
“Don’t talk so much, old
sport, Play!”

F. Scott Fitzgerald
The Great Gatsby

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2014

Cristóvão André
Antunes Cruz

Mecanismos de Suporte para MAC 802.11p
Determińıstica

Support Mechanisms for Deterministic 802.11p
MAC

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2014

Cristóvão André
Antunes Cruz

Support Mechanisms for Deterministic MAC in
IEEE 802.11p

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Electrónica e de Telecomunicações, realizada sob a orientação cient́ıfica
do Professor Doutor Arnaldo Silva Rodrigues de Oliveira, Professor Auxiliar
do Departamento de Electrónica, Telecomunicações e Informática da Uni-
versidade de Aveiro, e do Professor Doutor José Joaquim Campos Ferreira,
Professor Adjunto da Escola Superior de Tecnologia e Gestão de Águeda da
Universidade de Aveiro

o júri / the jury

presidente / president Prof. Doutor José Luis Costa Pinto de Azevedo
Professor Auxiliar da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Arnaldo Silva Rodrigues de Oliveira
Professor Auxiliar da Universidade de Aveiro (orientador)

Doutor Paulo Jorge de Campos Bartolomeu
Investigador Doutorado da Globaltronic, Electrónica e Telecomunicações, SA

agradecimentos /
acknowledgements

Agradeço aos meus orientadores Arnaldo Oliveira e Joaquim Ferreira, não
só pela orientação prestada mas também pela enorme dose de paciência que
demonstraram perante os meus métodos pouco ortodoxos e prazos falhados.

Agradeço ao grupo de trabalho no seio do qual este projeto foi desenvolvido,
nomeadamente ao Bruno Silva, João Almeida, Nelson Cardoso, Sikandar
Khan, Manuel Santos, João Pio e Manuel Ventura. Este trabalho só foi
posśıvel devido às contribuições de todos eles.

Agradeço à minha faḿılia por todo o apoio que prestaram ao longo do meu
percurso académico.

Agradeço à Vanessa por me ter incentivado a terminar aquilo que comecei.

Obrigado.

Palavras-chave VANET, Communicações Véıculares, ITS, DSRC, IEEE 802.11, SDR, MAC,
Tempo-Real

Resumo

Os meios de transporte têm um papel preponderante na sociedade mod-
erna. Muito esforço de investigação tem sido dedicada e este campo nos
últimos anos, com vista a tornar estes meios mais limpos, seguros e efi-
cientes, originado os chamados Sistemas de Transporte Inteligentes (ITS).
Enquanto algumas das tecnologias base estão já prontas a ser utilizadas,
ainda existem problemas a ser resolvidos antes de se poder utilizar todo
o potencial destes sistemas. Um problema espećıfico, o acesso ao meio, é
atualmente considerado um dos mais desafiantes em termos de investigação
e que detém ainda uma quantidade interessante de problemas a ser resolvi-
dos para que se possa depender de comunicações sem fios em ambientes
veiculares. Estudos provaram que os protocolos standard não resolvem este
problema e têm sido propostas soluções, Mas apesar da dificuldade de mod-
elar corretamente a dinâmica do canal, a maior parte das análises tem sido
realizada em ambientes de simulação, com assunções simplistas que não
correspondem necessariamente ao ambiente real.

A implementação de um mecanismo de acesso ao meio determińıstico é
dificultada pelo facto de que os dispositivos comerciais não permitem mod-
ificações aos mecanismos standard e o desenvolvimento de um dispositivo de
raiz que implemente o mecanismo proposto ser extremamente trabalhoso.
No entanto, ao longo dos últimos anos tem sido desenvolvida a plataforma
de comunicações veiculares IT2S, que atingiu agora uma fase que permite
a sua utilização para implementar e testar novas soluções para ambientes
veiculares. Trata-se de uma plataforma flex́ıvel que permite a realização
de modificações em qualquer camada da pilha protocolar, portanto pasśıvel
de ser adaptada para a implementação de novos mecanismos de acesso ao
meio. Este trabalho apresenta uma perspetiva alargada dos mecanismos
de acesso ao meio determińısticos propostos na literatura e estuda quais
as caracteŕısticas necessárias que um dispositivo de comunicação precisa
fornecer para os poder implementar. Segue-se então uma proposta de im-
plementação de um tal dispositivo, baseada na plataforma IT2S.

Foi posśıvel obter uma solução flex́ıvel o suficiente para implementar todos
os mecanismos estudados recorrendo apenas a software, sem necessidade de
alterações ao hardware, baixando a fasquia da dificuldade na criação de uma
implementação prática de um mecanismo de acesso ao meio. A solução foi
testada e a desempenho considerada adequada para as posśıveis utilizações.
É agora posśıvel criar bancadas de teste para novos mecanismos de acesso
ao meio e executar análises mais concretas e precisas da sua desempenho.

Keywords VANET, Vehicular Communications, ITS, DSRC, IEEE 802.11, SDR, MAC,
Deterministic MAC

Abstract

Transportation systems play an extremely important role in modern soci-
ety. A huge research effort has been devoted to this field in the past few
years making them safer cleaner and more efficient, originating the so-called
Intelligent Transportation Systems (ITS). While some of the enabling tech-
nologies are entering their mature phase, there are still many open problems
that must be solved before such systems can be effectively leveraged. Specif-
ically, the medium access is regarded as being one of the most challenging
issues to solve in order to provide dependable wireless communications in
vehicular networks [BUSB09]. The standard protocols have been shown to
fail in addressing this issue and some possible solutions are being proposed,
but despite the difficulty of correctly modelling the channel dynamics, most
work on MAC protocols for real-time vehicular communications has been
performed under simulated environments, using simplistic assumptions that
do not necessarily hold in a read environment.

The implementation of a deterministic MAC scheme is hampered by the fact
that commercial devices do not allow modifications to the standard MAC
mechanism, and the development of a device from scratch to implement one
Medium Access Control (MAC) scheme is an extremely laborious endeavour.
However, over the last few years, the IT2S platform for vehicular communi-
cation has been developed and is now in a stage that allows implementation
and testing of new solutions for the vehicular communications environment.
It is a flexible platform that allows modification to be made in any layer of
the communication stack and therefore suited to be adapted for the imple-
mentation of new MAC schemes. This work presents an overview of MAC
mechanisms capable of providing deterministic real-time access and assesses
the features a communications device must include in order to allow the im-
plementation of these mechanisms. It then proposes an implementation of
such as device based on the existing IT2S plaform.

A flexible solution was obtained that allows all the studied MAC schemes
to be implemented purely in software, with no modifications required to the
hardware mechanisms, lowering the needed amount of skills required to per-
form a working implementation of a novel MAC scheme. The performance
of the solution was also found to be appropriate for the required uses. It is
now possible to create test beds for new MAC schemes and perform more
concrete and accurate analysis of their performance.

Contents

Contents i

List of Figures iii

List of Tables v

Acronyms vi

1 Introduction 1

1.1 Background . 1

1.2 Purpose . 1

1.3 Objectives . 2

1.4 Structure . 2

2 Fundamental Concepts 5

2.1 Vehicular Communications Standards . 5

2.1.1 IEEE 802.11p . 5

2.1.2 ETSI ITS G5 . 7

2.2 Deterministic MAC Schemes . 8

2.2.1 STDMA . 8

2.2.2 Synchronous MAC . 10

2.2.3 VFTT . 11

2.3 Generic deterministic MAC device requirements 12

3 The IT2S Experimental Vehicular Communication Platform 13

3.1 Hardware components . 14

3.2 PHY . 15

3.3 Lower MAC . 16

3.4 USB Connection . 18

3.4.1 Universal Serial Bus (USB) basics . 19

3.4.2 Cypress FX2LP . 19

3.4.3 Slave FIFO interface . 21

3.5 Device driver . 22

3.5.1 Communication protocol . 22

3.5.2 Transmit packet . 22

3.5.3 Packet reception . 24

3.5.4 Channel change . 24

i

4 Architecture 27
4.1 Required modifications to the IT2S platform 27
4.2 Operation protocol . 29

4.2.1 Requests . 29
4.2.2 Events . 30

4.3 LowerMAC . 32
4.4 USB connection (Multilink) . 34

4.4.1 Overview . 34
4.4.2 Multiplexing protocol . 35
4.4.3 FPGA logic . 36
4.4.4 Software interface . 37

4.5 Device Driver . 37

5 Implementation 41
5.1 Lower MAC . 41

5.1.1 Memory Bank . 41
5.1.2 Command Processor . 44
5.1.3 Dispatcher . 44
5.1.4 CCA Controller . 44
5.1.5 Event Handler . 44
5.1.6 PHY Abstraction Layer . 46
5.1.7 Packet reception . 51
5.1.8 Channel changing . 52

5.2 USB Connection . 54
5.2.1 FX2LP timming constraints . 54
5.2.2 FX2LP firmware . 56
5.2.3 FPGA module . 57
5.2.4 Software module . 58

5.3 Device Driver . 59

6 Validation 61
6.1 MultiLink . 61

6.1.1 Test setup . 61
6.1.2 Latency measurement . 62
6.1.3 Throughput measurement . 63

6.2 Deterministic MAC . 64
6.2.1 Time triggered packet transmission . 64
6.2.2 Sensitivity adjustment . 64

7 Conclusions and Future Work 67

Bibliography 69

ii

List of Figures

2.1 The DCC state machine according to ETSI TS 102 687 v1.1.1 [ETS] 8

2.2 self-organizing time division multiple access (STDMA) continuous operation
phase [BUSB09] . 9

2.3 Synchronous MAC time domain structure of the channel [SWL+12] 10

2.4 Elementary Cycle of the vehicular flexible time-triggered (V-FTT) protocol
[TJJ13] . 11

3.1 IT2S platform architecture . 13

3.2 IT2S platform detailed architecture [dA13] 14

3.3 Physical Layer (PHY) interface . 17

3.4 LowerMAC interface with other modules [dS11] 18

3.5 FX2LP slave FIFO overview [Sem] . 20

3.6 FX2 slave fifo interface . 21

3.7 Packet transmission operation sequence diagram 23

3.8 Packet reception operation sequence diagram 24

3.9 Packet reception operation sequence diagram 25

4.1 Global architecture overview . 27

4.2 Transmission sequence diagram . 29

4.3 Time-triggered transmission sequence diagram 30

4.4 Change channel sequence diagram . 31

4.5 Configure CCA sequence diagram . 31

4.6 Packet reception sequence diagram . 32

4.7 Lower MAC and auxiliary logic overview . 33

4.8 MultiLink concept . 35

4.9 MultiLink architecture overview . 35

4.10 MultiLink frame format . 36

4.11 MultiLink driver architecture . 37

4.12 Device driver architecture . 38

5.1 Memory bank block diagram and interface 42

5.2 Slot allocation timing diagram . 43

5.3 Memory manager block diagram . 43

5.4 Lower MAC (LMAC) command processor state machine 45

5.5 Dispatcher interface . 46

5.6 The module interface . 47

5.7 txPowerLevel conversion to real power 49

iii

5.8 txStatus fields . 49
5.9 Successful non real-time transmission timing diagram 49
5.10 Failed real-time transmission timing diagram 50
5.11 Cancelled transmission timing diagram . 50
5.12 Successful reception timing diagram . 51
5.13 rxStatus fields . 52
5.14 configChannelStatus fields . 52
5.15 configChannelRequest operation details . 53
5.16 configChannelCancel operation details . 53
5.17 Timing diagram for slave FIFO read operation 54
5.18 Timing diagram for slave FIFO write operation 55
5.19 Timing diagram for slave FIFO FIFOADR signal 56
5.20 Field Programmable Gate Array (FPGA) module for the USB controller . . 57
5.21 FX2LP controller state machine . 58

6.1 Test setup for the MultiLink implementation 62
6.2 USB latency measurement results architecture 63
6.3 USB period measurement results architecture 64
6.4 Sensitivity adjustment test results . 65

iv

List of Tables

2.1 EDCA parameter set for OCB stations[8-106] [IEE12] 6
2.2 Deterministic MAC requirements table . 12

4.1 Available USB endpoint configuration . 34

5.1 Signalling rate information . 49
5.2 rxStatus signal meaning . 52
5.3 configChannelValue and central channel frequency match 53
5.4 Description of timing diagram information for slave FIFO read operation . . 55
5.5 Description of timing diagram information for slave FIFO write operation . . 55
5.6 Description of timing diagram information for slave FIFO FIFOADR signal . . 56
5.7 FX2LP endpoint configuration . 57

v

Acronyms

AD/DA Analog-to-Digital/Digital-to-Analog.
ADC Analog-to-Digital Converter.
AIS Abbreviation Injury Scale.
API Application Programming Interface.

BSS Basic Service Set.

C2X Car to X.
CA Collision Avoidance.
CCA Clear Channel Assessment.
COTS Commercial Off-The-Shelf.
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance.

DAC Digital-to-Analog Converter.
DCC Decentralized Congestion Control.
DDR Double Data Rate.

EC Elementary Cycle.
EDCA Enhanced Distributed Channel Access.
EIFS extended interframe space.

FCS Frame Check Sequence.
FIFO First In First Out.
FPGA Field Programmable Gate Array.
FSMD finite state machine and datapath.

GPIO General-Purpose Input/Output.
GPS Global Positioning System.

I2C Inter-Integrated Circuit.
IEEE Institute of Electrical and Electronics Engineers.
IT2S IT2S.
ITS Intelligent Transportation Systems.

