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Abstract

Trends in wine consumption are continuously changing. The latest in style 
is fresh wine with moderate alcohol content, high acidity, and primary aromas 
reminiscent of grapes, whereas certain fermentative volatiles may also influence the 
freshness of the wine. In addition, the effects of climate change on the composition 
of the grapes (high sugar content and low acidity) are adverse for the quality of 
the wine, also considering the microbiological stability. Herein, different strate-
gies aiming at improving wine freshness are presented, and their performance 
in winemaking is discussed: among them, the addition of organic acids able to 
inhibit malolactic fermentation such as fumaric acid; the use of acidifying yeasts 
for alcoholic fermentation, such as Lachancea thermotolerans; and the selection of 
non-Saccharomyces yeasts with β-glucosidase activity in order to release terpene 
glycosides present in the must.

Keywords: wine freshness, organic acids, Lachancea thermotolerans, high acidity, 
climate change

1. Wine freshness

Wine freshness is an unspecific concept which includes parameters concerning 
acidity, aroma, alcohol content, and even color. It is also strongly correlated with 
fruit maturity, but the grapes from warm areas frequently have excessive sugar 
content that produces high alcoholic degree (>13%v/v) and low acidity (pH > 3.8). 
Wines produced with these grapes are normally winey, with unpleasant taste, scarce 
aromaticity mainly supported by higher alcohols with low levels of fruity esters, 
and a lack of sourness being usually less appreciated by the consumers. Moreover, 
these wines have a complex management during production and storage, because 
the low acidity produces higher sensibility to microbial spoilage and also because 
of the oxidation due to the low contents of molecular and free SO2. For a better 
management and preservation, these wines are frequently dosed with tartaric acid, 
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thus favoring a more suitable management which counteracts both oxidative and 
spoilage processes but at the same time produces a typical excessive and over-
perceived sourness.

2. Wine acidity

Types of acidity in wine: wine acidity is due to the organic acids from grapes, 
mainly tartaric, malic, and citric acids. There are also other acids that are formed 
during alcoholic and malolactic fermentations (e.g., acetic, fumaric, succinic, and 
lactic acids) [1]. Among the grape acids, the most stable and with higher repercus-
sion in pH is the tartaric acid. Malic acid is metabolized by lactic acid bacteria 
(LAB) during malolactic fermentation (MLF), and its influence in pH is not too 
relevant. Moreover, potassium contents in soil affect the levels of tartaric acid in 
grape and must, forming potassium tartrates that are highly insoluble, especially 
in a polar condition. The precipitation of these salts, especially when ethanol level 
increases during the alcoholic fermentation, produces the reduction of tartaric acid 
contents with a subsequent pH augmentation.

Harvesting time is another strongly influential parameter; the sooner the grape 
is harvested, the higher the acidity. However, acidity decreases significantly when 
the collection is retarded beyond the normal harvesting conditions because the 
enologist looks out for the optimum skin phenolic ripeness and also a good seed 
maturity especially in red varieties. Some alternatives have been proposed to keep 
acidity using non-matured grapes; one interesting proposal is the use of unripe 
bunches coming from cluster thinning. These grapes are pressed obtaining a high-
acidity must which later is cleaned of astringency and excessive vegetal taints by 
using adsorbents, such as activated charcoal or other products. The juice is mixed 
with the matured and well-balanced grape to both reduce the pH and improve the 
acidity [2].

