the coating tends to be very chemically resistant, it becomes difficult to 

remove it afterwards by using paper embedded in solvents as in the previous examples. 

The best solution so far has been to cut the coated diamond tip by FIB, which yields a 

disk shaped microelectrode, suitable for application, e.g. in SECM [101].  
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3.1.3.1. The conductor-glass interface 

Conducting wires or fibers heat sealed in glass are sensitive to the mismatch between 

the coefficients of thermal expansion of the electrode material and insulator. Most 

metals and glasses are poorly matched in thermal expansion; this mismatch leads to 

cracks on the interface that constitute a source of nonlinear diffusion (or edge effects) 

and leakage at macroscopic wires heat sealed in glass. An ME is all edge, i.e. the 

perimeter to area ratio is large. Microcracks at the junction provide an apparent area 

which dwarfs the electrode area. This is one of the reasons for the popularity of soft 

glass-insulated platinum, they have very similar equivalent linear coefficients of 

expansion [135]. 

 

3.1.3.2. The conductor-epoxy interface 

To avoid the interfacial problems arising from heat sealing metal in glass, many users of 

MEs simply cast the metal in an epoxy resin or use epoxy to bond the electrode material 

to a shrouding or support material. This can be far less technically demanding during 

preparation, but the use of an epoxy as a sealant or as a sheath raises other concerns. 

The epoxy must adhere well to the electrode material or the seal will leak and render 

the ME useless. Adequate adhesion to the primary support or shrouding material is also 

required. The stability of the epoxy in the electrolyte needs to be assessed, especially 

with regard when switching between aqueous and nonaqeuous media. While the metal-

epoxy seal may not leak, species leached from the epoxy may degrade the quality of 

the voltammetric response and lead to an aged epoxy with microscopic defects. This is 

especially important when working in nontraditional, nonpolar solvents. 

Adhesion is also an important factor when the electrode material is painted, sputtered, 

evaporated, or melted onto an insulating support. Noble metals especially will not 

adhere well to glass due to a low value of the work of adhesion. Undercoatings are used 

to prevent the metal from floating off the support during experiments. Cr, Ti or Ta 

underlayers are routinely applied to glass before thin gold or platinum films are 

sputtered or evaporated on [135]. 
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3.2. Substrate preparation  

3.2.1. Tungsten as substrate material for diamond growth 

Tungsten is a hard, refractory metal (melting point = 3422 ºC) with electrical resistivity of 

5.28x10-8 Ω.m and high chemical stability [140]. According to the E-pH diagram at 

25 ºC, it is not attacked by most acid solutions, except complexing acids such as 

phosphoric or oxalic acid, undergoing passivation if anodically polarized [141]. WO2 and 

WO3 are the two most stable tungsten oxides, with the latter being the most 

thermodynamically stale at normal temperature and pressure conditions. In alkaline 

media the metal is slightly more unstable with a tendency to dissolve in tungstic ions 

WO4
2- with hydrogen evolution. Upon anodic polarization it starts to corrode actively 

[141]. 

Hence, being a chemically and mechanically resistant material which can withstand the 

diamond growth temperatures by HFCVD (~600-950 °C), it is suitable to use as 

substrate for growing diamond. However, carbon, the raw material for diamond growth, 

is very soluble in tungsten. At CVD growth temperatures tungsten will transform into 

W2C and WC, the latter being the most stable form [142]. Consequently diamond does 

not nucleate on tungsten, but on tungsten carbide.    

Tungsten carbide (WC) is a very hard material with high melting temperature (although 

lower than tungsten, 2870 ºC), and metal-like electrical resistivity 2.2x10-7 Ω.m [143]. 

Although higher than that of CVD diamond, its thermal expansion at room temperature 

is of the same magnitude (WC= 5.2 to 7.3x10-6 ºC-1, diamond = 2x10-6 ºC-1) [123,143]. 

Tungsten carbide tends to increasingly oxidize as air humidity increases [144]. 

However, in aqueous solution the oxide layer becomes unstable and is removed [145]. 

Under anodic polarization WC can be progressively oxidized to different WxOy 

stoichiometries, exhibiting clear oxidation peaks at low positive potentials [146]. 

Considering the wide water stability window of diamond this oxidation of tungsten 

carbide is quite useful for evaluating the presence of porosity in the diamond films or 

even of surface contamination with tungsten from the heating filaments. 
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3.2.2. Tungsten wires 

In order to effectively use tungsten as a microelectrode material whether as a raw metal 

or as a base metal for coating with other materials it has to be shaped adequately to 

fulfill the target application in terms of size, shape, mechanical strength, chemical and 

microstructural compatibility with the coating material, as is the case in this work. 

Shaping tungsten with the purpose of assembling single microelectrodes is best 

achieved with tungsten wire. This is because of the geometrical proximity between the 

wire form and common microelectrode geometries (disk, hemisphere, cone, cylinder, 

etc.), which allows it to be more easily transformed into those desired shapes. 

In the following section, a method for fabrication of nanosharp wires of W, developed in 

the scope of this thesis, is described. 
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Abstract 

 

A novel electrochemical wire etching method of fabrication of ultrasharp nanoelectrodes 

is reported. Tungsten wires can be sharpened to less than 10 nm tip radius in a 

reproducible way in less than 1 minute by using controllable hydrodynamic electrolyte 

flow combined with optimized electrochemical etching parameters. The method relies 

on the variations of the electric field at the surface of a metal wire, while the electrolyte 

solution is in motion, rather than on the ionic gradient generated in a static solution.   

 

Keywords: Wire etching; Nanoelectrode; Tungsten; Hydrodynamic. 

 

3.3.1. Introduction 

Microprobes constitute very important tools when it is imperative to perform electrical or 

electrochemical operations in confined volumes of the microscale with minimum or no 

damage to the surrounding environment. 

The fabrication of micro/nano probes has revolutionized the way research is done in 

various fields such as electroanalysis, biotechnology, medicine, imaging technology, 

etc. The downsizing of metal wires to dimensions close to the atomic scale has enabled 
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scientists to study micro- or even nano-scale volumes and greatly improve the ability to 

characterize such confined systems, whether the wires are used in their pure state or 

coated with another material [147–151]. Microelectrodes are the key elements that 

made possible the development of relatively new electrochemical techniques such as 

SECM (Scanning Electrochemical Microscopy) and SVET (Scanning Vibrating 

Electrode Technique) or imaging ones such as STM (Scanning Tunneling Microscopy). 

Through the use of microelectrode based techniques it has been possible to 

acknowledge fast reactions of the order of microseconds or less or even detect species 

in concentrations as low as a few ppb [7,24,152–154]. 

From all the different fabricating methods for microelectrodes, the electrochemical 

etching of a metal wire is widely used for single microelectrodes. Although the 

fabrication of micro and nanoelectrodes has been reported by many research groups, 

the method by which they are produced is generally quite similar: a metal wire is 

immersed in an electrolyte solution, centered in a ring, coil or tube, which work as the 

counter electrode (CE). Alternatively the wire is passed through a lamellae of electrolyte 

solution held by surface tension to the surrounding CE ring. Upon applying a certain 

voltage, the ionic concentration gradient at the meniscus in contact with the wire leads 

to its sharpening [136,137,155–163], according to the equations 3.1 and 3.2 for the 

case of tungsten.  

 

Cathode reaction:                                         (Eq. 3.1) 

 

Anode reaction:                   
                  (Eq. 3.2) 

 

Overall:                                    
          

 

Even though nanometric tip curvature radiuses and high aspect ratios can be obtained 

by such a procedure, it can be rather complex [136] and the success rate for producing 

usable tips can be quite low in consequence of the many variables involved [164]. 

Although the meniscus allows etching the wire to a pointed shape, many problems arise 

from using this configuration if extremely sharp tips are to be obtained in a reproducible 
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manner. In a static configuration, the weight of the portion of wire below the etching 

zone strongly conditions the tip curvature radius. Moreover, if the system power is not 

turned off at the exact moment of the drop-of the sharp tip will become blunt due to 

over-etching [163,165,166]. Furthermore the positioning of the wire during the etching is 

critical and has a determinant influence in the shape, size and quality of the sharp tip. In 

fact, even slight vibrations, like sound vibrations will affect the quality of the tips [166]. 

Avoiding these drawbacks might require a skilled operator and frequently the controlling 

systems are complex, because the current cut-off time strongly marks the difference 

between a good tip and a blunt tip [136,167]. Hence, although the existing 

electropolishing methods can provide metal tips with high quality, suitable for 

applications such as STM (Scanning Tunneling Microscopy) or AFM (Atomic Force 

Microscopy), the fabrication procedures tend to be highly sensitive to small 

modifications. 

Here we report an alternative method in which the quality of the final tip depends 

exclusively on the parametric adjustment of all the components involved in the etching 

process, does not require a fast or dedicated current cut-off circuit and allows the 

production of sharp metal nanotips in less than 1 minute, in a reproducible manner. 

 

3.3.2. Experimental 

A simple method for the fabrication of a sharp micro/nanotip is described. This can be 

accomplished by the assembly of a wire etching device comprising 3 main elements: i) 

a DC power source for generating an etching voltage for metallic material removal from 

the wire and consequent wire sharpening; ii) an etching unit constituted by the wire to 

be etched, a counter electrode and an electrolytic fluid which closes the circuit between 

the wire and the electrode, providing the necessary chemical species to react with the 

wire to be electropolished and the physical mean to transport the etched material; iii) a 

pump and a flow circuit where the electrolyte fluid is made to flow in order to close the 

circuit on the etching unit (Figure 3.1). 

In this work, tungsten wires were used for demonstrating the performance of this novel 

electrochemical etching method. The counter electrode was also made of tungsten. 

Aqueous electrolyte solutions with various concentrations of NaOH from 0.5 to 4 M were 
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used as etching fluid. A commercial pump (Boyu SP-700, China) with a flow capacity of 

230l/h was used to provide the closed-circuit motion of the electrolyte solution. The 

constant flow of the electrolyte in a closed circuit, has several advantages. The metal 

wire is not immersed in a static liquid, instead it is positioned in the center of a column 

of flowing electrolyte. By this system the electrochemical etching apparatus is greatly 

simplified and the shape, size and quality of the metallic tips will be almost exclusively 

dependent on the electropolishing parameters and not on thorough operation details. 

The metal wire to be etched requires only to be aligned vertically at the center of the 

column of flowing electrolyte.  

 

 

Figure 3.1 - Electrochemical etching assembly, evidencing the etching mechanism (inset). 
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3.3.3. Results and discussion 

A device integrating this new electrochemical etching method is depicted in Figure 3.1. 

The essence of the method is the absence of meniscus formation. In this traditional 

approach the electrochemical etching occurs due to the OH- ionic gradient that is formed 

at the meniscus between the metal wire and the electrolytic solution.  

Instead, the suggested method is based on a reverse gradient compared to that 

observed at a meniscus. The etching procedure occurs in hydrodynamic conditions 

under an applied electric field. The ionic gradient driving the electrochemical etching 

occurs when voltage is applied to the system, as a consequence of the shape of the 

wire.  

Taking a tungsten wire of 125 µm diameter and optimized parameters, this method can 

reproducibly deliver nanoelectrodes as sharp as 10 nm tip curvature radius or less with 

aspect ratio up to 15:1 (Figure 3.2a, b) in less than 60 seconds (Figure 3.2c). 

Accomplishing the fabrication of sharp tungsten wires of the micrometer or the 

nanometer scale by the following uncomplicated procedure: 1) alignment of the metal 

wire until it is well centered with the collecting funnel and with the counter electrode 

bellow; 2) adjustment of the distance between the wire and the counter electrode; 3) 

turning on the pump to activate the flow motion of the electrolyte solution; 4) turning on 

the DC power source previously set to the desired voltage (say 30V), during the desired 

amount of time (say 50 s); 5) turning off the power source; 6) cutting the needed part of 

the wire to be used as an ultrasharp electrode; 8) restarting from 1) for another 

electrode. 
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Figure 3.2 – Electrochemical etching process showing a) Current-time dependence using 1M NaOH and 

30V applied on the DC power source, and electrochemically etched tungsten nanowire in b) low 

magnification and c) high magnification. 

 

Given that the method is based on a fluid in motion under the influence of an electric 

field, electrohydrodynamics must be considered. According to the Ohmic model, in the 

presence of a monovalent binary electrolyte which is fully dissociated with constant 

properties, the current density in a flowing electrolyte solution can be described by: 

 

QQDQKEJ                    (Eq. 3.3) 

 

Where Q is the charge density, K is the charge mobility, E is the electric field, D is the 

diffusion coefficient,  is the gradient operator, and  is the fluid velocity [168]. 

The first term on the right side of the equation is the drift current of the free charges 

which move with a velocity EK


 relative to the fluid. The second term is the molecular 

diffusion, which can be considered negligible in comparison to the externally applied 

a

b c
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voltage (the thermal voltage is 25 mV at room temperature), and the third term is due to 

convection, which makes the charge to move with the fluid [168].  

Considering the Coulomb force alone, the equations describing the 

electrohydrodynamic movement result from the combination of fluid dynamics (Eqs. 3.4 

and 3.5) and electrodynamics (Eqs. 3.6, 3.7 and 3.8):  

 

(Eq. 3.4) 

 

(Eq. 3.5) 

 

 

(Eq. 3.6) 

 

(Eq. 3.7) 

 

(Eq. 3.8) 

 

 

Where E is the electric field, Q is the charge density, ε is the permittivity, Φ is the 

electric potential, v

is the fluid velocity, ρ is the density, p is the pressure, µ is the 

viscosity, K is the charge mobility, t is the time and ∇  is the gradient operator. 

Equations 4 and 5 ignore the compressibility of the fluid and describe its movement 

taking into account the viscosity and the electric field. Equations 3.6, 3.7 and 3.8 are the 

Maxwell equations accounting for the electrodynamics of charged molecules in the fluid 

[168]. 

For perfect conductors (mercury, water) or perfect dielectrics (nonpolar liquids like 

benzene), the electric stress is balanced by changes in the shape of the interface, and 

the Coulomb force is in the direction of the electric field [169]. Because low angle 

regions (e.g. edges, apexes) exhibit a higher density of electric field lines, they will be 

etched preferentially in relation to high angle regions. An auxiliary electrode positioned 
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perpendicularly below the wire being electropolished, causes the shape of the resulting 

tip to be concordant with the vertical direction of the electric field.  

Since there is a broad range of possible parametric combinations, a study was 

conducted based on the variation of each relevant parameter, regarding the device 

depicted in Figure 3.1 (Table 3.1).  

 

Table 3.1 - Range of studied parameters used for electrochemical etching. 

 

 

3.3.3.1. Effect of electrolyte concentration, applied voltage and wire-

CE distance 

Considering NaOH as a well suited electrolyte for the electropolishing of tungsten wires, 

the effect of its concentration was studied in the range of 0.5-4 M [170–172]. The 

concentration of 1 M was considered to be optimal because it ensures a good balance 

between tip curvature radius and surface roughness. Lower concentrations contributed 

to a higher tip curvature radius and lower aspect ratio, while stronger electrolytes tend 

to yield higher surface roughness (Figure 3.3).  

 

Electrolyte 

concentration

(mol.dm-3)

Applied voltage 

(V)

Distance    wire-

electrode

(mm)

Wire diameter 

(µm)

Counter -

electrode 

diameter

(µm)

Etching time (s)

0.5 5 2 125 125 10

1 10 4 250 250 20

2 20 6 300 30

3 25 8 1000 40

4 30 10 50

40 12 60

14 70
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Figure 3.3 – Effect of electrolyte solution concentration on the shape and surface morphology of the 

etched tungsten wires, evidencing large tip curvature and low aspect ratio with a) 0.5 M NaOH and high 

surface roughness with b) 4 M NaOH. 

 

Similar effects were found for the voltage applied between the wire and the counter 

electrode. A voltage of 30 V in the DC power source was considered to be optimal for 

the etching process. With lower voltage there is a tendency for the curvature radius of 

the tip to be larger, whereas with higher voltage the surface of the etched wire tends to 

exhibit higher roughness and higher number of imperfections (Figure 3.4).  

The potential gradient determining the electric field (Eq. 3.7) depended on the distance 

between the wire and the counter electrode. Distances of 2-14 mm between both were 

tested. A distance of ~4 mm was found to provide the best results. Lower distances 

yield tips with larger curvature radius and higher distances will promote the appearance 

of a less smooth surface with possibly compromising defects (Figure 3.5).  

This balance between sharpness and roughness can be linked to surface interactions 

occurring during the etching procedure. Depending on the current density metal removal 

from the surface of the wire can occur more selectively or more uniformly, for which the 

nomenclatures of etching and polishing have been ascribed, respectively. The selection 

of an adequate current regime is important in order to ensure that metal removal occurs 

homogeneously, avoiding the high energy regions (defects, grain boundaries) to be 

excessively attacked [173].  

a b
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Figure 3.4 - Effect of applied voltage on the shape and surface morphology of the etched tungsten wires 

for a) 5 V and b) 40 V. 

 

 

Figure 3.5 - Effect of the wire-counter electrode distance on the shape and morphology of the 

electrochemically etched tungsten wires for a) 2mm and b) 14mm. 

 

3.3.3.2. Effect of etching time 

Etching periods of 5 to 70 seconds were studied keeping the remaining conditions 

constant. Time is a very important variable because the electrochemical etching is 

preceded by the non-electrochemical dissolution of tungsten trioxide (WO3) (Eqs. 3.8, 

3.9) [167], which is the most stable tungsten oxide and is always present in a thin layer 

at the metal surface. 

 

a b

a b



3. Fabrication of diamond microelectrodes 

71 
 

               
                                      (Eq. 3.8) 

    
             

                            (Eq. 3.9) 

 

The progression of this reaction can be seen in Figure 3.6a and Figure 3.6b, showing 

tungsten wires etched for 30 and 40 seconds, respectively, keeping all other parameters 

constant. In Figure 3.4a, after 30 seconds of etching the surface of the wire still 

presents a visible pattern resulting from the remaining oxide at the surface. After a few 

seconds, no oxide remains as it can be seen by the difference in the surface 

morphology shown in Figure 3.6b and Figure 3.6a. Hence, after removal of most of the 

oxide at the surface of the wire the etching rate will be faster, as will be reduction in the 

wire length. The necessary etching time will also depend on the electrolyte 

concentration and the flow rate of the pump because they determine the instant 

concentration of OH- available at the surface of the wire. From the third term of equation 

3.3 it can be seen that higher fluid velocity will also yield higher current density. 

Considering a constancy of parameters during etching, varying these two parameters 

will also influence the quality and size of the tip. With 50s etching time, according to the 

conditions in Table 3.2, the wire can be reproducibly sharpened down to a tip radius of 

less than 50 nm. Longer electropolishing periods do not implicate compromising the tip 

radius and tend to yield higher aspect ratio. An electropolishing time of 50 seconds was 

found to be optimal, considering that the rate of tips per hour is also important. 