LMAC Lower MAC.
LNA Low Noise Amplifier.
LOS line of sight.

MAC Medium Access Control.

vi

OBU On Board Unit.
OCB Outside the Context of a BSS.
OFDM Orthogonal Frequency Division Multiplexing.

PA Power Amplifier.
PC Personal Computer.
PER packet error rate.
PHY Physical Layer.
PLB Processor Local Bus.
PLCP Physical Layer Convergence Procedure.
PMD Physical Medium Dependent.
PPS Pulse Per Second.

RF Radio Frequency.
RSSI Received Signal Strength Indication.
RSU Road Side Unit.
RTC real time clock.

SDR Software Defined Radio.
SIFS short interframe space.
SPI Serial Peripheral Interface.
STDMA self-organizing time division multiple access.

TDMA Time Division Multiple Access.

UART Universal Asynchronous Receiver/Transmitter.
UMAC Upper MAC.
USB Universal Serial Bus.

V-FTT vehicular flexible time-triggered.
VANET Vehicular Ad-hoc NETwork.

WiFi Wireless Fidelity.

vii

viii

Chapter 1

Introduction

1.1 Background

”Road traffic injuries are the eight leading cause of death and the leading cause off death
for young people aged 15-29. More than a million people die each year on the world’s roads,
and the cost of dealing with the consequences of these road traffic crashes runs to billions of
dollars. Current trends suggest that road traffic deaths will become the fifth leading cause of
death unless urgent action is taken.” [Org13]

While cars have been including more and more technologies to help prevent accidents, the
human driver still controls most of the vehicle trajectory and its own perception limitations
are still an important factor in automotive crashes. The limitations are inherent to the human
senses and reaction times, which are not well suited for some scenarios, mainly where there
is no line-of-sight to the hazard with adequate distance [HG11].

There is however an emerging technology which holds the promise to greatly improve car
safety and provide vast potential to the deployment of efficiency and entertainment services
on board of the vehicles: Car to X (C2X). Heavily influenced by the IEEE 802.11, this
communication technology aims to extend the time-horizon of the information related to
safety and efficiency that is provided to the driver, complementing the already vast array
of sensors at his disposal [PLFE+09]. Boasting access to dedicated wireless spectrum and
specially designed communication devices which are capable of operating in the challenging
vehicular environment, with high relative speeds and dynamic scenarios, this technology also
holds extensive support from government and efforts have been made to provide a common
technological framework that allows interoperation between different makers and countries.
Much research has been done on this subject, under the guise of cooperative Intelligent
Transportation Systems (ITS) and it is now accepted that by having the vehicles communicate
with each other and with the infrastructure it is possible to prevent accidents and improve
traffic efficiency in ways that were not possible before [MTC+10].

1.2 Purpose

Despite the use of dedicated spectrum and specially designed devices, the current stan-
dards governing Vehicular Ad-hoc NETworks (VANETs) still fall short of providing depend-
able MAC, as is desirable if this technology is to be used in support of safety applications,
where danger to human life is involved [BUSB09]. On top of that, study of novel MAC mech-

1

anisms is hampered by the fact that the highly dynamic channel makes it difficult to properly
conduct simulated experiments [ESG13], calling for the use of actual devices that implement
the relevant standards but at the same time allow experimentation with new mechanisms
that may conflict with existing regulations. Such device is currently not available and most
research on this field is conducted in simulation environments, despite the already identified
issues, leading to analysis that ignore problems such as hidden and exposed nodes, or even
the presence of alien MAC schemes, therefore failing to completely address the problem at
hand. There is a pressing need for a device that allows the experimentation of new ideas
related to MAC in C2X [COFM14].

1.3 Objectives

The main objective of this work is to create a device flexible enough to provide access
to the basic mechanisms that allow implementation of various deterministic MAC methods.
In order to do so, an overview of the literature is going to be conducted, in order to assess
the required mechanisms. It will then present the IT2S (IT2S) device, a standards compliant
vehicular communication platform that has been developed over the last few years under the
Headway [Hea14] and ICSI [ICS14] projects. This device takes advantage of reconfigurable
hardware technology and follows a Software Defined Radio (SDR) approach, making it very
flexible to modifications in order to cope with new requirements. Based on the identified
requirements and the IT2S platform capabilities, a new device will be proposed, implemented
and tested. The main objectives of this work are then:

• Assess the basic mechanisms required for the implementation of deterministic MAC
methods;

• Propose modifications to the IT2S device to implement the assessed mechanisms;

• Implement the proposed modifications;

• Evaluate the performance of the solution.

1.4 Structure

This dissertation continues with 6 more chapters organized as follows:

• Chapter 2 - Fundamental Concepts — Summary of the standard MAC capabilities
and limitations followed by a study of the deterministic MAC mechanisms, specifically
designed for VANETs, currently found in the literature, as well as which hardware
capabilities are needed in order to implement such mechanisms;

• Chapter 3 - The IT2S Experimental Vehicular Communication Platform —
Detailed description of the IT2S platform, on which the implementation will be based,
including the hardware and all the relevant operational details;

• Chapter 4 - Architecture — Proposal of a specification for a device capable of
implementing the studied deterministic MAC schemes, including a detailed description
of the necessary modifications to the IT2S platform;

2

• Chapter 5 - Implementation — Description of the executed implementation;

• Chapter 6 - Validation — Presentation of the test results and assessment of the
adequacy of the implemented device for the testing of deterministic MAC mechanisms;

• Chapter 7 - Conclusions and Future Work — Final remarks and identification
of future work directions.

3

4

Chapter 2

Fundamental Concepts

The field of ITS has been intensively researched over the last few years with the inten-
tion of providing enhanced sensing capabilities to vehicles in order to enhance both safety
and efficiency [PLFE+09]. By providing mechanisms for vehicles to communicate between
each other, this technology gives a foundation for many applications such as: intelligent in-
tersections, traffic congestion control, accident detection and warning and platooning, too
name a few. However, for many of those applications to be effective, a common technological
foundation and sufficient market penetration is required. In order to obtain those, a mix
of standardization and government commitment effort has been developed, leading to the
approval of several standards that govern many aspects of this technology and allocation of
dedicated wireless spectrum, achieving what could be considered a wide geographical inter-
operability [MTC+10]. But even with all this effort, there are still some problems to solve
in order to make this technology dependable enough to be used in life threatening situations
such as deterministic MAC [COFM14].

This chapter starts by presenting the currently relevant technological standards. It then
follows to identify the more pressing shortcomings and studies the state of the art of how to
overcome them.

2.1 Vehicular Communications Standards

2.1.1 IEEE 802.11p

The physical layer used in vehicular communication devices is based on the IEEE 802.11
standard. This standard, widely known as Wireless Fidelity (WiFi) generally used by personal
computers worldwide, governs not only the physical properties of the radio communication
but also the MAC mechanisms that must be used to provide fair access to the communication
channel. Support for vehicular environments was introduced in amendment p and finally
included in the 2012 revision of the standard, IEEE 802.11-2012.

At the physical level, this amendment is heavily based on the previously existing a amend-
ment, using the same modulation scheme. However, the channel bandwidth was reduced in
half in order to address both the Doppler effect caused caused by the high mobility of the
nodes and the inter-symbol interference caused by the reflections and multipath propagation
that are common in the vehicular environments. Other specifics such as operating frequency
and transmission power are not defined by this standard and is governed by the regulatory
bodies of each region.

5

Table 2.1: EDCA parameter set for OCB stations[8-106] [IEE12]

The MAC mechanism adopted is based on Carrier Sense Multiple Access with Colli-
sion Avoidance (CSMA/CA) with the amendment e, Enhanced Distributed Channel Access
(EDCA). Two main operations take part in this mechanism: Clear Channel Assessment
(CCA) and Collision Avoidance (CA). A channel is considered busy whenever either the Re-
ceived Signal Strength Indication (RSSI) rises above a predetermined level or the preamble of
a packet is detected. On this last case, the channel will remain busy for the declared packet
duration. The collision avoidance mechanism works by requiring the medium to be perceived
as free for some time before transmission of a packet can start. The amount of time is se-
lected randomly from a range depending on the packet priority. Higher priority packets select
a value with a lower maximum value, while the contrary happens for lower priority packets.
The specific minimum and maximum values are presented in table 2.1 under the names CWmin
and CWmax respectively, with the values of aCWmin and aCWmax being defined as 15 and 1023
respectively. The selected number represents the amount of time slots the medium needs to
be perceived as free in order to execute a transmission. The duration of each slot is also
dependent on the packet priority, with the specific value being AIFSN ∗ aSlotT ime. The
standard defines aSlotTime to be 13 µs for the physical layer used in vehicular environments,
so, the slot time will effectively vary from 117 µs on the lowest priority frames to 26 µs on the
highest priority frames.

The last important feature of this amendment is that communications occurring within
the frequencies allocated for vehicular communications must occur Outside the Context of a
BSS (OCB). Regular 802.11 based communications occur within the context of a Basic Service
Set (BSS) and require association procedures that introduce overhead and latencies in the
communication process. Given the volatility of vehicular networks it was deemed necessary
to bypass all these mechanisms and communicate constantly in broadcast mode. One of the
immediate drawbacks of this method is that the MAC layer is agnostic to traffic security and
nodes identity, and the implementation of such facilities is left to the application layer.

Despite all the efforts to provide robust MAC and physical layers, studies reached the
overall conclusion that under high network loads the medium access converges to an ALOHA
like behaviour where each station transmits in a random time slot independently of the neigh-
bouring stations, causing unbounded collisions [SWL+12][BUSB09]. This limitation sparked
vast amounts of work concerning possible improvements, some of which will be presented in
the next section.

6

2.1.2 ETSI ITS G5

The ETSI ITS G5 is the european set of standards that govern vehicular communications.
It is a wide ranging work that encompasses all layers of the communication stack, from physical
device to the types of exchanged messages. The physical layer in use under this standard is
the one defined in 802.11p, but the MAC scheme, Decentralized Congestion Control (DCC)
is an enhanced version specifically designed to prevent some of the problems identified in the
Institute of Electrical and Electronics Engineers (IEEE) standard proposal, namely congestion
under high traffic load [ACM+13].

DCC is a congestion control mechanism which works by modifying PHY and MAC pa-
rameters in a decentralized fashion in order to try to provide adequate medium access under
different channel load conditions. It is composed of several modules that operate on different
layers of the network stack:

• DCC-Facility [ETSI TS 102 636] controls the messaging rate in the application layer;

• DCC-Net [ETSI TS 103 141] provides various priorities to different message types;

• DCC-Access [ETSI TS 102 687] allows modification of the physical layer operation
parameters;

• DCC-Management coordinates all the other components and provides a stable cross-
layer mechanism.

Not all of the DCC components are completely defined yet and the work that has been
carried out so far mainly concerns the DCC-Access module. This module is also of special
importance to this dissertation due to the fact that it deals directly with the operation
parameters of the physical layer, namely:

• Transmit Power Control (TPC) : transmission power;

• Transmit Rate Control (TRC) : packet transmission rate;

• Transmit Datarate Control (TDC) : transmission bitrate;

• DCC Sensitivity Control (DSC) : CCA parameters;

• Transmit Access Control (TAC) : packet prioritization.

These parameters are changed according to the perceived medium state, as observed in
fig. 2.1, and at any given moment the device can be in one of three states: relaxed, active or
restrictive. Given the decentralized nature of this mechanism, all decisions are made locally,
based solely on the measure channel load, CL in the image, which is defined as the amount
of time the signal is above the CCA threshold, or, the channel is declared as busy.

This mechanism has been studied by several author under simulated environments and
the general conclusion seems to be that DCC is also not suited to cope with high network
loads [SWL+12][ACM+13][ESG13].

7

Figure 2.1: The DCC state machine according to ETSI TS 102 687 v1.1.1 [ETS]

2.2 Deterministic MAC Schemes

As shown in the previous section, current standards have been shown to fail in regard to
medium access under high channel load conditions. This section explores the MAC schemes
that are currently being proposed to solve this problem, as well as what features would a
physical device need to provide to implementers in order to be able to create a testbed for
the said schemes.

2.2.1 STDMA

STDMA [BUSB09] is a decentralized TDMA-based protocol,based on the Abbreviation
Injury Scale (AIS) used in ships, where each node allocates channel time for itself based on its
perception of the network and current location and time, as provided by a global navigation
satellite system, such as GPS or Galileu. Under this protocol, the medium is divided in
time slots, and any station wishing to transmit data must start by assessing the current use
condition for each one of these slots. The operation is conducted in four stages: initialization,
network entry, first frame and continuous operation. The initialization consists of listening
to all traffic and determine the current slot usage pattern. After that, during network entry
the station determines which slot it will use to transmit the first packet. This selection tries
to use any free slot that may exists inside an adequate time frame, but will fall back to use
the slot of the station farther away if no free slot is available, thereby creating deliberate
collisions. The next stage, first frame, calculates all the remaining slots to use, based on
the station transmission rate needs, always attempting to maintain an even time spacing
between the selected slots and using a selection algorithm similar to the one in the previous
stage. After selecting all the necessary slots for the duration of one frame, the station may
enter the continuous operation phase. During this phase, each one of the slots previously
selected is used up to a random number of times that may range from 3 to 8. After the
slot is used the selected amount of times, it is discarded and another slot in its vicinity is
selected according to the already described method. This is to account for network topology
changes due to stations movement and be able to reconsider the best slot from time to time.
If the parameters of transmission are in any way changed, for instance, the messaging rate,
the whole process must be restarted from the initialization stage. The algorithm used during
the continuous operation phase can be observed in fig. 2.2.

