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Nanopharmaceuticals: A Boon to 
the Brain-Targeted Drug Delivery
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Salman Khan and Hussain Ali

Abstract

Brain is well known for its multifarious nature and complicated diseases. Brain con-
sists of natural barriers that pose difficulty for the therapeutic agents to reach the brain 
tissues. Blood-brain barrier is the major barrier while blood-brain tumor barrier, blood-
cerebrospinal (CSF) barrier and efflux pump impart additional hindrance. Therapeutic 
goal is to achieve a considerable drug concentration in the brain tissues in order to 
obtain desired therapeutic outcomes. To overcome the barriers, nanotechnology was 
employed in the field of drug delivery and brain targeting. Nanopharmaceuticals 
are rapidly emerging sub-branch that deals with the drug-loaded nanocarriers or 
nanomaterials that have unique physicochemical properties and minute size range for 
penetrating the CNS. Additionally, nanopharmaceuticals can be tailored with func-
tional modalities to achieve active targeting to the brain tissues. The magic behind their 
therapeutic success is the reduced amount of dose and lesser toxicity, whereby local-
izing the therapeutic agent to the specific site. Different types of nanopharmaceuticals 
like polymeric, lipidic and amphiphilic nanocarriers were administered into the living 
organisms by exploiting different routes for improved targeted therapy. Therefore, it is 
essential to throw light on the properties, mechanism and delivery route of the major 
nanopharmaceuticals that are employed for the brain-specific drug delivery.

Keywords: nanocarriers, nanoparticles, nanopharmaceuticals, ligand, brain diseases, 
targeted drug delivery, nanomedicine, route of administration

1. Introduction

Brain besides being a fascinating organ is also known for its complexity. From 
outside, this delicate organ is protected by a bony structure called skull while inter-
nally it is sheltered from noxious substances via some complex barrier systems. These 
protective barriers impede the treatment strategies adopted for therapeutic purposes 
[1]. The management of CNS disorders such as dementia, epilepsy, panic disorders, 
meningitis, and brain tumors greatly depends on the means of attaining higher drug 
levels at the targeted sites. Physico-chemical properties of the drug molecule mainly 
dictate its ability to penetrate these barriers and achieve a therapeutic outcome. Thus 
the ultimate pharmacological response obtained by the potential drug depends on 
multiple factors like its effectiveness, its uptake or penetration through protective 
barriers or its ability to bind with specific carrier proteins for efficient transport 
across the membrane [2]. Among these barriers, blood-brain barrier (BBB) presents 
one of the types that hinder the transport of the medicinal compounds for treating 
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brain ailments. BBB serves as both physical and transport barrier and is present at the 
interface of blood and brain. It is a tight junction made of microvascular endothelial 
cells, astrocytes, and pericytes [3]. Therefore, the development of newer therapeutic 
strategies is the need of the hour to overcome these transport hurdles.

1.1 Barriers in delivering drug to brain

1.1.1 The blood-brain barrier (BBB)

It is a tight physical junction present at the interface of CNS and blood cir-
culation. It consists of endothelial cells that do not have fenestrations and thus 
restrict the influx of ions and other solutes into the brain from surrounding blood 
capillaries. Astrocytes and pericytes surround endothelial cells and thus make it 
almost an impermeable barrier. BBB allows paracellular transport of small lipo-
philic compounds (<400 Da) via passive diffusion. This barrier also offers active 
transport of some hydrophilic compounds by the means of transport proteins (e.g., 
P-glycoprotein) present at the junction. The transcellular pathway that is used by 
some compounds to enter the brain includes different mechanisms such as passive 
diffusion, specific transporters, and transcytosis [4].

1.1.2 Other barriers

Among the primary brain tumors, gliomas are considered the most common. These 
tumors make a barrier at their early stage termed as blood-brain tumor barrier (BBTB). 
Although BBTB is permeable at the core of glioblastomas, however, it closely resembles 
BBB at the peripheral regions. This combination of BBB and BBTB leads to an addi-
tional hindrance for drug delivery to reach the glioblastoma cells and thus requires 
newer drug development strategies to aid drug delivery to the tumor site [5].

Efflux pumps also serve as additional barriers in drug delivery to the brain that 
are present in endothelial cells lining. These efflux pumps are made up of protein 
complexes called adherens junctions primarily regulate the permeability of the 
endothelial barrier [6].

Blood-cerebrospinal fluid also acts as a barrier that limits the free movement of 
molecules and drug compounds across the brain by strictly regulating the transfer 
of solutes between the blood and CSF [7].