 

 

Figure 3.6 - Tungsten wires during etching in 1M NaOH with 30 V applied voltage showing a) oxide still 

present on the surface of the wire after 30 s; b) wire without oxide after 10 extra-seconds of etching.   
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Table 3.2 - Optimized wire etching conditions, adequate for producing nanowires. 

 

 

3.3.3.3. Effect of the auxiliary electrode diameters 

The diameter of the auxiliary electrode was found to be perhaps the most critical 

parameter if tips of the nanoscale are to be produced reproducibly. The smaller the ratio 

between the diameters of the wire to be etched, dw, and the counter-electrode, dce, the 

more reproducible becomes the fabrication of nanotips. We verified that by using a ratio 

dw/dce < 0.5, more than 60% of the tips would exhibit a curvature radius with less than 

50 nm. This is because the electric field becomes more stable. As the electrolyte 

solution flows, the wire will tend to oscillate, which causes instability of the electric field 

and the hydrodynamic regime. Considering a sufficiently wide column of flowing 

electrolyte, smaller dw/dce ratios will reduce the probability of the wire oscillating outside 

the zone of action of the vertical electric field (Figure 3.7).   

The ratio between the diameter of the column of flowing electrolyte solution, dfes, and 

the diameter of the counter electrode was found to be also important in the presented 

device configuration since as dce approaches dfes the electrolyte solution will tend to 

increasingly splash to the sides as it hits the counter electrode causing significant 

turbulences. 

By adopting the conditions indicated in Table 3.2 we have produced the nanosharp 

wires shown in Figure 3.8, Figure 3.9 and Figure 3.10 with counter electrode diameters 

of 250, 300 and 1000 µm, respectively. 

 

Electrolyte 

concentration

(mol.dm-3)

Applied voltage 

(V)

Distance    wire-

electrode

(mm)

Wire diameter 

(µm)

Counter -

electrode 

diameter

(µm)

Etching time (s)

1 30 4 125 250 50

300

1000
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Figure 3.7 - Effect of counter electrode diameter: the electrical field between the wire and the counter 

electrode becomes increasingly more stable for larger CE diameters. 

 

 

Figure 3.8 - W tips electrochemically etched following the conditions from Table 3.2, with a CE diameter 

of 250 µm. 
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Figure 3.9 - W tips electrochemically etched following the conditions from Table 3.2, with a CE diameter 

of 300 µm. 

 

 

 

Figure 3.10 - W tips electrochemically etched following the conditions from Table 3.2, with a CE diameter 

of 1000 µm. 
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Perhaps the best part of the method is depicted in Figure 3.11, where a collection of 

bad quality etched wires is shown, still exhibiting high aspect ratio and tip curvature in 

the 50-100 nm range.   

Although this work was focused on the etching of tungsten wires, further applicability of 

this method may be found for metals forming a passive film, using electrolytes which 

lead to partial dissolution of this layer. As demonstrated this method can be 

implemented with very basic instrumentation and with either manual or automatic 

control. The applicability of sharp tungsten wires produced in this way has been 

demonstrated with CVD diamond coatings for scanning probe electrochemical 

measurements [149,174].    

 

 

Figure 3.11 - W etched tips with bad quality, still showing adequate surface morphology and near-

nanoscale dimensions. 

 

3.3.4. Conclusions 

A new, simple, electrochemical etching method was successfully developed without 

requiring any complex apparatus or electronic/mechanical system. By using a power 

source, an etching unit and a flowing circuit we are able to fabricate high quality 
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tungsten tips suitable for using in application were a needle-type probe is needed to 

perform an electrical, electrochemical or mechanical action. Besides the bare wire 

application, the easily achievable nanoscale miniaturization that this method provides, 

also simplifies the testing of already existing or newly found materials at the small scale, 

provided that they can be grown as suitable thin films.  

Tungsten wires were easily etched to acquire a pointed shape with sub-micrometric or 

nanometric tip curvature radius, in less than 60 seconds, by following simplistic manual 

procedures. Needle shaped wires with <10 nm radius and high aspect ratio were 

fabricated in short etching periods of 50 s. 
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3.4. Substrate pre-conditioning 

Another crucial step before the growth of polycrystalline CVD diamond is adequate 

substrate conditioning, the so called seeding. Substrate seeding can be made by a 

variety of ways. The choice of method relies on the growth technique and the desired 

microstructure. The use of diamond powders has always been the prime choice, when 

crystal orientation is not very important. It provides the best results with highest 

nucleation density. Besides diamond powder other abrasive powders like silicon carbide 

or cubic boron nitride have been used, although the results are not as good. 

Alternatively, surfaces coated with different forms of carbon such as graphite, 

amorphous carbon, diamond-like carbon, C60, and even mechanical oil have been used 

[175–178]. 

The seeding procedure is generally based on sonication of the substrate immersed in a 

diamond powder suspension, although mechanical scratching can provide higher 

nucleation density, but with lower reproducibility. Scratching procedures change the 

surface morphology, by creation of all sorts of surface defects, which exhibit higher 

surface energy, i.e., less stability. Therein these sites can promote adsorption of 

diamond forming gas species and enhanced bonding. 

When chemical vapor deposition is assisted by microwave plasma, another popular 

seeding method consists on the use of bias, an electric field that allows the formation of 

diamond nuclei when charged species are involved, as it happens in the plasma. Biased 

growth can also be used with HFCVD although a more precise adjustment of growth 

conditions is required. The main advantages of biasing are the enhanced seeding 

density and the possibility of growing oriented crystals on mirror polished surfaces. 

The grade of diamond powder used for seeding can be determinant for the resulting 

microstructure. Particularly, if nanocrystalline diamond is to be grown, the use of 

nanometer size diamond powder (nanopowder) greatly facilitates the process, because 

it can provide much higher nucleation density than micrometer size diamond powder. 

Since the present work is based on the development of microelectrodes, from the 

beginning it made sense to use nanopowder. Regardless of the final result, 

nanoparticles are not easy to work with. The formation of considerable agglomerates is 
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hard to avoid and removal of the excess powder from substrates can be even harder. If 

diamond is grown for mechanical and abrasive purposes on large substrates this 

removal is somewhat irrelevant. In the case of electrochemical probes, when nanometer 

dimensions are pretended and a few micrometers is the maximum dimension, if the 

probe is to be of any use, powder removal becomes a very important issue. Adding to 

this, for quantification of electrochemical species of interest a well-defined geometric 

area is also very important. 

Hence a study on substrate seeding was performed using nanodiamond powder 

suspensions with different concentration and sharp tungsten wires, the substrate for the 

microelectrodes in this work. 

 

3.4.1. Experimental 

A diamond nanopowder (3-5 nm) suspension in water was used with fixed concentration 

of 0.9 g/l for seeding sharp tungsten wires by sonication. Different sonication periods of 

30, 20, 10, 5, 3 and 1 minute were used, with cleaning times of 30 minutes to 1 h by 

sonication in distilled water, ethanol or acetone (all were tried both isolated or combined 

during longer periods). Each tungsten wire was suspended with only the tip dipped into 

the diamond suspension or cleaning fluid. 

 

3.4.2. Results and discussion 

The SEM micrographs in Figure 3.12 show the surface of seeded tungsten wires after 

the cleaning procedure showing that the diamond nanoparticles may adhere to their 

surface and can be almost impossible to remove by sonication. For seeding times of 20 

and 30 minutes, nearly full coverage of the tungsten wire with diamond nanoparticles 

was observed regardless of the cleaning time. For the wire seeded during 10 minutes 

considerable amounts of residual powder were still found on the surface. For the 

shortest surface scratching time of 1 min, nearly all diamond nanoparticles were 

removed with only a few particles being observed on the tungsten wires. However, after 

CVD diamond growth on tips seeded for such short times the diamond films were not 

closed, showing large amounts of porosity. Porous films would sometimes be observed 
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as well for the 3 minute seeding. For 5 min seeding, very few powder particles remained 

on the tungsten wires and the resulting films were consistently non-porous. At this stage 

the sharp tungsten wires were fabricated with tip diameter between 100-300 nm.  

The improvement of the electrochemical etching system and its optimization allowed the 

fabrication of sharp tungsten tips with tip radius reproducibly between 5-50 nm radius 

and higher aspect ratio than the ones used for the seeding study. When trying to 

reproduce the same seeding procedure with these nanosharp wires, it was observed 

that the tips were many times damaged after 5 min seeding and that the powder was 

increasingly more difficult to remove. The remaining useful tips would exhibit consistent 

porosity after CVD diamond deposition. The reason for this is probably linked to the 

inertial momentum of the sharp wires. The firstly used W wires had tips that are big in 

comparison to the diamond nanopowder suspension. As the wire tip was decreased it 

probably started to vibrate with an amplitude similar to that of the diamond 

nanoparticles, i.e., the particles (3-5 nm) were not causing significant mechanical 

damage to the wire anymore, the wire would just move along with the particles. 

Hence another strategy was adopted for these smaller tips. The concentration of the 

nanopowder suspension was optimized to a value of 1.25 g/l, well dispersed in distilled 

water. After that, the sharp wires were simply dipped first in the suspension and then in 

a goblet with clean distilled water. This dip coating method ensured that full-coverage by 

CVD diamond was readily achieved during the diamond growth process (Figure 3.13). 
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Figure 3.12 – Tungsten wires after sonication in nanodiamond powder suspension during a) 30 min; b) 20 

min; c) 10 min; and d) 5 min, and cleaning afterwards in distilled water during 30 min. 

 

 

Figure 3.13 – Tungsten wire coated with a CVD diamond film (30 min. growth) after seeding by dip 

coating in a nanodiamond powder suspension. 

 

a b

c d
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3.5. CVD diamond growth 

3.5.1. Practical considerations 

CVD diamond thin films can be grown on top of a wide range of ceramic (silicon 

carbide, silicon nitride, etc.), metallic (silicon, tungsten, molybdenum, etc.) or composite 

(e.g. hardmetal) substrates. Because of the differences in the crystalline structure of 

each material, a substrate conditioning is normally required for diamond films to grow 

heteroepitaxialy. This preparation commonly consists on seeding the substrate with 

diamond powder by mechanical or ultrasonic means, as seen above, to create 

nucleation sites from which the growth process begins. The substrate conditioning 

largely influences the type of microstructure of the diamond films as the growth of 

microcrystalline or nanocrystalline diamond strongly depends on the nucleation density 

(Figure 3.14) [179]. 

Besides the seeding procedure, the microstructure of the films is further adjusted by the 

growth parameters: filament temperature, substrate temperature, CH4/H2 ratio, total 

pressure and total gas flow. Among these, the CH4/H2 ratio is probably the most 

important growth parameter. Low CH4/H2 ratios tend to promote the growth of 

microcrystalline diamond (MCD) whilst higher ones enhance a secondary nucleation 

phenomena favoring the growth of nanocrystalline diamond films (NCD). The filament 

temperature determines the amount of activated gas species and the substrate 

temperature essentially affects the atomic diffusion, the diamond grain size and the 

etching rate of sp2 bonded carbon [180]. The effects of the total pressure and gas flow 

tend to depend on the other growth parameters and on the geometries of the substrate 

and reaction chamber [181]. Furthermore, by adding other gas species containing 

boron, nitrogen, phosphorus or sulfur, it is possible to obtain doped diamond with 

distinct electrical properties. Figure 3.15 is a schematic drawing of the modified HFVCD 

system used in this work for producing boron doped diamond coatings on sharp 

tungsten wires. 
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Figure 3.14 - Dependence of the diamond film type with nucleation density and secondary nucleation rate 

(adapted from [179]).  

 

 

 

 

Figure 3.15 – HFCVD system showing a) reactor and gas circuit; b) CVD components inside the reactor; 

c) gas washing bottle containing solution for boron doping. 
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3.5.2. Selection of diamond growth conditions 

Because CVD diamond is a polycrystalline material the main source of impurities and 

imperfections is mostly at the grain boundaries. The importance of growing high quality 

diamond films is directly related with the achievement of the impressive electrochemical 

behavior discussed in section 2.6 and reviewed several times by other authors 

[50,70,182]. This goal is normally better reached for larger diamond crystallite size, the 

so called microcrystalline diamond (MCD). However, for attaining higher levels of 

miniaturization it is important to keep the grain size as small as possible, without 

compromising the electrochemical properties. Regarding this perspective, growing 

nanocrystalline diamond (NCD) is by far a better choice, although there are some 

inherent limitations to the process. High quality NCD normally requires a gas phase 

chemistry different than that of MCD. Normally high concentrations of argon are used 

and the growth rate tends to be extremely slow, generally requiring several hours to 

grow the desired coating.  

The following work in section 3.6 describes the development of fast coating sharp 

tungsten wires with boron doped nanocrystalline diamond, the first breakthrough of the 

present work that resulted in a scientific publication in a SCI journal. At this early stage 

a significant improvement on the fabrication process was achieved, with the sharp 

tungsten wires being fully coated after only 30 minutes growth, when periods of 5-10 h 

growth were the standard for other authors, sometimes even with bias enhancement 

[183]. The electrochemical behavior of these films was not the best obtained here, but 

their improvement was achieved afterwards, as described below in section 3.8. 

Section 3.7 was dedicated to the study of the interfacial region between the diamond 

coatings and the tungsten substrates. A combination of microscopy techniques was 

used to acknowledge the microstructural character of this transitory region and to gather 

evidence of the presence and distribution of boron in the diamond films.   
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Abstract 

The present work is focused on the deposition of thin boron doped nanocrystalline 

diamond (B-NCD) films on electrochemically etched tungsten wires by the hot filament 

assisted CVD method. The goal is the manufacturing of robust inert 

ultramicroelectrodes (UMEs) with a superior performance to be used for localised 

electrochemical analysis. The conductive diamond films can confer high stability of 

chemical and physical properties as well as low background current.  

Filament and substrate temperatures were kept constant at 2350ºC and 670ºC, 

respectively. The total system pressure was equal to 50 mbar and the CH4/H2 gas flow 

ratio was 0.07. Boron was the used doping agent by solving B2O3 in ethanol, with a B/C 

content of 15000 ppm, and the solution was then dragged with argon gas flowing 

through a bubbler. The (Ar+B)/H2 ratio values varied within the range of 0.06-0.21. The 

film growth rate decreases with the boron content increasing, but larger (Ar+B)/H2 ratios 

result in smoother surfaces. UMEs insulation was carried out with epoxy resin in a home 

built device.  

The production of very sharp tungsten tips fully coated with B-NCD after just 30 min, for 

a (Ar+B)/H2 ratio of 0.21, is one of the main outcomes of this work. The cyclic 

voltammetry showed a stable behavior with a wide electrochemical window of ~2.25 V 

in a 0.05 M NaCl solution proving applicability of the developed UME for localized 

electroanalytical studies in biomedical and corrosion applications. 
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3.6.1. Introduction 

The extreme hardness and thermal conductivity of CVD diamond determines its main 

application in cutting and anti-wear parts, as also in heat sinks for electronic and optical 

components. However, by doping this material, the range of applications can be 

appreciably widened, as it becomes electrically conductive. For a given film thickness, 

the conductivity of CVD diamond films can be tuned from 1x10-9 Ω-1cm-1, for lightly 

doped films, to 100 Ω-1cm-1, for heavily doped ones [97,184–186]. The conductivity 

value depends on the doping agent and its concentration, and also on the temperature 

and light exposure. Boron doping yields p-type semiconduction by introducing an 

acceptor energy level 0.37 eV above the valence band, while nitrogen or phosphorus 

doping yield n-type semiconduction [70]. 

Although the latter elements have been reported to successfully dope CVD diamond 

films [5, 6], boron is by far the most efficient doping agent due to its low charge carrier 

activation energy [77]. When heavily doped ([B] >1x1020 atoms/cm3), CVD diamond 

becomes a conducting material or even superconducting if the temperature is low 

enough (~2 K) [97,184,187].  

In 1987, Pleskov et al. [98] started to explore the electrochemical properties of doped 

CVD diamond, revealing the good electrochemical performance of the material. It can 

surpass other carbon and metallic electrode materials, in terms of electrochemical 

window and low background currents allowing the analysis of hard-to-detect analytes 

like nucleic acids [188,189]. In aqueous media, these are often not feasible to detect 

with noble metal electrodes due to the high background Faradaic currents originated 

from the oxygen and hydrogen evolution reactions (HER) [71,123]. The superior 

electrochemical performance of CVD diamond is enabled by good responsiveness for 

many redox analytes without pretreatment, very good microstructural stability at 

extreme cathodic and anodic potentials and high current densities, as well as by 

resistance to fouling due to the weak adsorption of polar analytes on its non-polar 

hydrogen-terminated surface [120,189,190]. 
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Although macroelectrodes based on boron doped diamond confer all these properties, 

many applications request a significantly smaller size of the electrode to be used for 

localized measurements. The spatially resolved microanalysis can provide essential 

information in such areas as plant physiology, biotechnology, medicine and corrosion 

studies. Ultramicroelectrodes (UMEs), which are defined for having at least one 

dimension <25 µm, can be efficiently used for these purposes [8]. Employment of UMEs 

enables hemispherical diffusion which alows: i) high current density, ensuring a higher 

signal to noise ratio; ii) low dependence on hydrodynamic conditions, because sensing 

is done within the diffusion layer; iii) a short equilibration time after applying a potential 

step; iv) the possibility to work in high resistive media, due to the limited ohmic drop 

within a small area close to the electrode [191]. The disadvantage is the small total 

current which can be a problem particularly for trace detection [8]. UMEs also exhibit 

sigmoidal voltammetric curves, which is possible due to the steady-state hemispherical 

diffusion to the microscopic area of the microelectrode [8]. 

Although boron doped microcrystalline diamond (B-MCD) may seem more appropriate 

for electrochemical applications due to its higher phase purity, the use of boron doped 

nanocrystalline diamond (B-NCD) is more adequate since nonporous very thin films can 

be grown. This ensures two important features at once: the smallest possible size for 

the UME and the necessary insulation that avoids the analytes from reacting with the 

substrate material, as it may happen with B-MCD coatings [183]. 

The research concerning CVD diamond UMEs began only about one decade ago with 

the work of Cooper et al. [118], by growing single diamond crystallites and B-MCD films 

on tungsten tips. Since then, several works based on doped microcrystalline diamond 

as an electrode material have been carried on [126,192], but the first work concerning 

the use of B-NCD on UMEs as a suitable material for electrochemical applications 

appeared only on 2004, by Soh et al. [193], who used a microwave plasma enhanced 

CVD reactor to grow B-NCD on microelectrode arrays and sharpened tungsten 

microprobes. A reversible behavior and high sensitivity as well as a large potential 

window of 3 V for the detection of Fe(CN)6
4-/3- in KCl was revealed.  