3.  Wine aroma: influence of both winemaking practices and 
biotechnologies in freshness

The lack of freshness in the aroma fraction is produced by a relative excess of 
higher alcohols regarding the fruity esters (especially acetate esters) and varietal 
aromatic compounds (terpenes, thiols, etc.). It makes the smell simple, warm, and 
flat. The approach to improve this shortcoming in wines is variable according to 
the type of wine. Wines made with terpenic varieties can be improved by physical 
techniques such as cryomacerations, to enhance the extraction of varietal aromatic 
compounds; however, significant differences in aroma cannot always be perceived 
when cold soak is used to make prefermentative macerations in red wines [3, 4]. 
Conversely, color extraction is usually increased when cold soak is used [4, 5]. On 
the other hand, the use of cold soak can influence the yeast populations that can be 
developed in wine. It has been observed that macerations at 14°C favor the devel-
opment and growth of Hanseniaspora uvarum and Candida zemplinina, but when 
temperature is kept at 8°C, the predominant yeast specie is Saccharomyces cerevisiae 
(Sc) (Figure 1a) [6]. In addition, fermentation at low temperature, 15°C instead of 
28°C, has also proven the formation of higher flowery aroma [7], thus enhancing 
the freshness. Finally, the optimization of harvesting time, delaying or alternatively 
advancing the time window to collect the grapes, can help to optimize the concen-
tration of aromatic compounds.
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High contents of aldehydes have been related to oxidative off-flavors and 
reduced freshness in wines [8, 9]. Methional is an especially defective compound 
with a typical smell of boiled potato [9]. Moreover, other compounds like phenylac-
etaldehyde, with a typical honey smell, may increase the heaviness and sweetness, 
thereby reducing the wine freshness.

Conversely, several aromatic compounds have been described as enhancers of 
freshness; among them furaneol together with homofuraneol enhance red wine 
quality and fruitiness [10, 11] and ethyl 2-hydroxy-4-methylpentanoate contributes 
with the smell of fresh blackberries [12]. High contents of ethyl propanoate, ethyl 
2-methylpropanoate, and ethyl 2-methylbutanoate have also been correlated with 
blackberry aromas, and ethyl butanoate, ethyl hexanoate, ethyl octanoate, and 
ethyl 3-hydroxybutanoate conferred redberry aromas [13]. Moreover, the forma-
tion of fruity (isoamyl acetate, ethyl butyrate, etc.) or floral esters (2-phenylethyl 
acetate) increases the sensation of fresh complexity in white wines, especially when 
accompanied by suitable acidity.

In the last years, the use of non-Saccharomyces yeasts has been described as an 
efficient tool to promote the formation of esters during fermentation. Species such 
as Torulaspora delbrueckii (Figure 1b) in sequential and mixed fermentations have 
been used extensively to promote the formation of fruity esters like isoamyl and 
isobutyl acetate [14] and floral esters such as 2-phenylethyl acetate [15]. Moreover, 
3-ethoxy propanol is formed during the fermentation with T. delbrueckii, and it 
is not found in S. cerevisiae single fermentations [15]. The presence of this later 
compound is correlated with blackcurrant nuances in red wines [16].

Wickerhamomyces anomalus (formerly Pichia anomala, Figure 1c) has also been 
described as a good producer of isoamyl acetate and, in general, several acetate and 
ethyl esters [17–21]. Sequential fermentations in which W. anomalus is involved 
have a more complex aroma and an increased fruitiness that can help to improve the 
freshness of wines from warm areas. Concerning terpenic varieties, the expression 
of several enzymes, β-D-glucosidase, α-L-arabinofuranosidase, α-L-rhamnosidase, 
and β-D-xylosidase, can help to hydrolyze bonded terpenes to free aglycones 
enhancing varietal aroma [21, 22]. Nevertheless, β-glucosidase activity can be 
detrimental for the processing of red grape varieties since this enzyme may degrade 
anthocyanins, affecting their stability and causing an unwanted color loss in red 
wines [23].