2. Drug delivery to brain: potential hurdles to overcome

Mainly lipophilic drugs are used to treat CNS ailments and possess a molecular 
weight below 400 Da and log P between −0.5 and 6.0 [8, 9]. For drugs that are ionized 
at physiologic pH, it is their unionized fraction that determines the concentration gra-
dient across the BBB for passive diffusion [2]. By considering these facts, a drug should 
be designed in such a manner that it has optimal lipid solubility so that it penetrates 
BBB and maintains a therapeutic concentration in the brain. But this is not that simple 
because only increasing the lipophilicity of the drug molecule via certain chemical 
modifications may not attain the desired pharmacokinetic effects as it may lead to 
decreased systemic solubility and bioavailability. It may also have increased protein 
binding and higher uptake by liver and reticuloendothelial system which ultimately 
leads to increased metabolism thus leading to diminished active drug concentration 
at the target site [2]. There are certain drug molecules that penetrate the BBB besides 
what their lipid solubility suggest. This penetration is attributed to the carrier-medi-
ated transport of these polar compounds present at the tight junctions [10].
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3. Nanopharmaceuticals: an approach to achieve brain targeting

Brain targeting is potentially difficult because of multiple barriers. Recent 
advances in nanotechnology present opportunities to overcome such limitations 
and to deliver the drug to the brain targets. Nanopharmaceuticals are the relatively 
newer field that employed “therapeutic containing nanomaterial” with unique 
physicochemical properties due to their small size (one to several 100 nm), high 

Route Brand Nanocarrier Indication Manufacturer

SC Copaxone Glatiramer acetate Multiple sclerosis TEVA

IV DepoCyt® Cytarabine 

encapsulated in 

multivesicular 

liposomes (20 μm)

Lymphomatous 

malignant 

meningitis

Leadiant 

Biosciences

Epidural 

space 

injection

DepoDur® Morphine sulfate 

encapsulated in 

multivesicular 

liposomes (17–23 μm)

Chronic pain Pacira 

Pharmaceuticals

IV Opaxio® Paclitaxel covalently 

linked to SLN

Glioblastoma Cell Therapeutics

Intratumoral 

Injection

NanoTherm® Aminosilane-coated 

superparamagnetic 

iron oxide (15 nm) 

nanoparticles

Local ablation 

in glioblastoma, 

prostate, and 

pancreatic cancer

Magforce

Oral Avinza® Morphine sulfate 

nanocrystals

Psychostimulant Pfizer/King 

Pharma

Oral Focalin

XR®

Dexmethylphenidate 

HCl nanocrystals

ADHD Novartis

Oral Ritalin

LA®

Methylphenidate HCl 

nanocrystals

ADHD Novartis

SC injection Plegridy® Polymer-protein 

conjugate (PEGylated 

IFN Beta-1a)

Multiple sclerosis Biogen

IM injection Invega Sustenna® Paliperidone Schizophrenia Janssen Pharms

IV AmBisome® Amphotericin B 

liposome

Cryptococcal 

meningitis

Gilead Sciences, 

Inc.

IV Abelcet® Amphotericin B 

liposome

Cryptococcal 

meningitis

Enzon Pharma

IV DaunoXome® Daunorubicin liposome Pediatric brain 

tumors

Under Phase I 

trial

IV Doxil®/Caelyx® Doxorubicin HSPC, 

cholesterol, and 

DSPE-PEG2,000

Glioblastoma and 

Pediatric brain 

tumors

Phase II

Phase II

IV Myocet® Doxorubicin EPC and 

cholesterol

Glioblastoma Phase II

IV SGT-53 

(SynerGene 

Therapeutics)

Cationic liposome 

with anti-transferrin 

antibody

Glioblastoma Phase II

— Cornell Dots Silica nanoparticles 

with a fluorophore, 

PEG-coated

Malignant brain 

tumors imaging

Phase I

SC, subcutaneous; IM, intramuscular; IV, intravenous; AHDH, attention deficit hyperactivity disorder; IFN, interferon; 
DSPE, distearoylphosphatidylethanolamine; EPC, egg phosphatidylcholine; PEG, polyethylene glycol.

Table 1. 
Marketed nanopharmaceuticals for brain disorders.
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surface to volume ratio and flexibility to alter their properties [11]. An alternate 
definition can be pharmaceuticals engineered on the nanoscale for the therapeutic 
purpose [12]. Nanopharmaceuticals comprised of different nanomaterial like poly-
mers, lipids, amphiphilic material, metals, inorganic elements, carbon nanotubes, 
dendrimers, etc., to constitute nanocarriers which can be fabricated in different 
sizes, shapes, morphology, surface charges and surface groups for the brain-specific 
targeted delivery of the drug across barriers. Nanopharmaceuticals mediated drug 
delivery system has the power to penetrate drug moieties across CNS, either pas-
sively or actively, and improve bioavailability and therapeutic efficacy of the drug 
even at a lower concentration. Currently, available marketed nanopharmaceuticals 
for the brain are mentioned in Table 1.

4. Nanopharmaceuticals: brain targeting mechanisms

Nanopharmaceuticals could able to breach blood-brain barriers through various 
mechanisms. On the simple edge, their smaller size leads to passive delivery of the 
drugs through transcellular route across brain’s epithelial cells or choroid plexus. 
Criteria for the simple passive diffusion across the barriers are molecular size less 
than 400 Da, low hydrogen bonding capacity and lipophilicity [13, 14]. Therefore, 
lipophilic and tailored nanocarriers could deliver the drug through this mechanism.