Diamond UMEs are possible solutions in a variety of ways. Due to the biocompatibility 

of diamond, these microprobes can be used in biological systems for in vivo detection, 
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such as to clarify intimate details of mechanisms of the processes occurred in living 

cells with micro-resolution, or for neurotransmitter monitoring in the brain [120,128,194]. 

They can also be used for measurements on fast electron transfer reactions in high 

resistive media, and as amperometric detectors in scanning electrochemical microscopy 

(SECM) and capillary electrophoresis [119,195,196]. 

The main goal of the present work is manufacturing robust inert amperometric UMEs 

based on tungsten micro-tip coated with boron-doped nanocrystalline diamond film as a 

working surface. 

 

3.6.2. Experimental Details 

3.6.2.1. Tip preparation 

Sharp tungsten tips were obtained through the use of the lamellae drop-off technique 

[172,197–199]. Tungsten wires with 150 µm radius where electrochemically etched in a 

3 M NaOH solution under a potentiostatic polarization (Figure 3.16). The typical current 

for an applied voltage of 3 V was ~2 mA with a mean sharpening time of 10 minutes.  

The electrochemically assisted dissolution causes the tungsten wire to form a 

successively thinner neck, until the lower part of the wire falls off, leaving a sharpened 

tip behind [200]. The obtained tungsten tip was then ultrasonically seeded in a 

nanodiamond (3-5 nm) powder suspension for 1h, and ultrasonically cleaned in ethanol 

afterwards to release the residual diamond powder from the W tip. 

 

Figure 3.16 - Experimental setup for electrochemically etching the tungsten wires. 
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3.6.2.2. Growth of CVD nanocrystalline diamond on the sharpened W 

tips 

The deposition of B-NCD films was performed in a hot filament chemical vapour 

deposition (HFCVD) reactor. The growth of CVD boron doped nanocrystalline diamond 

(B-NCD) on the W tips was attained by using 4 tungsten filaments (125 µm radius) 

previously carburized at 2300 ºC for 15 minutes in a methane+hydrogen atmosphere 

with a CH4/H2 ratio of 0.04 under a pressure of 100 mbar in the reaction chamber. 

During the growth period the CH4/H2 ratio was the same. The boron doping was 

performed by dragging a B2O3+ethanol (15000 ppm B/C) solution with argon gas 

through a bubbler. The W tips were positioned vertically 5 mm below the filaments. No 

mask was used, and the B-NCD films typically covered an extension that starts on the 

tip apex and ends a little below (~400 μm) the conical-like region. The filament and the 

CH4/H2  gas flow ratio were maintained constant and equal to 2350 ºC and 0.07, 

respectively, while the (Ar+B)/H2 ratio varied within the range of 0.06-0.21. The wire 

temperature was kept constant at 670º C, thermocouple controlled, at a distance of 

about 500 µm from the tip. The total system pressure in the reaction chamber was 50 

mbar and the deposition varied between 30 minutes and 3 hours.  

 

3.6.2.3. Tip insulation 

The formed microelectrode must have open only the active surface of micro-tip. The 

rest of the surface of tungsten wire should be electrically insulated avoiding contact of 

the metal with the analyte. The insulation of the CVD diamond covered tips was carried 

out using epoxy resin which wrapped the whole body of the tip leaving just the final 

apex exposed. The application of the insulator was performed using a manual 

micrometric controlling device, and was observed by means of an optical microscope, 

which allowed a precise dragging of the wire trough the epoxy resin. In this way it was 

ensured that the uncovered apex had the desired geometry and adequate size for the 

electrode to be considered an UME (Figure 3.17). The assembly allowed a precise 

coating with the epoxy resin, therefore avoiding the risk of damaging the B-NCD 
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deposited tip. After the insulation process, the resin was cured for several hours at room 

temperature. 

 

 

Figure 3.17 - Homemade UME insulating device. 

3.6.2.4. Morphological, chemical and electrochemical characterization 

The morphological and microstructural characterization as well as the measuring of the 

film thickness after breaking the tips was carried out using scanning electron 

microscopy (Hitachi S4100, Hitachi SU70). The detection of diamond, graphitic phases 

and residual stress estimation was performed by micro-Raman spectroscopy using a 

50 mW laser of 325 nm wavelength. For the electrochemical characterization, cyclic 

voltammetry tests were performed to evaluate the chemical inertness and the 

electrochemical potential window of the electrode, by using an electrochemical cell in a 

Faraday cage. The cell consisted of a three electrode arrangement with the UME as 

working electrode, a platinum auxiliary electrode and a SCE reference electrode. The 

electrolyte was a 0.05 M NaCl (Merck) solution and the measuring equipment consisted 

of a potentiostat Autolab PGSTAT302N (EcoChemie, Netherlands). During the cyclic 

voltammetry, a potential range between -1.5 V and 2 V (vs. SCE) was used with a 

sweep rate of 100 mVs-1.  
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3.6.3. Results and discussion 

3.6.3.1. Preparation of the tungsten tips 

In order to obtain a basis for amperometric UMEs with the desired shape and size it is 

essential to customize the electropolishing of tungsten wires. There are 3 geometric 

factors that determine the UME shape: aperture angle (γ), tip radius (R) and length of 

the sharpened region (L) (Figure 3.18a). These parameters can be tuned by controlling 

the positioning of the W filament in the electrolyte solution, the threshold current value 

and the cutoff current value. A proper adjustment of the above referred factors allows 

the production of nanosized and well-shaped tips like the one demonstrated in Figure 

3.18b. The average dimensions of the tungsten tips after the electropolishing process 

are indicated in Figure 3.18c. An example of an as-prepared electropolished tungsten 

tip is shown if Figure 3.19a-c.   

 

 

Figure 3.18 - a: relevant geometric parameters; b: average sized tungsten tip sharpened 

electrochemically in a 3 M NaOH solution; c: average dimensions of the tips after electropolishing.  
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Figure 3.19 - As-prepared and B-NCD coated tungsten tips; a-c: uncoated sample; d-f: sample W1 coated 

with the thickest B-NCD film, (Ar+B)/H2 = 0.06; g-i: sample W2, (Ar+B)/H2 = 0.21; j-l: sample W3 coated 

with the thinnest B-NCD film, (Ar+B)/H2 = 0.36. 

 

3.6.3.2. B-NCD deposition 

The second step of creating the electrode is the deposition of a conductive diamond 

based coating on top of the W tip. Continuous, electrically conductive, B-NCD films with 

thicknesses of ~250 nm were grown on sharpened tungsten wires during 30 minutes of 

deposition time. Recent works in this area report growth periods of less than 3 hours to 

grow conducting B-NCD continuous films with similar film thicknesses, on tungsten tips 

[129,183]. However these deposition times are possible only by making use of bias 

enhanced nucleation (BEN) systems that improve the growth rate. For unbiased 

depositions, like in this study, the same works report growth periods of 7-10 hours.  

The use of Ar as dragging gas for boron is another novelty of the present work. The 

study of the effect of the (Ar+B)/H2 ratio on the microstructure and thickness of the B-

NCD films grown on sharpened tungsten filaments started with large deposition times 

that where progressively shortened, as it became clear that the nucleation period on the 
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W tips was very short. Therefore the film thickness was excessive for the purpose of 

nanometric UME tip radiuses. The first B-NCD films grown on tungsten tips had a 

growth time of 180 minutes, yielding films as thick as the one of sample W1 (~1.3 µm) 

(Figure 3.19d-f). This diamond layer was grown with an (Ar+B)/H2 ratio of 0.06 and 

despite its nanocrystalline morphology, the film reveals a rather rough surface. Raising 

the (Ar+B)/H2 ratio to 0.11 for sample W2 (Figure 3.19g-i) and 0.21 for sample W3 

(Figure 3.19j-l) enabled a considerable smoothening of the surface, as it can be seen by 

the total absence of bulges and other irregularities. This might be a consequence of the 

dilution of the hydrogen gas by argon, enhancing the secondary nucleation phenomena 

on the growing surface and therefore the deposition of NCD [56,201]. Increasing the 

(Ar+B)/H2 ratios also implicates a larger amount of boron in the reaction chamber and 

supposedly in the B-NCD films. In consequence, a larger number of defects is 

introduced in the film, what may also enhance the growth of NCD over microcrystalline 

diamond (MCD) [202]. Additionally, diluting the hydrogen gas in the reaction chamber 

with (Ar+B), has an inverse effect on the deposition rate of B-NCD. Hydrogen is the 

main agent responsible for promoting a high deposition rate in the system, as it creates 

active growth sites on the growing surface, where the addition of CH3 radicals occurs. 

Therefore the growth rate decreases as the hydrogen dilution increases. Actually, the 

slower rate is an advantage since it leads to the growth of very thin nonporous 

electrically conductive films. This was evidenced by raising the (Ar+B)/H2 ratio 

progressively from W1-W3, which resulted in a corresponding growth rate lowering from 

~450 nm/h for W1 to ~320 nm/h for W2 and to ~230 nm/h for W3. The latter had a 

deposition time of only 90 minutes, and still, the film grew to a final thickness of about 

350 nm. In practice, this means that even with this short deposition time the exposed 

apex of the UME has a diameter of about 700 nm, due to the hemispherical geometry. 

Therefore the deposition time was even further reduced to 30 minutes, maintaining the 

(Ar+B)/H2 ratio of 0.21, which yielded B-NCD films with thicknesses of about 250 nm.  

Another noticeable effect of varying the (Ar+B)/H2 ratio is on the structural quality. For 

undoped NCD the Raman spectrum shows the diamond peak at 1332 cm−1, and four 

extra features at 1150, 1350, 1480 and 1550 cm-1. The 1350 and 1550 cm-1 peaks are 

the D and G bands of amorphous carbon, while the peaks at 1150 and 1480 cm-1 have 
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been attributed to transpolyacetylene (TPA) present in the NCD grain boundaries 

[203,204]. With the increase of the (Ar+B)/H2 ratio, the diamond peak at 1332 cm-1 on 

the Raman spectrum became broader and less intense (Figure 3.20). Also worth 

mentioning is the shifting of the 1332 cm-1 peak from its original position to lower wave 

numbers, when the boron content is increased, which has been observed several times 

[205–208]. This is attributed to the intrinsic tensile stress that the electronic holes 

introduced by boron defects induce in the B-NCD film [209]. However, in our work there 

was a slight shifting towards higher wave numbers. Since diamond films usually present 

residual stresses extrinsically induced by the difference in the coefficients of thermal 

expansion between the substrate and the film [202], this upper shift of the diamond 

peak may result from the fact that the extrinsic stress was greater than the intrinsic 

stress caused by the boron impurities.  

 

 

Figure 3.20 - Raman spectra of the boron doped nanocrystalline diamond coated samples revealing the 

influence of boron doping on the intensity of the 1332 cm
-1

 diamond related peak. a, d:1150 and 1480 cm
-

1
 bands attributed to transpolyacetylene; c: 1350 cm

-1
 band attributed to the disordered carbon; e: 1550 

cm
-1

 band attributed to graphite. 

 

3.6.3.3. Fabrication of UME 

The final step towards the UME assembly is the insulation of the B-NCD deposited 

tungsten wire leaving only the sharp apex exposed. Several methods were tried 

including a two-step full tip coverage with nail varnish and afterwards removal with 
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acetone [18]. In our case it did not offer a very good control of the exposed tip geometry 

and caused the damage of various B-NCD coated tungsten tips. Another insulation 

method consisted of a B-NCD coated tip passing through a drop of epoxy resin. 

Improving this method allowed us to have a very good control over the extension of the 

insulation coat, with the aid of an optical microscope and a micrometer, as described in 

Figure 3.17. Insulating the B-NCD coated tungsten tips through this method avoids the 

damaging of the tips and also allows a very well defined geometry for the exposed 

extremity of the probes, which ensures that the UME’s apex is the only electroactive 

area.   

 

3.6.3.4. Electrochemical characterization 

The electrochemical response of the UMEs was tested by cyclic voltammetry in a 

0.05 M NaCl solution using a coated tip grown in conditions similar to those of sample 

W3. The first sweep demonstrates only one oxidation peak starting at about 1 V (Figure 

3.21). The polarization to this potential range is accompanied with the evolution of gas 

bubbles on the tip of the electrode as it can be seen in Figure 3.22a. Thus the only 

oxidation process, which is related to the water oxidation and evolution of oxygen, 

occurs on the diamond coated tip at relatively high polarization. This fact confirms a 

wide electrochemical window of the electrode in direction of positive potentials. In the 

reverse scan one response at low potential can be observed (Figure 3.21). It becomes 

visible at about 0 V and is associated with the reduction of oxygen dissolved in the 

electrolyte. However the kinetics of this process is quite slow showing low currents 

close to the background level. The second reduction process appears at higher 

polarizations at about -1.25 V and can be ascribed to the hydrogen evolution. Thus the 

potential window of water stability on the developed electrode is about 2.25 V that is 1 V 

higher than the thermodynamic stability range of water.  
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Figure 3.21 – Cyclic voltammograms performed in a NaCl 0.05M solution; a: first 3 sweeps, revealing the 

early fouling of the epoxy insulation; b: box detail, showing the tungsten oxi-redox reaction with the 

electrolyte solution. 

 

On the following sweeps, an additional anodic peak arises at about 0 V. One possibility 

to consider for the origin of this feature would be the interaction of the electrolyte with 

some remaining sp2 carbon on the electrode surface. It can be also related to 

electrochemical activity on the tungsten surface out of the area covered with the B-NCD 

film. However, the latter possibility seems more probable considering that there is no 

bubble formation on the diamond coated area, which starts from the tip apex and ends a 

little below the conical-like region, as it can be seen in Figure 3.22. This interaction 

between the metal and the analyte was probably caused by weak barrier properties of 

the epoxy coating used as insulation. This suggestion can be confirmed by the fact that 

the formation of bubbles on the following scans is observed only out of the active tip 

(Figure 3.22b), on the tungsten wire which was not coated with diamond and was 

presumably protected by the epoxy.  Therefore it is quite probable that the additional 
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oxidation peak originated from the electrochemical reaction on the tungsten substrate 

not covered with diamond film. 

 

 

Figure 3.22 - UME before and during the cyclic voltammetry; a: polarized UME after some sweeps, 

showing a large electrochemical activity, starting to occur on the edge of the B-NCD coat and beyond, 

where the W substrate becomes visible; b: SEM image with detail of the transition between the B-NCD 

coated (1) and uncoated (2) regions. 

 

3.6.4. Conclusions 

In the present work the amperometric ultramicroelectrode based on the conductive 

nanostructured boron-doped diamond film was fabricated. Electropolished tungsten tips 

where coated with non-porous B-NCD films in very short time periods (30 min) by using 

the hot filament CVD method. The newly tested boron doping process using Ar as 

dragging proved to be effective to grow such thin non porous conducting B-NCD films. 

The highest deposition rate achieved was 450 nm/h for a (Ar+B)/H2 ratio of 0.06 and the 

lowest rate was obtained for a ratio of 0.21 maintaining all the other parameters 

constant. (Ar+B)/H2 ratios greater than 0.11 yielded smooth films with no superficial 

irregularities. The Raman spectrum revealed a crystallinity reduction of the B-NCD films 

with increasing boron content and a slight shifting to higher wavenumbers due to the 

extrinsic stress of the films. The fabricated UME provides a wide electrochemical 
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window of 2.25V in water-based electrolyte. However the insulation of the tungsten wire 

must be improved in order to provide long service life of the developed electrodes. 

Further research is being carried out, involving effective boron concentration 

measurement by Secondary Ion Mass Spectrometry (SIMS) and alternative improved 

insulation methods. 
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3.7. Microscopic studies on the interface between a tungsten 

substrate and boron doped diamond film on the nucleation 

stage 

CVD polycrystalline diamond can be grown with diverse morphologies from 

microcrystalline (>1 µm) to ultrananocrystalline (<10 nm). For electrochemical purposes 

boron doped microcrystalline diamond (B-MCD) is more adequate because of its easily-

accomplished high phase purity. However, the use of boron doped nanocrystalline 

diamond (B-NCD) also has advantages, since nonporous very thin films can be grown. 

This ensures two important features at once: the smallest possible size for the ME and 

the necessary insulation that avoids the analytes from reacting with the substrate 

material, as it may happen with B-MCD coatings [183]. 

The size of diamond MEs is limited by two factors: the dimensions of the substrate – 

usually an electropolished metallic wire –, and the thickness of the B-NCD film. For the 

former case, it is possible to obtain metallic tip radiuses with less than 10 nm, but for the 

latter it is not that simple, as was seen in the previous section. The deposition of NCD 

films on substrates other than diamond itself implies the formation of an interfacial 

region between the substrate and the diamond film. In a study about the nucleation of 

diamond on silicon substrates Lin et al. have reported the formation of an interfacial 

region constituted by a β-SiC/amorphous carbon layer grown directly on a silicon 

substrate [210]. For deposition on carbide forming transition metals, like tungsten, Das 

and Singh have reported that the nucleation of diamond films occurs on the carbide 

layer, which is formed after the activated carbon gas source saturates the metal [211]. 

Besides being a size limiting factor, this interfacial region can also be property limiting 

since it mediates charge transfer between the substrate and the NCD coating. This 

evidences the relevance of characterizing this region and also the need to reduce its 

thickness as far as possible. Therefore, the deposition parameters have to be 

adequately adjusted to ensure that good quality NCD films are grown. By optimizing 

these size-limiting conditions, diamond MEs gain enhanced ability for electroanalysis in 

small volumes. The following work was aimed at solving these unknowns, and thin flat 
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substrates were used instead of the sharp W tips for the sake of easiness in handling 

the specimens for microstructural characterization. 

 

3.7.1. Experimental 

3.7.1.1. Substrate preparation 

A tungsten sheet (0.05 mm thick, ABCR) was the substrate for B-NCD film deposition 

instead of the W wires. Such a choice relied on the properties of this metal. Tungsten 

has a good electrical conductivity, it is compatible with the gas phase chemistry used for 

the chemical vapour deposition and it can withstand the used temperature range (2100-

2700ºC). An additional factor is that the tungsten carbide interface, which is formed 

between the tungsten from the substrate and the carbon from the gas phase, presents 

also a good electrical conductivity avoiding the existence of a resistive barrier between 

the diamond and the electrode core. The W sheet was polished with SiC sandpaper to 

remove the oxide layer and other impurities from its surface. Afterwards it was 

ultrasonically seeded in a nanodiamond powder aqueous suspension (grain size 3-5 

nm) for 5 minutes and subsequently rinsed in water and ethanol during 30 minutes. 