Figure 1. 
Yeast morphology and asexual reproduction by budding. (a) Saccharomyces cerevisiae, (b) Torulaspora 
delbrueckii, (c) Wickerhamomyces anomalus. (d) Lachancea thermotolerans, (e) Metschnikowia pulcherrima, 
and (f) Kloeckera apiculata. Scale = 10 μm.
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Fermentation of Syrah and Sauvignon blanc musts by Lachancea thermotolerans 
(Lt) increased the formation of 2-phenylethanol, phenethyl propionate, ethyl 
salicylate, methyl salicylate, and 3-methylthio-1-propanol [24]. The release of 
varietal terpenes and volatile thiols can be promoted by Lt because the β-D-
glucosidase [25] and carbon-sulfur lyase [26] enzymatic activities have been 
described in some strains.

Metschnikowia pulcherrima (Mp) in single fermentations has shown an excessive 
production of ethyl acetate with negative sensory repercussion [27]. However, the 
mixed use of M. pulcherrima with S. uvarum diminishes the production of ethyl 
acetate simultaneously increasing the formation of 2-phenyl ethanol and 2-phenyl-
ethyl acetate [27]. Furthermore, the use of mixed fermentations Mp/Sc produces 
high content of acetate esters and β-damascenone with reduced levels of C6 alcohols 
in ice wines made from Vidal blanc grape variety [28]. The β-glucosidase and β-lyase 
enzymatic activities have also been described in Mp [29, 30].

Most of the acetate esters can be enhanced by using Hanseniaspora/Kloeckera 
(Figure 1f) species [31, 32]. Several works with H. vineae in lab assays, but also 
industrial wines made in sequential fermentations with S. cerevisiae, have demon-
strated a fruitier aroma with increased concentrations of both 2-phenylethyl acetate 
and ethyl acetate [31–33]. Moreover, the de novo formation of several aromatic 
compounds such as benzyl alcohol, benzaldehyde, p-hydroxybenzaldehyde, and 
p-hydroxybenzyl alcohol in the absence of precursors has been verified during the 
fermentation with H. vineae [34, 35]. Concerning enzymes, it has been observed 
that β-glucosidase activity, which facilitates the release of free terpenes increasing 
the varietal aroma, can be 6.6-fold higher in H. vineae than S. cerevisiae [36].

4. Yeast to improve acidity

The fermentation with Saccharomyces cerevisiae (S. cerevisiae) strains usually 
does not affect significantly the pH values. Some strains are able to degrade (more 
commonly) or produce malic acid. However, concerning malic acid production, 
even when the amount can reach up to 1 g/L [37], this happens in musts with low 
acidity, where this amount is inefficient to produce a suitable pH reduction. Under 
enological conditions, most of the malic acid producing S. cerevisiae strains (4%) 
are able to release 0.3–1 g/L of malic acid. It should also be considered that in red 
wines and some white and rose wines, malic acid is usually transformed into lactic 
acid during the MLF. It makes the effect of this natural acidification under enologi-
cal conditions even lower.

Acidification by the use of non-Saccharomyces yeasts: In the last years, the species 
Lachancea thermotolerans (formerly Kluyveromyces thermotolerans) has been used for 
acidification purposes in several beverages as wine [38, 39] and beer [40–42]. The 
maximum alcoholic degree reached by L. thermotolerans ranges 5–9% v/v during 
fermentation [38, 43, 44], so it must be used mixed or sequentially with S. cerevisiae 
or S. pombe to completely ferment the sugars [45]. L. thermotolerans has shown 
the ability to modify significantly the pH in grape musts even at industrial level in 
crushed red grape [39], decreasing the initial value in 0.5 pH units. Indeed, a higher 
decrease in pH may be obtained (up to 1 pH unit) when Lt is used for the malt 
fermentation in beer production, due to the lower buffer effect of this matrix [46]. 
The acidification produced by L. thermotolerans is a consequence of the metaboliza-
tion of sugars to lactic acid. Moreover, metabolic properties, physiology, nutri-
tional requirements, and enological applications of this yeast have been recently 
reviewed [45]. Some strains can produce extremely high concentrations of lactic 
acid, higher than 16 g/L [47]. This acidification is produced not only with some 
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sugar degradation and a slight effect in the alcoholic degree [39] but also with a low 
production of volatile acidity [38, 48]. What is especially interesting is that lactic 
acid is stable under enological conditions; it does not degrade during processing or 
storage, so it can affect permanently the pH values. Moreover, in some situations, a 
synergistic effect in the production of lactic acid when L. thermotolerans is used in 
co-inoculation together with Oenococcus oeni has been observed [39].