While extremely hydrophobic molecules like nutrients (glucose and amino 
acids) pass through active diffusion mechanism with the aid of special transporter 
proteins. On the other hand, hydrophilic and larger molecules like transferrin and 
insulin pass through receptor-mediated transport across the membrane [15]. BBB 
majorly comprised of the endothelial layer which possessed tight junctions; the 
presence of proteins, namely occludins, claudins and adhesion molecules in the 
tight junction, make it a tougher barrier [16].

Nanopharmaceuticals are custom-made to surpass the brain barriers through 
these mechanisms:

• Lipophilic nanocarriers (liposomes, solid lipid nanoparticles SLN) fuse with 
the endothelial cells and transport the drug through the transcellular pathway 
or endocytosis. Moreover, nanoparticles provide a sustained drug release pat-
tern in the bloodstream, enabling higher drug concentration to cross BBB [17].

• Furthermore, nanoparticles are functionalized with ligands or specific surfaces 
to trigger receptor-mediated transcytosis or carrier-mediated transport across 
BBB. Attachment of ligands like lactoferrin, transferrin, insulin facilitated 
receptor-mediated transport. Cationized ligands and peptides like albumin 
cross through receptor-mediated absorptive transport. Nanoparticles surface 
can be modified to utilize active transport system comprising P-glycoproteins, 
L-transporters, nucleoside transporter, ionic transporter, multidrug-resistant 
proteins that transfer the molecules into the brain by consuming adenosine 
triphosphate (ATP) [17]

Liposomes have been extensively studied and even FDA approved nanocarrier 
for brain disorders. Surface modulation of liposomes with functional proteins, pep-
tides and polyethers aided targeted drug delivery for brain diseases [18]. PEGylated 
liposomes and glutathione-PEGylated liposomes evade body’s reticuloendothelial 
system and facilitate enhanced drug uptake across BBB [19]. Moreover, transferrin-
modified liposomes [20], TAT peptide-conjugated liposomes [21], glucose-modified 
liposomes [22], and transferrin-folate bound liposome effectively deliver the drug 
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across the barrier to treat multiple sclerosis [23]. Similarly, transferrin bound SLN 
and thiamine coated SLN were found to be efficacious in the treatment of cerebral 
malaria and increased drug uptake in the brain [24]. Mechanisms of transport 
across BBB are shown in Figure 1.

Polymeric nanoparticles accumulate in the brain tissue by both passive and 
active mechanisms. Chitosan-poly lactic-co-glycolic acid (PLGA) nanoparticles 
showed enhanced delivery of coenzyme Q to the brain of transgenic mice through 
absorption mediated endocytosis [25]. In another study, PLGA was coupled 
with Tet-1 peptide to achieve neuronal targeting of curcumin in the treatment of 
Alzheimer’s disease. Retrograde transportation of curcumin across the barriers 
destroyed amyloid aggregates and scavenges oxidative radicals in the brain [26]. 
Similarly, ligand attached polymeric-lipidic nanoparticles like nerve growth factor 
(NGF) loaded poly butyl cyanoacrylate (PBCA) liposomes considerably deliver the 
drug across the BBB cholinergic system in the amnesic rodent model [27]. Likewise, 
inorganic nanocarriers show promising outcomes in terms of brain targeting. 
Amine functionalized multi-walled carbon nanotubes adopted transcytosis mecha-
nism to pass BBB [28]. A natural substance wheat germ agglutinin-horseradish 
peroxide (WGA-hrp) was conjugated to gold nanoparticles (AuNPs) and admin-
istered in the IM injection into the mice. Results were remarkable in terms of drug 
penetration across BBB [29].

Dendrimers are the excellent drug carriers; their surface functionalization with 
folic acid, peptides, aptamers, amino acids, biotin, antibodies facilitated more 
site-specific targeting. To penetrate CNS barriers, dendrimers were conjugated with 
transferrin, lactoferrin, D-glucosamine, and leptin for more effective brain drug 
delivery [30].

Figure 1. 
Different pathways for nanopharmaceuticals mediated transport across the blood-brain barrier (Under 
Creative Commons Attribution License 4.0, https://creativecommons.org/licenses/by/4.0/) [96].



Pharmaceutical Formulation Design - Recent Practices

6

Some other nanoparticulate systems like nanoemulsion and nanogel can be 
functionalized with targeting moieties (transferrin, insulin, peptides) for CNS drug 
delivery. Nanogels made up of PEG-polyethylenimine (PEI) and N-vinylpyrrolidone/
isopropyl acrylamide have been tested to ensure CNS drug delivery potential [30].

5.  Nanopharmaceuticals classification on the basis of routes of 
administration

BBB mediated drug uptake restrictions prompt scientists to investigate drug 
delivery potential of the nanopharmaceuticals to the brain through various routes. 
The ultimate objective was to enhance drug penetration across BBB and to reduce 
disease index. Up till now, the most commonly employed route was systemic 
administration through Intravenous (IV) injection. Other natural routes like oral, 
intranasal (IN), intrathecal (IT), intraperitoneal (IP) have been used as well. Some 
novel strategies like cerebral devices, implants, Ultrasound-guided nanoparticle 
delivery, osmotic delivery gain much attention in the recent era. Different nano-
pharmaceuticals are illustrated in Figure 2. List of all nanopharmaceuticals deliv-
ered through different routes have been mentioned in Table 2.