 

3.7.1.2. Film growth 

A B-NCD thin film was grown on the tungsten sheet substrate, in a hot filament 

chemical vapor deposition (HFCVD) system with 6 tungsten filaments (ᴓ=250 µm, 

Goodfellow) as the heating source. The film was grown during a 15 min period with a 

filament temperature of 2300 ºC, substrate temperature of 700 ºC, CH4/H2 ratio of 0.05 

and system pressure of 50 mbar. The boron doping was performed by dragging a 

B2O3+ethanol 3x10-3 M solution with argon gas through a bubbler, into the reaction 

chamber. The mass flows were 100 ml/min for H2, 5 ml/min for CH4 4 ml/min for the B 

dragging gas, argon. 
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3.7.1.3. Characterization 

The microstructural characterization of the films was performed by SEM (Hitachi SU-70) 

and TEM (Hitachi 9000). The crystalline quality and structure were evaluated by UV μ-

Raman spectroscopy (HORIBA JOBIN YVON HR800UV), using the line 325 nm from a 

He-Cd laser (KIMMON IK series) for surface excitation, to identify the different carbon 

sp2/sp3 phases incorporated in the coatings and to assess any residual stresses. 

Electron diffraction was used for lattice spacing determination. Furthermore, the 

elemental composition was mapped by Energy Dispersive X-ray Spectroscopy (EDS) 

and Electron Energy Loss Spectroscopy (EELS). 

 

3.7.1.4. Sample preparation for TEM 

After film growth the sample was immersed in a hydrogen peroxide (H2O2) P.A. 30% 

solution during several hours in order to dissolve the tungsten substrate. After this 

process the film was left floating in the solution and captured to a copper grid, where it 

stood still due to surface tension (Figure 3.23). 

 

 

Figure 3.23 - Diamond thin film specimen after being captured by a SEM copper grid. a: growth side of 

the film; b: substrate side of the film. 

 

3.7.2. Results and discussion 

The attempt to grow a continuous B-NCD film grown on top of a tungsten sheet with a 

deposition time of only 15 min was successful. Despite its versatility, the HFCVD 

method is not suitable when high deposition rates are needed. For this work in 
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particular, this limitation was very useful since it allowed synthesizing a B-NCD film in 

the initial stage of growth. The morphology of the film is not of typical NCD (Figure 

3.24a), which consists of agglomerates of diamond nanocrystallites, the so-called cauli-

flower structure (Figure 3.25). The observed morphology is faceted and is probably 

associated to a low nucleation density due to the short substrate seeding period. 

Nevertheless, this was considered to be necessary to reduce the presence of 

nanodiamond powder impurities. Furthermore, this slightly coarsened microstructure 

(medium grain size of ~70 nm) facilitates the characterization by TEM. 

 

 

Figure 3.24 - a: Growth side of the film where its faceted structure can be observed; b: substrate side of 

the film. 

 

 

Figure 3.25 - Typical cauliflower structure of a NCD film. 

 

From the growth side of the film it can be seen that among the diamond crystals there is 

some non-diamond material (Figure 3.24a). The substrate side reveals that the diamond 

crystals nucleate on top of an interfacial amorphous region (Figure 3.24b), which is 
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confirmed by the Raman spectrum. For undoped NCD the Raman spectrum shows the 

diamond peak at 1333 cm−1, and four extra features at 1150, 1350, 1480 and 1550 cm-1. 

The 1350 and 1550 cm-1 peaks are the D and G bands of disordered and ordered 

graphite, respectively, while the peaks at 1150 and 1480 cm-1 have been attributed to 

transpolyacetylene (TPA) present in the NCD grain boundaries [203,204]. The B-NCD 

presents a high crystalline quality as it can be observed by the intensity and small full 

width at half maximum (FWHM) of the diamond peak (Figure 3.26) and by the low 

intensity of the D and G bands, especially when considering it is a nanocrystalline film 

and has a very high density of grain boundaries (Figure 3.24a). A qualitative indication 

of the presence of boron atoms in the diamond film can also be observed in the Raman 

spectra by the shifting of the diamond peak to a lower wavenumber, at 1331.2 cm-1 [71]. 

Since carbon has 4 valence electrons and boron has only 3, the presence of this 

element will introduce an electronic hole available for electrical conductance and also 

implies a reduction in the bonding energy of diamond, which causes the lattice 

parameter to increase [75]. This relaxation effect induces an overall tensile strength on 

the films, which can be detected in the Raman spectra by the shifting of the diamond 

peak to lower wavenumbers. 

The film was also characterized by EDS (Figure 3.27a-c). Besides carbon (Figure 

3.27d) some residual silicon was identified (Figure 3.27e), from the polishing of the 

substrate with SiC abrasive paper. The electron diffraction pattern of the film (Figure 

3.28) was indexed revealing an expansion of the interplanar spacing of the (111) planes 

by 0.43%, which is similar to a 0.3% lattice dilation reported by other authors [212]. This 

is in good agreement with the work of Pleskov and co-workers, which state that boron is 

preferentially incorporated in the (111) lattice, and at lower amounts in the (100) planes 

[71]. 
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Figure 3.26 - Raman spectra of the B-NCD film showing its high crystalline quality.  

 

 

Figure 3.27 - EDS map of the B-doped film, where the distribution of carbon material and residual Si can 

be observed.  
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Figure 3.28 - Diffraction pattern of the B-doped nanocrystalline diamond specimen where it is possible to 

identify the most intense scattering plane families: (111), (110), (311) and (100).  

 

The TEM micrographs in bright field mode exhibit some dark regions in a lighter matrix 

(Figure 3.29). These correspond to superimposed diamond crystals, where the 

electrons are scattered with more intensity than in the lighter regions. In these lighter 

zones some diamond crystals are observed, but there is mainly amorphous material, 

which can be identified in the dark field micrographs of the same area of the specimen. 

As an example, the central area from Figure 3.29 does not present a crystalline 

arrangement, regardless of the direction of the incident beam in the dark field mode 

(Figure 3.29c). It is possible that these regions correspond to amorphous carbon, or 

polyacetylene, which is known to exist in the grain boundaries of nanocrystalline 

diamond [203,204]. In some of these amorphous regions some lattice ordering was 

observed (Figure 3.30a and b), which as reported by Wurzinger et al. [212], may be due 

to a stabilizing effect of boron towards the growth of some crystalline graphite lamellae, 

that otherwise would be etched away by hydrogen. The mixed nature of 

diamond/amorphous material observed in this film is in good agreement with the works 

of Das et al. and Michaelson et al. [211,213], reporting the formation of superimposed 

layers of graphite, amorphous carbon and a mixed layer between amorphous carbon 

and diamond, which is where the nucleation of diamond starts. The B-NCD film 

presents some common defects already reported for diamond films [214], among which 

crystal twinning was the most commonly observed one (Figure 3.31). Although defects 
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are always naturally present, especially in polycrystalline films, the large difference 

between the thermal expansion coefficient between diamond and tungsten may have 

contributed for an increase of the defect concentration. These defects are especially 

important in what relates to the electrode kinetics. The oxidation and reduction reactions 

occur at the electrode-electrolyte solution interface. At this interface the electron-

transfer is considered to be a tunneling of the electron between electronic states on the 

electrode and the states of the reactant. The tunneling probability is proportional to a 

distance, x, over which the electron is being transferred, and also to a β parameter that 

reflects the energy barrier height and the nature of the solvent/electrolyte medium 

between the states. Thereby, the electrode and the reaction kinetics and mechanism 

are influenced by the structure of the interfacial region, particularly the physicochemical 

properties of the electrode material [215]. Consequently, properties such as the 

microstructure, the density of defects and the electrical conductivity are important and 

the extent to which any one of these properties can affect a redox reaction depends 

intensely on the nature of the analyte [215].  

 

 

Figure 3.29 – Dark and bright field TEM images of the diamond film showing an overall view of the 

diamond film in a) dark field mode and b) bright field mode. The presence of amorphous material among 

the diamond crystals can be observed inside the red circle area in c) dark field mode and d) bright field. 
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Figure 3.30 - High magnification view of the diamond crystals and some amorphous carbon in the outer 

grain regions.  

 

 

Figure 3.31 - Twinning defects in the diamond crystals.  

 

The elemental composition of the film was determined by EELS as well as a qualitative 

evaluation of the uniformity of the boron distribution in the sample. The analysis was 

performed in different spots of the film with different microstructural characteristics, 

namely in grain boundary regions, in the interior of the grain and in amorphous regions. 

Information about the elemental composition of the film and the electronic structure can 

be obtained from the analysis of the core level excitations at the C 1s edge. It has been 

100 nm
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reported several times that this excitation allows distinguishing between diamond and 

sp2 bonded material like graphite or other forms of carbon. The C 1s excitation 

corresponds to electronic transitions from the C 1s core level to unoccupied states with 

C 2s-2p character. While for pure diamond these unoccupied states are solely of σ 

character, for sp2 bonded carbon there are unoccupied π states at lower energies [216]. 

Therefore, the C 1s-π transition can be identified by a broad peak at 285.4 eV and the C 

1s excitation to σ unoccupied states is characterized by peaks at 292 eV for graphite 

and 289 eV for the diamond edge [216]. On the EELS spectra from Figure 3.32 there 

are two main features which are attributed to graphite and diamond. The highest 

intensity peak was measured at 289.4 and is attributed to the carbon C 1s edge of 

diamond. The lower intensity broad peak at 282 eV was attributed to amorphous carbon 

forms due to the 3.4 eV shifting from the C 1s-π transition value. However, the edge of 

diamond does not present its usual shape [217], which might indicate the presence of 

graphite or the influence of other non-diamond carbon phases. At lower energies two 

extra features to the diamond spectrum appear at ~188 and ~157 eV, which have been 

attributed to boron 1s edge and to the L2 transition of silicon (from the SiC abrasive 

paper), respectively. The absolute quantification of the elemental composition of the film 

measured by EELS indicates a low boron percentage of 1.93% in the film. Although 

boron could be detected, the EELS spectrum in Figure 3.32 was measured in high 

resolution, with the smallest aperture. For lower resolution measurements (Figure 3.33), 

it is very hard to detect the signal from the boron atoms and in some regions of the film 

there is no signal at all, which indicates that this element is not uniformly distributed. In 

a recent ab initio study, Barnard and Sterneberg [218] report that the boron atoms are 

incorporated at preferential sites at the grain boundaries and nearby grain regions. 

Accordingly Wurzinger et al. report that the boron concentration in CVD diamond films 

grown by the HFCVD method is also inhomogeneous with higher boron concentrations 

in outer grain zones [212].  
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Figure 3.32 - EELS spectrum in high resolution showing the diamond edge, and three other features at 

157, 188 and 282 eV, corresponding to the L2 silicon edge, the boron edge and non-diamond material, 

respectively. 

 

Figure 3.33 - EELS spectrum of the film using the second widest TEM aperture, where no sign of the 

boron can be measured. 
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3.7.3. Conclusions 

In this work a B-NCD film in the nucleation stage was grown and characterized. The 

Raman spectra revealed the crystalline quality of the film. Boron was identified by a 

shift in the diamond peak of the Raman spectra and by a 0.43% expansion of the (111) 

lattice. The TEM observation revealed the presence of amorphous material among the 

diamond nanocrystallites. By comparing the same areas in the bright field and in the 

dark field mode, and it was also possible to identify different kinds of defects such as 

crystal twinning and dislocation lines. The EELS spectrum allowed detecting the 

presence of the diamond edge at 289 eV and also of non-diamond material. Boron was 

also detected in small amounts, with a concentration of 1.93% of boron in the film and 

was found to present a nonhomogeneous distribution. 

 

 

This study of the tungsten/diamond interface allowed the detailed observation of the 

diamond crystallite microstructure and identify the presence of boron right from the 

initial stages of growth. This permitted evaluating the minimum deposition time needed 

to effectively establish a diamond film coverage on top of the interfacial layer with 

amorphous material. Adding to the knowledge acquired in section 3.3, this work was 

useful to understand the evolution of diamond film growth and contributed for the 

learning on how to fabricate diamond microelectrodes with enough purity and 

reproducibility of behavior, enabling the work to step up from simple voltammetry 

measurements without a specific target, to fully functional sensors with real applicability 

that can constitute a valid technological solution.   
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3.8. On the improvement of the electrochemical behavior of 

boron doped diamond microelectrodes 

On section 3.3, BDD was grown on top of tungsten sharp wires with a focus on the 

diamond films alone, targeting the fabrication of an object that could truly be called a 

microelectrode from the standpoint of physical dimensions but relegating the 

electrochemical behavior to second plan. This section presents a short overview of the 

route that was adopted to fabricate diamond microelectrodes with scientific applicability, 

especially in the field of corrosion monitoring. 

The selection of growth conditions for boron doped CVD diamond was developed 

following the feedback from electrochemical experiments done with diamond MEs 

produced using different parameters. The initial target was defined by the available 

literature on similar works. Although it is quite easy to find seemingly controversial 

information, a general trend can be drawn on properties such as the potential range of 

water stability, capacitive currents and information regarding kinetics for various redox 

couples. A work from 1995 named “Cyclic Voltammetric Studies of Charge Transfer 

Reactions at Highly Boron-Doped Polycrystalline Diamond Thin-Film Electrodes” [219], 

among other important ones [220–222], provides a good example of what is to be 

expected, electrochemically speaking, from the growth of high quality boron doped 

diamond films.  

Figure 3.34 gives an indication of the range of methane-hydrogen proportion, 

temperature, and pressure conditions, around which much labor was done to 

progressively refine the electrochemical behavior of the diamond microelectrodes 

presented in this work. More important than the growth conditions per se was the 

establishment of strict procedures in every step of microelectrode fabrication. From 

these, an important mention has to be made about the difficulty that is coating sharp 

tungsten wires with diamond by HFCVD. This technique is very well suited for large 

scale depositions and allows versatility like no other. However, for microscale 

depositions, it is extremely demanding. Considering a deposition area of a few square 

centimeters, it is easily assumed that by setting all parameters constant and ensuring 

they remain so, during the deposition time, the same outcome must be observed most 
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of the times, if not all. This proposition does not hold for deposition at the microscale 

and a great deal of care must be taken to fairly ensure that the nearly invisible sharp 

tungsten wires are again and again positioned in the exact same region of the substrate 

holder. The representation of the HFCVD in Figure 3.35, schematically shows the care 

developed in the positioning and alignment of the sharp tungsten wires relatively to the 

expected gas flow inside the reaction chamber. This is a vital procedure if any 

conclusion is to be drawn from varying the growth parameters, and for achieving 

reproducible results. Then, after the growth period is completed and the system is 

almost cooled to room temperature, a good deal of luck is needed for the diamond 

coated MEs not to be destroyed by the collapse, upon cooling, of the fragile tungsten 

carbide filaments that served as thermal activation source for the gas. 

 

 

Figure 3.34 – Parametric window studied for boron doped CVD diamond growth.  
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Figure 3.35 – CVD reactor showed in detail from a) front view; b) top view evidencing the growth region of 

diamond coatings on sharp tungsten wires (dashed red zone). 

 

Nevertheless, Figure 3.36 and Figure 3.37 confirm that the task was possible and the 

difficulties were overcome. They provide microstructural and electrochemical 

information about the typical behavior of the diamond microelectrodes fabricated in this 

work, in different solutions of 50 mM NaCl, 10 mM K3[Fe(CN)6] + 10 mM K4[Fe(CN)6] in 

50 mM NaCl and 1 mM ferrocenemethanol in 50 mM NaCl.  

The Fe(CN)6
3-/4-, usually an outersphere redox couple, is known to be very sensitive to 

carbon surfaces, displaying an innersphere electron transfer instead. Conversely the 

electron transfer of FcOH0/+ occurs at the outersphere. 

Although all the four microelectrodes indicated in Table 3.3, Figure 3.36 and Figure 3.37 

have a similar behavior regarding the different solutions, these figures can give an 

indication of the influence of both the microstructure and the boron doping level in the 

electrochemical behavior. 

Figure 3.36 (microelectrodes A and B) concerns microelectrodes with diamond films 

grown at low pressure (50 mbar), while Figure 3.37 (microelectrodes C and D) 
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corresponds to diamond growth at a higher pressure (180 mbar). A and B exhibit 

diamond of larger grain size (sub-micrometric) in comparison to C and D (nanometric).  

A was grown with boron concentration (in solution) of 2000 ppm, while B had a boron 

concentration of 10000 ppm. When tested with the Fe(CN)6
3-/4- redox couple, although 

both MEs exhibited slow electron transfer kinetics, B shows a more reversible behavior 

and a symmetry between the anodic and cathodic waves, most likely deriving from its 

higher boron content. 

Now, comparing the effect of the grain size, A and B show a higher catalytic activity 

towards hydrogen and oxygen evolution, than C and D, which exhibit water stability 

ranges of more than 4 V. Since C and D are nanocrystalline, it would be reasonable to 

assume that because of their higher densitiy of grain boundaries, the water electrolysis 

reactions (which proceed by an innersphere mechanism with adsorption of 

intermediates) would be favored, in comparison to A and B. Conversely, no particular 

enhancement of adsorption seems to occur, since hydrogen and oxygen evolution 

progress more slowly at C and D. However, the behavior of all four electrodes towards 

the FcOH0/+ couple indicates that the redox reaction proceeds in a very similar way for 

the four microelectrodes showing quasi-reversible electron transfer, which suggests that 

charge transfer is not hindered in any of the microelectrodes. This and the fact that in all 

probability NCD can provide more adsorption sites for water electrolysis, suggests that 

different conductivity mechanisms are in play, depending on the distribution and type of 

surface states. The contribution of each to redox reactions will depend on the nature of 

the analyte species. 

Hence, the growth optimization of the BDD films based on the feedback from the 

electrochemical behavior of the MEs, allowed the fabrication of microelectrodes with 

wide potential window and reasonably fast electron transfer kinetics. These were then 

used in their unmodified state and also with surface modification with heteroatoms other 

than hydrogen (O, F), in order to attempt specific measurements, namely of oxygen 

(sections 4.3 and 4.4) and pH (section 4.5). The detection of metal ions was also 

attempted with limited success, both with as-grown (section 4.3) and modified (not 

shown) MEs.  
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Table 3.3 – Selected microelectrode growth conditions. 

