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fogos florestais, severidade de queima, escorrência, erosão, modelação  

resumo 
 

 

As implicações dos fogos florestais na escorrência superficial e 
erosão dos solos têm sido objeto de estudo desde há vários anos. 
Como tal, é do conhecimento geral, que os fogos tendem a aumentar a 
atividade hidrológica e geomorfológica em todo o mundo e também nas 
zonas mediterrânicas. A severidade da queima do solo tem sido 
utilizada para descrever o impacto dos fogos nos solos e reconhecida 
como um fator decisivo no controle das taxas de erosão pós-fogo. No 
entanto, não existe uma definição única do termo e a relação entre 
severidade de queima do solo com a resposta hidrológica e erosiva não 
é ainda totalmente conhecida. Por outro lado, escasseiam os estudos 
com registos de taxas de erosão pós-fogo durante um período de 
quatro anos, nenhum dentro desse período com registos de escorrência 
superficial pós-fogo. Menos estudos ainda, que retratem a resposta 
erosiva pós-fogo, mencionando práticas de gestão florestal anteriores 
ao mesmo. No caso da modelação de erosão dos solos, apesar dos 
modelos aplicados ‒  a Equação Universal de Perdas do Solo Revista 
(RUSLE) e o modelo de Morgan-Morgan-Finney (MMF) ‒ serem bem 
conhecidos, a informação referente à sua aplicabilidade para prever 
taxas de erosão em solos florestais após o fogo é bastante limitada. No 
caso da aplicabilidade destes modelos, considerando tratamentos de 
mitigação após incêndio, ainda menos informação existe. 

O objetivo deste trabalho é o aprofundar do conhecimento 
relativo à resposta hidrológica e erosiva após incêndios florestais 
através do estudo dos efeitos da severidade de queima nos 
ecossistemas e das suas implicações na resposta hidrológica e erosiva 
em todo o mundo. Para este fim, testámos também o efeito de 
diferentes práticas de gestão florestal (não lavrado, lavrado no sentido 
do declive e lavrado segundo as curvas de nível), executadas 
previamente ao incêndio florestal, entre dois dos usos do solo mais 
comuns em Portugal: o pinheiro e o eucalipto. Testámos ainda a 
eficiência com que dois modelos, amplamente conhecidos (RUSLE e 
MMF revisto), conseguem prever, em duas severidades distintas e com 
tratamentos de reabilitação pós fogo, as taxas de erosão durante o ano 
que seguiu ao incêndio florestal. Com essa informação, que veio 
melhorar as estimativas, alterámos o modelo e verificámos a sua 
eficiência, tanto nas previsões de escorrência superficial como na 
erosão do solo em pós-fogo e em pós-fogo com tratamentos de 
reabilitação. 



  

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

  

Essas alterações, que consistiam em (1) passar todos os inputs numa 
escala sazonal para incorporar as variações sazonais sentidas na 
formação de escorrência superficial e erosão do solo, e (2) inclusão do 
efeito hidrófobo do solo à água nas previsões da escorrência 
superficial. Adicionalmente, validar estas melhorias noutra área florestal 
independente no centro de Portugal para pinhal e eucaliptal, pós-fogo e 
pós-fogo com tratamentos de reabilitação. 

A revisão e a meta-análise demonstraram que a ocorrência de 
um fogo florestal provoca alterações significativas na resposta 
hidrológica e erosiva. No entanto, este efeito só é significativamente 
diferente com o aumento da severidade da queima do solo para a 
erosão e não para a geração de escorrência superficial. Este estudo 
também aludiu a incoerência entre várias classificações de severidade 
de queima e propõe ainda uma classificação não ambígua. 

No caso das parcelas de erosão com chuva natural, verificou-se 
que o uso do solo é um fator que afeta a geração de escorrência; em 
contrapartida, a gestão florestal afeta tanto a escorrência como a 
erosão do solo. O tempo decorrido desde o incêndio surge como fator 
de elevada importância entre locais não lavrados, relativamente às 
perdas de solo, e entre eucaliptais, relativamente à escorrência e 
erosão. Em todos os locais os coeficientes de escorrência aumentaram 
do primeiro para o quarto ano de estudo. Noutra nota, notou-se um 
decréscimo nas concentrações de sedimentos na escorrência durante o 
mesmo período.  Foi explorada a discrepância entre este estudo e entre 
os modelos clássicos de recuperação pós-fogo; também o curto 
intervalo entre fogos e as constantes práticas de gestão florestal são 
vistas como as principais razões pela severa e continuada degradação 
dos solos. 
O modelo de MMF revisto apresentou uma razoável acuidade nas 
previsões enquanto que, o RUSLE claramente sobrestimou as taxas de 
erosão observadas. Ambos os modelos demonstraram capacidades 
para serem usados como ferramentas operacionais para ajudarem 
gestores a determinar áreas de risco de erosão pós-fogo e a tomarem 
ações prioritárias. O Modelo MMF revisto permitiu determinar as taxas 
de erosão durante o primeiro ano, após o fogo, para os dois usos do 
solo estudados: o pinheiro e o eucalipto. Essas previsões melhoraram 
com a implementação da modelação sazonal e com a inclusão da 
hidrofobia do solo à água para as previsões de escorrência. Por fim, o 
modelo de MMF revisto provou ser capaz de providenciar um conjunto 
de critérios para ajudar à tomada de decisões por parte dos gestores 
relativamente à escorrência, erosão e tratamentos de mitigação em 
áreas recentemente ardidas. Este modelo sugere, segundo os 
resultados obtidos aquando da validação e calibração, uma elevada 
robustez e um potencial de ser aplicado a outras áreas. 
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abstract 