5.1 Oral administration

The oral route is the most convenient, non-invasive and compliant mode of 
administration. However, brain targeting through the oral route was not investi-
gated largely mainly due to indirect systemic entry through absorption from the 
gastrointestinal tract (GIT). Harsh GIT environment, slow onset of action, shorter 
half-life, first pass elimination and reduced systemic absorption hampered drug 

Figure 2. 
Nanopharmaceuticals classification on the basis of route and nanocarriers.
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Route Drug Particle size Nano component Active ligand Indication References

Oral Dalargin ~100 nm poly (butylcyanoacrylate) 

nanoparticle

Tween 80-PEG 20000 Analgesic effect [33]

Oral Indomethacin ~320 nm Lipidic core poly (ε-caprolactone) 

coat

Glioblastoma 

treatment

[31]

Oral Saquinavir 100–200 nm polyunsaturated fatty acids 

(PUFA), Lipoid-80 and 

deoxycholic acid

Increase oral 

bioavailability and 

brain distribution

[32]

Oral Estradiol 138.8 ± 4.3 nm polylactide-co-glycolide 

(PLGA) nanoparticles

Tween 80 coated Alzheimer’s disease 

treatment

[34]

Intraperitoneal 

(IP)

None 220 ± 35 nm Iron oxide (Fe3O4) 

nanoparticles

coated with a carbon 

shell derived from 

glucose

Brain cells localization [36]

Intranasal (IN) Bromocriptine 161.3 ± 4.7 nm Chitosan nanoparticle — Parkinson’s disesase [48]

IN Clonazepam 15 ± 10 nm Microemulsion — Increase brain/blood 

uptake ratio

[52]

IN Nimodipine 30.3 ± 5.3 nm Microemulsion — High brain uptake [53]

IN Risperidone 15.5 nm-nanoemulsion; 

16.7 nm-mucoadhesive 

nanoemulsion

Nanoemulsion; mucoadhesive 

nanoemulsion

— Schizophrenia 

treatment

[54]

IN Diadanosine-

dideoxyinosine (dd)

269–382 nm Chitosan nanoparticles — Increase brain/plasm, 

CSF/plasma ratio

[12]

IN Rivastigmine 143.1 to 3300 nm Chitosan nanoparticle — Alzheimer’s disease [50]

IN Venlafaxine 167 ± 6.5 nm Chitosan nanoparticles — Major depressive 

disorders and anxiety 

disorder

[51]

IN Duloxetine 137.2 ± 2.88 nm Nanostructured lipid carriers — Behaviorial 

improvement in major 

depressive disorder

[55]
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Route Drug Particle size Nano component Active ligand Indication References

IN Coumarin 100 to 600 nm methoxy-PEG-polycaprlactone — Enhanced brain 

penetration

[58]

IN Vasoactive intestinal 

peptide (VIP)

90–100 nm PEG-PLA nanoparticles (NP) — Protein translocation 

across BBB

[79]

IN Sumatriptan 23.1 ± 0.4 nm Miceller nanocarrier — Migraine therapy [56]

IN Zolmitriptan 23 nm Miceller nanocarrier Migraine therapy [57]

IN FITC labeled 5 nm AuNP FITC Brain specific delivery [80]

Intravenous (IV) Azidothymidine Transferrin anchored PEG 

nanoparticles

Viral infection [81]

IV Valproic acid Nanoparticles Epilepsy [82]

IV Tacrine 35.58 ± 4.64 nm PBCA NPs Alzheimer’s disease [83]

IV Cabazitaxel 24–68 nm PEG modified Cellulose 

(Cellax) NPs

Glioblastoma [84]

IV and 

intratumoral

Docetaxel/SiRNA 110–150 nm Peptide modified Cationic 

liposomes

Glioma [85]

IV/Intranasal Catalase 9.5 nm Exosomes Parkinsonism [86]

IV HCFU 50 nm Nanogels Glioma [87]

IV (MRI) Curcumin <100 nm Magnetic NPs Detection of amyloid 

plexus in Alzheimer’s

[88]

IV Sunitinib/

anti-miR-21 

oligonucleotide

<190 nm NPs Glioblastoma [89]

IV Monocolonal 

antibody (OX26)

300–600 nm PEG-chitosan NPs Cerebral ischemia [90]

Focused 

ultrasound+IV

FE3O4/SPAnH — Nanoparticles Malignant glioma [91]
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Route Drug Particle size Nano component Active ligand Indication References

Convection-

enhanced delivery

CPT-11 96–101 nm Liposomes Intracranial tumor [92]

Intrathecal Fasudil 100 nm Liposomes Subarachnoid 

hemorrhage

[93]

Intracranial Paclitaxel 3 mm Nanoscale PLGA implants Intracranial 

glioblastoma

[94]

Neural probes Dexamethasone 400–600 nm PLGA nanoparticles in alginate 

hydrogel

Glial inflammation [95]

PEG, polyethylene glycol; PLA, polylactic acid; FITC, fluorescein isothiocyanate; SPAnH, poly[aniline-c-sodium N-(1-one-butyric acid)] aniline; PBCA, poly(n-butyl cyanoacrylate); HCFU, 
N-hexylcarbamoyl-5-fluorouracil.