 

 

 

Figure 3.36 - Microelectrode A and B showing a-b) surface morphology; c) polarization in 50 mM NaCl, 

100 mV/s vs SCE; d) polarization in 10 mM K3[Fe(CN)6] + 10 mM K4[Fe(CN)6] in 50 mM NaCl, 100 mV/s 

vs SCE; e) 1 mM ferrocenemethanol in 50 mM NaCl, 100 mV/s. 
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A 100 5 4 800 50 2000

B 100 5 4 800 50 10000
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Figure 3.37 - Microelectrode C and D showing a-b) surface morphology; c) polarization in 50 mM NaCl, 

100 mV/s vs SCE; d) polarization in 10 mM K3[Fe(CN)6] + 10 mM K4[Fe(CN)6] in 50 mM NaCl, 100 mV/s 

vs SCE; e) 1 mM ferrocenemethanol in 50 mM NaCl, 100 mV/s. 
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4.1. Corrosion of metals in aqueous solution 

The corrosion of metals is driven by their thermodynamic instability in the presence of 

humidity. Figure 4.1 represents an elementary corrosion cell where the oxidation of a 

metal, M, to its ionic form Mm+ on the anodic site is coupled to the reduction of the 

species Xx+ to X on the cathodic sites [223].  

 

 

Figure 4.1 – Aqueous corrosion of metal (adapted from [223]).  

 

The electron transfer gives origin to differences in electrical potential between the metal 

and the solution, Δɸa and Δɸc, at the anodic and cathodic site, respectively: 

 

                           (Eq. 4.1) 

                           (Eq. 4.2) 

 

Where ɸM,a and ɸM,c are the metal potential at the anodic and cathodic sites, 

respectively, and ɸS,a and ɸS,c are their counterparts on the solution side. The current 

flows in solution from anodic to the cathodic site, because ɸS,a>ɸS,c, which means that 

the potential driving the current in solution, ΔɸS, is 

 

              (        )                           (Eq. 4.3) 

 



Diamond Microelectrodes for Corrosion Studies 

 

120 
 

Since the metal is a good conductor, it can be considered that potential differences in 

the metal are negligible and  

                                (Eq. 4.4) 

 

Following Ohm’s law, the corrosion current, Icorr, is then  

 

      
       

       
                         (Eq. 4.5) 

 

These electric potential differences at the anodic and cathodic sites are merely 

representative of an equilibrium condition for which no net current flows, the so called 

equilibrium half-cell potentials. Under current flowing conditions, the areas of the anodic 

and cathodic regions are important, and the half-cell potentials are shifted by a value η, 

the overpotential, which increases in magnitude with higher current densities, and the 

real corrosion current becomes: 

 

      
[                ] [                ]

       
           (Eq. 4.6) 

 

To become anodic, i.e. undergo corrosion, the half-cell potential of a metal must be 

inferior to the half-cell of a corresponding cathodic reaction. Although this is important, 

the physicochemical condition of an exposed metal surface is also determinant for it to 

corrode. Hence imperfections like dislocations, scratches and grain boundaries or even 

other factors such as the crystal orientation and alloying elements and phases, are very 

important on determining if a given metal will become anodic, which type of corrosion 

will occur and at what rate [223].    

 For a metal, M, the most elementary corrosion reactions are: 

 

               
 

 
                         for pH<7            (Eq. 4.7) 

 

                
 

 
       for pH≥7       (Eq. 4.8) 
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This means that the metal M will be released in solution in its ionic form, with valence m, 

by the action of hydrogen ions. As the pH increases, water molecules increasingly 

contribute for metal oxidation. Hence, electrons are transferred from anodic to cathodic 

sites on the metal, M, corresponding to a change in charge from M to Mm+ and from 

mH+ to m/2 H2. Given the electron mobility allowed in the metal, these reactions can 

occur in distinct places which can be restrained to atomic distances or occur in huge 

macroscopic areas of several square meters. If the anodic and cathodic sites are nearly 

undistinguishable and undergo changes and reversal with time, uniform corrosion is 

said to occur. If it is possible to resolve these areas and they do not change with time, 

then the corrosion is said to be localized and its observation is almost exclusive in 

anodic areas [223]. 

But corrosion does not depend on pH alone. Other variables like the concentration of 

dissolved gases like O2 or CO2, the presence of complexing agents or the presence of 

species that precipitate the metal ions released in solution, can combine to define the 

localization and rate of corrosion reactions. As an example, the presence of dissolved 

oxygen in solution will result in the occurrence of the following reactions: 

 

  
 

 
           

 

 
           for pH<7              (Eq. 4.9) 

 

  
 

 
   

 

 
                 for pH≥7              (Eq. 4.10) 

 

In practice, this means that corrosion is accelerated because there is an additional 

reaction consuming electrons. However, the formation of corrosion products (take the 

example of Fe2O3 or FeO(OH) on the surface of iron) and their change with time will 

also influence the corrosion rate. Depending on the adhesion and porosity of the formed 

precipitates, they might constitute barriers through which ionic species and O2 will have 

to diffuse to sustain corrosion. Conversely, if the precipitates are non-adherent and 

have very low solubility, the corrosion rate can accelerate due to the continuous 

extraction of metal ions. For metals that form well adhering protective films, corrosion is 

strongly attenuated and its rate drops several orders of magnitude [223].
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4.2. Scanning probe techniques for the study of corrosion 

4.2.1. The scanning vibrating electrode technique 

The SVET (Scanning Vibrating Electrode Technique) is an electrochemical technique 

suited for the study of  ionic fluxes, having been first applied to corrosion by the effort of 

Isaacs [224]. This technique can measure local currents at the surface of metals 

immersed in electrolyte solutions. These currents derive from ionic fluxes with origin in 

electrochemical reactions on the metal surface [225]. The oxidation and reduction 

reactions occurring in anodic and cathodic sites cause variations in the concentration 

and distribution of ionic species, which in turn create electric fields, as shown in Figure 

4.2. By using a vibrating microelectrode to scan the surface of interest the potential 

difference between points can be determined versus a reference electrode. The 

recorded signal is transformed to an AC signal with the same frequency as the vibration 

of the microelectrode.  A current map of the whole surface can easily be obtained by 

setting a grid of points to measure, and using Ohm’s law to calculate the current 

intensity from the potential difference recorded between points [225]. An alternative to 

SVET is SRET (Scanning Reference Electrode Technique) in which the probe is used in 

a static configuration as current is measured instead of potential.  

The technique has been used for research on pit formation, electrochemically active 

pin-hole defects in coatings, corrosion inhibitor performance, galvanic corrosion, etc.  

 

 

Figure 4.2 – SVET measurement scheme showing a microelectrode vibrating with an amplitude r, which 

along with the frequency of vibration will be used to determine the value of the ionic current (adapted from 

[225]).  

r
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4.2.2. Scanning Kelvin probe 

The Scanning Kelvin Probe (SKP) technique is used for the measurement of micro-

galvanic activity near an electrochemically active surface in the presence of a thin 

electrolyte layer or drop, or even in humid air and it allows the determination of the work 

function of conducting and semiconducting materials [226]. 

The Kelvin Probe tip and the surface of the sample form a capacitor. The distance 

between the tip and the surface varies by vibrating the probe and an AC current then 

flows through an external circuit, with an intensity that is consequence of the potential 

variation between the tip and the surface. This potential difference can be compensated 

by adjusting the external voltage. The probe is usually made of a material with constant 

surface potential. (e.g. a Ni/Cr wire tip), which implies that the locally measured 

potential arises only from the surface potential of the sample (Figure 4.3) [26].  

A reference electrode is used to calibrate the Kelvin probe by touching the surface of 

the sample. Simultaneous measures with the two probes yield the potential which differs 

from the corrosion potential by a constant value, related to the experimental setup (eq. 

4.11) [226].  

 

               (
     

 
)                   (Eq. 4.11) 

 

Where ɸ1-ɸ2 is the difference in work function between the Kelvin probe and the sample 

and e is the electron charge. The technique allows the investigation of coating 

degradation, performance of corrosion inhibitors, etc. 
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Figure 4.3 – Energy level variations as basis for Scanning Kelvin Probe measurements (adapted from 

[226]). 

 

 

4.2.3. Local electrochemical impedance spectroscopy 

Electrochemical Impedance Spectroscopy is a widely used technique for the study of 

corrosion rates. It measures the polarization resistance, Rp, of a metal, which is 

proportional to the rate of corrosion occurring at the monitored interface [227]. 

 

   
 

     
                       (Eq. 4.12) 

 

  
    

          
                 (Eq. 4.13) 

 

Where ba and bc are anodic and cathodic Tafel slopes, respectively.  

By this technique the properties of an electrode/electrolyte system are evaluated as a 

function of the frequency of an applied ac signal of small amplitude, at a fixed working 

point. Impedance spectra is collected over a frequency range that can go up to 10 
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orders of magnitude [228]. Data evaluation is done with the aid of Bode plots, which 

display the complex impedance spectra as function of the frequency f of the applied AC 

signal. An equivalent circuit is needed for fitting the experimental data and information 

about system properties and their changes with varying experimental conditions can be 

extracted [228]. 

Local impedance electrochemical spectroscopy (LEIS) consists on the application of a 

sinusoidal voltage perturbation between the sample and reference electrode. The 

current density over a sample is then probed by a double-electrode as a function of 

applied frequency. The probe is fixed in a stationary point and the sample below is 

dislocated with X/Y stages. For any frequency, the current density of the solution is 

extracted from Ohm’s law and the potential difference between the probe electrodes: 

 

          
           

 
                     (Eq. 4.14) 

 

Where ΔV(ω)probe is the AC voltage difference between the probe electrodes, κ is the 

conductivity of the electrolyte solution and l is the distance between the probe 

electrodes. The local impedance can then be determined using the following 

relationship: 

|    |      
           

    
                  (Eq. 4.15) 

 

Where V(ω)applied is the AC perturbation potential applied between the reference 

electrode and the surface. This technique has been applied to corrosion studies such as 

pitting corrosion and the examination of defective coatings, among others [228]. 

 

 

4.2.4. Scanning electrochemical microscopy 

Scanning Electrochemical Microscopy (SECM) uses a microelectrode as scanning 

probe for measuring faradaic currents, originating from a diffusion controlled redox 

reaction of a mediator species at the SECM tip. This current is affected by the nature of 

the sample below the tip and the distance between both. The electric state of the tip and 



4. Diamond microelectrodes as probes for studying corrosion 

127 
 

the substrate can be controlled separately which allows this technique to operate under 

a variety of modes [229]. For corrosion investigation three of them have proved to be 

more useful: the feedback mode, the generation/collection mode and the redox 

competition mode. 

In the feedback mode, both electrically insulating and conducting substrates can be 

imaged by SECM, employing a redox mediator species. The SECM tip is made to scan 

the X–Y plane of the surface of the sample. The measured faradaic current is limited by 

the diffusion of the mediator, and is associated to the separation between the tip and 

the sample bellow, i.e., a topographic image can be obtained (Figure 4.4). The 

resolution of the image is obviously limited by the radius of the SECM tip [20]. 

However, the redox mediators used in SECM can interfere in the investigation of 

corrosion processes. The generation/collection mode allows electrode processes and 

coupled homogeneous reactions to be studied. Both substrate generator-tip collector 

and tip generator-substrate collector variants can be used. The former is useful to 

determine concentration profiles of electroactive species originating from the substrate. 

This is adequate for detecting species resulting from anodic oxidation of metals if the 

adequate potential is selected [230].  

The tip generator-substrate collector mode is suited for the study of homogeneous 

reactions occurring in the gap between the tip and the substrate. However, some 

relevant limitations are inherent to this mode. One of them is the loss of sensitivity with 

increasing substrate areas because the background current increases. A limit in 

resolution is also imposed, since the smaller the SECM tip, the more the current signal 

will be indistinguishable from the background [231]. Hence, in cases such as imaging of 

catalytic activity, this mode has proved to be inadequate. A possible solution is to use 

the redox competition mode. With this operating variant, both the tip and the substrate 

compete for the electroactive species, which in some cases like the study of catalytic 

materials for the oxygen reduction reaction, has been proved successful [231].   

Recently other SECM variants have been used. Perhaps the most successful is AC-

SECM in which an oscillating potential perturbation is applied to the tip and an AC 

current is then measured for different perturbation frequencies. The greatest advantage 

is possibly working without the need of redox mediators [232].   



Diamond Microelectrodes for Corrosion Studies 

 

128 
 

The use of SECM for corrosion research has been demonstrated in cases of pitting 

corrosion [233], galvanic corrosion [234], inhibitor performance [235], evaluation of 

organic coatings [236], among others. 

 

Figure 4.4 – SECM operation dependence with the electrical nature of the sample and surface 

topography.  

 

The sections 4.3 to 4.5 below correspond to three scientific articles focusing on the 

application of diamond microelectrodes for localized amperometric (4.3 and 4.4) and 

potentiometric (4.5) measurements, using the instrumentation of a SVET system. On 

section 4.3, as-grown diamond microelectrodes are used for Zn(II) and molecular 

oxygen measurements. Section 4.4 regards the use of BDD MEs with CF4 plasma 

surface modification, as a route to enhance the sensitivity and response time for 

dissolved oxygen measurements. Finally, on section 4.5, BDD MEs with surface 

modification by oxygen plasma are demonstrated as being pH sensitive and constituting 

a possible solution for mapping the pH variation in corrosion systems.  
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Abstract  

Boron-doped nanocrystalline diamond (B-NCD) films were grown by the hot filament 

chemical vapour deposition (HFCVD) technique on top of sharp electropolished 

tungsten substrates, in order to create amperometric microelectrodes (MEs) for 

detection of Zn2+(aq) and dissolved O2. The boron source was a B2O3 + ethanol mixture 

dragged by Argon gas through a bubbler. Different B2O3 concentrations were used to 

study the doping effect on the electrochemical behaviour. The B-NCD MEs exhibited a 

working potential window of about 3.5 V in 5 mM NaCl, with low background current and 

good chemical inertness. The best electrochemical kinetics was achieved for the ME 

with highest boron doping content. The linear relationship between zinc concentration 

and zinc reduction current was found in a wide concentration interval from 10-5 M to 10-2 

M of ZnCl2 in a 5 mM NaCl background. Measurements with a Fe-Zn galvanic couple 

immersed in 5 mM NaCl demonstrate potential applicability of the B-NCD ME for use in 

localized corrosion studies. 

 

Keywords: B-NCD, microelectrodes, zinc, corrosion, amperometric 
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4.3.1. Introduction 

Apart from its outstanding mechanical and thermal properties [237], CVD diamond has 

been object of intense study for the last two decades due to its promising electrical 

properties, when doped by other elements, particularly boron [98,206,238]. Therefore 

diamond was studied for electrochemical purposes [83] taking into account its superior 

chemical stability. Boron-doped CVD diamond was reported to exhibit a potential 

window of water stability wider than any other solid electrode material. A very low 

background current and extreme chemical inertness and resistance to fouling due to the 

non-polar H terminated surface can also be counted as important advantages 

[70,128,192]. The promising results have encouraged high interest on diamond to be 

applied for microelectrodes as well [118]. As a result of electrode miniaturization to a 

critical dimension of <25 µm [8], which enables working with enhanced mass transport 

and steady state currents, as well as measurements in high resistivity media, CVD 

diamond microelectrodes (MEs) became an increasing matter of research, mainly in the 

biological field.  

A variety of microstructures ranging from microcrystalline to nanocrystalline diamond 

can be obtained by synthesis in metastable conditions, which is the case of CVD 

methods such as the hot filament assisted CVD (HFCVD). Nanocrystalline diamond is 

the most interesting for MEs because of its grain size allowing maximum miniaturization 

of the electrode [139]. Although there are many bio-related publications with diamond 

electrodes [119,120,191,239–241] and some works concerning the detection of trace 

metals and use of B-doped diamond electrodes in SECM [131,242,243], to our 

knowledge there are no published works applying B-doped diamond MEs to the 

corrosion field, where they can also play an important role.  

Our main interest in this work was focused on optimization of the electrochemical 

properties of boron-doped nanocrystalline diamond (B-NCD) films to be used in 

amperometric MEs for corrosion studies. An example of such measurement is the 

distribution mapping of electrochemically active species generated or consumed in 

confined areas on corroding metal surface. Such experiments are of prime importance 

for understanding mechanisms and kinetics of corrosion and self-healing processes in 

the local defects of active coatings [234,244]. Particular interest is in the case of metal 
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cations that are reduced at potential range where the reduction of water and dissolved 

oxygen can mask their amperometric detection. This is a limiting condition for most 

electrode materials currently in use but it may be an opportunity for B-NCD based MEs. 

One of the most corrosion relevant cases is determination of local concentration of zinc 

cations in the electrolytes near corroding surface of galvanized steel. Zinc has 

widespread applications of great importance such as galvanic coatings on steel, as 

anodes for common batteries or in brass metallurgy. It is also relevant in the metabolism 

of plants, animals and microorganisms [245–247].  

The quantification of zinc is therefore a significant matter for many different areas, but 

the means available are limited mostly to spectroscopic and electrochemical stripping 

techniques [248–250]. Recently, Strasunske et al. [251] obtained good results by using 

silver amalgam electrodes (3 mm in diameter) to analyze river water by differential pulse 

anodic stripping voltammetry. Tada et al. have reported the voltammetric detection of 

Zn2+ by using a small zinc disk electrode to probe the corrosion of Zn/steel couple, but 

within a narrow concentration range and with millimetric, not micrometric, resolution 

[252]. Attempts also have been made for localised potentiometric detection of Zn2+ with 

ion-selective microelectrodes but the electrodes still present low sensitivity, low 

selectivity, short lifetime and complex fabrication [253,254]. In terms of the use of B-

NCD electrodes, the group of G.M. Swain has reported satisfactory results using B-NCD 

electrodes for the detection of Zn2+ and other heavy metals by anodic stripping 

voltammetry, although large metal deposits and electrode fouling were a problem 

[255,256]. However, the size of the electrode again does not allow the spatial mapping 

in the micrometric range. 

In the present work, we report the fabrication of B-NCD microelectrodes and their use 

as probes for Zn2+ and oxygen detection by performing cyclic voltammetry (CV) and 

microamperometry measurements at fixed potential in zinc chloride solutions and in a 

model Zn-Fe galvanic corrosion system.   
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4.3.2. Experimental 

4.3.2.1. Microelectrode fabrication 

Substrate preparation 

Electrosharpened tungsten wires (99.9%+, Ø125 µm, Goodfellow, England) were used 

as a body of electrode. The sharpening of the wires was performed via electropolishing 

in a custom-made dynamic flow system, using a 3 M NaOH solution. Each filament was 

connected as a working electrode (anode) in the electropolishing system and was 

sharpened by applying a potential difference of 10 V between the working and the 

counter electrode during 50 s while keeping the solution flowing. The tips were 

sharpened down to radii of <100 nm and ultrasonically cleaned with distilled water. 

Afterwards they were ultrasonically seeded during 10 minutes in a suspension of 

nanodiamond powder (~6 nm, 98+ %, ABCR, Germany) in distilled water and 

ultrasonically cleaned during 15 minutes in ethanol to remove the rest of powder. 

