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Chapter

Rare-Earth-Based Materials for
Heterogeneous Photocatalysis
Sahar Zinatloo-Ajabshir and Zahra Sayyar

Abstract

Recently, the synthesis of rare-earth-based nanostructures as a significant class
of materials with photocatalysis activity has attracted the attention of researchers.
Many studies have shown their applications in various fields, specifically in
photocatalysis. There are different methods to synthesis of rare-earth
nanostructures. In this study, we discuss about modification of rare-earth-based
materials. Also production methods and their advantages and disadvantages have
been presented, briefly. Finally, photocatalytic applications of rare-earth
nanostructures are highlighted.

Keywords: rare-earth materials, heterogeneous photocatalysis, nanostructure,
methods, modification

1. Introduction

Nanostructures especially rare-earth-based materials have attracted interest of
researches in recent decade due to their unique and important properties such as
electronic, optical, photocatalytic and magnetic. These materials with different
shapes can be used in various fields because of potential applications. Because their
dimension and shape the behavior of nanoscale compounds is greatly sensitive [1].

A set of chemical elements in the periodic table, specifically scandium (Sc),
yttrium (Y), lanthanum (La) and all of the lanthanide series (Ln), are rare-earth
materials. All rare-earth materials have unique properties corresponding to the
filling of their orbitals and their ability to display a 3+ oxidation state [2, 3]. The
results of researchers show that rare-earth material properties changes with doping
or co-doping of them with oxides because of their crystalline structure variation.

Rare-earth-based materials were generally applied in high and low temperature
fuel cells [4], gas storage/separation, chemical sensing [5], heterogeneous
photocatalysis [6], wastewater treatment [7], fluorescence [8], photoelectro-
chemical Water [9], etc. Nanostructure of rare-earth material is appropriate for
these applications that can be synthesized with different methods for example
coprecipitation, hydrothermal, sol-gel, combustion, stearic acid route, pechini,
cathode plasma, electrolysis, co-ions complexation, molten salt and other
approaches [7]. Each of these methods has its own advantages and disadvantages
which are discussed in the following.

This study is being focused on heterogeneous photocatalytic activity of rare-
earth-based material and their methods of preparation.
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2. Modification of rare-earth-based materials

Efficiency of nanostructured compounds depend their grain size, morphology,
structure and components. Study on properties of rare-earth oxide and doped with
other material has increased due to their wide usages in various fields [10]. In order
to develop properties, excessive effort has been done in the modification of mor-
phology and structure of rare-earth materials.

Praseodymium oxide (Pr6O11), neodymium oxide (Nd2O3), holmium oxide
(Ho2O3), Dy2Ce2O7, Nd2Zr2O7-Nd2O3, NdOCl-Nd2Sn2O7-SnO2, Nd2Sn2O7-SnO2,
Pr2Ce2O7, Nd2Sn2O7, Nd2Zr2O7-ZrO2, Nd2Zr2O7, Dy2Sn2O7-SnO2, Ho2O3-SiO2,
Nd2O3-SiO2, are various families of rare-earth-based materials that were synthe-
sized by researchers [10–20] to modify their properties and other modified rare-
earth materials will be presented in the following.

2.1 Rare-earth-based coordination polymers

Rare-earth-based coordination polymers (CPs) have been studied due to their
expanded structures and applications [5]. These materials contain catalytic active
sites in both the organic linkers and metal centers. The modified of new and
selective heterogeneous catalysts is suitable for photocatalytic processes, mainly in
the oxidation of organic compounds.

Aguirre-Díaz et al. [5] synthesized five new lanthanide CPs (Ln-CPs) by
solvothermal method using La, Nd, Sm, Ho, and Er as metal sources in order to
offer a remarkable platform which contains antennas and catalytic active centers to
achieve solar-energy conversion as green alternatives.

Also Le Natur et al. [21] synthesized a series of hexanuclear complexes based coor-
dination polymers (CPs). They showed that CPs contain rare-earthmaterial exhibit
very high optical, luminescent properties and tunable systems at low cost. Therefore
they demonstrated that this modifiedmaterials had high photocatalytic activity.

2.2 Rare-earth-based metal organic frameworks

Metal organic frameworks (MOFs) are crystalline porous materials with bridging
organic ligands, which inorganic metal place in center. Nevertheless, applications of
MOFs were limited because of their weak coordination capability and the stability. To
solve this problem, Feng et al. [22] synthesized stable and functional 8-connected
hexanuclear rare-earthMOFs platform based on Re6O4(OH)4(COO)8 Clusters. They
showed that these structural characteristics cause that MOFs perform as a multipurpose
platform for future applications, including recognition and high adsorption.