Most of the acidification occurs at the beginning, during the first 3–4 days of 
fermentation. This facilitates the production of lactic acid even under enologi-
cal conditions because it is just at the beginning of the fermentation when the 
wild population is lower and the implantation of L. thermotolerans can succeed 
(Figure 2). The typical industrial acidification with L. thermotolerans includes a 
subsequent inoculation with S. cerevisiae to completely ferment the sugars in a 
sequential fermentation (Figure 2). This is necessary because the fermentative 
power of L. thermotolerans is always lower than 9% v/v.

In warm areas, the acidification by L. thermotolerans may increase the microbial 
stability of wines, especially during barrel aging, and it also increases the effectivity 
of sulfur dioxide because the contents of free and molecular SO2 are much higher at 
pH 3.5 than at 3.9. This pH reduction is feasible under enological conditions as it was 
previously seen.

Yeasts can influence wine color by affecting the production of stable pigments, 
such as pyranoanthocyanins or polymeric pigments. In addition, yeast strains with 
low ability to adsorb grape anthocyanins in their cell walls are suitable to decrease 
color loss during fermentation, and, finally, yeasts can affect color stability and 
intensity by pH reduction [49]. The effect of L. thermotolerans on color stability and 
the formation of stable pigments have been studied recently [50]. However, this 
study revealed that a low effect in the formation of these pigments can be promoted 
with the S. cerevisiae when it is used in either mixed or sequential fermentation 
to completely ferment the sugars. Concerning color stability, acidity is a main 
parameter to protect anthocyanins in wine and to increase color intensity by a 

Figure 2. 
Evolution of the pH, lactic acid level, and sugar content during the sequential fermentation with 
L. thermotolerans and S. cerevisiae.
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hyperchromic effect. Indirectly, as pH affects the levels of both molecular and free 
sulfur dioxide, it may also promote a protective effect on color.

From a sensory perspective, the biological acidification with L. thermotolerans 
produces a good and perceptible sourness, thus increasing wine freshness [39]. 
Usually, no unpleasant nuances of dairy foods are found, even when higher levels 
of ethyl lactate are produced, but the levels of acetoin and diacetyl in the sequential 
fermentations with S. cerevisiae are quite controlled and similar to single S. cerevisiae 
fermentations [39].

5. Yeast selection to improve acidity, aromatic profile, or color

The selection of yeast strains to obtain non-Saccharomyces able to improve the 
wine freshness in terms of acidity, aromatic profile, or color starts with the isola-
tion of a yeast collection from a vine environment, mainly grapes, and also leaves, 
wood, or soil. After that, the yeast can be initially classified by using both selective 
and differential agar media. Later, the pre-identified yeasts can be confirmed 
by PCR amplification of the ribosomal region spanning the internal transcribed 
spacers (ITS1 and ITS2) and the 5.8S rRNA gene using as primers the ITS1 and 
ITS4 [51], the subsequent sequencing and the comparison of the sequence in a 
genomic database that facilitates the proper identification of genus and species 
[45]. Microfermentations in triplicate can be performed in order to select specific 
yeast strains with improved properties, e.g., a L. thermotolerans strain with suitable 
production of lactic acid, during spontaneous fresh must fermentation. Later, the 
production of lactic acid and whatever other metabolites with repercussion in wine 
sensory quality can be evaluated by instrumental analysis (Figure 3).