 

Diamond film growth 

The diamond films were grown by HFCVD with four tungsten filaments at a temperature 

of 2300 ºC that worked as gas activators and substrate heating sources. The sharpened 

tungsten tips were positioned horizontally on a substrate holder below the filaments at a 

distance of 7 mm. B-NCD films were grown during 30 minutes. The substrate 

temperature and the total gas pressure were kept constant at 770 ºC and 180 mbar, 

respectively. The gas phase was composed by hydrogen and methane with a 0.07 

CH4/H2 ratio with addition of the boron doping mixture. The boron source for doping the 

films was a solution of boron oxide (B2O3, 99.6%, ABCR) dissolved in ethanol inside a 

gas washing bottle. This boron-containing solution was dragged by argon gas into the 

CVD reaction chamber, with a constant (Ar+B)/H2 ratio of 0.03. Solutions with three 

different B2O3 concentrations of 2x10-4, 1x10-3 and 2x10-3 M were tested for the S1, S2 

and S3 microelectrodes, respectively. The microstructure of the grown films was 

evaluated by scanning electron microscopy (Hitachi SU-4100). UV μ-Raman 

spectroscopy (HORIBA JOBIN YVON HR800UV), using the line 325 nm  from a He-Cd 
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laser (KIMMON IK series) for surface excitation, allowed the identification of the 

different carbon sp2/sp3 phases incorporated in the coatings and the presence of 

residual stresses. 

 

Electroactive area delimitation 

The B-NCD covered tungsten wires were partially insulated with acid resistant varnish 

(Lacomit, AGAR) with the aid of a micrometric manipulator under a microscope in order 

to limit the electroactive area just at the apex.  

 

4.3.2.2. Electrochemical measurements 

Electrode characterization 

The electrochemical response of the B-NCD MEs was tested by cyclic voltammetry with 

a AUTOLAB PGSTAT302N potentiostat/galvanostat (Eco Chemie, The Netherlands). 

The electrochemical cell was kept inside a Faraday cage, open to air, and consisted on 

the B-NCD ME as working electrode, a platinum counter-electrode and a saturated 

calomel electrode (SCE) as reference. All potentials in this paper are referred to SCE 

except for the line and 2D-map scans in corrosion testing, where a Ag|AgCl electrode 

was used as reference. The electron transfer kinetics was evaluated in 10 mM 

Fe(CN)6
3-/4- in 5 mM NaCl (all reagents were pro analysis grade from Riedel-deHäen). 

The B-NCD MEs were compared with platinum and gold microelectrodes (10 µm discs 

embedded in cylindrical glass with a conical tip of 200 µm in diameter) for the detection 

of Zn2+ in ZnCl2 solutions ranging from 10-6 M to 10-2 M in 5 mM NaCl (pH=2). All 

potentiodynamic measurements were performed with a scan rate of 100 mV s-1. 

 

Application to corrosion testing 

A model system consisting of a Fe-Zn galvanic couple immersed in 5 mM NaCl solution 

was used in order to evaluate applicability of the B-NCD MEs for mapping the 

distribution of Zn2+ and O2 near active corroding metallic surfaces. Microamperometry 

measurements were performed with an IPA2 amplifier (Applicable Electronics Inc., 

USA) in the voltammetric/amperometric mode, using a 2 electrode arrangement, with a 
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Ag|AgCl electrode as counter and reference electrode. Linear or 2D scans were done 

using B-NCD ME at a distance of 100 µm from the surface. Lines and maps were 

recorded at a potential of -0.9 V (vs. Ag|AgCl) for detection of dissolved O2 and -1.6 or -

1.3 V (vs. Ag|AgCl) for detection of Zn2+. 

 

4.3.3. Results and discussion 

4.3.3.1. Electrode characterization 

The microscopic observations of the coated W-microelectrodes demonstrate presence 

of a dense intact diamond layer on the metal surface, which was confirmed by Raman 

spectroscopy. Each of the Raman spectra in Figure 4.5 shows the following features: i) 

at 1140 and 1470 cm-1, commonly assigned to transpolyacetylene (TPA) in the grain 

boundaries; ii) at 1333 cm-1, indicating the presence of diamond crystals; iii) at 1340 cm-

1 and 1540 cm-1, assigned to the D and G bands of graphite, respectively [203].  

 

 

Figure 4.5 - Raman spectra (325 nm wavelength) of the B-NCD films grown with different B2O3 

concentrations of 2x10
-4

, 1x10
-3

 and 2x10
-3

 M. There are five main features: at 1140 and 1470 cm
-1

, 

assigned to transpolyacetylene (TPA) in the grain boundaries; at 1333 cm
-1

,
 
indicating the presence of 

diamond crystals; at 1340 cm
-1 

and 1540 cm
-1

, assigned to the D and G bands of graphite, respectively.  
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No voids are observed at the B-NCD films, meaning that the tungsten tip is well 

insulated from the analyte by the B-NCD coating (Figure 4.6a). Good coverage and 

intactness of the diamond film is crucial in order to avoid the penetration of electrolyte to 

the metal surface and the consequent electrochemical response o tungsten during the 

measurements. The tungsten tips with B-NCD films were coated with a polymer layer in 

order to provide an electrical insulation leaving only an apex as exposed zone of the 

probe. The exposed are was about ~30 μm2 with a tip radius of ~0.5 μm (Figure 4.6b).  

 

 

Figure 4.6 - SEM micrographs of a) B-NCD film grown on top of sharp tungsten wire, b) B-NCD probe 

insulated with varnish, showing a typical exposed area. 

 

The CV measurements were performed on a bare tungsten microelectrode in the 

potential range from -1.5 to 1 V in 5 mM NaCl in order to exclude the situation of W-

substrate contribution for the electrochemical measurements, (Figure 4.7a). Besides 

water reduction, three oxidation peaks are observed that can be related to the formation 

of W2O5, WO2 and WO3 at the tungsten surface, since these are known to be the most 

stable oxide products [257].  

None of these peaks was observed in the current-potential curve of the B-NCD 

microelectrode as shown in Figure 4.7a (inset) in the same solution within the referred 

potential range, confirming the absence of response from the W substrate. Instead, only 

water oxidation (starting at ~1 V) and a small response from water reduction were 

observed. The kinetics for the latter process is extremely slow at the B-NCD surface as 

can be seen in Figure 4.7b for the S1 ME, which shows a very high overpotential for 

hydrogen evolution. This behavior corresponds to a ~3.5 V usable window, which is 

larger than the 2.5-3.0 V window reported in various works for B-NCD [50,123,211].  
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Figure 4.7 - Voltammograms of a) a bare tungsten microelectrode and a B-NCD (S1) probe in 5 mM 

NaCl, b) Pt, Au and S1, S2 and S3 B-NCD microelectrodes in 5 mM NaCl.  

 

The response of the B-NCD MEs was also compared with platinum and gold MEs in the 

same solution. It can be observed that the reduction of dissolved oxygen and water are 

easier on both platinum and gold, with overpotentials lower than the exhibited by the B-

NCD MEs, although they do present a higher overpotential for water oxidation.  

The unfavorable kinetics for water and oxygen reduction at the B-NCD surface, 

however, could be also an indication of slow kinetics for other processes. For obvious 

reasons, there is no point in producing MEs with extensive potential windows if the 

electron transfer kinetic is not adequate within the working window. Attending to the 

electrochemical properties of CVD diamond and, in particular, to the microstructure of 

NCD, the slow kinetics of this material is likely to be associated with low conductivity 
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originated by ineffective boron doping. NCD presents a huge number of grain 

boundaries due to the size of its crystallites. These regions can contain a high amount 

of different non-diamond carbon species such as graphitic phases and trans-

polyacetylene which are sp2 bonded when NCD is grown by HFCVD [203]. The grain 

boundaries can be a problem for the overall electrical conductivity of doped NCD films 

in several ways. First, although the non-diamond carbon phases in the boundaries can 

provide electrical conductivity to undoped NCD, they are not a reliable form of charge 

transport because of the implicit instability of these carbon forms, which can easily be 

etched or oxidized, either electrochemically or thermally [63]. Conversely, by promoting 

the substitutional incorporation of boron atoms into carbon lattice positions, electric 

conduction by electronic holes is enabled in a consistent manner, ensuring the reliability 

of the material’s electrical conductivity and chemical stability. The second way is also 

related to sp2 carbon π bonds and their unsaturated nature, which increase the 

reactivity of the B-NCD film and also ease the poisoning of the surface [100]. A third 

mechanism how grain boundaries affect the conductivity of the NCD films is by acting 

as “sinks” for the boron atoms, thereby reducing the doping degree. According to Goss 

et al., grain boundaries and near grain edge sites require lower energy for boron 

integration than intra-grain positions. However boron only contributes to the overall 

conductivity of the film by occupying substitutional positions in the diamond lattice [96]. 

Even though grain boundaries are a problem, reducing their number would contribute to 

a coarsening of the surface microstructure of the ME and could compromise the 

electrode miniaturization level. The solution relied on improving the conductivity of the 

MEs by increasing the boron content through higher B2O3 concentrations in the doping 

solutions. Figure 4.7b shows that raising the boron concentration in the solution from 10-

4 M for the S1 ME to 10-3 M for S2 and 2x10-3 for the S3 ME resulted in a slight 

narrowing of the working potential window but also contributed to an improvement in the 

electrode transfer kinetics, as is shown in the CV curves on Figure 4.8 for the Fe(CN)6
3-

/4- redox system. The peak separation, ΔEp, decreased from 302 mV in S1 to 101 mV in 

S3, along with the increase of the current peak values (Table 4.1). Although the ΔEp for 

reversible 1 electron reactions is expected to be around 59 mV [258], the ΔEp variation 

from S1 to S3 indicates a more reversible behavior at the surface of the S3 ME.  
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An alternative to changing the amount of boron doping is varying the Ar+B flow, but this 

would also change the amount of available carbon in the active gas phase leading to 

the deposition of high amounts of sp2 bonded non-diamond material in the B-NCD films. 

Thus a good compromise between fast kinetics and acceptable working potential 

window was obtained in the case of S3 ME particularly for negative potentials which is 

the region of interest for the detection of Zn2+. 

 

 

Figure 4.8 - Voltammograms using S1, S2 and S3 B-NCD microelectrodes in 10mM Fe(CN)6
3-/4-

 + 5 mM 

NaCl.  

 

Table 4.1 - Electrochemical kinetic parameters for three B-NCD MEs grown with different [B2O3] (peak 

potential separation, ∆Ep, oxidation peak current, iox, ratio of oxidation and reduction peak currents, Ip
ox

, 

Ip
red

, respectively).  
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4.3.3.2. Zn2+ detection  

Several MEs with the S3 composition were studied for the detection of Zn2+ and 

dissolved oxygen. The first step was to compare B-NCD MEs with common inert 

electrode materials such as platinum and gold. The detection of zinc was performed in 

acidified ZnCl2 solutions (pH 2) since at this pH Zn2+ is clearly dominant over other 

soluble species such as ZnCl+ and ZnOH+. The formation of carbonated zinc species is 

also not favorable in acidic conditions [136, 248]. Cyclic voltammetry was also 

performed on Pt and Au MEs in ZnCl2 solutions with Zn2+ concentrations of 10-5, 10-4 

and 10-3 M in a 5 mM NaCl background. The results are presented in Figure 4.9a-c, 

where the inability of these materials to accurately reduce Zn2+ to its metallic form 

becomes clear. Both the Pt and Au MEs present variations in the current-potential 

curves denoted by higher currents for increasing Zn2+ concentration but not 

proportionally to the magnitude change in the Zn2+ concentration, Figure 4.9b and c. In 

Figure 4.9d the current values selected at the potential of -1.6 V for B-NCD and Au and 

-1.4 V for Pt, are plotted as a function of the Zn2+ concentration evidencing the higher 

sensitivity of the B-NCD ME in this concentration range.   

 

Figure 4.9 - Voltammograms using a) Pt, b) Au and c) B-NCD microelectrodes in ZnCl2 solutions of 10
-5

, 

10
-4 

and 10
-3

 M in 5 mM NaCl, revealing the good performance of B-NCD for the reduction of Zn
2+

 in 

comparison with the poor behaviour exhibited by Pt and Au. d) Current-concentration curves for B-NCD, 

Pt and Au microelectrodes in the range 10
-5

-10
-3

 M Zn
2+
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A more complete study was performed by cycling the B-NCD ME from -0.5 V to -1.8 V 

in ZnCl2 solutions with varying concentration (10-2, 10-3, 10-4, 10-5 and 10-6 M) in a 5 mM 

NaCl background as shown in Figure 4.10. The main reactions expected to take place 

in this range of potentials are the reduction of dissolved oxygen, the reduction of water 

with hydrogen evolution, the reduction of Zn2+ to Zn(s) and the oxidation of Zn(s) back 

to Zn2+ (the waves attributed to each reaction are identified in Figure 4.10).  

A two-step reaction, Zn → Zn+ + e- and Zn+ → Zn2+ + e- , has been proposed for the zinc 

dissolution in acidic conditions [260,261], whereas the deposition of zinc in ZnCl2 

solution was found to be the reverse of the same two-step reaction [262]. According to 

Cachet and Wiart [263], the Zn+
ads intermediate has an inhibitor effect on hydrogen 

evolution. In fact, the cathodic reactions on zinc near the zinc reversible potential are 

dominated by zinc deposition when the zinc concentration is higher than 10-4 M [264]. 

In Figure 4.10, the voltammograms for Zn2+ concentrations of 10-2 M and 10-3 M are 

different from those at lower concentrations. At 10-2 M, the polarization towards more 

negative potentials presents a well-defined plateau of diffusion controlled oxygen 

reduction until ~-1.25 V, followed by two rising slopes and the corresponding plateaus, 

one around -1.4 V and the other around -1.6 V, both considered to be related to the 

deposition of zinc. Excursion towards more negative potentials leads to water reduction 

with hydrogen evolution, starting around -1.74 V. This potential for H2 evolution is the 

most negative of all Zn2+ concentrations tested, proving the inhibiting effect of higher 

concentration of Zn2+ on the evolution of this gas. On the reverse sweep, Zn2+ continues 

to deposit up to -1.1 V, then the dissolution of the deposited zinc starts and a marked 

oxidation peak is observed at approximately -0.9 V. The shape of the voltammogram for 

10-3 M is similar, except for the absence of the second plateau in the cathodic sweep in 

the zinc deposition region and for the water reduction which starts earlier. This is 

probably due to the lower concentration of Zn2+, which makes hydrogen evolution more 

favorable. No clear plateaus are detected in the cathodic sweep at 10-4 M, marking a 

transition in the behavior of the ME, which is in agreement with reference [264]. On the 

reverse sweep, diffusion-controlled reduction of Zn2+ still occurs, but the oxidation peak 

intensity is much lower. For 10-5 M the reduction of Zn2+ at the reverse sweep continues 

to be measurable but is kinetically controlled with clear dominion of water reduction.  
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At 10-6 M the reduction of Zn2+ is hardly detectable, as well as the dissolution peak. 

Conversely, the hydrogen evolution potential for the 10-6 M solution is the lowest of all 

measured concentrations, indicating that it is more favorable at lower zinc 

concentrations, which is again in good agreement with the previously referred works.  

The average background subtracted current values of three reverse sweeps at -1.6 V 

were plotted against ZnCl2 concentration (Figure 4.11). The current-concentration 

dependence exhibits a linear behavior from 10-5 M to 10-2 M. The curve for a potential of 

-1.3 V is also plotted to confirm that the current-concentration linear behavior exists at 

potentials closer to the potential at which Zn2+ reduction starts. This linearity is the 

principal requirement for the amperometric detection of Zn2+. The detection limit was 

determined by taking three times the standard deviation for each plot, which sets a 

value of 7.34x10-6 M for the lowest detectable concentration for MEs produced using the 

conditions given in the experimental section for S3 B-NCD coatings. 
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Figure 4.10 - Voltammograms of a S3 B-NCD microelectrode in ZnCl2 solutions of 10
-6

, 10
-5

, 10
-4

, 10
-3

 and 

10
-2

 M in 5 mM NaCl, showing dissolved oxygen reduction (red line), Zn
2+

 reduction (blue line), water 

reduction (green line) and Zn oxidation. (Note the 10 fold change in the current scale for the different 

concentrations).  
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Figure 4.11 - Relationship between concentration of Zn
2+

 and the reduction current measured by the S3 

B-NCD ME at -1.6 and -1.3V vs SCE from 10
-6

 to 10
-2

 M Zn
2+

.  

 

4.3.3.3. Application to the corrosion of a Fe-Zn galvanic couple 

In order to evaluate applicability of the B-NCD MEs in investigation of corrosion 

processes, measurements were performed on a model Fe-Zn galvanic couple 

immersed in a 5 mM NaCl solution. Figure 4.12a depicts a schematic of the cell used 

and Figure 4.12b a representation of the measurements performed over the couple. 

Figure 4.13 shows the currents related to the reduction of dissolved O2 or reduction of 

Zn2+ to Zn at the ME, recorded in a line that passed 100 μm above the Fe and Zn 

electrodes. The current due to reduction of O2 was measured with the tip polarized at -

0.9 V vs Ag|AgCl and was proportional to the O2 local concentration. The lowest values 

where recorded above the iron electrode which is the cathode in the galvanic couple. 

The oxygen consumption at the Fe surface diminishes its local amount, leaving less to 

react at the microelectrode tip. The oxygen reduction current also decreases above the 

zinc anode because, in spite of being it the couple’s anode, oxygen reduction also takes 

place there. This happens since in parallel to the galvanic corrosion there is self- 
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Figure 4.12 - Experimental setup for microamperometric measurements with a S3 ME. a) Fe-Zn galvanic 

couple immersed in 5 mM NaCl for Zn
2+

 and dissolved oxygen detection. b) Schematics of the 

measurements performed.  

 

corrosion of zinc which leads to presence of local cathodic areas with oxygen reduction 

processes on Zn surface.  
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test was repeated with a lower applied potential of -1.3 V. In this case, the current 

increased above the zinc anode only, while a lower constant value was observed for the 

bulk solution. 

 

 

Figure 4.13 - Linear microamperometric measurements using a S3 ME for Zn
2+

 reduction at -1.6 V 

(dashed black line) and -1.3 V (continuous black line) and dissolved O2 reduction at -0.9 V (red dotted 

line).  

 

The increase of electroactive area by zinc accumulation is confirmed in Figure 4.14 

where a sequence of cycles between -1.1 and -2.1 V presents a current rise from cycle 

to cycle, indicating a progressive deposition of this metal at the surface of the ME. If the 

upper limit of the cycles was -0.8 V instead of -1.1 V, thus including the zinc oxidation, 

the regeneration of the original surface would take place. Figure 4.15 shows a 

sequence of ten cycles from -0.8 to -1.75 V where the oxidation of the zinc just 

deposited renews the surface leading to similar voltammograms in every cycle. This can 

be a solution to overcome the unwanted increase in electrode’s area. 
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Figure 4.14 - Voltammograms of the S3 ME cycled from -1.1 to -2.1 V repeatedly, showing a progressive 

current increase due to accumulation of Zn on the surface of the ME.  