3. Methods for preparing rare-earth-based nanostructures

Shape of material as well as dimension will be influenced by the preparation
method of nanoscale compounds. Therefor selection of technique is essential to
control the shape of nanostructure [7]. In this section, we study some of methods
for preparing rare-earth-based nanostructures.

3.1 Solid state reaction

In the solid state reaction as conventional method for synthesis, rare-earth oxide
and other material are mixed using mechanical instrument and the achieved pow-
ders are calcined at very high temperature for very long time [23].
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Eu3+ doped Gd2Mo3O9 was prepared using solid-state reaction method and
Na2C03 as flux by Xiaoxia [24]. The results showed that the luminescent and
photocatalytic properties depend to flux content and sintering temperature.

3.2 Hydrothermal

In the hydrothermal method, materials solutions are placed in the autoclave
under high temperature and pressure conditions therefore the hydroxides are pre-
cipitated and the powders are formed through nucleation and growth. This method
is suitable, simple, and effective controlled synthetic process and cheap because
water is solvent [25].

Li et al. [26] used the low temperature hydrothermal method to synthesize
nanosized Y2Sn2O7 composite with the particle size from 10 to 300 nm using
different organic agents. They demonstrated that these nanocomposites can be
shown photocatalytic properties in water purification.

3.3 Combustion

When metal precursors (oxidants) and fuel react using combustion, these reac-
tions can cause to produce rare-earth-based powders. In this method, a mixed
solution consists of rare-earth material as precursors and urea as fuel were prepared
then other solution (pH control agent) was added to this solution for gel formation.
The prepared gel was dried and heated at high temperature to obtain rare-earth-
based nanostructures [7, 27].

Zinatloo et al. [13] used combustion method to fabricate Nd2Sn2O7-SnO2

nanocomposites as novel and non-toxic biofuel using extract of pineapple. They
showed that produced nanocomposites had high photocatalytic activity to degrade
environmental pollution.

3.4 Coprecipitation

In the coprecipitation technique, the hydroxides are instantaneously precipi-
tated from precursor solutions via adding a base solution. The formed hydroxide
precipitates is then calcined to prepare rare-earth nanostructures. Ziarati et al. [28]
synthesized NiFe2-xEuxO4 nanostructure using coprecipitation method and calcina-
tion. They showed that samples had high yields in presence of the rare-earth-based
catalyst.

3.5 Sol-gel

In the sol-gel technique, hydrolysis and poly-condensation reactions of metal
alkoxides occur to form gels. Afterwards, the achieved gels are calcined to obtain
rare-earth nanoparticles. The sol-gel technique is low-cost, simple, friendly to the
environment and less complicated than the others [7].

Li et al. [2] synthesized LnFeO3 (Ln = Pr, Y) powders using sol-gel method with
utilizing, lanthanide metal (Ln = Pr, Y) with the assistance of glycol at 800°C for
4 h. Photodecomposition rate of RhB was improved by LnFeO3(Ln = Pr, Y)
nanoparticles.

Nowadays, there are different ways for the production of rare-earth nanostruc-
ture such as sol-gel combined electrospinning, complex precipitation, pechini poly-
meric route, molten salt synthesis, co-ions complexation method, Cathode plasma
electrolysis, Complex precipitation method, Precursor route and Floating zone
technique.
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3.6 Advantages and disadvantages of these methods

In this section, the advantages and disadvantages of each preparation technique
have been discussed, briefly. Some nanostructured samples in this chapter have
been synthesized using various methods by our research group.

There are different wet chemistry techniques to synthesize rare-earth-based
nanostructures with suitable properties. In the wet chemistry technique, materials
are mixed with together therefore the final powders have excellent compositional
homogeneity. However, the solid state reaction technique is one of them that can
cause the undesirable properties of final powders such as poor control of morphol-
ogy and particle size and nonhomogeneity of distribution [23].

Hydrothermal method is homogeneous nucleation processes as remarkable
advantage that can cause to synthesize particles with small size without the calci-
nation stage. However, reaction rate and formation of rare-earth nanostructures are
slow thus, a moderate heating stage at low temperature is necessary after the
hydrothermal stage to accelerate the solid reaction [25].

The combustion technique can cause to synthesize powders with high purity,
small size and uniform distribution. Nevertheless, the combustion reaction is not
easy to control. Also, the combustion reaction can lead to agglomeration of the
formed nanoparticles due to high temperature [27].