Table 2. 
Nanopharmaceuticals administration through various routes.
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therapeutic efficacy and bioavailability. Thus, oral drug delivery failed to deliver 
the therapeutic moiety to the brain efficiently. In this regard, nanopharmaceuticals 
must possess the properties to bear harsh enzymatic environment, overcome first 
pass metabolism and efficiently permeate through the intestinal epithelial barrier to 
reach the systemic circulation.

Scientists developed lipid nanocore surrounded by poly (e-caprolactone) and 
orally administered to the mice. The concentration of the loaded drug, indometha-
cin, was successively increased in the brain and efficiently treat glioblastoma in the 
mice model without causing BBB vessel alteration. This could serve as a basis for 
safe and effective brain targeting via oral route [31].

Similarly, orally administered saquinavir-loaded nanoemulsion significantly 
delivers the drug across BBB. Nanoemulsion was stabilized by deoxycholic acid 
which overpasses first-pass elimination of the drug. The oily phase, polyunsatu-
rated fatty acids (PUFA) facilitates rapid transport to the brain. It laid the founda-
tion for effective brain targeting through oral route [32].

Researchers formulated poly (butyl cyanoacrylate) nanoparticles, double coated 
with Tween 80 and polyethylene glycol (PEG)-2000 for the oral delivery of the 
dalargin to the brain. Dalargin is a hexapeptide, anti-nociceptive agent which could 
not cross BBB. However, its nanoformulation showed promising analgesic effects in 
the mice model, which demonstrated the potential of the nanoformulation for brain 
targeting via oral route [33].

Orally administered Tween 80 coated PLGA deliver estradiol successfully to 
the brain. The therapeutic efficacy in elevating Alzheimer’s disease was parallel to 
the nanoformulation administered intramuscularly [34]. In short, oral delivery of 
drug-loaded nanopharmaceuticals achieved preliminary success but still need to be 
further explored in the near future.

5.2 Intraperitoneal administration (IP)

Intraperitoneal administration involved peritoneal cavity of the abdomen. The 
route is still under investigation. It has an advantage of delivering a larger amount 
of the drug and it is employed when a vein for the IV injection is not easily located. 
In addition, it can be employed when animals are not ready for oral administration. 
However, the route is currently limited to pre-clinical research in small animals and 
need to be scaled up [35].

Iron oxide nanoparticles were fabricated with the aim to target subcellular 
compartment of the brain cells. For this purpose, iron oxide nanoparticles with dif-
ferent shapes (round, biconcave, spindle, nanotube) were synthesized and coated 
with glucose derived fluorescent carbon layer. In-vivo administration through 
IP route indicated biconcave nanoparticles localized in the nuclei and nanotube-
shaped nanoparticles located in the cytoplasm of the brain cells. While the carbon 
coated surface on iron oxide nanoparticles facilitated attachment of several thera-
peutic moieties on the nanoparticles for their delivery inside the brain cells [36]. 
Therefore, the IP route could serve as a major route to deliver the drug across the 
brain barriers.