 

 

Figure 4.15 - Voltammograms of the S3 ME during ten consecutive cycles from -0.8 to -1.75 V, showing 

the reproducibility of the measurements if the B-NCD surface is renewed by Zn oxidation to the bulk.  
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increase in the beginning, after which the ME lost the sensibility, showing a nearly 

invariable current for all the remaining area. This may have been caused by zinc 

accumulation and surface blocking due to zinc oxide or zinc hydroxide formation, since 

the local pH above the iron cathode is expected to be considerably higher than in the 

rest of the NaCl solution, as OH- is the product of the reduction of dissolved oxygen. 

Conversely, by mapping only above the zinc anode (Figure 4.17), a current raise was 

observed above the anodic region, what seems to support the surface blocking 

hypothesis for the mapping of the full Zn-Fe couple area. Solutions for this problem may 

outcome from further exploring the growth conditions or surface functionalization of the 

CVD diamond films.    

 

 

Figure 4.16 - Map of dissolved oxygen detected microamperometrically with a S3 ME polarized at -0.9 V 

vs. Ag|AgCl.  
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Figure 4.17 - Map of Zn
2+

 detected microamperometrically with a S3 ME polarized at -1.3 V vs Ag|AgCl 

(the dashed circle indicates the position of the zinc electrode).   

 

4.3.4. Conclusions 

Boron doped nanocrystalline diamond microelectrodes were produced and tested 

towards their prospective use in corrosion studies. The electrodes showed a wide 

working potential window (~3.5 V) and low background current in 5 mM NaCl, which 

was the medium intended for the corrosion testing. Good electrochemical reversibility 

was confirmed with the Fe(CN)6
3-/4- redox system. A linear relationship was found 

between the zinc reduction current and Zn2+ concentrations from 10-5 M to 10-2 M in a 5 

mM NaCl background solution. The microelectrodes were tested as amperometric 

microprobes to map the oxygen and Zn2+ distribution in solution above a Fe-Zn galvanic 

couple.  It was possible to detect, with lateral resolution, the decrease of O2 near both 

metals and zinc cations production at the anode. Although B-NCD MEs have shown the 

capability to detect Zn2+, further optimization is still required to avoid a significant 

deposition of metallic zinc, which was the main drawback observed. 
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Abstract 

  

The present work reports on a novel needle type oxygen microsensor based on boron 

doped diamond (BDD)with tailored surface aiming in better electrochemical 

performance. The microelectrodes (ME) are produced by growing diamond films using 

HFCVD (Hot Filament Chemical Vapor Deposition) on top of electrochemically 

sharpened tungsten filaments. The diamond is functionalized using CF4 RF-plasma 

post-treatments resulting in fluorine termination of the surface. 

The quantitative detection of the dissolved oxygen is demonstrated and supported with 

successful fitting to the theoretical values calculated for diffusion limited current on 

hemicylinder shape electrode. The developed MEs were calibrated and tested as 

probes for microamperometric mapping of dissolved oxygen in a Zn-Fe wire-electrode 

model galvanic couple immersed in 50 mM NaCl.  Modified diamond MEs show a faster 

and more stable response towards oxygen mapping as well as stability for several days 

of measurements. 
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4.4.1. Introduction 

Dissolved oxygen is one of the prime oxidizing species involved in cellular metabolism 

as well as in microbiological and  corrosion processes [153,265]. In corroding systems, 

oxygen plays a major role in many cathodic reactions and is a key factor influencing the 

corrosion potential of a specific material in E-pH diagrams [266]. This influence is best 

demonstrated when a differential aeration corrosion cell is formed as it often happens in 

crevices and when biofilms are present. In more common corrosion forms like aqueous 

and atmospheric corrosion the reduction of dissolved oxygen is the main cathodic 

process occurring in neutral and alkaline media, being less important at low pH [266]. 

Access to spatially resolved information on corrosion distribution and mechanisms can 

be made by localized scanning probe techniques such as SECM [267], SVET [268], 

SRET [228], micropotentiometry [253], microamperometry [244], etc. The degree of 

spatial resolution that these techniques provide has motivated their use in various 

microscopic studies e.g. on galvanic corrosion [269], pitting corrosion [270], examination 

of defective coatings [271], and “smart” coatings [236], effect of inhibitor addition [272], 

etc. Clark-type electrodes are the most commonly used oxygen sensors and their 

function is based on an integrated three-electrode cell insulated in glass [273]. Oxygen 

permeates through a Teflon or polyethylene membrane at the extremity of the electrode 

and is reduced at the Pt disk after diffusing through a KCl electrolyte. Introduced in 

1953, the reliability of Clark type electrodes for oxygen sensing has even inspired 

miniaturized versions, although not at a true microscale [274]. Platinum and gold have 

been demonstrated as suitable alternatives in the form of recessed disk microelectrodes 

[275,276]. However, the reduction of other species in the potential range of oxygen 

reduction, electrode fouling in biological environments or surface deactivation after 

longer measurement periods, in the case of platinum, may interfere with the 

measurement and impose frequent cleaning and calibration procedures [276].  

Boron doped CVD (Chemical Vapor Deposition) polycrystalline diamond has been 

increasingly attracting the interest of electrochemists as material for electrodes thanks 

to its well documented electrochemical properties, which include wide electrochemical 

potential window for water electrolysis, high-signal-to-noise ratio, high chemical stability 

and resistance to fouling [50,277]. Diamond surfaces are normally hydrogen terminated 
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under standard growth conditions. Alternatively, options for functionalization with other 

heteroatoms such as O, F, Cl, and others, can be based on relatively easy procedures. 

The goal in doing so is to adjust the properties of CVD diamond to the target application 

[111,278].  

Fluorination of diamond surfaces has been reported to allow further expansion of the 

already wide potential window of diamond for water electrolysis, although reducing the 

standard rate constant, k0, for certain redox couples like Eu3+/Eu2+, Fe3+/Fe2+ and 

Fe[CN]6
3-/Fe[CN]6

4- [117]. An important advantage of diamond fluorination is the 

passivation of sp2 carbon [279]. The electrochemical contribution of such impurities on 

diamond, tends to promote the increase of capacitive currents and lower the signal-to-

noise ratio [280]. 

This work reports the fabrication and application of novel oxygen sensitive boron doped 

diamond microelectrodes modified by CF4 plasma (F-BDD). After calibration with an 

optical commercial oxygen sensor device, the plasma modified MEs were used for 

microamperometric mapping of dissolved oxygen close to the surface of galvanically 

coupled Zn and Fe model wire-electrodes immersed in a corrosive electrolyte.  

 

4.4.2. Experimental 

Boron doped diamond (BDD) microelectrodes were fabricated by coating 

electrochemically sharpened tungsten filaments with a thin layer of BDD by HFCVD 

(Hot Filament CVD) techniques. A 91.7% H2 + 4.6% CH4 mixture was used for diamond 

film growth. The remaining 3.7% gas phase was provided by the doping source: a 

mixture of B2O3 dissolved in ethanol, dragged by Argon gas through a gas washing 

bottle containing the mixture and finally into the CVD chamber. Four tungsten filaments 

at 2300 ºC provided activation of the gas species with a total chamber pressure of 50 

mbar, while the substrate was kept at a constant temperature of 800 ºC. After a growth 

period of 30 minutes, the methane and boron flow were stopped and the samples were 

exposed only to activated hydrogen during 30 minutes before cooling down the reactor, 

to ensure that all the diamond coated tips where H-terminated.  

Afterwards the MEs were submitted to a CF4 RF-plasma (EMITECH K1050X, Quorum 

Tech., UK) treatment for 5 minutes. In order to evaluate the effect of each plasma on 
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surface modification, planar tungsten substrates (1X1 cm) were coated with equal 

diamond films as the ones on the MEs, because of limitations of the equipment for 

characterizing the small dimensions of the ME tips. Hence, the surface of the planar 

diamond films was characterized by XPS (X-ray Photoelectron Spectroscopy) (Kratos 

AXIS Ultra HAS, UK) using an Al K X-ray source, before and after plasma 

modification.  

The freshly assembled microelectrodes were calibrated by cyclic voltammetry (Ivium 

CompactStat potentiostat/galvanostat, Ivium, The Netherlands) with simultaneous 

comparison to response of an optical O2 sensor (Hach HQ40d, US). A three electrode 

configuration with the BDD ME as working electrode, a Pt counter-electrode and an 

Ag|AgCl reference electrode was used for electrochemical measurements. Both an as-

grown BDD and a fluorinated BDD MEs were immersed simultaneously and polarized in 

turns at a scan rate of 100 mV/s, by shifting the electrical connection. The concentration 

of dissolved oxygen in a 50 mM NaCl solution was controlled by bubbling argon and a 

calibration curve was elaborated based on the diffusion limited current of oxygen 

reduction at the potential of -1.3 V. 

A model system consisting of Zn-Fe galvanically coupled wire-electrode cell filled with 

50 mM NaCl solution was used to evaluate the applicability of the microelectrodes for 

localized mapping of the O2 concentration near active corroding metallic surfaces. 

Microamperometry measurements were performed with an IPA2 amplifier (Applicable 

Electronics Inc., USA) in the voltammetric/amperometric mode, using a 2 electrode 

arrangement, with a Ag|AgCl electrode as counter and reference electrode. 2D X-Y 

scans were carried out using a microstepping motor driver (USDIGITAL, USA) at a 

distance of 100 µm between the diamond ME and the surface. X-Z scans permitted 

obtaining the normal distribution of species above the electrodes. Maps were recorded 

at -1.3 V (vs. Ag|AgCl) for detection of dissolved O2. 
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4.4.3. Results and discussion 

4.4.3.1. Microelectrode surface characterization 

The B-doped diamond MEs exhibited a sub-micrometer roughness (100 nm - 1 µm) 

which allows a good compromise between grain size and minimization of sp2 impurities. 

The diamond layers exhibit uniform coverage of the tungsten tips as shown by scanning 

electron microscopy observation (Figure 4.18). After being submitted to the CF4 plasma 

treatment, no observable microstructural changes were noticeable (Figure 4.18a-b). 

This observation is in a good agreement with the results of other authors, after such a 

short treatment time [281]. The varnish insulation layer covered the full body of the 

diamond coated tungsten wire with exception of the apex, left uncovered to work as the 

electroactive surface with ~20 µm extension (Figure 4.18c).  

 

 

Figure 4.18 - Boron doped diamond microelectrode for which the surface condition a) before and b) after 

plasma treatment are shown. The insulated microelectrode is shown in c). 

 

In order to evaluate the effect of plasma on surface termination, the surface of the 

equivalent planar films was analyzed by XPS before and after the treatments. Before 

plasma treatment a very small O 1s peak is distinguishable most likely because the 

a

Before CF4 After CF4a b

c
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boron source (B2O3+Et) already contains oxygen (Figure 4.19a). After being exposed to 

the CF4 plasma, the F1s peaks became much more prominent (Figure 4.19b). 

Deconvolution of the C1s core level allowed the identification of the different bonding 

states of the surface carbon atoms. Before fluorination (Figure 4.19c) the diamond 

surface exhibited high intensity bands at 285, 285.2 and 285.5 eV, assigned to C-C (1), 

C-H (2) and C-Hx (3) bonds, respectively [282–284]. A higher intensity band at ca. 287 

eV was associated to C-O-C (4) bonds, with most probable origin on the doping source. 

After fluorination (Figure 4.19d), both the C-C and C-H bonding were equally observed. 

A lower intensity band was identified at ca. 284.2 and assigned to sp2 carbon (5), most 

probably deriving from slight amorphization caused by the plasma attack [282,285]. 

Fluorine associated bands were found at 288.4 and 292.2 eV, associated to C-F (6) and 

C-F2 (7) groups, respectively [286,287].  

 

Figure 4.19 - Diamond surface groups determined by XPS for a, c) as grown diamond and b, d) 

fluorinated diamond. 

 

4.4.3.2. Calibration  of microelectrodes 

The calibration procedure for the boron doped diamond MEs was performed at 21.7 º C 

and 987 mbar with simultaneous amperometric and optical measurement (Figure 

4.20a). As-grown and modified microelectrodes were immersed in NaCl 50 mM along 

with the reference electrode, an optical sensor and the tip of an Argon line. The oxygen 
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concentration was decreased by stepwise Argon bubbling and voltammetry curves were 

recorded in turns with each electrode, after the optical sensor showed a stable oxygen 

concentration. Figure 4.20b and Figure 4.20c show the voltammetric curves of oxygen 

reduction on the non-treated BDD microelectrode and on the fluorinated one, 

respectively, with a plateau-like current response in the potential range from ca. -1.2 to -

1.6 V. Based on the current values obtained at -1.3 V, calibration curves for both MEs 

were determined (Figure 4.21a-b). The F-BDD ME showed a strong linear correlation 

(R2=0.9988) between points and a sensitivity of the electrode of 0.1422 ± 0.006 nA per 

µM of dissolved oxygen (Figure 4.21b). The detection limit was defined to be 0.63 µM, 

which is in the same order of previous reports using platinum microdisks [276]. For the 

as-grown, non-treated, BDD ME (Figure 4.21a), a lower values of linear correlation 

coefficient is evident, when considering the full O2 concentration range. By comparing 

both types of MEs, the non-treated ME exhibits a curvilinear tendency line, 

corresponding to a correlation between points of 0.969.  

 

Figure 4.20 - Voltammetry for diamond microelectrode calibration. a) Experimental setup for dissolved 

oxygen calibration with the measurements were taken in NaCl 50mM for normal oxygen saturation and 

for successively lower concentrations established by Argon bubbling through the solution; b) and c) 

Polarization curves taken at 100 mV/s with different oxygen concentrations from 0 to 273.75 µM, at 21.7 

ºC and 1001 mbar for an as-grown and a F-BDD microelectrode, respectively. 
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The calibration curve for the F-BDD microelectrode was also fitted according to the 

theoretical derivation for the diffusion limited quasi-steady state current observed at a 

hemicylinder (Figure 4.21c and Eq. 4.1) [288], where n is the number of transferred 

electrons, F is the Faraday constant, A is the electrode area, D is the diffusion 

coefficient for oxygen (ca. -2.20x10−5 cm2.s−1 for pure water [289]), C is the analyte 

concentration, r is the electrode radius and t is the time of the forward voltammetric 

scan. Attempts were also made for the conical and prolate hemispheroidal shapes, but 

none of them fitted the experimental points in an adequate way.  

 











r

4Dt
rln

2nFADC
icylinder

qss

             (Eq. 4.1) 

 

 

Figure 4.21 - Calibration curves for both electrode types showing a) weak linearity for the as-grown BDD 

ME (R
2
=0.969) and b) stronger correlation between points through the whole concentration range for the 

F-BDD ME (R
2
=0.9967). In c) the calibration curve of the F-BDD ME is reasonably matched by equating 

the quasi-steady state current of a hemicylinder microelectrode geometry. 
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4.4.3.3. Microamperometric mapping of dissolved oxygen 

The obtained high correlation of the measurement results to the theoretical model 

confers applicability of the developed F-BDD microelectrode for quantitative detection of 

dissolved oxygen in aqueous electrolytes. However the microelectrode must also have 

a fast response time in order to be applicable for localized amperometric mapping.  

A model galvanic wire-electrode cell was created for localized electrochemical tests of 

the newly developed MEs. The main aim of these experiments is to demonstrate the 

applicability of the developed electrodes for localized corrosion studies. The 

electrochemical cell is schematically depicted in Figure 4.22a. The maps of oxygen 

concentration were obtained amperometrically by scanning a 5x2 mm2 area at 100 µm 

above the galvanic cell surface. The scans were done with 100 µm point-to-point 

distance, in a continuous back and forth mode starting from the upper left corner of the 

rectangular area depicted in Figure 4.22b. The scan rate was adjusted according to 

waiting time between each ME position, and current averaging time. 

The fluorinated diamond ME were polarized at -1.3 V allowing to map the distribution of 

O2 (Figure 4.23a). A strong current decrease at the iron cathode was observed due to 

oxygen reduction at the surface, and less intense current reduction at the anode, 

caused by the existence of local cathodic regions on zinc originated from additional self-

corrosion of this metal. Several MEs were tested, evidencing their reproducibility. A long 

term stability during several days of measurement was also observed as can be seen 

from comparison of maps obtained with a fresh electrode and one after 4 days of use 

(Figure 4.23b).  

Furthermore a comparison was made relatively to as-grown MEs, previously 

demonstrated as viable oxygen sensors [149]. The results are depicted in Figure 4.24. 

The CF4-treated ME demonstrate fast response for dissolved oxygen mapping, with 

much lower averaging and waiting times per point, down to 0.01 s for both, with 

negligible distortion and difference in current intensity (Figure 4.24a-c). Increasing the 

scan rate in the case of the non-fluorinated microprobes caused an obvious patterning 

effect due to signal delay as a result of lower responsiveness (higher response time) 

towards oxygen reduction (Figure 4.24d-e).  
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Figure 4.22 - Experimental setup for the microamperometric measurements. (a) Zn-Fe galvanic couple 

immersed in 50 mM NaCl for dissolved oxygen detection. (b) Schematics of the measurements 

performed. 

 

Although the current density tends to be lower by the action of surface fluorine groups, 

these offer a number of advantages. The wider range of water stability of fluorinated 

diamond ensures that oxygen reduction can occur without interference of hydrogen 

evolution [117], perfectly isolating the oxygen-due response; the intrinsically low 

background currents ensure higher detection limit, while the CF4 plasma treatment per 

se reduces significantly the non-diamond carbon contributions, which are related to 

undesired adsorption effects, higher double-layer charging current and chemical 

instability [290].  

Hence, upon undergoing fluorination treatment in CF4 plasma, diamond surfaces 

exhibited an improved sensing ability for the detection of such a relevant species as 
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oxygen in corrosion processes, exhibiting a rather fast response, which allows gathering 

a localized oxygen distribution map in a few minutes. 

 

Figure 4.23 - Dissolved oxygen distribution map recorded at -1.3 V with a) a fresh diamond ME modified 

by CF4 plasma; b) after 4 days of measurement. 
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Figure 4.24 - Dissolved oxygen concentration maps recorded with a diamond ME treated with CF4 plasma 

and an as-grown ME, polarized at -1.3 and -0.9 V, respectively, with varying averaging-waiting times. 