Coprecipitation method can lead to synthesize high purity compounds with a
homogeneous composition at relatively low temperature but the obtained powders
have large size. Thus a grinding stage is essential to synthesize a compound with
small size [29, 30].

The sol-gel method is as an appropriate technique for compositional controlling
the metallic species that the final powders are prepared through calcining stage with
small size [31].

The type of method is effective on the characteristics of the powder therefore,
selection of the right method is essential to prepare the powder with small particles,
high uniform and purity. Also energy and cost is important to choose method.

4. Application of rare-earth-based material

Rare-earth-based materials were used in different fields. Some of rare-earth
materials have been used for multipurpose applications such as gas sensors, solar
cells, rechargeable batteries, supercapacitors, and transparent conducting elec-
trodes, electronic and optical properties. The rare earth doped with some semicon-
ductors such as SnO2 can be used for temperature sensing. Recently, Eu3+-ions
doped SnO2 has attracted the research attention as a candidate for thermometry
applications [5].

Also, rare-earth-based perovskite oxides can be applied as catalysts for low-
temperature fuel cells. The dimensions of the unit cell can be changed by varying
the lanthanide ion which this unique property is an interesting characteristic of
rare-earth perovskites (LnMO3) [2].

According to the information of other researchers, rare-earth-based perovskites
have been applied as fuel cell catalysts for methanol oxidation and oxygen reduction
in alkaline medium. The results showed that these materials enhanced the kinetics
of the methanol oxidation reaction in alkaline medium. On the other hand rare-
earth-based perovskite oxides were used as cathode and anode catalysts for oxygen
reduction in alkaline medium [9].
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Rare-earth-based materials such as CeO2 also were added as an additive for
Nafion membranes to improve their chemical stability. Hydrogen peroxide and its
decomposition produce HO˙ and HOO˙ during the fuel cell operation that they have
been considered as a key factors leading to membrane degradation therefore, CeO2

nanoparticles act as mitigating free-radical-induced or free radical scavenger in
biological systems due to their higher surface area and ability to undergo faster
redox reaction. All studies suggested that CeO2 nanoparticles have incredible
potential to improve membrane permanence [4].

In this section, we study a brief review of rare-earth-doped materials,
rare-earth-based oxide-oxide composites, metal-modified semiconductors and
mixed-oxide materials in the fields of photocatalytic application as solar energy
generation (Figure 1) [9].

Rare-earth-based material play a key role in important photocatalytic and energy
production processes such as catalysts. Rare-earth material such as the lanthanide
elements can perform as catalysts to enhance the efficiency by:

1. Developing properties of the catalyst surface,

2. Improving the thermal stability of catalytic oxides,

3. Enhancing the catalytic efficiency due to their redox capabilities and
conductivity development,

4.Increasing oxygen uptake [9].

After a brief introduction of rare-earth materials and their properties ions and
oxide materials. In the next sections will be discussed perspectives of rare-earth
materials in photocatalytic processes and their potential as active catalysts or
support materials.

Figure 1.
Applications of rare-earth-based materials in solar energy generation: (A) photocatalytic,
(B) photoelectrochemical, (C) cell approach (photoelectrocatalytic).
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4.1 Heterogeneous photocatalysis

One of the progressive knowledge is heterogeneous photocatalysis that can be
applied in diverse fields. Photocatalytic materials are used to degrade organic and
inorganic pollutants in both the vapor and liquid phases [6].

When a photon is absorbed by rare-earth-based material using the energy gap of
the materials, electron-hole pairs are generated in the photocatalysis mechanism.

Photocatalyst Synthetic method Light source Removal percentage (%) Ref.

RVO4; R 5 La, Ce,
Nd, Sm, Eu and
Gd

Sonication 8 W mercury UV lamps
of 365 nm wavelength

70% of methylene blue
after 90 min illumination

[1]

LnFeO3 (Ln = Pr,
Y)

Sol-gel 500 W Xe lamp 96% of RhB after 2 h
illumination

[2]

La-doped TiO2 Sol-gel UV irradiation at specific
wavelength, 254 or
365 nm

≥90% of methylene blue
after 90 min illumination

[8]

Dy2Ce2O7 Green synthesis
using juice of
Punica

125 W Osram lamp 92.8% of methylene blue
after 70 min illumination

[10]

Dy2Sn2O7-SnO2 Pechini 400 W mercury lamps 81% of methyl orange
after 50 min illumination