5.3 Intravenous administration (IV)

Systemic route including IV drug delivery to the brain involves the receptor-mediated 
and adsorptive mediated transcytosis. It is the most exploited route of administra-
tion for the nanoparticles because of the immediate action systemically and locally by 
targeted delivery. Polybutyl cyanoacrylate (PBCA) was first used for the synthesis of 
the NPs intended for the brain. Analgesic dalargin was incorporated in the PBCA NPs 
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with Polysorbate 80 coating and a marked level of analgesia was seen in the animal 
studies after IV administration of the NPs [37]. PBCA NPs with doxorubicin coated with 
Polysorbate 80 were studied for their brain delivery in the rats and showed the promis-
ing result in 2–4 hours as compared to the uncoated NPs after IV drug delivery [38]. In 
a similar study, Polysorbate 80 coated PBCA NPs with a size of 280 nm were evaluated 
for the delivery of Loperamide across BBB following IV injection. Results were quite 
promising in the in-vivo nociceptive studies on mice [39]. Musumeci et al. prepared the 
docetaxel loaded nanospheres using PLGA and observed the biphasic release of drug 
following IV administration. An in vitro study using a biomembrane model made of 
dipalmitoylphosphatidylcholine (DPPC) was conducted and confirmed the significant 
release of the drug across the membrane, making it a potent drug delivery approach for 
crossing BBB [40]. An in vitro study was conducted on brain endothelial cell lines and 
glioma cells using nanocarrier system made with PLGA/PLA and a detailed sketch of 
cellular uptake, cytotoxicity and therapeutic efficiency were obtained. Furthermore, 
the animal studies confirmed the uptake of NPs in the brain following IV administra-
tion [41]. In one study, male Sprague Dawley rats were used for establishing the efficacy 
of curcumin as an anticancer drug with neuroprotective properties. The study group 
demonstrated that how the nanoparticles can increase the circulation time of curcumin 
in the body and penetration across the BBB, especially the distribution of NPs in the hip-
pocampus. Half-life and mean residence time of curcumin increased after IV administra-
tion of NPs across the BBB [42]. Liu et al. demonstrated the effect of breviscapine loaded 
PLA NPs in rats after IV administration. NPs with an average particle size of 319 nm were 
distributed in the liver, spleen and brain. The prepared NPs had longer circulation life 
because they evaded the RES and crossed BBB [43]. Poly (alkyl cyanoacrylate) NPs can 
deliver several drugs like loperamide, doxorubicin, tubocurarine, etc., across the brain 
based on the principle of LDL receptor mediate endocytosis after injection of these NPs 
into the blood by IV administration. Prior to in vivo studies, these NPs were coated with 
surfactants like Poloxamers and Tween for the enhanced drug uptake by brain blood 
capillaries [44]. Some of the latest techniques of treating brain disorders include delivery 
of neurogenic genes, mRNA and siRNA. One such study was reported by Son et al. for 
the delivery of rabies virus glycoprotein (RVG) labeled disulfide containing polyethyl-
eneimine (PEI) nanomaterial to the brain. In vivo studies revealed promising data after 
the infusion of RVG peptide linked nanomaterial in 6 weeks old male BALB/c mice. [45] 
MRI-driven targeting of the brain using iron oxide NPs of around 100 nm was reported 
by the group of researchers. Mice were injected with the NPs suspension and were kept 
in the magnetic field for 30 minutes. There was 5-folds increase in the accumulation of 
NPs in the glioma cells in the presence of a magnetic field as compared to undirected NPs 
following IV administration. This approach can be used as a non-invasive therapeutic 
and diagnostic tool in the various dimensions of health [46]. However, the associated 
issues like rapid body clearance through the reticuloendothelial system and unintended 
organ distribution must be overcome for appropriate brain-specific drug delivery.

5.4 Intranasal administration (IN)

Recently, intranasal (IN) route for the drug delivery to the brain proved to be a 
reliable and non-invasive mode to cross BBB while possessing the ability to deliver a 
wide range of drug moieties like smaller molecules, larger macromolecules, growth 
factors, viral vectors and even stem cells to the brain. The transport involves either 
olfactory or trigeminal nerve which has a direct link from the brain and terminated 
in the nasal cavity at respiratory epithelium or olfactory neuroepithelium [47]. The 
nasal mucosa is the target tissue for the drug administration and possessed features 
like a larger surface area, porous endothelial membrane, huge blood flow, the 
absence of first-pass elimination and readily accessible. Olfactory region of nasal 
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mucosa provide nose to brain targeting feature and could able to treat various CNS 
disorders like depression, pain, Alzheimer’s disease, glioblastoma, multiple sclerosis 
etc. Several dosage forms, sprays, suspensions, nebulizers, aerosols, gel, solutions 
can be utilized for IN drug delivery [47]. On the other hand, barriers like mucocili-
ary clearance from nasal mucosa, enzymatic degradation and low degree of perme-
ability across nasal epithelium hinder the drug targeting efficiency to the brain. As 
a solution, nanopharmaceuticals were used which overcome the clearance and other 
nasal problems due to their unique nature.

One of the studies demonstrated IN administration of chitosan nanoparticle to 
deliver bromocriptine, a dopaminergic agonist, to minimize motor function disorder 
associated with prolonged levodopa usage in the Parkinson’s disease. Results were 
promising in terms of motor function [48]. Didanosine-dideoxyinosine (ddI) is an 
antiretroviral therapy (HAART) and available in oral dosage forms, however, faced 
extensive degradation and elimination in GIT which decreases its bioavailability. To 
overcome the issues, dd loaded chitosan nanoparticles were administered through IN 
route. Results indicated higher brain to plasma, CSF to plasma and olfactory blood to 
plasma ratios in the case of IN delivered dd nanoparticles. It shows that nanoformula-
tion can be directly delivered to the brain compartment through IN route [49].

Another research group fabricated rivastigmine loaded chitosan nanoparticle for 
inhibiting acetylcholinesterase in the brain through IN administration. The free drug 
had severe bioavailability issues and distributed to the non-targeted site with severe 
side effects when administered through oral or IV route. Here, chitosan nanocarrier 
and administration through nasal route enhanced brain uptake with higher brain/
blood ratio. It further highlighted the role of nanocarrier and route in brain targeting 
[50]. Similarly, Venlafaxine (VLF) chitosan nanoparticles were administered to the 
brain through the nasal route for the treatment of major depressive disorders and 
anxiety disorder with improved brain uptake and enhanced bioavailability [51].