8

Figure 2.2: STDMA continuous operation phase [BUSB09]

9

Figure 2.3: Synchronous MAC time domain structure of the channel [SWL+12]

2.2.2 Synchronous MAC

The synchronous MAC [SWL+12] uses an approach of an overlay MAC that provides a
slotted structure that allow the transmition of packets in a deterministic synchronous manner
without violation the standard MAC mechanism. Under this system, time is divided in frames
of 100 ms which are then slotted. Each slot lasts for the intended packet size duration plus
the extended interframe space (EIFS), as observed in fig. 2.3.

Each station selects one slot per frame and the packet is only fed to the MAC layer at the
slot boundary. By doing this, the standard random backoff mechanism will be avoided and
the transmission will start at once due to the following factors:

• A device can transmit a packet without waiting if it senses the channel to have been
empty for a duration greater than or equal to EIFS and its backoff counter is zero.

• Since the resource duration is larger than the sum of the packet transmission time and
EIFS duration, the channel would be sensed to be idle for at least an EIFS duration at
the beginning of any given slot.

• When the MAC gets a packet at the beginning of a slot, its backoff counter would have
run down to 0. Note that any post-transmission backoff procedure would have been
initiated at least one broadcast interval (100 ms) ago. Furthermore, the slot structure
has enough silence periods during a broadcast interval for a device to count its back-off
timer down to zero even for the largest possible value. Thus, each device would have a
back-off counter that is zero when a new packet arrives and also sense the channel to
be idle.

After providing a slotted overlay on the standard MAC mechanism, a resource allocation
algorithm is proposed, because it is necessary to decide which transmitters will occupy the
same slot simultaneously. While the basic idea is to always use the slot currently used by the
farthest station, similarly to the already presented STDMA approach, the following algorithm
is used in order to achieve the desired behaviour in a distributed manner [SWL+12]:

• Every device observes the average energy in each resource in the past K broadcast
intervals and ranks these slots (resources) in increasing order of observed average energy.
Let the total number of slots be N .

10

Synchronous
OBU Window

(SOW)

(V2I)

1

. . .

2

Elementary Cycle (EC[i])

 Free period
(FP)

(V2I/V2V)

tSIW

SM
1

SM
2

SM
3

SM
n

 Infrastructure
Window

(IW)

(I2V)

 T
M

1

 W
M

1

 T
M

2

 W
M

2 . . .
TM

IW

 T
M

2

W

M
IW

Figure 2.4: Elementary Cycle of the V-FTT protocol [TJJ13]

• Initially, it picks a slot uniformly at random from the first M out of the N slots. Note
that these M slots are the ones with the lowest observed energy and typically M << N .

• Periodically, a device transmits a slightly smaller packet in its resource so that it can
listen to other devices in the remaining time within its resource. If the current slot is
observed to not belong to the top M slots due to changes in topology or arrival of other
users, it picks a new resource uniformly at random from the top M slots. The broadcast
interval in which the smaller packet is transmitted is chosen independently and randomly
by the devices so that not all devices transmit the shorter packet simultaneously. The
devices transmit one shorter packet in L broadcast intervals on an average.

2.2.3 VFTT

V-FTT [TJJ13] is a multi-master multi-slave Time Division Multiple Access (TDMA)
based protocol where the Road Side Units (RSUs) act as masters and schedule all transmis-
sions of the On Board Units (OBUs) which act as salves. Under this protocol, a super frame
is initiated by the master stations with a certain periodicity, the Elementary Cycle (EC), and
is composed of several phases, as depicted in fig. 2.4.

The first phase of the EC is used to schedule the slave nodes and is used only by the master
stations. In order to improve resilience against reception errors, each OBUs is scheduled by
several RSUs, which operate in a coordinated fashion to always attribute the same scheduling
information to each one of the OBUs. During this window, multiple RSUs transmit schedul-
ing information in sequence. The second phase is used by the OBUs to transmit their status
information in the attributed time slot. Contention free behaviour inside these two windows
is achieved by not using the regular collision avoidance mechanisms and executing all trans-
missions in a time-triggered fashion. Resilience against alien stations is also accounted for by
always using the short interframe space (SIFS) between adjacent frames. Any station follow-
ing the standard collision avoidance methods is not capable of compromising the integrity of
these cycles.

A third phase, the free period, is used to allow transmission of information by alien

11

STDMA SMAC VFTT

time triggered packet transmission x x x
receiver sensitivity control x
global time synchronization x x x
position information x x x
collision avoidance disabling x x

Table 2.2: Deterministic MAC requirements table

stations or non safety related information by compliant stations. During this phase the
standard collision avoidance mechanisms are used to access the medium.

2.3 Generic deterministic MAC device requirements

Following on the analysing of section 2.2, it is possible to infer about the needed hardware
functionalities to implement deterministic MAC protocols.

STDMA requires the ability to bypass the carrier sensing mechanism in order to be able
to transmit packets even at the cost of causing deliberate collisions. The distributed time
slotted approach requires global time synchronization. The algorithm that manages the whole
system is based on location information, which must be available at each one of the stations.
At last, being a time division approach, the packets must be sent according to a time stamp
value and not in the best effort method devised in the standard approach.

Synchronous MAC is slightly less demanding in the required features and is able to be
implemented relying only on accurate global time syschronization and time triggered packet
transmission. No bypassing of standard mechanisms is required at all, only a fine control over
the instant that the packet is delivered to the MAC layer.

It might also be interesting to provide mechanisms to limit the device effective range in
order to reduce the RSU range and thereby the maximum amount of OBUs it must accom-
modate. This can be done, for instance, by manipulating the minimum signal levels required
to perform the carrier sense procedure.

A roundup of all the required features to implement any of the presented deterministic
MAC schemes is presented in table 2.2.

12

Chapter 3

The IT2S Experimental Vehicular
Communication Platform

The IT2S vehicular communication platform is a research oriented 802.11p compliant
device developed following SDR techniques which uses an FPGA for the baseband signal
processing. It is a SoftMAC device in the sense that only the time constrained facilities are
implemented in the FPGA and most of the MAC layer is implemented in a general purpose
computer connected to the FPGA via a high speed USB connection. Although designed to be
standards compliant, the architecture of the platform is very versatile and flexible enough to
allow modifications to specific parts of the implementation. In fig. 3.1 an overview of the main
components can be seen, with two radio front-ends and a Global Positioning System (GPS)
module connected to an FPGA which is itself connected to a general purpose computer via
an USB 2.0 connection [FOAC13].

IT2S Board - LMAC/PHY Device

FPGA
Module

Lower MAC
and Digital

Baseband PHY
(Dual)

ADCs
DACs
Rx/Tx

I/Q

RF
Frontend
Module

Higher Layers USB Interface

GPS Receiver
Location and Time

Synchronization

Digital
side

Analog
side

DSRC
Antennas

ADCs
DACs
Rx/Tx

I/Q

RF
Frontend
Module

Figure 3.1: IT2S platform architecture

The main goal of this work is to create a device where deterministic MAC mechanisms

13

Figure 3.2: IT2S platform detailed architecture [dA13]

can be implemented and tested, by using the IT2S platform as a starting point. This chap-
ter will make a presentation of the various platform components and their capabilities and
shortcomings, in order to provide a solid basis for the next chapters.

3.1 Hardware components

Although the platform itself is custom design, the components used on its construction
are Commercial Off-The-Shelf (COTS) [dA13]. Figure 3.2 shows a detailed architecture of
the platform, discriminating the used components.

The centrepiece of the platform is the Trenz TE0630 micromodule. It is an industrial
grade device containing, among other things, a Xilinx Spartan 6 XC6SLX150-CSG484, the
most capable of the family, 128 MB DDR3 RAM and a Cypress EZ-USB CY7C68013A-
56LTXC(I), also known as the FX2LP and non volatile memories to hold both the FPGA
bitstream and the USB controller firmware. It provides 56 I/O pins that are used to connect
the remaining hardware of the platform to the FPGA using a multitude of protocols, such as
Serial Peripheral Interface (SPI) or Universal Asynchronous Receiver/Transmitter (UART).

The main board uses an AD9861 Analog-to-Digital/Digital-to-Analog (AD/DA) to cross
between the digital and analogue domains. It provides two 10 bit resolution Analog-to-Digital
Converter (ADC) capable of working at up to 200 Msps and two 10 bit Digital-to-Analog
Converter (DAC) capable of operating at up to 50 Msps. One ADC/DAC pair is used for
the in phase component of the Orthogonal Frequency Division Multiplexing (OFDM) signal
while the other is used for the quadrature component. The bandwidth of the channel used
in vehicular communications is 10 MHz, therefore, the minimum required sampling rate is
20 Msps, making the ADC more than capable of fulfilling the task. One particular feature
of this module is the availability of an auxiliary ADC to process the RSSI signal provided
by the radio hardware, that is later used as the main parameter for the MAC mechanism.

14

This module is connected to the FPGA via an SPI interface, both for configuration and data
transfer.

The radio front-end was specifically designed to operate in the frequency band allocated
for vehicular communications. It is centred upon a MAX2828 module along with a Power
Amplifier (PA) to generate a suitable signal for transmission and an Low Noise Amplifier
(LNA) to be able to receive signals within the mandated sensitivity. This module is connected
to the AD/DA via a set of differential IOs for optimal performance.

The GPS module is GlobalTop PA6H which although possessing an integrated antenna
also supports an external one for improved performance. With this module it is possible to
integrate accurate position and time information directly on the platform, with recourse to
external solutions. It is connected directly to the FPGA via an UART interface, both for
information retrieval and configuration, if needed.

The platform itself also provides a couple more interfaces that can be used to interact
with it: a set of General-Purpose Input/Output (GPIO) directly connected to the FPGA
which can be used during tests requiring synchronization between multiple devices and an
UART which can be used as low throughput data transmission solution between an external
computer and the FPGA, either for test or debug purposes.

Finally, being a SoftMAC device, this platform makes use of some sort of computer con-
nected to its USB interface to provide the implementation of the higher stack layers. The
device currently used is a Raspberry Pi embedded PC running a GNU/Linux operating sys-
tem. Despite the fact that the only requirements for a device to fill this role is the ability
to be a USB host, this work will focus on using the platform as it is, without any hardware
modifications, including to the selected embedded PC. The final solution should, however, be
portable to other computers.

3.2 PHY

As explained in section 2.1, the physical layer used in vehicular communications is based
on the OFDM PHY specification of the IEEE 802.11 standard. The IT2S platform, using
software defined radio centred approach, implements the Physical Layer Convergence Proce-
dure (PLCP) in the FPGA and the Physical Medium Dependent (PMD) layer using both the
baseband board and Radio Frequency (RF) frontend.

This work is not concerned with modifications to the PLCP nor to the PMD, therefore, it
is sufficient to present the interface that the PHY as a whole provides to the system. The IT2S
implementation closely follows the standard description and provides the following standard
primitives:

• PHY TXSTART

• PHY DATA

• PHY TXEND

• PHY CCA

• PHY RXSTART

• PHY RXEND

15

Other than those, it also provides one more primitive, PHY CHGCHANNEL, with a semantic
that is identical to the other ones.

These primitives, clearly defined in the standard [IEE12], are provided via the set of
signals shown in fig. 3.3. The INDICATION signals are used by the PHY to inform the LMAC
of events that need to be addressed at once, without any other form of handshaking, such
as one of the packet reception phases or clear channel assessment. The REQUEST signals are
used to start an operation, such as one of the packet transmission phases, be it start, data
transfer or end, or channel change. The CONFIRM signals are the PHY acknowledgement
for any previous request. The VECTOR signals contain the operation parameters, while the
DATA signals are used to transfer the data. Together, this primitives provide access to all
the functionality that the PHY has to offer while abstracting the underlying hardware and
give plenty of leeway for the MAC implementation. In itself, the PHY does not enforce
any specific behaviour, other than the physical signal formatting to ensure interoperability
between stations. The PHY CCA primitive can be used by the MAC layer in order to implement
the standard medium access mechanism, but can also be ignored in favour of some external
mechanism to assess the medium state. It is completely up to the MAC implementation to
decide the best course of action.

3.3 Lower MAC

The current MAC layer implementation used in the IT2S device follows all aspects of the
802.11 standard for vehicular communications [dS11]. Being a SoftMAC implementation, the
hardware only contains the time critical components of the MAC layer, or the LMAC, which
is responsible for:

• manage PHY interface: transmission, reception, channel changing

• provide memory to store frames

• generate and verify the Frame Check Sequence (FCS) for each frame

• implement CSMA/CA mechanism

• provide suitable interface for the Upper MAC (UMAC)

All memory used to store frames, either to transmit or received, is inside the LMAC. The
provided primitives to interact with the memory manager are reduced to slot allocation and
release, where each slot is big enough to hold any possible frame. No facilities for message
queuing nor separate memory buffers for messages with different priorities are provided. Apart
from automatic allocation of memory for received packets, all other memory management
functions are performed by the UMAC, namely, memory allocation to store packets to be
transmitted and memory releases.

The reception of a packet from the PHY is completely automated and no intervention
from the UMAC is required. During reception, the FCS field is automatically checked and
any error is signalled to the UMAC. A memory slot is automatically allocated for the incoming
packet and later reported to the UMAC to allow the packet retrieval. It is left to the UMAC
to later free that slot in order to prevent the memory from being full.