[11]

Nd2Sn2O7 Green synthesis
using pomegranate
juice

125 W Osram lamp 96.7% of methyl violet
after 70 min illumination

[12]

Nd2Sn2O7-SnO2 Combustion 125 W Osram lamp 88.7% of rhodamine B
after 70 min illumination

[13]

Nd2O3 Simple
precipitation

125 W mercury lamps 89.6% of methylene blue
after 90 min illumination

[14]

Ho2O3-SiO2 Sonochemical 125 W mercury lamp 94.9% of methylene blue
after 70 min illumination

[15]

Ho2O3 Sonochemical 125 W mercury lamp 82.2% of erythrosine after
70 min illumination

[16]

Nd2O3-SiO2 Sonochemical 125 W Osram lamp 93.1% of methyl violet
after 70 min illumination

[17]

Nd2Zr2O7–ZrO2 Modified Pechini 400 W mercury lamps 85% of methylene blue
after 50 min illumination

[20]

Pr2Ce2O7 Pechini 400 W mercury lamps 92.1% of methyl orange
after 50 min illumination

[35]

GdFeO3 Sol-gel 500 W Xe lamp 100% of RhB after 2 h
illumination

[36]

Dy2Ce2O7 Green synthesis
using Ananas

comosus

125 W Osram lamp 91.7% of black T after 1 h.
illumination

[37]

Dy2Ce2O7 Green synthesis
using Vitis vinifera

juice

125 W Osram lamp 92.4% of methyl orange
after 80 min illumination

[38]

Nd2O3 Hydrothermal UV light from the 400 W
mercury lamps

79% of black T after
100 min illumination

[39]

Table 1.
Rare-earth-based materials for photocatalytic application in the degradation of organic pollutants.
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Therefore light absorption with energy equal to or greater than the band gap of the
material can cause an electron to be excited from the valence band to the conduc-
tion band [32]. These electrons and holes can be recombination with together that it
is a major limiting factor to control its photocatalytic efficiency in the degradation
of pollutant. Therefore, selection of material is a major challenge in heterogeneous
photocatalysis that rare-earth-based nanostructure can be increased the efficiency
of the photocatalysts [33]. To improve the efficiency of photocatalysis and reduce
the recombination of electrons and holes, modification of rare-earth-based material
is necessary. Therefore these materials have been doped with various transition
metal ions [34]. The photocatalytic mechanism to degrade the pollutant contami-
nant may write as below [35]:

Prepared nanostructures + hυ ! Prepared nanostructures (e�(CB) + h+(VB)).
OH� + h+(VB) ! OH˙

O2 + e�(CB) ! O2˙¯
O2˙¯ + H +

! HO2˙

HO2˙ + HO2˙ ! O2 + H2O2

H2O2 + O2˙¯ ! OH˙¯ + OH˙ + O2

OH˙ + Organic ! Intermediates ! CO2 + H2O + Products

4.2 Photocatalytic applications

Rare-earth-based materials are applied as catalysts in different industrial appli-
cations, e.g., petroleum refining (lanthanum chloride), automobile emission reduc-
tion (cerium oxide), organic polymerization (neodymium versatate), hydrogen and
synthesis gas production (ceria, lanthania), plastics decomposition, and dechlori-
nation (samarium iodide), solar thermochemical water splitting and photocatalytic
reactions have been investigated thoroughly, especially for La�, Ce�, Eu�, and Gd�

modified materials [9].
The mixed oxide photocatalysts have attracted attention because of their abili-

ties to remove pollutant or split water into H2 and O2 under solar irradiation.
Among the mixed oxides, rare-earth-based materials contained mixed oxide
photocatalysts are important, because the 4f-levels of lanthanide elements play a
key role in photocatalytic reactions. Some researches are shown in Table 1 that they
include photocatalysts of rare-earth elements for degradation of organic pollutants.
For example, Zinatloo et al. [13] synthesized Nd2Sn2O7-SnO2 nanocomposites as
high-efficiency visible-light responsive photocatalyst through an environment-
friendly procedure (Green synthesis) using extract of pineapple. Extract of pineap-
ple that employed in this research, is natural source of sugar (glucose as well as
fructose) and harmless for the environment.

5. Conclusions

This book chapter includes the recent advances related to synthesis method and
photocatalytic applications of rare-earth-based nanostructures. Several techniques
for preparation of rare-earth-based nanostructures have been introduced to achieve
nanostructure with desirable characterizes.
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