Another study showed microemulsion and mucoadhesive delivering clonaze-
pam, an anxiolytic, sedative, hypnotic, anticonvulsant drug to the brain. The brain/
blood uptake ratio of the intranasal microemulsion and mucoadhesive microemul-
sion were significantly higher than the IV administered microemulsion, indicating 
the effectiveness of IN route for brain-specific drug delivery [52]. Similarly, the 
microemulsion was used for the IN delivery of nimodipine to the brain cells. The 
microemulsion leads to 3-fold more drug uptake by the olfactory bulb than the IV 
route. AUC ratio of brain to plasma and cerebrospinal fluid (CSF) to plasma were 
higher after IN administration in comparison to IV injection. Thus, it could be a 
promising approach to treat neurodegenerative disorders [53]. Risperidone nano-
emulsion and mucoadhesive nanoemulsion were administered through IN route 
for the treatment of schizophrenia. The composition of nanoemulsion included 
glyceryl monocaprylate as an oily phase, tween 80 as a surfactant and mixture of 
propylene glycol and transcutol as a co-surfactant. While mucoadhesive micro-
emulsion had chitosan polymer which induces mucoadhesive properties. The nano-
emulsion and mucoadhesive nanoemulsion improved risperidone bioavailability, 
prevent first pass metabolism and bypass BBB to achieve desired drug concentration 
at the targeted site. The brain/blood uptake ratio and drug transport efficiency were 
found to be significantly higher through nasal administration in comparison to the 
IV injection [54].

Furthermore, nanostructured lipid carriers comprising duloxetine was prepared 
and delivered to the brain via IN route for the treatment of the major depressive 
disorder. The results revealed prolonged drug release and therapeutic effect as 
demonstrated from improved behavior analysis after 24 hours [55].

Furthermore, micellar nanocarrier (amphiphilic nanocarriers) of sumatriptan 
was developed to treat an acute migraine to improve cerebral blood flow. Limitations 
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of the drug associated with oral dosage forms and subcutaneous administration 
like poor bioavailability, shorter plasma half-life, and hepatic elimination have 
been resolved to much extent through incorporation in micellar nanocarrier. And 
increased brain concentration of the drug and site-retention can be achieved via nose 
to brain drug delivery [56]. Similarly, zolmitriptan-loaded micellar nanocarriers 
were prepared to target brain serotonin receptors and inhibit cranial vessel inflam-
mation. Micellar nanocarriers were administered through nasal route with enhanced 
characteristics like lower particle size, higher permeation across nasal mucosa, 
appropriate flow rate, ability to load hydrophilic as well as hydrophobic drugs, 
enhanced site-retention and ultimately enhanced drug therapeutic activity [57].

Another polymer methoxy-PEG-polycaprolactone was used to encapsulate 
coumarin with promising brain penetration and myelin binding properties, while 
administered through nasal route [58]. Bioadhesive nanocarriers reported in the 
above studies overcome many hurdles associated with a nasal route like protection 
of drug against enzymatic degradation, enhanced permeability, and avoidance of 
mucociliary clearance. However, IN delivery of nanopharmaceuticals should be fur-
ther improved with targeting moieties and incorporation of cost-effective approach.

6. Alternate routes and strategies

6.1 Conventional enhanced delivery (CED)

Potential brain barriers can be by-passed by injecting the drug directly into the 
tissues using catheter. Such a direct delivery of therapeutic agent to the target site is 
termed as conventional enhanced delivery (CED). Many pre-clinical studies adapted 
CED to infuse nano-formulations directly into the brain [59]. C57BL/6 J mice were 
used to infuse a 10 μL solution of lipid nanocapsules (LNCs) having an average size 
of 70 nm into their skull at an infusion rate of 0.5 μL/min [60]. An alternate method 
for direct infusion was also reported in which drug-loaded micelles were injected by 
making small incisions on the skull. A foremost shortcoming CED technique is its 
invasiveness which requires high anesthetic doses prior to incisions, which resulted 
in the death of the experimental rats [61]. This technique also requires the optimiza-
tion of certain factors like pH and osmolarity to surpass any brain damage [62].

6.2 Intracarotid delivery

Administering the drug into the carotid artery provides an alternative solution 
to direct delivery. This direct systemic delivery requires a catheter to directly inject 
drugs into the bloodstream. In a study, the efficacy of direct systemic delivery was 
reported almost twice to that of CED in terms of brain damage [63]. IV route is also 
used to deliver the drug directly into systemic circulation. Ferrociphenol-loaded 
lipid nanoparticles were infused to manage glioma via the IV route. The outcomes 
showed that mean survival of the rats was 28 days while mean survival rate 
recorded foe CED was of 24 days [62, 64].

6.3 Intratumor delivery

Polylactic acid (PLA) and poly-dimethylaminoethyl methacrylate (PDMAEMA) 
were used to synthesize amphiphilic star-branched co-polymeric nanoparticles for 
intratumor delivery of the drugs for treating brain tumors. In a study, this system 
was used to deliver combined DOX and miR-21 inhibitor (miR-21i) into LN229 
glioma cells directly. These micelles protected miR-21i from lysosome degradation 
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and the release of DOX to the nucleus, which ultimately decreased the miR-21 
expression. This combined DOX and miR-21i delivery surprisingly displayed an anti-
proliferative efficiency compared with separate treatment of DOX or the miR-21. 
The outcomes revealed that this co-polymeric system was a better option for deliver-
ing genes and hydrophobic therapeutic agents [65].