The transmission of a packet starts with the UMAC allocating a memory slot and placing
the frame to send in it. It is then followed by a request to send containing the transmission

16

PHY

PHY_RXSTART_INDICATION
PHY_RXDATA_INDICATION
PHY_RXEND_INDICATION

RXDATA
RXVECTOR_LENGTH

RXVECTOR_DATARATE
RXVECTOR_RSSI

RXVECTOR_NOERROR
RXVECTOR_FORMATVIOLATION

RXVECTOR_CARRIERLOST
RXVECTOR_UNSUPPORTEDRATE

PHY_CCA_INDICATION

PHY_TXSTART_REQUEST
PHY_TXSTART_CONFIRM

PHY_TXDATA_REQUEST
PHY_TXDATA_CONFIRM

PHY_TXEND_REQUEST
PHY_TXEND_CONFIRM

TXVECTOR_POWERLEVEL

TXVECTOR_DATARATE
TXVECTOR_LENGTH

TXDATA

PHY_CHG_CHANNEL_REQUEST
PHY_CHG_CHANNEL_CONFIRM

CHG_CHANNEL_VECTOR_ID

Figure 3.3: PHY interface

17

Figure 3.4: LowerMAC interface with other modules [dS11]

parameters. The transmission will occur following standard mechanisms of CSMA/CA and
may be postponed indefinitely, until the medium is deemed free for the necessary amount of
time. The FCS is automatically calculated and appended to the transmitted frame by the
LMAC. After a transmission is completed with success the UMAC is notified and may free
the memory slot used to hold the packet.

Channel tuning is also handled by the LMAC. The channel changing operation cancels
any ongoing operation, be it transmission or reception and takes the amount of time necessary
for the underlying hardware to tune itself in the new frequency.

The LMAC was implemented with the purpose of being integrated in a system where the
processor implementing the UMAC lies in the same FPGA fabric as the LMAC, such as the
Xilinx MicroBlaze, as shown in fig. 3.4. This decision lead to the design of a register based
interface coupled to a Processor Local Bus (PLB) that requires sequential reads and writes to
execute each operation. Despite that, the UMAC is currently implemented in an embedded
PC that connects to the FPGA via USB, making this interface obsolete and inefficient. It is
used simply because of historical reasons.

3.4 USB Connection

The interface between the LMAC and the UMAC is provided by a USB connection between
the FPGA and an embedded PC. This link is centred upon a Cypress FX2LP controller
running a custom designed firmware, with a matching device driver for the embedded PC and
hardware modules for the FPGA.

18

3.4.1 USB basics

USB is a master slave communication system that is extensively used in both personal and
embedded PCs. In a USB system there is only one master, the host and all communications
are initiated by it, with a slave node, or device, limited to responding the host requests. The
main reason behind this architecture is to allow all the complexity to remain within the host,
generally an expensive equipment, while allowing the devices to remain simpler and, above
all, cheaper. Whenever talking about USB communications, the term IN always means a
transfer from the device to the host, while the OUT always relates to a transfer from the host
to the device.

The USB wire protocol is packet oriented, providing automatic error checking and re-
transmission in some cases. The packets are organized in frames which always have the same
duration, 1 ms, and are managed by the host in order to provide guarantees and allow for
the correct functioning of the hole protocol. The high speed version, that is provided by the
FX2LP and used in the platform, goes further in dividing each frame in 8 micro-frames, of
125us duration each.

USB distinguishes four transfer types, each one providing a different guarantees and fea-
tures. Control transfers are used by system for configuration purposes and are not used
to transfer actual data. Interrupt transfers have guaranteed latency, as low as one per
micro-frame, but are limited to 1024 bytes. Isochronous transfers are lightweight: use a
streamlined error checking mechanism and never resend failed packets, but provide guaran-
teed bandwidth that can be up to 3 1024 byte packets per micro-frame. Bulk transfers have
automatic error checking and retransmission and use all the bandwidth not used by any of
the other transfer types, having the greatest potential bandwidth but also being subject to
the current bus usage by other transfer types.

All communications occur over an endpoint, a unidirectional link supporting one transfer
type. A device using USB to communicate usually provides several endpoints and uses each
one of them according to the type of traffic that is transmitting at the moment.

3.4.2 Cypress FX2LP

The IT2S platform uses a Cypress FX2LP device to communicate with the embedded PC.
This module implements a versatile high speed USB device and provides an adequate interface
to interact with the FPGA. At the core of the FX2LP lies a 8051 based microcontroller that
not only programs the behaviour of the whole device but is also capable of processing the
data coming from the USB connection. In certain applications, this device could be used as
standalone processor of a whole system and one can find a wide range of external interfaces
to interact with memories or other buses such as Inter-Integrated Circuit (I2C) or SPI. One
other way to use this device is though a special FIFO like interface that was specifically
designed to interface complex systems, such as an FPGA. After initial programming, the
FIFO interface provides direct access to the 4 general purpose endpoints that the FX2LP is
capable of supporting, as shown in fig. 3.5.

Under normal operation, the IT2S platform uses the FIFO interface to allow the FPGA
access to the USB and does not use any of the other FX2LP capabilities. There is one
circumstance however where the SPI bus is used, and that is when programming the FPGA
over USB. That situation is not relevant to this work and will not be covered.

19

Figure 3.5: FX2LP slave FIFO overview [Sem]

20

Figure 3.6: FX2 slave fifo interface

3.4.3 Slave FIFO interface

The FX2LP FIFO interface is capable of providing either an 8 bit or 16 bit data bus and
some control signals that give direct access to the USB endpoints to an external device, such
as an FPGA, as can be seen in fig. 3.6.

The FD is a bidirectional data bus that is used to transfer data to and from the FIFOs.
Since the IT2S platform hardware only gives access to an 8 bit data bus it is not possible
to use the 16 bit solution, only the 8 bit. The direction of the bus is controlled by using
the SLOE pin. FIFOADR is used to select to which FIFO is FD currently connected to. The
SLRD and SLWR are use to perform a read and a write operation, respectively. This signals
can be configured by the firmware to operate in asynchronous mode and work as strobes, or
in synchronous mode and work as enables. Due to the synchronous nature of the FPGA it is
advisable to operate the signals as synchronous in order to make timing analysis possible. The
FX2LP can be configured to operate either from an interface or external clock source. When
driven by an internal clock source, it is possible to make that clock available in the IFCLK

pin, so it can be used to synchronize the operation of the external master. When driven by
an external clock source, that can range from 5MHz to 48MHz, this pin is used to source the
intended clock. The flag pins can be configured to provide information relative to the current
state of the FIFOs, such as empty and full, or programmable empty and programmable full.
The FX2LP will commit data to an IN endpoint whenever there is enough to fill an USB
packet. It is however possible to force such commit by using the PKTEND pin.

All the FX2LP FIFOs have access to a configurable amount of buffering. In the worst
case scenario, which occurs when all 4 possible endpoints are being used, this buffering is at
most 2x512 meaning there is space to keep two packets with a maximum size of 512 bytes
each. The buffers are packet oriented, so, two packets of 2 bytes will also occupy the complete
buffering capacity of this system.

21

3.5 Device driver

The IT2S platform uses a custom designed communication protocol to allow the LMAC
to be controlled by an embedded PC that runs the UMAC. The driver makes use of one
bulk out endpoint for operations and packets sent by the embedded pc, one int in endpoint
for events generated by the LMAC, and one bulk in to transfer the received packets from
the LMAC to the PC. All operations are initiated by the UMAC and the LMAC can only
report events related to either the result of the requested operation or a received packet. All
information transmitted in the bulk endpoints is stuffed with the inclusion of start and end
of frame markers.

Despite the fact that the platform provides two radios, the current device driver only
supports one radio, due to limitations on the communication link between the LMAC and
the UMAC.

3.5.1 Communication protocol

The protocol implements 4 operations that directly map to LMAC functionality:

• transmit packet

• receive packet

• change channel

• release memory slot

Each one of these operations is followed by one or more event:

• operation parsing status

• operation deferred

• operation complete

The LMAC can generate on event on its own:

• packet received

The protocol specifically requires that all memory slots are released by the PC, either
for transmitted packets or for received packets. This feature was deemed necessary to allow
the repeated transmission of the same packet multiple times without requiring it to be resent
from the PC to the FPGA, but the facilities to used where never introduced because with
time it was considered unnecessary. Currently it simply introduces significant overhead in the
protocol.

All operations are executed sequentially in the order they arrive at the FPGA.

3.5.2 Transmit packet

In order to transmit a packet, the PC issues a request containing the intended transmission
parameters and the data to transmit. The sequence of message exchange is presented on
fig. 3.7.

During this process, when the packet is submitted to the LMAC for transmission, the
memory slot it is stored in is reported to the UMAC which is responsible for its later release.

22

UMAC LMAC

REQUEST TX

REQUEST PARSED

TX SCHEDULED

TX COMPLETE

FREE SLOT

REQUEST PARSED

SLOT RELEASED

Figure 3.7: Packet transmission operation sequence diagram

23

UMAC LMAC

REQUEST RX

REQUEST PARSED

RX COMPLETE

FREE SLOT

REQUEST PARSED

SLOT RELEASED

RX EVENT

Figure 3.8: Packet reception operation sequence diagram

3.5.3 Packet reception

A packet reception operation starts with an event from the LMAC reporting the received
packet status and location. It is then followed by a request from the UMAC to read the said
packet and finally with a request to release the memory slot it was using. Figure 3.8 shows
the message exchange sequence.

3.5.4 Channel change

The channel change operation is executed by issuing a command with the desired channel.
It is then forwarded to the LMAC and any ongoing operation is immediately cancelled. The
message exchange sequence can be observed in fig. 3.9.

24

UMAC LMAC

REQUEST CHANGE CHANNEL

REQUEST PARSED

TX COMPLETE

Figure 3.9: Packet reception operation sequence diagram

25

26

Chapter 4

Architecture

Having identified both the requirements of a generic deterministic MAC device and the
capabilities and characteristics of the IT2S vehicular communications platform, it is now
possible to propose on an architecture for the said device, that leverages the flexibility of the
existing IT2S platform. The IT2S platform lacks deterministic behaviour due to limitations in
both the communication link between the UMAC and the LMAC and the primitives provided
by the LMAC. It is necessary to extensively modify the IT2S platform components to be able
to provide the functionality identified in section 2.3. This chapter will begin by identifying
which modifications are required, and follows to describe them in detail.

4.1 Required modifications to the IT2S platform

The creation of a device that can be used to implement many kinds of deterministic
MAC mechanisms based on the IT2S platform requires addressing several challenges, but
the modular architecture of the platform allows the separation of the solution in roughly
independent modules. The separation used in this analysis is shown in fig. 4.1, with the
blocks requiring changes highlighted in grey.

All the studied deterministic MAC mechanisms use the same physical layer, as defined
by the standard. This allows the use of the all the platform modules responsible for the
generation and reception of information, namely the PHY and all fixed hardware components.
On the other hand, the LMAC is tightly coupled to the standard implementation and does
not provide the flexibility required to implement a generic MAC mechanism. The existing
connection between the LMAC and the UMAC does not provide deterministic behaviour and
the device driver does not provide the required facilities to implement a generic deterministic

DEVICE
DRIVER
(UMAC)

USB
COMMUNICATION

LOWER MAC PHYAPPLICATIONS

Figure 4.1: Global architecture overview

27

MAC. In order to achieve the desired solution, it is necessary to redesign the LMAC and all
modules that lie between it and the software implementing the deterministic MAC.

The LMAC, responsible for interfacing the physical layer implementation and the time
constrained components of the MAC mechanism must in fact implement all the required
functionality and flexibility. As presented in section 2.3, it is mostly desirable to modify the
minimum signal level above which the medium is regarded as busy and therefore any packet
detected. The device must also be able to disable any collision avoidance mechanisms it
possesses in order to be able to transmit packets in a timely fashion and with disregard for
any ongoing transmission. At last, there must be support logic attached to a global timing
device to allow time triggered transmission of packets. Memories must be provided for several
traffic priorities and differentiated between transmission and reception, in order to be able to
provide deterministic behaviour for packet transmission.

The link between the LMAC and the UMAC must provide deterministic behaviour and
adequate performance to handle the required traffic. The USB communication system cur-
rently used by the IT2S platform suffers from several drawbacks that do not allow its use on
a deterministic system:

• Use of bulk endpoints to transmit all packets to the FPGA fails to provide guarantees
on the latency of such transfers;

• The protocol in use is extremely heavy and does not allow the device to be used in its
full potential due to lack of bandwidth in the bus to accommodate all the transfers it
requires;

• The use of stuffing to identify the beginning and end of transfers introduces non-
deterministic behaviour in a sense that the transfer size will vary with the message
content;

• Stuffing also introduces a processing overhead, because, while the stuffing/destuffing
procedure is extremely simple and efficient to implement in an FPGA, it is slow in a
general purpose processor due to its sequential nature. It should be possible to bypass
the need for stuffing if some constraints are introduced in the communication;

• The current implementation is only able to support one radio. It is a goal of this new
system to be able to support a generic amount of modules, be them radios or other
subsystems, such as the GPS module traffic, development tools for debug or any new
facilities introduced in future developments.