 

 

4.4.4. Conclusions 

The novel diamond based microelectrode for oxygen detection is reported. The 
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detection and response time for localized amperometric detection of dissolved oxygen 

in aqueous electrolyte solutions. Upon calibration with a commercial optical oxygen 

sensor it was possible to determine a sensitivity of the electrode of 0.1422 ± 0.006 

nA/µM of dissolved O2 with a detection limit of 0.63 µM. By microamperometric tests 
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detection of oxygen distribution, exhibiting faster response than the as-grown MEs and 

also higher longer term stability, especially when higher scanning rates are used.  Given 

their properties and versatility, these new developed diamond-based microelectrodes 

can now represent a reliable option for challenging localized electrochemical 

measurements where common electrode solutions are not suitable. 
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Abstract 

 

 A novel diamond based solid-contact pH-selective microelectrode is reported in the 

paper for the first time. The diamond films were grown on top of sharp tungsten 

filaments by HFCVD (Hot Filament Chemical Vapor Deposition). The pH sensitivity of 

the electrode is achieved via oxygen-termination of the diamond surface with RF 

oxygen plasma. The MEs were calibrated by zero-current chronopotentiometry 

registering linearity in the pH 2-12 range. The performance of the diamond 

microelectrode was demonstrated mapping the pH distribution over corroding Zn-Fe 

model galvanic cell.  

 

Keywords: diamond; pH-selective microelectrode; HFCVD; galvanic cell 

 

4.5.1. Introduction 

The localized sensing of ionic and molecular species close to an active solid-liquid 

interface is an important challenge for many situations when mechanistic understanding 

of heterogeneous processes is aimed, e.g., the activity of localized living cell processes, 

the reactions on electrode surfaces used for energy conversion and corroding metallic 

surfaces [291]. For localized corrosion, the acidity variation close to the active anodes 

and cathodes is an important parameter in determining the kinetics of the 
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electrochemical processes and dictates the local chemistry in the electrolyte close to the 

active sites [292].  

The determination of local pH is commonly done by potentiometric measurements with 

glass membrane and glass capillary microelectrodes filled with a selective ionophore-

based oil-like membrane. These electrodes present some disadvantages like 

spontaneous leakage of the liquid membrane, short life time and high fragility [19]. 

Moreover, the sensitivity and selectivity of such electrodes are limited by the adverse 

effect of trans-membrane ion fluxes in changing the composition of the sample solution 

near the membrane, which controls the lower detection limit [22]. Overcoming these 

problems has motivated the development of quite promising novel solid state pH 

sensors (e.g. polymer membrane based) or improvement of existing ones (e.g. glass 

membranes, metal/metal oxide sensors) aiming on greater miniaturization and 

sensibility [293,294]. 

Sensitivity of CVD diamond to pH has been already reported a number of times now, 

mainly by integration in ion sensitive field effect transistors (ISFET) [295]. This property 

adds to others like its inertness in aggressive media and high bio-compatibility, which 

can confer a stable, long-term operation even in harsh and complex environments [215]. 

The origin of the pH sensitivity on diamond is still matter of some controversy, but the 

presence of surface oxygen functionalities seems to be fundamental [295,296]. The 

mechanism appears to be consistent with the site binding model used to describe the 

SiO2/electrolyte interface [297]. Diamond surfaces are normally hydrogen terminated, 

displaying a hydrophobic character unfavorable for molecular adsorption. Conversely, 

oxygen-terminated diamond is hydrophilic enabling the formation of differently charged 

surface groups like C–OH, C–O− and C–OH2
+, by a protonation-deprotonation 

mechanism, depending on the proton concentration in solution [295]. Experimental 

evidence shows that the flatband potential of surface oxidized diamond is pH 

dependent, which derives from a variation in the charge of the Helmholtz layer induced 

by the concentration of H+ and OH- in solution [298]. 

To our knowledge there are yet no reports on the microscale use of diamod-based 

microelectrodes for pH sensing. 
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In this communication we demonstrate the applicability of oxidized diamond 

microelectrodes as pH sensors for localized electrochemical measurements. The 

probes exhibited the linear response in the pH range between 2 and 12. The developed 

microelectrodes were integrated as micropotentiometric probes in a SIET (Scanning 

Ion-selective Electrode Technique) system for determination of local pH gradients in a 

corroding Zn-Fe model galvanic micro-cell.   

 

4.5.2. Experimental 

Boron doped diamond microelectrodes were fabricated by growing diamond directly on 

sharp tungsten filaments using the HFCVD (Hot Filament Chemical Vapor Deposition) 

technique as described elsewhere [149]. A hydrogen rich CH4-H2 atmosphere was used 

for diamond growth. The doping source was B2O3 dissolved in ethanol, which was 

dragged by Argon through a bubbler containing the mixture, into the CVD chamber. 

After the growth period the methane and boron flow were cut and the samples were 

exposed only to activated hydrogen during 1h before cooling down the reactor, to 

ensure that all the diamond coated tips where H-terminated.  

Afterwards the MEs were submitted to O2 RF-plasma (EMITECH K1050X) treatments 

for 3 minutes. Surface characterization of the diamond films was done before and after 

plasma modification by XPS (X-ray Photoelectron Spectroscopy) (Kratos AXIS Ultra 

HAS) using an Al K X-ray source.  

The MEs were then electrically connected to gold plated pins with silver conducting 

paint (RS Components, UK) for integration with the measurement system.  

Commercial pH buffers (Riedel-de Haen) were used for calibration of the MEs from pH 

2 to 12. 

A galvanic cell consisting of two Zn-Fe wire-electrodes embedded in a cylinder-like 

epoxy mold was immersed in a 50 mM NaCl solution and used as model system to 

measure the pH gradient resulting from galvanic corrosion. A homemade AgCl, 0.05 M 

NaCl electrode worked as external reference electrode. The microelectrode was 

inserted in a pre-amplifier (input resistance >1x1015 Ω) which was mounted in a 3D 

positioning system and connected to a IPA2 amplifier (input resistance >1x1012 Ω). The 
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instrumentation was manufactured by Applicable Electronics Inc. (USA) and the ASET 

program (SienceWares, USA) was used to  control the measurements and record the 

data. 

 

4.5.3. Results and discussion 

The morphology of the MEs was evaluated by SEM showing a full coverage of the 

sharp tungsten wires with diamond coatings. The active conical part of the 

microelectrode has length around 15 µm and apex diameter in the range of 2 µm 

(Figure 4.25a). Due to size limitations the XPS analysis of the surface ending groups 

was performed on several planar diamond films, coated at the same time with identical 

composition to the ones found on the microelectrodes. Before plasma treatment a very 

small O 1s peak is distinguishable most likely because the boron source (B2O3+Et) 

already contains oxygen (Figure 4.25b). After the oxygen plasma treatment the O 1s 

peak becomes much more prominent with an O/C ratio of 0.16 (Figure 4.25c). 

Deconvolution of the C1s core level allowed the identification of the different bonding 

states of the surface carbon atoms. In both as-grown and plasma treated diamond 

surfaces, high intensity peaks were identified at 285 and 285.2 eV, attributed to C-C 

(peak 1) and C-H bonds (peak 2) respectively (Figure 4.25d) [282,283]. Again, in both 

cases, peaks with lower intensity were identified from 282.4 to 284.2, which were 

assigned to sp2 carbon forms (peak 4) [282,285]. The as-grown films exhibited a peak 

at 285.5, assigned to C-Hx (peak 3), which was not observed in the plasma treated 

surfaces. At the oxygen-treated diamond surface the intensity of the C-H and C-C 

associated peaks was significantly lower than for the untreated case and higher energy 

peaks from 286 to 288 eV could be well distinguished with most probable origin from 

carbon bonded to oxygen, C-O-C and C-OH (peak 5), and C=O (peak 6) (Figure 4.25e) 

[283,285].  
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Figure 4.25 - Tip of a diamond microsensor showing a thick, uniform film coverage and XPS spectra of 

equivalent modified diamond surfaces showing b) and c) surveys of the as-grown diamond and 

oxygenated diamond surface, respectively; d) and e) C 1s core levels of as-grown diamond and 

oxygenated diamond surfaces, respectively, showing the lower intensity of the C-H and C-C bonding and 

appearance of possible C-O-C, C=O and C-OH related features for the latter. 

 

The calibration of pH response of the microelectodes with standard buffer solutions is 

depicted in Figure 4.26a. The potential-time steps give a clear indication of the linear 

behavior achieved with these sensors from pH 2 to pH 12 with approximately 50.8 ± 1.0 

mV/pH slope (R2= 0.9973) (Figure 4.26b) and short response time (t95%<1s) in this 

range, which is good when comparing to well established pH sensors like glass 

membrane MEs [299]. This behavior could only be observed with oxidized diamond 

microelectrodes, for as-grown MEs linearity was absent. Regardless of this non-ideal, 

near Nernstian behavior, the sensing ability of these MEs for pH profiling was not 

compromised. Further evidence of this is portrayed in Figure 4.26c showing a potential-

time experiment with the same standard solutions in a random way, in which a longer 
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equilibration time could be observed only in two particular cases, the initial 

measurement and for sharp pH transitions (e.g. pH9 to 2 in Figure 4.26c). These MEs 

could operate for at least two days of data recording and several MEs with similar 

behavior were tested indicating reproducibility of both the measurements and the 

fabrication method. Thus the microelectrodes provide a fast reproducible response for 

changes of pH values in a wide interval showing a high potential to be used as high 

resolution scanning probes.  

 

 

Figure 4.26 - Calibration curve of a diamond pH microsensor showing a) linear range; b) pH sensitivity; c) 

random pH measurements. 

 

The MEs were also tested to measure the pH variation across the near area (100 µm 

above) of a Zn-Fe wire-electrode galvanic couple corroding in 50 mM NaCl (Figure 

4.27a-b). In this system the zinc anode undergoes anodic dissolution releasing Zn2+ 

according to eq. 4.17. At the cathode OH− is generated by the reduction of oxygen at 

the iron surface, according to eq. 4.18. This reaction may proceed from local difference 

in chemical potential of the zinc surface, although with less significance. The 
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concentration of available OH- then determines the formation of corrosion products with 

Zn2+: soluble species like ZnOH+ and ZnCl+ at lower pH or other complexes like 

ZnCl2·6Zn(OH)2, Zn(OH)2 and ZnO in the more alkaline range [252,259]. 

 

Zn → Zn2+ + 2e−                                      (Eq. 4.16) 

O2 + 2H2O + 2e−→ 4OH−                           (Eq. 4.17) 

 

The formation of these species is consequence of localized electrochemical reactions 

along with mass transportation of the generated ions and the development of chemical 

reactions as the galvanic corrosion evolves. Consequently, high pH regions will develop 

above iron, while acidic regions are expected above zinc along with deposition of band-

like deposits of the zinc corrosion products at the boundary region between high and 

low pH zones [259]. The pH above zinc is determined by the concentration of Zn2+ 

conducting the following hydrolysis reaction: 

 

Zn2+ + H2O → Zn(OH)+ + H+                     (Eq. 4.18) 

 

For galvanic corrosion of a Zn/Fe couple in 0.01 M NaCl this concentration usually 

ranges between ~5-20 mM, after several hours of immersion [252]. Following eq. 4.19, 

calculations for the expected pH values will be of 4.0 for 1 M Zn2+, 5.0 for 10 mM Zn2+ 

and 6.0 for 0.1 mM Zn2+, accounting only for the influence of anodic dissolution of zinc 

on pH [300].     

The development of respective pH profiles is depicted in Figure 4.27c, representing a 

micropotentiometric pH map of the Zn-Fe couple by scanning the area with an 

oxygenated diamond microprobe (Figure 4.27b). 

By converting the potential values according to the calibration curve, pH values change 

between 4.8 above zinc and 9.3 above the iron, which is in good agreement comparing 

to other studies on this system [259].  

These measurements confirm the fast response and usability of diamond 

microelectrodes for both discrete and continuous pH measurements, despite the 
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complexity of the corroding media. The limiting influence of ionic species in the behavior 

of diamond MEs under testing has been previously demonstrated [149]. 

Hence, diamond MEs present a wide linearity range in comparison to the state-of-the-

art for liquid membrane and solid contact microelectrodes. Moreover, their two-step 

fabrication is simpler and the final product is a robust, highly stable microelectrode 

adequate for working in corrosion environments and possibly in the always challenging 

biological environments, given their suitability to do so. Issues like the limit of detection, 

the response time, and the life time need still to be studied in detail and optimized, but 

the results shown in this communication seem quite promising.     

 

 

Figure 4.27 - Micropotentiometric measurements showing a) the Zn-Fe galvanic couple immersed in 50 

mM NaCl and corresponding area scanned for pH mapping; b) the diamond microsensor; c) pH map of 

the galvanic couple showing the alkaline cathodic region due to higher concentration of OH
-
 from oxygen 

reduction and the acidic region due to hydrolysis of water by Zn
2+

 forming ZnOH
+
 and H

+
. 
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4.5.4. Conclusions 

The pH sensitive microelectrode based on oxygen terminated diamond was developed. 

H-terminated diamond surfaces were treated by oxygen plasma and modified to contain 

increased coverage with oxygen functionalities. The presence of possible C-O and C=O 

groups was observed by XPS with an O/C ratio of 0.16. pH sensitivity of diamond 

microelectrodes was achieved in this way. The developed microelectrodes show 

linearity with 50.8 ± 1.0 mV/pH in a wide range from pH 2 to 12. The diamond 

microelectrode tested on a galvanic Zn-Fe couple immersed in 0.05 M NaCl 

demonstrates possibility to map pH distribution which varies from ca. 4.8 above the zinc 

under anodic dissolution and 9.3 over the iron cathodic area due to the high OH- 

concentration developing from the reduction of oxygen. 

The developed microelectrode is promising when compared to glass-based 

microelectrodes for various localized pH measurements in systems where fast 

response, high mechanical and chemical stability is required and micro-scale dimension 

is a key issue.    
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The work presented in this thesis covers all aspects of boron doped diamond 

microelectrode fabrication, from substrate preparation to the final application. The main 

conclusions drawn from this doctoral program are summarized below. 

A novel hydrodynamic electrochemical etching method was successfully developed, 

allowing the transformation of regular tungsten wires into needle shaped substrates with 

<10 nm radius and high aspect ratio, in less than one minute, by using unsophisticated 

instrumentation.  

The so obtained sharp substrates were coated with conductive boron doped diamond 

films. A thorough experimental development allowed this process to be done 

reproducibly by adjustment of the deposition parameters but also of the placement 

geometry of the substrates inside the reactor chamber. 

A study combining TEM and EELS allowed the local microstructural characterization of 

BDD films in the early stages of growth revealing a mixed crystalline/amorphous carbon 

interfacial region. Boron was identified by EELS with a concentration of 1.93% but 

heterogeneous distribution, with possible influence in the diamond (111) lattice, which 

was found to be expanded by 0.43%.   

BDD microelectrodes were characterized electrochemically and tested in model 

corrosion systems. Overall, the electrodes showed a wide working potential window (3-

4V) and low background current in sodium chloride medium, which was also used for 

corrosion testing. Good electrochemical reversibility was confirmed with the FcOH0/+, 

and the Fe(CN)6
3-/4- redox systems, although the latter redox couple tended to show 

higher sensitivity to the diamond surface. 

The microelectrodes were tested for Zn(II) detection and a log-log linear relationship 

was found by cyclic voltammetry between the zinc reduction current and Zn2+ 

concentrations from 10-5 M to 10-2 M in a 5 mM NaCl background solution. As 

amperometric microprobes, these electrodes allowed to map the oxygen and Zn2+ 

distribution in solution above a Fe-Zn galvanic couple, although a significant deposition 

of metallic zinc was observed as the main drawback.  

Further developments of the microelectrodes were achieved by an adequate 

functionalization of the diamond surface by plasma treatments. For molecular oxygen 

detection and mapping, fluorination of diamond microelectrodes by CF4 plasma was 
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shown to lead to improved sensibility, limit of detection, response time and longer term 

stability than as-grown microelectrodes due to the presence of functional C-F groups on 

the diamond surface. The calibration allowed us to determine a sensitivity of the 

electrode of 0.1422 ± 0.006 nA/µM of dissolved O2 with a detection limit of 0.63 µM. 

A pH sensitive microelectrode based on oxygen terminated diamond was also 

developed. By treating the diamond surface in oxygen plasma possible C-O and C=O 

groups were observed by XPS with an O/C ratio of 0.16. The presence of these groups 

was observed to be responsible for the pH sensitivity of diamond microelectrodes. The 

developed microelectrodes showed linearity with 50.8 ± 1.0 mV/pH in a wide range from 

pH 2 to 12. By testing the diamond microelectrode on a galvanic Zn-Fe couple 

immersed in 0.05 M NaCl, a pH distribution map showing a variation from ~ 4.8 above 

the zinc under anodic dissolution to 9.3 over the iron cathodic area, consequence of the 

high OH- concentration developing from the reduction of oxygen. 

Hence, the developed microelectrodes exhibited a promising range of applications in 

corrosion research and may be regarded in the future as a solution for localized 

electrochemical measurements in real systems. 
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Despite the development, characterization and reasonably successful application of the 

microelectrodes presented in the previous chapters, there is still a significant portion of 

knowledge to be acquired about the presented sensors and a good range of unexplored 

possibilities is to be addressed in the future. 

Although a considerable amount of reports can be found in the literature dealing with all 

the aspects regarding conductive CVD diamond electrodes, the particularities of the 

diamond films grown in our group entirely justify deeper research on both the 

microelectrode and especially the macroelectrode form. Considering the scope of 

applications presented in this work and the initially proposed goals, it would be very 

interesting to achieve the following: (i) reproducible metal ion detection; (ii) full 

understanding of metal detection mechanism as well as of the pH and oxygen sensing 

at the diamond surface level by using a combination of techniques such as Raman 

mapping, PDEIS (Potentiodynamic Electrochemical Impedance Spectroscopy), XPS 

and SECM; (iii) application of all-diamond single microelectrodes. This latter point is in a 

more advanced stage, as can be observed in Figure 6.1 which depicts the final aspect 

of a recently fabricated all-diamond disk microelectrode. 

 

 

Figure 6.1 – All-diamond microelectrode evidencing the bilayer structure: conductive disk surrounded by 

insulating outside layer.  
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Besides the above-mentioned objectives and further exploitation of diamond MEs for 

research on corrosion systems, the current technological panorama and some 

demonstrations of interest indicate that the diamond microelectrodes presented in this 

work have the potential to be applied in other areas, such as diverse biological and 

environmental studies. A proposal deriving from an international oral presentation 

suggested the application of diamond MEs as an alternative to carbon fiber in brain 

research. Recent interest has been demonstrated in the use of diamond MEs to study 

the influence of polluted environments on the cellular behavior of animals and plants. At 

a larger scale, the use of diamond macroelectrodes has been considered and used also 

for the selective treatment of polluted water. 

This is thus a theme that covers many branches of science and where much innovative 

work can still be done. 
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