6.4 Other parenteral routes

Delivering the drug directly into the brain is another way of treating brain 
disorders. This local drug delivery has been approved by the US FDA [66]. 
Intrathecal administration of nanopharmaceuticals delivers the nano-drugs in the 
CSF. However, this route of administration is most commonly used for anesthet-
ics and neurotic pain [67]. This route is under experimental phases in humans. It 
includes two different ways of delivering the therapeutic moiety, either by infusion 
in the intralumbar region or intraventricularly using an Ommaya reservoir placed 
subcutaneously and connected to the brain with a catheter [68]. Thioflavin-T 
was delivered by intrahippocampal injection for targeting the β amyloid in the 
brain using the nanoparticles. The data reported localization of thioflavin-T in the 
intracellular and extracellular spaces of the brain, which prevented the forma-
tion of β-amyloid aggregates in the Alzheimer’s disease. This same method can be 
adapted to deliver the anticancerous drugs as well as other analgesic peptides [69]. 
In an in situ perfusion study conducted on mice, Polysorbate 80 coated PBCA NPs 
loaded with the tubocurarine were able to cross the BBB after intraventricular drug 
administration. There was a marked effect on the EEG epileptiform spikes [70]. 
Intraarterial drug delivery has an advantage over the other conventional systems of 
drug delivery because of the increased dose delivery at the desired site of the brain. 
This route can also be exploited for the immun0-targeting. However, this route has 
some limitations like a dilution of the drug because of cerebral blood flow [71].

6.5 Ultrasound guided drug delivery

Ultrasound facilitated drug penetration through brain barriers is yet another option 
for safe and reversible targeted drug delivery [72]. In this technique, ultrasound radia-
tions are employed to generate shear stress on the vascular endothelium for a transient 
and reversible perforation in the BBB which facilitates the nanoscaled drug delivery 
to the targeted site. It appeared in a research outcome that docosahexaenoic acid 
binding with low-density lipoprotein NPs can penetrate the BBB by the application of 
ultrasound sonication. A near IR fluorescent dye examination revealed about 60 times 
greater accumulation of sonication facilitated drug delivery to the targeted site. The 
main advantage reported was lack of cytotoxicity or neuronal damage due to pointed 
ultrasound irradiation [73]. PEGylated PLA nanoparticles delivery to the brain was 
facilitated via ultrasound-induced perforation. β-specific antibody 6E10 was conjugated 
on PEG-PLA along with the coumarin 6 and DiR as fluorescent probes to assess the 
target site accumulation. Ultrasonication facilitated NPs penetration was about 2.5-fold 
more than the complementary non-sonicating therapy [74]. Ultrasound techniques can 
be used to aid the enhanced delivery of PEG-b-poly(l-Lysine) coupled with siRNA into 
glioma cells by 10-fold in conjunction with a newer gas-cored nanobubble [75].

7. Future prospects for nanopharmaceuticals delivery

Another targeted approach to the brain for delivering drugs is through the ocular 
route. The ocular route has so many advantages like reduced peripheral toxicity and 
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direct delivery of therapeutic moiety in the target site [76]. Ocular and intranasal 
drug delivery for the brain was compared by a group, in which nerve growth factor 
(NGF) was used for treating Alzheimer’s disease. However, it was found out that 
intranasal drug administration was more effective and potent for brain disorders and 
ocular route did not perform well. However, many scientists are working for making 
the ocular route a success because of it being the compliant and non-invasive route 
[77]. There has been a huge room for the administration of nanocarrier through ocu-
lar route to the brain. Nanocarrier can facilitate drug delivery to the brain because 
of their size, site-retention properties and enhanced adhesion to the lacrimal fluid. 
The route can be exploited for the delivery of drugs and genes to CNS by avoiding 
systemic exposure via nanopharmaceuticals [78].

8. Conclusion

Brain-targeted drug delivery is a difficult matter due to anatomic and patho-
physiological brain barriers. The current advances in nanotechnology provide 
a solution in the form of nanopharmaceuticals, drug containing nanocarriers, 
to cross the CNS barriers and to target the brain tissue in various disorders. 
Nanopharmaceuticals’ mode of administration into the body is an important aspect, 
which ultimately effects drug concentration in the brain and drug therapeutic 
effect. Current chapter highlighted the routes of administration through which 
nanopharmaceuticals can be delivered to reach the brain. Every route has pros 
and cons, nanopharmaceuticals overcome the route associated limitations in the 
delivery of drug to the brain due to their peculiar physicochemical properties and 
surface modulation. Translation this research area into the clinic still require inves-
tigations, as safety is the foremost concern and distribution to other body organs 
must be eradicated. Moreover, there is a need to control the drug delivery rate when 
nanopharmaceuticals reach the brain for safer action.
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