The device driver must implement the UMAC and provide not only the existing operations
but also the primitives identified in 2.3, amounting to the following set:

• best effort packet transmission

• time triggered packet transmission

• modify collision avoidance settings

• change channel

• receive packet

28

UMAC LMAC

TRANSMIT REQUEST

PACKET TRANSMITTED

Figure 4.2: Transmission sequence diagram

4.2 Operation protocol

Instead of relying on multiple information exchanges between the PC and the platform for
each operation, as the currently implemented protocol, this proposal assumes that both the
platform and the communication bus are working properly and issues the commands without
waiting for an acknowledgement from the FPGA. It still contains the notion of event which
is used for the FPGA to inform the applications about transmission and reception results.
As a result of the simplification, only two communication channels are now required, one to
transmit data from the UMAC to the LMAC and one in the opposite direction.

4.2.1 Requests

Transmit packet

This request, with a sequence diagram shown in fig. 4.2, is used to transmit a given packet
in a best effort fashion. The packet, along with the transmission parameters are sent to the
LMAC for inclusion on the transmission queue. Afterwards an event will be generated with
the outcome of the transmission. The transmission parameters include: power and bitrate.

Time-triggered transmit packet

This request, with a sequence diagram shown in fig. 4.3, is used to transmit a packet in
a specific instant. It is in all aspects equal to the previous request, with the exception that
the parameter list includes the time at which the packet should be sent. The device will still

29

UMAC LMAC

TIME TRIGGERED TRANSMIT REQUEST

PACKET TRANSMITTED

Figure 4.3: Time-triggered transmission sequence diagram

honour any collision avoidance mechanism in place, and this request will fail if the medium
is declared as busy on the moment of transmission.

Change channel

This request, with a sequence diagram shown in fig. 4.4, is used to tune the device in a
different channel. It takes effect immediately upon reception by the LMAC.

Configure CCA

This request, with a sequence diagram shown in fig. 4.5, allows the setting of the device
reception sensitivity and carrier sense state. It affects the way in which the LMAC perceives
the medium occupancy and after set, these parameters will be used for all transmitted packets.

4.2.2 Events

Packet received

Whenever a packet is received by the platform it is immediately sent to the PC, either
just the reception status for a failed reception, or the status plus the data for a successful one,
as shown in fig. 4.6. Along with the packet comes also a timestamp containing the instant of
the packet reception. This event is in stark contrast with the previously existing protocol, in
the sense that the PC automatically receives the packet data without needing to request for

30

UMAC LMAC

CHANGE CHANNEL REQUEST

Figure 4.4: Change channel sequence diagram

UMAC LMAC

CONFIG CCA REQUEST

Figure 4.5: Configure CCA sequence diagram

31

UMAC LMAC

PACKET RECEIVED

Figure 4.6: Packet reception sequence diagram

it. This allows the reception memory to be exclusively managed in the FPGA and reduces
the amount of tasks and requests required from the PC.

Packet transmitted

Whenever a packet is transmitted, the transmission status and timestamp and sent to the
PC. This allows the application to keep track of the amount of packets still in the transmission
queues and also accurate statistics.

4.3 LowerMAC

The LMAC is the responsible for the management of the PHY and for providing all the
necessary mechanisms to send and receive data. This section proposes a complete redesign
of this module in order to provide the required flexibility to implement generic deterministic
MAC schemes. It also includes the architecture of the auxiliary logic required to process
UMAC requests and memory distribution. In essence, all blocks inside the FPGA with ex-
ception of PHY and the system responsible for providing communication between the LMAC
and UMAC, which will be described in 4.4.

The proposed architecture for the LMAC is presented in 4.7. Each one of the modules is
responsible for accomplishing a single task and hides the inherent complexity to that task.
The separation was made on the basis of allowing future developments without requiring deep
architectural modifications. Two modules directly interact with the USB communication
system: Command Processor and Event Conveyor. The first is responsible for decoding
and processing of the UMAC commands, while the second conveys the LMAC events and
received information to the UMAC. Both modules interface a memory bank, which is were
all the required memories are contained. The Memory Bank hides underlying complexities of
memory access under a convenient interface while at the same time providing simple memory
management facilities, and is used to store not only the packets for transmission but also

32

USB
COMMUNICATION

COMMAND
PROCESSOR

CCA
CONTROLLER

MEMORY
BANKS

PHY ABSTRACTION LAYER

PHY

DISPATCHER

EVENT
HANDLER

GPS

TIME KEEPING

Figure 4.7: Lower MAC and auxiliary logic overview

the received ones. The CCA Controller provides a flexible assessment of the current channel
state allowing enabling and disabling of carrier sense mechanism as well as setting of the
reception sensitivity. The Dispatcher is responsible for implementing the various priority
queues and issue the packet transmission requests, either at a specific time for time triggered
transmissions or in a best effort basis for regular transmissions. The operation of this module
is regulated not only by the CCA but also by an external time keeping device that provides
the time base for time triggered packet transmissions (the design of the time keeping module
is out of the scope of this document). At last, the PHY Abstraction Layer is responsible for
abstracting the PHY interface and providing an adequate set of signals to be used by all the
other modules.

In order to implement a Memory Bank that suits the needs of the device, it is necessary
to make an assessment about the required memory. The communication system is designed
in such a way that real-time traffic can be transferred to the UMAC faster than it is received
by the LMAC. As such, even considering 8 packet real-time queues in each direction, with a
maximum packet size of 512 bytes, the amount of required memory is 8KB. Non real-time
packets can be, at most, 2344 bytes long, according to the standard, therefore, making a naive
analysis, in order to provide space for 8 of them, at least 18752 bytes are required. So, at the
very least, with two non real-time packet queues, one for transmission and other for reception,
there is the need for about 36KB of memory. To provide the full set of 8 transmission priority
queues and one reception queue under the same circumstances, about 1.3MB of memory are
required.

33

Endpoint number Type Direction

2 OUT Interrupt
4 OUT Bulk
6 IN Interrupt
8 IN Bulk

Table 4.1: Available USB endpoint configuration

4.4 USB connection (Multilink)

Although this work is focused on the development of a device capable of implementing
a deterministic MAC scheme, the IT2S platform contains two radios that must be used
simultaneously in order to comply with the current standards. The platform also possesses
internal testing tools, that although outside the scope of this document, require the transfer
of large amounts of information to and from the PC. At last, being a research oriented
platform, it may incorporate more modules, both inside the FPGA fabric or using some of
the available connectors. It is desirable to develop a communication system between the
FPGA and the PC that is capable of accommodating a generic amount of devices with
different requirements. This section presents an USB communication system that is capable
of transferring both bounded latency and high throughput traffic to multiple independent
users over a single USB connection, thus providing an appropriate communication system not
only for a deterministic MAC implementation but also for other high throughput users, from
now on named MultiLink.

4.4.1 Overview

As explained in section 3.4, the USB specification already provides independent commu-
nication channels over a single physical link, the endpoints. Each one of this channels is
capable of transmitting information in one direction and with a certain amount of guaran-
tees, depending on its own type. The IT2S platform uses an FX2LP USB controller that is
capable of supporting up to 4 endpoints in the FIFO interface that is available to the FPGA.
The proposed solution, shown in fig. 4.8, provides a configurable number of links, each one
with of two types of bidirectional channels: high throughput and bounded latency. At first
sight, these channels map directly into endpoints: bulk for the high throughput and interrupt
for the bounded latency, but if one needs to provide more than one link, the FX2LP no longer
provides the necessary amount of endpoints. Changing this component is not an option, so,
to be able to provide more than one link, in this case a generic amount of links to allow for
future work, it becomes necessary to devise a scheme that is able to multiplex the native
endpoints in some way to achieve the necessary amount of channels.

The number of channels required for each link matches the available endpoint count, and
it is possible to individually configure each endpoint to provide the required characteristics
for each channel. The approach that this architecture proposes is to configure each one of
the available endpoints as presented in table 4.1 and multiplex them to provide the amount
of channels required by the whole system.

The architecture of this subsystem, presented in fig. 4.9, is made of three main components
that will be separately presented: the FPGA module, the FX2LP firmware and the device

34

FPGA USER 1

FPGA USER N

...

HT IN

BL IN

HT OUT

BL OUT

HT IN

BL IN

HT OUT

BL OUT

PC USER 1

PC USER N

...

CHANNEL

LINK

Figure 4.8: MultiLink concept

driver. On the FPGA side, a set of FIFOs allow access to each one of the channels, while on
the Personal Computer (PC) side, a small set of function calls is provided. The system must
provide adequate internal buffering to conceal the inherent latency of the underlying USB
connection from the application, both on the FPGA side and on the PC side. The firmware
running on the FX2LP is not in any way visible to the user and all explanations concerning
it will be left to the next chapter.

4.4.2 Multiplexing protocol

In order to multiplex each one of the USB endpoints, it is necessary to devise a protocol
to wrap all the transmitted data and allow the identification of the link to which the said
data belongs to.

HOSTLINK

FPGACOMPUTER

SOFTWARE

INTERFACE

USB

CONTROLLER

HARDWARE

CONTROLLER

USER

1

USER

2

USER

N

APP

1

APP

2

APP

N

......

Figure 4.9: MultiLink architecture overview

35

ID SIZE DATA

1 3 SIZE+30 2

Figure 4.10: MultiLink frame format

The underlying USB protocol is packet oriented and will fragment any transfer bigger
than the maximum transfer size which is 1024 bytes both for interrupt and bulk transfers.
This fragmentation is done automatically by the USB controllers but is exposed to the users
when reading data from the endpoints. On the software side, a single read might not return
the full transfer but only the last received USB packet, so the size of the read cannot be used
to infer the total amount of transmitted data. On the FPGA side data is always read byte
by byte, as provided by the slave FIFO interface.

Bounded latency communications over USB require the use of interrupt endpoints, as al-
ready explained. However, it is important to keep in mind that USB only provides guarantees
for a single transfer, that is, if the message needs to be fragmented over multiple transfers it
is not possible to ensure deterministic behaviour because the latency will be related to the
amount of transfers required to complete the operation. Only by keeping the message size
small enough to fit in a single transfer is it possible to provide a maximum latency guarantee
per message.

High throughput transfers also benefit from this fragmenting behaviour by allowing the
dimensioning of the buffers required to keep the data transmitted over the bus and the
balancing of the load between different users elegantly as long as the bus remains capable of
sinking messages faster than they are produced. This would not happen if messages were of
unlimited size and a single user would be able to starve all other users even if producing data
at a low rate.

The devised protocol frames all information in messages that are, at most, as big as
the maximum USB transfer size, so that one single frame is sent in one transfer and never
fragmented. For a packet to be sent, one of two things must happen: either there is enough
information to fill an USB packet or the user specifically requests to send a message which
size is less than the maximum transfer size. The data is then framed and a header with two
pieces of information is added: message size and link identifier, as shown in fig. 4.10. In effect,
the maximum payload size is the USB transfer size minus the header size. The size of this
header is dependable on the implementation requirements for maximum amount of links.

One of the drawbacks of this solution is that if a packet oriented protocol is used over
this system, its messages may be fragmented. It is, however, a similar behaviour to most
transport protocols [citation] and any application using it must take appropriate measures
that allow the reception of a single packet of information in a fragmented way.

4.4.3 FPGA logic

As explained in section 3.4, the FX2LP provides a slave FIFO interface that can be used
to interface an FPGA. It is the task of the FPGA logic of this module to translate that
interface into one more suited to be used by other modules in the FPGA. One very common
and versatile interface is the FIFO. It provides buffering and allows crossing domains with
not only different processing speed but also different clock signals, if necessary. The FPGA
logic of this module is then responsible of implementing the multiplexing protocol described

36

PROCESS
BL IN

USB
SUBSYSTEM
INTERFACE

PROCESS
BL OUT

PROCESS
HT IN

PROCESS
HT OUT

...
LINK 1

LINK N

...
LINK 1

LINK N

...
LINK 1

LINK N

...
LINK 1

LINK N

USB

SOFTWARE
INTERFACE

Figure 4.11: MultiLink driver architecture

in the previous section and provide adequate buffering for all channels of all links.

4.4.4 Software interface

The software interface to this USB based communication system, or device driver provides
an interface to communicate with the FPGA with the already explained features. This piece of
software should also conceal the underlying USB details and implement the protocol explained
previously. The proposed architecture for such driver is shown in fig. 4.11.

The interface provided to the system users allows reading and writing to a set of interme-
diate buffers. Each one of these sets is managed by a different process that creates appropriate
frames in the case of out channels or processes incoming frames in the case of in channels.
As with other transport protocols, a write of a size greater than the underlying maximum
transfer size is automatically fragmented into multiple frames. Each one of these processes
interacts with one single process that controls the USB link.

4.5 Device Driver

The device driver is responsible for exposing the platform functionality to the user ap-
plications using the already described USB communication system. The proposed protocol
requires two channels per radio, one to send requests and one to receive events. The type of
channels to use is related to the purpose of each one of the radios. Following the ETSI ITS
G5 specification, one of the radios is always synchronized on the control channel while the
other is used in the service channels. Deterministic MAC schemes will most likely be used
only on the control channel, therefore it makes sense to use bounded latency channels for one
of the radios and high throughput for the other. The proposed driver architecture should be
adequate for both deterministic and high throughput operation.

The driver, which architecture is shown in fig. 4.12, is composed of several separate pro-
cesses that handle each one of the supported operations. The transmission of the requests to
the LMAC is done under supervision of a Request Scheduler in order to allow fair access
to the used MultiLink communication channel. The events sent by the LMAC are separated

37

CHANNEL
CHANGE
HANDLER

TX
HANDLER

RX
HANDLER

CCA
CONTROLLER
HANDLER

API

MULTILINK
IN

CHANNEL

MULTILINK
OUT

CHANNEL

REQUEST
SCHEDULER

...