Yeast selection can be focused on the identification of strains with specific 
properties of technological, fermentative, or sensory repercussion during wine 

Figure 3. 
Isolation of wild yeast and selection protocol under a metabolic approach.
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fermentation [52–54]. These properties can be targeted to improve color by the 
formation of stable pigments as vitisins [55, 56], vinylphenolic pyranoanthocyanins 
[57], and polymeric pigments [50, 58], the enhancement of aroma by the produc-
tion of esters or enzymatic activities able to release varietal aroma [59, 60], or the 
improvement of the mouthfeel and flavor by the production/release of polyalco-
hols, polysaccharides [61, 62], acids [39, 45], etc.

The isolation of wild yeasts and the subsequent sequencing and comparison of 
the rDNA can help to elucidate the yeast microbioma from a vineyard (Figure 4). 
Normally, when the wild yeast populations are evaluated at the grape maturity 
stage, several mold species are frequently found together with apiculate yeasts such 
as those which belong to the genus Kloeckera or Hanseniaspora, making difficult to 
isolate and identify S. cerevisiae strains. Apiculate yeast can reach populations of 
2–4 log CFU/mL.

6.  Ternary sequential inoculations in warm areas: biotechnological 
approach to improve freshness

The use of sequential fermentations with non-Saccharomyces species has been 
used to improve wine acidity, aromatic and flavor complexity, and freshness. As 
reviewed in Section 3, non-Saccharomyces yeasts such as H. vineae, T. delbrueckii, 
W. anomalus, M. pulcherrima, K. apiculata, S. bombicola, and C. stellata improve 
aroma by either the increased production of acetate esters or the development 
of enzymatic activities that enhance the varietal aroma. Some of them can also 
increase sweetness and body by the production of polyalcohols such as glycerol 
or 2,3-butanediol. Moreover, it is currently possible to control pH in fermentation 
by the formation of suitable amounts of lactic acid with L. thermotolerans. The use 
of sequential combinations of two yeasts is already used at industrial level, but 
the combination of three yeast species (Table 1), namely, ternary inoculations, is 
less explored as a biotechnology to improve freshness in warm areas. In this case, 
it is more similar to what happens in a spontaneous fermentation according to the 
principle of succession: the fermentation is started by an apiculate yeast, followed 
by a medium fermentative power yeast like T. delbrueckii, L. thermotolerans, or  

Figure 4. 
Phylogenetic tree of the wild non-Saccharomyces yeast species that were found in the grapes of a vineyard from 
a warm region.
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M. pulcherrima, and finally the sugars are completely depleted by S. cerevisiae to 
obtain a dry wine. In ternary fermentations, the use of several non-Saccharomyces 
species to improve aroma and flavor must be completed with L. thermotolerans 
to decrease pH, improve the acidity, and, therefore, enhance the wine freshness. 
Lastly, the sugars are finished by S. cerevisiae or alternatively S. pombe. Using the 
latter species, it would be possible to make interesting wines in the absence of 
S. cerevisiae.

7. Conclusions

The use of fermentation biotechnologies such as sequential ternary fermenta-
tions with non-Saccharomyces emerges as a natural and useful bio-tool to improve 
freshness in warm areas. The use of L. thermotolerans favors a powerful pH modula-
tion by the production of a stable acid without the production of off-flavors. Yeast 
selection to obtain appropriate non-Saccharomyces strains facilitates the develop-
ment of safer and sensory-improved fermentation, with the added advantage of 
protecting the wine typicity, compared to the traditional fermentation driven by a 
single yeast, especially when only S. cerevisiae is used.
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Aroma and flavor 

improvement

pH and acidity To completely deplete sugars

Hanseniaspora vineae

Torulaspora delbrueckii

Wickerhamomyces anomalus

Metschnikowia pulcherrima

Kloeckera apiculata

Starmerella bombicola

Candida stellata

Lachancea thermotolerans Saccharomyces cerevisiae

Schizosaccharomyces pombe

Table 1. 
Potential combinations of three yeasts to improve freshness.
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