EVENT
HANDLER

Figure 4.12: Device driver architecture

according to their type and forwarded to the appropriate handler. Transmission events are
forwarded to the TX Handler in order to allow the maintenance of accurate information re-
garding the memory state of the LMAC packet buffers while reception events are forwarded to
the RX Handler in order to update the reception statistics and provide the add the received
information to the reception queue..

All this infrastructure is concealed under an interface that ultimately provides the appli-
cation model to implement the deterministic MAC scheme, as is the main objective of this
work. The Application Programming Interface (API) that this system provides is comprised
of the following primitives:

• device list: list devices connected to computer

• read rx statistics: read the packet counters of a device

• read current channel: read the currently tuned channel of a device

• rx: blocking packet read

• tx: transmit best-effort packet

• tx tt: transmit time-triggered packet

• change channel: tune device in a new channel

• config cca controller: configure CCA controller parameters

In can be noted that there are not methods for opening or closing a device. This follows
from the use of the MultiLink communication system that abstracts the platform from the
underlying USB device, therefore, it is possible to have multiple radios using the same physical
device. To use this interface, the applications must first call device list to get handlers for
the currently connected devices and use those same handlers later when calling any of the
other primitives. From the point of view of this interface, multiple simultaneous users of a

38

single device are allowed and it is left to the higher layers the management of such behaviour
in order to ensure coherent operation.

39

40

Chapter 5

Implementation

As outlined in the previous chapter, the proposed architecture is divided in three main
components:

• Lower MAC

• USB communication system

• Device driver

This chapter will explain in detail the implementation of each one of these elements.

5.1 Lower MAC

The implementation of the LMAC follows the description presented in section 4.3.
After having presented the architecture of the LMAC in section 4.3 it is left to the im-

plementation to define the inner structure of each one of the described blocks and their
interconnections. All the blocks presented here are implemented in the FPGA and as such
have no restrictions concerning which internal interfaces are used. Each one of the developed
blocks provides a custom interface that better exposes its functionality to the other blocks
and does not suffer from constraints introduced by the use of standard interconnects. Most
of the blocks are implemented using a state machine to achieve the desired behaviour.

5.1.1 Memory Bank

The FPGA module under use provides two types of memories that meet the requirements
outlined in 4.3, namely: external Double Data Rate (DDR) and internal Block RAM. The
DDR provides much more capacity than the block RAM, 128MB vs 523KB, but must be
accessed via a specific interface that allows only one access at a time. In order to use this
memory, it would be necessary to use specific blocks and implement a multiplexing mechanism
that would allow simultaneous access to both the transmission and reception paths. The
Block RAM on the other hand, exposes itself as configurable amount of independently sized
memories that can be tailored to match the user requirements. However, this memory is
also used by other FPGA blocks, such as First In First Outs (FIFOs) and not all of it is
available to be used by the memory bank. According to the already referred space requirement
analysis, 44KB (36KB + 8KB) should be enough for a basic working implementation, with

41

aEnable
aSlot
aAddress

aDataOut
aWriteEnable
aDataIn

bEnable
bSlot
bAddress

bDataOut
bWriteEnable
bDataIn

full
allocate

allocatedSlot
free
freeSlot

MEMORY

MEMORY
MANAGER

Figure 5.1: Memory bank block diagram and interface

only one transmission priority, amounting for roughly 14% of the available Block RAM. In
order to keep the implementation simple this memory is going to be used to provide the
packet buffers required for the device. The modular design of this system allows for future
expansion according to the perceived needs.

The interface provided by this module, shown in fig. 5.1, provides two independent ports
per memory in order to allow simultaneous access to both the PHY Abstraction Layer and
the Command Processor or Event Handler, depending on the memory type. There is one
instance of this module for each required packet type and priority, therefore providing inde-
pendent space for each one of the packet types. The system is organized in slots. Each slot is
big enough to hold a packet of the maximum allowed dimension and has an unique ID that
allows the calculation of its initial address. The memory is byte addressable and in each cycle
one byte is read or written. Along with the memory, this block also provides the memory
management facilities required to maintain track of the current memory usage. Allocation
and release is made one slot at a time and signals are provided to inform of full memory
condition. The timing diagram of an allocation is present in fig. 5.2.

The block diagram of the memory manager implementation can be observed in 5.3. Con-
trarily to other blocks in the LMAC this module was implemented with basic logic blocks due
to its simplicity. The proposed implementation achieves allocation and release of memory
slots in a single clock cycle.

42

clock

rxMemoryManagerAllocate

rxMemoryManagerFull

rxMemoryManagerID X ID

Figure 5.2: Slot allocation timing diagram

Q

Q
S ET

C LR

S

R

Q

Q
S ET

C LR

S

R

DECODER

IN

ENABLE
OUT

FREE

FREE SLOT

PRIORITY
ENCODER

IN

ENABLE
OUT

ALLOCATE PRIORITY
SELECTOR

IN

ENABLE
OUT

ALLOCATE SLOT

...

...

COMPARATOR

A

B

EQUAL

’11...1'

FULL

Figure 5.3: Memory manager block diagram

43

5.1.2 Command Processor

The processing of the UMAC issued commands is made using a state machine presented
in fig. 5.4, that parses each one of the commands parameters and drives the other blocks
of the LMAC. The commands are executed in the order in which they are received and it
is assumed that the protocol is followed without errors. No blocking ever occurs inside this
state machine other than waiting for data from the UMAC whenever necessary, therefore,
any command that can’t be immediately executed is silently ignored.

While modifications to collision avoidance mechanism and channel changes can be exe-
cuted at once, packet transmission requests must be scheduled. In this case the packets are
stored in the memory and the transmission parameters are added to the respective queue for
the dispatcher to handle the transmission itself.

5.1.3 Dispatcher

After each packet to be transmitted is stored in the appropriate memory, its identifier,
together with the respective transmission parameters, are added to a queue that corresponds
to the transmission priority. The queues are then emptied following a fixed priority mechanism
that is implemented by a scheduler. The scheduler is bound to a global time reference to
perform the time-triggered transmissions. After a packet is transmitted, either successfully
or not, the memory slot it occupied is automatically released. The current implementation
of this module only supports two priority levels, either best effort or time triggered. The
architecture is however in place to be able to support a generic amount of priorities in future
developments. As observed in 5.5, there is one set of signals for each one of the queues
that store the packet information, also one set to access the respective memories one set to
control the PHY and at last, the real time clock (RTC) signal to trigger the time triggered
transmissions.

5.1.4 CCA Controller

This block monitors the RSSI and provides an flexible CCA signal whose behaviour can
be configured by the UMAC. The configurable parameters are the current threshold and the
carrier sense state. Its implementation consists of one register containing the current RSSI
threshold coupled to a comparator. The medium is considered busy whenever either the
reception chain senses the carrier and carrier sense is enabled or when the RSSI level exceeds
the configured threshold. The device range can then be limited by disabling carrier sense
mechanism and programming an appropriate threshold on this module.

The reception chain is constantly decoding the received information, therefore, in order to
achieve the desired range limitation effect, when the carrier sense mechanism is disabled, it
is also necessary to disconnect it from the information received from the ADC whenever the
RSSI is below the predefined threshold. This effectively inhibits the decoding of any received
information without modifying the reception chain itself. By definition, if the carrier sense
mechanism is enabled, the range is only limited by the sensitivity of the reception chain.

5.1.5 Event Handler

Each packet transmission and reception generates an event that must be conveyed to
the UMAC. Packet transmission events serve the purpose of maintaining accurate memory

44

IDLE

PARSE CMD

TX TT
CHECK

MEMORY

TX BE
CHECK

MEMORY

CHANGE
CHANNEL

CONFIG
CCA

TX BE
ALLOCATE

SLOT

TX BE
READ

TX BE
WRITE

TX BE
SCHEDULE

TX TT
ALLOCATE

SLOT

TX TT
READ

TX TT
WRITE

TX TT
SCHEDULE

TX DISCARD
READ

TX DISCARD
CHECK

EOF

NEW COMMAND
AVAILABLE

EOF

SPACE AVAILABLE

DATA
AVAILABLE

EOF

DATA
AVAILABLE

EOF

SPACE AVAILABLENO SPACE AVAILABLE

DATA
AVAILABLE

NOT EOF NOT EOF NOT EOF

NO COMMAND
AVAILABLE

NO DATA
AVAILABLE

NO DATA
AVAILABLE

NO DATA
AVAILABLE

Figure 5.4: LMAC command processor state machine

45

DISPATCHER

beFIFOData
beFIFOEmpty

beFIFOReadEnable

ttFIFOData
ttFIFOEmpty

ttFIFOReadEnable

beMemorySlot
beMemoryFree

ttMemorySlot
ttMemoryFree

txRequest
txCancel
txType

txLength
txPowerLevel
txBackoffSlots

txRate
txTimeStamp
txStatus

RTC

Figure 5.5: Dispatcher interface

occupancy values in the UMAC while packet reception events are used to send the received
packets to the UMAC. On top of event conveyance, this block also releases the memory slots
occupied by the received packets after sending them to the UMAC.

5.1.6 PHY Abstraction Layer

This block is mainly a shell around the real PHY interface with a few additional features
that allow automated access to the already mentioned packet memories, calculation and
verification of the FCS and that also provides the collision avoidance mechanism as needed.

As observed in fig. 5.6, the interface is divided into several groups of signals, plus a real
time clock signal. There is one group for each one of the supported operations and events,
two groups that allow access to each one of the memories and another group containing the
rx memory manager signals. At last, there is one signal that contains the current real time
clock value. Each one of the supported operations uses a request signal that validates all
the other input signals of the group and initiates the respective action. On those groups, the
status signal is updated as the operation progresses. Ultimately, the status signal marks the
end of the operation with either success of failure. The events generated by this block use a
ready signal is that validates all the other output signals of the group, including the status
signal. The memory manager interface was already described and should be straightforward.

Packet transmission

In order to transmit a packet, the identifier of the memory slot in which it is stored along
with the parameters to be used for transmission must be provided. The transmission may
be cancelled at any time using the txCancel signal. The current status of the transmission

46

Figure 5.6: The module interface

47

is reported via de txStatus signal. What follows is a detailed description of each one of the
interface signals.

• txRequest initiates a new transmission. This request is ignored if a previously requested
transmission has not yet completed with either successful, failed or cancelled condition.

• txCancel is used to cancel an ongoing transmission. The transmission may be cancelled
at any moment, but the time it takes to do it varies with the current internal state of
the LowerMAC. txStatus should be checked to detect the end of the cancellation.

• txType is 0 for non real-time and 1 for real-time transmissions. When a real-time
transmission is requested, the collision avoidance mechanism is not executed and the
transmission fails immediately when the medium is occupied. On the other hand, when
the medium is free, all internal wait sates mandated by the standard are bypassed and
the frame is transmitted immediately.

• txID is the memory slot where the packet to be transmitted is stored.

• txLength is size of the packet to be sent, in octets, not including the FCS.

• txPowerLevel is the power level to use. The correspondence between this value and
real power is present in fig. 5.7.

• txBackoffSlots is the upper bound for backoff duration in slots. Each slot corresponds
to 13µs, as specified in section 18.4.4 of the IEEE 802.11-2012 standard [IEE12].

• txRate is the signalling rate to use according to table 5.1.

• txTimeStamp holds the exact moment at which the first energy burst was sent over
the air, accoding to RTC. It is only valid when the txStatus signals that a successful
transmission just ended.

• txStatus is a bit field, shown in fig. 5.8, that informs the user about the internal state
of the LowerMAC and to the outcome of the operation. Only one bit of txStatus is
asserted at a time. CONTE is asserted during the contention phase. ONGOI is asserted
during the physical transmission. SUCCS is asserted at the end of a successful trans-
mission, during one clock cycle. FAILE is asserted at the end of a failed transmission
during one clock cycle. CANCE is asserted at the end of a cancelled transmission during
one clock cycle.

Figure 5.9 depicts a possible timing diagram for a successful non real-time transmission.
As the shown, after requesting a transmission, the device contends for medium access waiting
for its opportunity to transmit. When the medium is clear, the transmission is carried out.
At the end, txStatus signals a successful transmission and the time stamp is reported.

A failed real-time transmission timing diagram can be observed in fig. 5.10. In this situ-
ation, right after the transmission request, txStatus changes to signal a failed transmission.

At last, a cancelled transmission timing diagram is present in fig. 5.11. This one is similar
to the successful transmission, except for the fact that txCancel was asserted at the middle
of an ongoing transmission and shortly after txStatus changed to inform about a cancelled
transmission. No time stamp is provided in this situation.

48

0 20 40 60

0

10

20

txPowerLevel

tr
a
n

sm
is

si
o
n

p
ow

er
(d

B
m

)

Figure 5.7: txPowerLevel conversion to real power

txRate Modulation Rate (Mbit/s)

0 64 QAM 2/3 24.0
1 16 QAM 1/2 12.0
2 QPSK 1/2 6.0
3 BPSK 1/2 3.0
4 64QAM 3/4 27.0
5 16 QAM 3/4 18.0
6 QPSK 3/4 9.0
7 BPSK 3/4 4.5

Table 5.1: Signalling rate information

01234567

CANCE FAILE SUCCS ONGOI CONTE

Figure 5.8: txStatus fields

clock

txRequest

txCancel

txType

txID X 0 X

txLength X 5 X

txPowerLevel X 0 X

txBackoffSlots X 0 X

txRate X 0 X

txTimeStamp U t U

txStatus 0 4 1 2 0

Figure 5.9: Successful non real-time transmission timing diagram

49

clock

txRequest

txCancel

txType

txID X 0 X

txLength X 5 X

txPowerLevel X 0 X

txBackoffSlots X 0 X

txRate X 0 X

txTimeStamp X

txStatus 0 3 0

Figure 5.10: Failed real-time transmission timing diagram

clock

txRequest

txCancel

txType

txID X 0 X

txLength X 5 X

txPowerLevel X 0 X

txBackoffSlots X 0 X

txRate X 0 X

txTimeStamp U

txStatus 0x00 0x01 0x02 0x10 0x00

Figure 5.11: Cancelled transmission timing diagram

50

clock

rxReady

rxID U 1 U

rxLength U 3 U

rxRSSI U 1 U

rxTimeStamp U t U

rxStatus U 0 U

Figure 5.12: Successful reception timing diagram

5.1.7 Packet reception

The reception of a packet is completely automated and requires no external intervention.
Under normal circumstances, depicted in fig. 5.12, when an incoming packet is detected, a
memory slot is allocated to store the received data in it and all the necessary information
relative to the received packet is reported and validated with rxReady. If the reception was
successful, as signalled by the rxStatus signal, the used memory slot must be released after
processing the received data. Failure to do so will result in a full memory after a few receptions
and inability to store any more packets until memory is available. The exact meaning of each
of the interface signals and the possible error conditions follow.

• rxReady signals the reception of a new packet. The other rx signals are only valid while
rxReady is asserted. For each received packet this signal is active during one clock cycle.

• rxID is the identifier of the slot allocated to store the received data. Under some
circumstances, reported in rxStatus, this identifier is not valid, in which no data relative
to this reception is available and no memory release should be executed. ?? provides
further details on the matter.

• rxLength is the size, in octects of the received packet. The size already includes the
FCS, which are the 4 last octets. A value of 0 is possible whenever an error occurs and
means that the size of the received packet is not known.

• rxRSSI is the signal strength indicator value as defined by the standard. This value
ranges from 0 to 0 and its units are dBm. It is always valid.

• rxTimeStamp is the exact moment at which the first pulse of energy arrived at the
antenna according to RTC. It is always valid.

When an error occurs, its source is reported via the rxStatus signal pictured in fig. 5.13.
Two error conditions are distinguished and may occur at the same time. The first is the
inability to correctly decode the received packet and is signalled via the RXERR bit. The other
is the unavailability of memory to store the received data, signalled via the NOMEM bit. When
an RXERR error occurs, the exact nature of the error is available at the 4 MSb of rxStatus.
Some of the conditions that lead to this type of error are detected before a memory slot is
allocated to store the incoming data, in which cases rxID is not valid and no memory release
needs to be done. The bit IDINV is used to report this situation. Table 5.2 describes a few
possible rxStatus values.

51

7

CARRL CRCER IDINV RXERR NOMEMRATER PARER

0123456

Figure 5.13: rxStatus fields

value meaning

0x00 packet received and stored with success
0x05 packet received with success but no memory is available
0x12 packet received and stored, but CRC error detected
0x27 packet received with carrier lost error and no memory was available
0x46 packet received with rate error and no memory slot was allocated

Table 5.2: rxStatus signal meaning

5.1.8 Channel changing

Channel configuration is an operation that tunes the transceiver to the requested centre
frequency. The only input parameter is the channel number. In order to avoid interfering with
any ongoing operation, the channel changing is always postponed to a time when the medium
is regarded as free. This behaviour is exposed in the interface via configChannelStatus. A
request may be cancelled using the configChannelCancel signal.

• configChannelRequest requests the change of the configured channel to configChannelValue.
If a request is issued before a previous one completed it is ignored. Figure 5.15 shows
the operation details of this signal.

• configChannelCancel cancels an ongoing channel configuration request. Cancelling is
only possible if the request is blocked. If the configuration is being performed at the
moment, this signal has no effect. On the other hand, if the configuration is currently
blocked it will be cancelled during the next clock cycle. Figure 5.16 shows the timing
diagram of a cancellation.

• configChannelValue is the number of the channel to be configured. The numbering
scheme follows the standard definition as shown in table 5.3.

• configChannelStatus reports the current state of the channel configuration operation.
It is a bit field as shown in fig. 5.14. CCCPL is asserted when the operation completes with
success, CCCAN is asserted during the operation cancelation, CCBLK is asserted whenever
the operation is blocked and CCONG is asserted when the channel configuration is really
taking place. When CCONG is asserted the operation can no longer be cancelled.

CCONG CCBLK

01234567

CCCPLCCCAN

Figure 5.14: configChannelStatus fields

52

configChannelValue centre frequency (MHz)

172 5860
174 5870
176 5880
178 5890
180 5900
182 5910
184 5920

Table 5.3: configChannelValue and central channel frequency match

clock

configChannelRequest

configChannelCancel

configChannelValue U 200 U

configChannelStatus 0 0 2 4 1 0

Figure 5.15: configChannelRequest operation details

clock

configChannelRequest

configChannelCancel

configChannelValue U 200 U

configChannelStatus 0 0 2 8 0

Figure 5.16: configChannelCancel operation details

53

Figure 5.17: Timing diagram for slave FIFO read operation

5.2 USB Connection

The USB communication system responsible for providing a deterministic link between
the LMAC and UMAC and also multiple radio support requires de implementation of three
different components: the firmware that configures the FX2LP controller, the FPGA modules
and the device driver that runs on the computer. It is also important to conduct a thorough
timing analysis of the FX2LP module in order to ensure the correct operation of the interface
signals.

5.2.1 FX2LP timming constraints

The slave FIFO interface has some timing constraints that will affect the development of
the FPGA module that interacts with it. This section provides a summary of the specification
provided in the datasheet and contains only the relevant information for this work.

When accessing a FIFO for reading, the associated constraints, shown in fig. 5.17 and
described in table 5.4, lead to two important aspects to take into account in the design of a
controller that correctly drives the interface signals. First of all, the SLRD setup time is very
high, when compared to the minimum clock period, and it is very unlikely that the FPGA
could generate such signal for non trivial designs. Since this is a worst case scenario and a read
operation is executed every time this signal is asserted during a rising clock edge, introducing
a wait state is not a possible solution, because it could introduce erratic behaviour. The only
possible solution is to lower the interface operating frequency to an acceptable value. The
hold time of the FD bus after the disabling of SLOE is not zero. This requires the introduction
of a wait state after the disabling of SLOE to avoid electrical collisions.

The FIFO write interface, shown in fig. 5.18 and described in table 5.5, is very straight-
forward to implement and does not require any special considerations.

After careful analysis of the FX2LP datasheet, one more more signal timing information
was considered of of crucial importance on the design of the controller, which is the FIFOADR

54

Table 5.4: Description of timing diagram information for slave FIFO read operation

Figure 5.18: Timing diagram for slave FIFO write operation

Table 5.5: Description of timing diagram information for slave FIFO write operation

55

Figure 5.19: Timing diagram for slave FIFO FIFOADR signal

Table 5.6: Description of timing diagram information for slave FIFO FIFOADR signal

signal. As observed in fig. 5.19, which is described in table 5.6, the hold time of this signal is
greater than the minimum operation period. If the internal clock generator is used, which is a
good solution to avoid having to generate a clock using FPGA resources, two clocks frequencies
are available: 48MHz and 30Mhz, which correspond to 20.83ns and 33.33ns respectively. In
order to correctly generate this signal using an FPGA there are two solutions: either introduce
a wait state before driving the remaining interface signals or lower the operating frequency of
the interface. The simplest solution was deemed to be the dropping of the operating frequency
to 30MHz. Using this value the FPGA should have no problem in generating a signal with
the appropriate timing. This solution also solves the problem previously identified with the
SLRD signal setup time.

5.2.2 FX2LP firmware

The firmware developed for the FX2LP is very simply a sequence of commands that
configure the slave FIFO interface to operate as required. The code provided by the FPGA
module provider [Ele], was adapted to the needs of this work in the following ways:

• activate all endpoints according to table 5.7

• activate double 512 byte buffering in each endpoint

• configure the flag pins to provide full information for the IN type endpoints and empty
information for the OUT ones, as shown in table 5.7

• use internal clock generator to driver IFCLK at 30MHz

After this adaptations, the code was compiled using the open source sdcc compiler and
loaded to the chip using the fxload program provided along with the libusb software [lib].
The firmware is loaded to the device volatile memory, therefore must be downloaded every
time the platform is powered up. This process was automated using the standard udev tools
of the Linux operating system.

56

Endpoint number Type Direction Associated flag

2 OUT Interrupt FLAGA

4 OUT Bulk FLAGB

6 IN Interrupt FLAGC

8 IN Bulk FLAGD

Table 5.7: FX2LP endpoint configuration

FX2LP
INTERFACE

CONTROLLER

INT IN FIFO ...

LINK 1

LINK N

...

LINK 1

LINK N

...

LINK 1

LINK N

...

LINK 1

LINK N

BULK IN FIFO

INT OUT FIFO

BULK OUT FIFO

MULTILINK
CONTROLLER

Figure 5.20: FPGA module for the USB controller

5.2.3 FPGA module

A controller module following the interface shown in section 4.4 and the recommendations
of the previous subsections was developed. This controller is made of two components, one
that interfaces the FX2LP and the other that implements the multiplexing mechanism to allow
multiple independent user, as exhibited in fig. 5.20. The components are interconnected using
dual clock FIFOs to cross from the clock domain of the FX2LP interface to the internal FPGA
clock.

FX2LP controller

This module is responsible for correctly driving the FX2LP slave interface signals, and
operate the dual clock FIFOs used to cross from the clock domain used to interface the FX2LP
to the one used in rest of the FPGA. The interface with the FX2LP only provides one data
bus, so the reading and writing of data in different endpoints must be made sequentially.
Since there are four FIFOs that need access to this bus, the access must be made under
some sort of scheduling mechanism. The scheduling mechanism implemented by this module
is fixed priorities, where the priorities are, from lowest to highest: INT OUT, INT IN, BULK

OUT, BULK IN. The implementation is based on a finite state machine and datapath (FSMD)

57

IDLE

PREFETCH
USB

READ
FIFO

WRITE
FIFO

WRITE
USB

FLUSH
USB

OUT ENDPOINT
READY

IN ENDPOINT
READY

DON’T
FLUSH

FLUSH

NO ENDPOINT
READY

Figure 5.21: FX2LP controller state machine

design, as is usual for FPGA based controllers. The state machine transition diagram is
shown in fig. 5.21.

Multilink controller

After crossing from the domain of the FX2LP signals to a regular FIFO interface, it
is necessary to implement the multiplexing/demultiplexing scheme presented in section 4.4.
After this operation, a set of FIFOs will be provided for each link to use independently.

5.2.4 Software module

The software developed allows the use of this communication system by multiple indepen-
dent users by means of a shared memory region. This region is managed by a process that
schedules the transmissions of each user in order to guarantee fair access to the bus and does
the multiplexing/demultiplexing task required by the underlying transport protocol already

58

described. Each one of the links is exported to the application as a set of FIFOs, which can
be accessed via a simple software interface.

5.3 Device Driver

This work is concerned with implementation of deterministic MAC schemes in software
with appropriate hardware support, and in order for the complete system to be deterministic,
operations must be complete in a deterministic amount of time. Both the hardware and
the communication system already ensure deterministic behaviour, so, in order to have a
complete deterministic system, the driver must take care to ensure completion of the requested
operations in a bounded amount of time. The Linux operating system does not in fact provide
this kind of guarantees, but if certain conditions are followed, a good approximation can be
obtained:

• use the FIFO scheduler

• run processes with maximum priority

• use mlockall to ensure process memory region is always in RAM

• use shared memory for inter process communication

The implementation of the device driver is based on a shared memory region where the
already presented calls operate. This region is maintained by a process that forwards the
application requests to the device via the USB communication system. Internally, this piece
of software simply follows the described architecture and uses a different thread for each one
of the tasks shown in fig. 4.12. Synchronization between each one of the different calls and the
handling thread is performed using semaphores which are created inside the shared memory.

59

60

Chapter 6

Validation

To test the implemented solution, two different stages where devised. First, the USB
based communication system was tested in order to assess its adequacy for this application.
Then, the higher level functions were tested to verify that the system behaves adequately, as
a whole.

6.1 MultiLink

The goal of the tests conducted to MultiLink is to verify that the complete USB com-
munication system works as expected. In order for the whole system do work, not only the
implementation must be correct, but also the assumptions about the behaviour of the USB
controllers, both host and device. While this implementation is not able to modify the host
controller, it may be possible to adjust the behaviour of the device controller if required. The
tests aimed at measuring the latency and throughput of the bounded latency channels.

6.1.1 Test setup

In order to correctly assess a system performance it is usually required that the measuring
entity be distinct from the system under test. While it is true that for micro-controller based
devices it is not entirely possible to isolate two pieces of code running on a single device, the
same does not apply to an FPGA based system. For this reason, the FPGA is tasked with
not only implementing the MultiLink controller but also the necessary mechanisms to assess
its performance. The distributed nature of the FPGA design guarantees that no interference
between the two ever occurs.

The testing procedure requires three elements:

• the MultiLink host: RaspberryPi

• the MultiLink device: FPGA

• external monitoring device: PC

The MultiLink host, in this case a RaspberryPi is responsible for running the test ap-
plication to apply the intended stimulus to the system, as well as the software layers of
MultiLink. The MultiLink device is responsible for running the device side of the imple-
mentation and perform all the required measurements. Although the IT2S platform could

61

USB

GPIO SERIAL PORT
TEST

APPLICATION

MULTILINK
SOFTWARE

MULTILINK
FPGA MODULE

MEASUREMENT
APPLICATION

DATA COLLECTION

Figure 6.1: Test setup for the MultiLink implementation

be used as a device, it was decided that a Nexys 3 prototyping board should be used, not
only because it provides greater flexibility in terms of I/O solutions to interact with external
systems, but also to test the portability of the designed solution. This board uses the exact
same USB controller that the platform, so the firmware can be used without changes. The
only required modifications concern the pin attribution in the FPGA design, which naturally
have to match the new board. Both systems are connected using a GPIO pin that is used to
trigger a measurement. The response time of this type of interface is much lower than the
times intended to be measured during this tests. At last, an external computer connected to
the FPGA module via a serial port is used to collect the data gathered during the tests. The
whole setup can be observed in fig. 6.1.

6.1.2 Latency measurement

The application software generates a packet with a period big enough to ensure that the
bus is within its working bandwidth limits. The parameter that is being tested is latency,
not throughput. Before issuing the call that transmits the information, the host asserts the
GPIO pin connecting it to the FPGA. At this moment, the FPGA measuring system starts a
counter that will allow the measurement of the time it takes for the packet to reach the FPGA
fabric. When the first byte of the packet arrives at the FPGA, the amount of measured time
is transferred to the data collecting PC for analysis. A similar test was also performed in the
inverse direction, where the FPGA signals the measurement system to start the time counting
and then proceeds to send a packet to the PC. When the packet is received by the PC, the
GPIO pin is asserted and the measurement system reports the measure time to the data
collecting PC. The procedure was repeated 100000 times in each direction, and the obtained
results can be observed in fig. 6.2.

The obtained results show that the mean latency value is around 0.3 ms for the out
endpoint but much lower for the in endpoint. This can be explained by the fact that during
an in transmission, the host is already expecting the data before it is sent by the device,

62

Figure 6.2: USB latency measurement results architecture

as is required by the USB specification, therefore there is less code to be executed after the
transmission starts, as opposed to an out transfer. No occurrences were registered with a
latency value exceeding 1 ms.

6.1.3 Throughput measurement

The procedure use to measure the throughput of the system is somewhat similar to the
one used to measure the latency, but in this scenario, instead of sending the packet spaced
in time, the packets are transmitted at the maximum possible rate, in order to keep the bus
occupied at all times. In this case, the FPGA still collects the timestamps of the received
packets, but for the purpose of calculating the bandwidth of the channel, so it is not necessary
to synchronize the measurement system with the data generating application, because only
relative time is of importance here. The data collecting tool gathers one timestamp value
for each received packet. A similar procedure is used to measure the throughput from the
FPGA to the PC, but in this case, the timestamp is stored when the packet is successfully
transmitted. A packet can only be successfully transmitted after the buffers have enough space
for it, meaning that any previous packet occupying the said buffers was already transmitted.
While this could lead to false burst values, a long term analysis should proved to yield the
correct results. The collected variable for analysis is the time between each transmission, or
the transmission period.

The obtained values for periods are observed in fig. 6.3. One interesting result if the fact
that the mean period is 1 ms, yielding 1000 packets per second. This is not the expected
value, as the USB specification states that interrupt type endpoints should be able to provide
up to 8000 transfers a second. After some preliminary tests with a different system running
the MultiLink software, it was concluded that the RaspberryPi is to blame for the issue.
The USB implementation of this embedded PC is not according to the standard specification
and only provides one interrupt transfer per millisecond. Since this device is part of the
platform, and it is not the objective of this work to modify the said platform, this value
will be regarded as a system constraint, and the guarantees provided by the system adjusted

63

Figure 6.3: USB period measurement results architecture

accordingly. It should be noted however that the performance should be still quite sufficient
for most vehicular communication applications.

6.2 Deterministic MAC

In order to test the mechanisms that allow the implementation of a deterministic MAC,
one also needs two devices. One to transmit the information and one to receive and make
measurements. This tests will leverage the two radio solution provided by the IT2S platform
and the fact the both radios share the same RTC provider, allowing for time measurements
to be performed without concern for misaligned time frames.

6.2.1 Time triggered packet transmission

The testing of the time triggered packet transmission was performed by simply requesting
to send a packet at a specific moment and measuring the timestamp provided by the receiver.
Once again, since the receiver and transmitter share the same RTC all involved times are
synchronized. The obtained results show that all transmissions were started with 1 us of the
specified instant. Although this test was conducted under ideal conditions, without interfer-
ence from external units, due to the fact that it is possible to disable the collision avoidance
mechanisms, it can be regarded as a realistic scenario.

6.2.2 Sensitivity adjustment

The testing of the sensitivity adjustment mechanism was performed with two distinct
platforms. In this case, no time measurements are involved, therefore there is not problem
with the possibly differing RTC.

The procedure used in this measurement was to place the platforms at several known
distances, always with line of sight (LOS) to avoid interferences caused by obstacles and for
each position make several transmissions of a set of frames with a fixed power, using different
receiver sensitivity for each set of transmitted frames. This gathered data is the packet error
rate (PER) value for each distance and receiver sensitivity. The obtained results are shown
in fig. 6.4.

Although the data follows the expected trend of increasing PER with decreasing sensitiv-
ity, for the same distances, and the transmission power was kept at the minimum value, the

64

Figure 6.4: Sensitivity adjustment test results

measured PER is higher than would be expected for the distances used during the test. This
factor could be due to some terrain feature in the test scenario or some reflections caused by
surrounding buildings. Nevertheless, as already stated, the results show the expected trend
and any distance limiting factor is affecting all test cases in a similar way.

65

66

Chapter 7

Conclusions and Future Work

The proposed devise was successfully implemented and shown to be working according to
the required expectations.

A by product of this work was also the development of a generic USB communication
system that allows the transfer of data between a PC and an FPGA with certain latency and
throughput guarantees, that can be simultaneously used by multiple users, both on the PC
and the FPGA sides. It can be reused on further works, not only using this platform, but
any platform integrating an FX2LP device connected to the FPGA, as was shown in the tests
performed using a Nexys 3 board.

Future work should include the implementation of deterministic MAC schemes using the
develop platform and conducting field tests with the said schemes in order to assess their
performance under real conditions. A comparison can later be made with the simulated
environment results in order to verify the correctness of the assumptions.

Some work remains to be done on the time synchronization module. Currently the Pulse
Per Second (PPS) signal provided by the GPS module is being used to provide a time value
that is always relative to the last second. While this proved enough to conduct the tests, it
is not enough to use in real scenarios, due to the absence of filtering mechanisms that allow
a time value to be kept accurate during momentary losses of GPS signal.

67

68

Bibliography

[ACM+13] A. Autolitano, C. Campolo, A. Molinaro, R.M. Scopigno, and A. Vesco. An
insight into decentralized congestion control techniques for vanets from etsi ts
102 687 v1.1.1. In Wireless Days (WD), 2013 IFIP, pages 1–6, Nov 2013.

[BUSB09] Katrin Bilstrup, Elisabeth Uhlemann, Erik G. Ström, and Urban Bilstrup. On
the ability of the 802.11p mac method and stdma to support real-time vehicle-
to-vehicle communication. EURASIP J. Wirel. Commun. Netw., 2009:5:1–5:13,
January 2009.

[COFM14] Cristóvão Cruz, Arnaldo Oliveira, Joaquim Ferreira, and João Matos. Imple-
menting deterministic vehicular communications: Rationale and challenges. In
6th IEEE Vehicular Networking Conference (VNC 2014), Paderborn, Germany,
December 2014. IEEE.

[dA13] João Miguel Pereira de Almeida. Plataforma multi-rádio para comunicações ve-
iculares dsrc 5.9 ghz. Master’s thesis, Universidade de Aveiro, 2013.

[dS11] Manuel José Alves Ventura da Silva. Co-projecto em fpga da mac ieee 802.11p
para comunicações veiculares. Master’s thesis, Universidade de Aveiro, 2011.

[Ele] Trenz Electronic. Trenz TE-USB Suite. https://github.com/

Trenz-Electronic/TE-USB-Suite. Accessed: 2014-12-11.

[ESG13] D. Eckhoff, N. Sofra, and R. German. A performance study of cooperative aware-
ness in etsi its g5 and ieee wave. In Wireless On-demand Network Systems and
Services (WONS), 2013 10th Annual Conference on, pages 196–200, March 2013.

[ETS] ETSI. ETSI TS 102 687 V1.1.1; Intelligent Transport Systems (ITS); Decentral-
ized Congestion Control Mechanisms for Intelligent Transport Systems operating
in the 5 GHz range; Access layer part. http://www.etsi.org/deliver/etsi_

ts/102600_102699/102687/01.01.01_60/ts_102687v010101p.pdf. Accessed:
2014-12-11.

[FOAC13] Joaquim Ferreira, Arnaldo Oliveira, João Almeida, and Cristóvão Cruz. Fail
silent road side unit for vehicular communications. In ASCoMS@SAFECOMP,
2013.

[Hea14] Headway. HEADWAY - Connecting vehicles and highways. http://www.

brisainovacao.pt/en/innovation/projects/headway, 2014. Accessed: 2014-
12-11.

69

https://github.com/Trenz-Electronic/TE-USB-Suite
https://github.com/Trenz-Electronic/TE-USB-Suite
http://www.etsi.org/deliver/etsi_ts/102600_102699/102687/01.01.01_60/ts_102687v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102687/01.01.01_60/ts_102687v010101p.pdf
http://www.brisainovacao.pt/en/innovation/projects/headway
http://www.brisainovacao.pt/en/innovation/projects/headway

[HG11] Bin Hu and Hamid Gharavi. A joint vehicle-vehicle/vehicle-roadside commu-
nication protocol for highway traffic safety. International Journal of Vehicular
Technology, 2011, 2011.

[ICS14] ICSI. Intelligent Cooperative Sensing for Improved Traffic Efficiency. www.

ict-icsi.eu/description.html, 2014. Accessed: 2014-12-11.

[IEE12] IEEE. 802.11-2012 - IEEE Standard for Information technology–
Telecommunications and information exchange between systems Local and
metropolitan area networks–Specific requirements Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 2012.

[lib] libusb. fxload. https://github.com/libusb/libusb/blob/master/examples/
fxload.c. Accessed: 2014-12-11.

[MTC+10] F.J. Martinez, Chai-Keong Toh, J.-C. Cano, C.T. Calafate, and P. Manzoni.
Emergency services in future intelligent transportation systems based on ve-
hicular communication networks. Intelligent Transportation Systems Magazine,
IEEE, 2(2):6–20, Summer 2010.

[Org13] World Health Organization. Global status report on road safety 2013 : supporting
a decade of action. World Health Organization Geneva, 2013.

[PLFE+09] Panos Papadimitratos, A La Fortelle, Knut Evenssen, Roberto Brignolo, and
Stefano Cosenza. Vehicular communication systems: Enabling technologies, ap-
plications, and future outlook on intelligent transportation. Communications
Magazine, IEEE, 47(11):84–95, 2009.

[Sem] Cypress Semiconductor. Ez-usb technical reference manual. Document 001-13670
Rev. D.

[SWL+12] Sundar Subramanian, Marc Werner, Shihuan Liu, Jubin Jose, Radu Lupoaie,
and Xinzhou Wu. Congestion control for vehicular safety: Synchronous and
asynchronous mac algorithms. In Proceedings of the Ninth ACM International
Workshop on Vehicular Inter-networking, Systems, and Applications, VANET
’12, pages 63–72, New York, NY, USA, 2012. ACM.

[TJJ13] Meireles T., Fonseca J., and Ferreira J. Vehicular Flexible Time-Triggered Pro-
tocol (V-FTT). Technical Report 1, Instituto de Telecomunicações - Embedded
Systems Group, March 2013.

70

www.ict-icsi.eu/description.html
www.ict-icsi.eu/description.html
https://github.com/libusb/libusb/blob/master/examples/fxload.c
https://github.com/libusb/libusb/blob/master/examples/fxload.c

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background
	Purpose
	Objectives
	Structure

	Fundamental Concepts
	Vehicular Communications Standards
	IEEE 802.11p
	ETSI ITS G5

	Deterministic MAC Schemes
	STDMA
	Synchronous MAC
	VFTT

	Generic deterministic MAC device requirements

	The IT2S Experimental Vehicular Communication Platform
	Hardware components
	PHY
	Lower MAC
	USB Connection
	usb basics
	Cypress FX2LP
	Slave FIFO interface

	Device driver
	Communication protocol
	Transmit packet
	Packet reception
	Channel change

	Architecture
	Required modifications to the IT2S platform
	Operation protocol
	Requests
	Events

	LowerMAC
	USB connection (Multilink)
	Overview
	Multiplexing protocol
	FPGA logic
	Software interface

	Device Driver

	Implementation
	Lower MAC
	Memory Bank
	Command Processor
	Dispatcher
	CCA Controller
	Event Handler
	PHY Abstraction Layer
	Packet reception
	Channel changing

	USB Connection
	FX2LP timming constraints
	FX2LP firmware
	FPGA module
	Software module

	Device Driver

	Validation
	MultiLink
	Test setup
	Latency measurement
	Throughput measurement

	Deterministic MAC
	Time triggered packet transmission
	Sensitivity adjustment

	Conclusions and Future Work
	Bibliography