 
Forest fires implications in overland flow and soil erosion have 

been researched for several years. Therefore, is widely known that fires 

enhance hydrological and geomorphological activity worldwide as also 

in Mediterranean areas. Soil burn severity has been widely used to 

describe the impacts of fire on soils, and has being recognized as a 

decisive factor controlling post-fire erosion rates. However, there is no 

unique definition of the term and the relationship between soil burn 

severity and post-fire hydrological and erosion response has not yet 

been fully established. Few studies have assessed post-fire erosion 

over multiple years, and the authors are aware of none which assess 

runoff. Small amount of studies concerning pre-fire management 

practices were also found. In the case of soil erosion models, the 

Revised Universal Soil Loss Equation (RUSLE) and the revised 

Morgan–Morgan–Finney (MMF) are well-known models, but not much 

information is available as regards their suitability in predicting post-fire 

soil erosion in forest soils. The lack of information is even more 

pronounced as regards post-fire rehabilitation treatments.  

The aim of the thesis was to perform an extensive research 

under the post fire hydrologic and erosive response subject. By 

understanding the effect of burn severity in ecosystems and its 

implications regarding post fire hydrological and erosive responses 

worldwide. Test the effect of different pre-fire land management 

practices (unplowed, downslope plowed and contour plowed) and time-

since-fire, in the post fire hydrological and erosive response, between 

the two most common land uses in Portugal (pine and eucalypt). Assess 

the performance of two widely-known erosion models (RUSLE and 

Revised MMF), to predict soil erosion rates during first year following 

two wildfires of distinctive burn severity. Furthermore, to apply these two 

models considering different post-fire rehabilitation treatments in an 

area severely affected by fire.  Improve model estimations of post-fire 

runoff and erosion rates in two different land uses (pine and eucalypt) 

using the revised MMF.  



 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

To assess these improvements by comparing estimations and 

measurements of runoff and erosion, in two recently burned sites, as 

also with their post fire rehabilitation treatments. Model modifications 

involved: (1) focusing on intra-annual changes in parameters to 

incorporate seasonal differences in runoff and erosion; and (2) inclusion 

of soil water repellency in runoff predictions. Additionally, validate these 

improvements with the application of the model to other pine and 

eucalypt sites in Central Portugal. 

The review and meta-analysis showed that fire occurrence had a 

significant effect on the hydrological and erosive response. However, 

this effect was only significantly higher with increasing soil burn severity 

for inter-rill erosion, and not for runoff. This study furthermore 

highlighted the incoherencies between existing burn severity 

classifications, and proposed an unambiguous classification. 

In the case of the erosion plots with natural rainfall, land use 

factor affected annual runoff while land management affected both 

annual runoff and erosion amounts significantly. Time-since-fire had an 

important effect in erosion amounts among unplowed sites, while for 

eucalypt sites time affected both annual runoff and erosion amounts. At 

all studied sites runoff coefficients increase over the four years of 

monitoring. In the other hand, sediment concentration in the runoff, 

recorded a decrease during the same period. Reasons for divergence 

from the classic post-fire recovery model were also explored. Short fire 

recurrence intervals and forest management practices are viewed as the 

main reasons for the observed severe and continuing soil degradation. 

The revised MMF model presented reasonable accuracy in the 

predictions while the RUSLE clearly overestimated the observed erosion 

rates. After improvements: the revised model was able to predict first-

year post-fire plot-scale runoff and erosion rates for both forest types,   

these predictions were improved both by the seasonal changes in the 

model parameters; and by considering the effect of soil water repellency 

on the runoff, individual seasonal predictions were considered accurate, 

and the inclusion of the soil water repellency in the model also improved 

the model at this base. The revised MMF model proved capable of 

providing a simple set of criteria for management decisions about runoff 

and erosion mitigation measures in burned areas. The erosion 

predictions at the validation sites attested both to the robustness of the 

model and of the calibration parameters, suggesting a potential wider 

application. 
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I.I Wildfire concerns worldwide 

Wildfires have been considered as an important, if not the major, cause of 

hydrological and geomorphological change in fire-prone landscapes (Shakesby and 

Doerr, 2006). The direct effects from wildfires such as vegetation and litter cover removal 

together with soil physical and chemical alterations are usually described as primary 

observed changes from wildfires (Figure 1). These changes are followed by the indirect 

hydrological and geomorphological effects, such as reduced infiltration and increased 

sediment availability for transport. Ultimately, these effects will lead to an increase of 

overland flow generation and soil erosion (Figure 2) (Shakesby and Doerr, 2006). 

 

 
Figure 1 –Main direct fire effects on soil surface and aboveground litter and vegetation, and indirect effects 

to hydrological and geomorphological processes during the post-fire period. 
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The interest in this line of research started approximately in 1930’s (e.g. 

Connaughton, 1935; Hendricks and Johnson, 1944) in the USA, and elevated 

dramatically with one of the most emblematic publication on fire and its impacts that 

became known as the “Rainbow Series.” The series consisted of six publications, each 

with a different coloured cover, describing the effects of fire on soil (Wells et al., 1979), 

water (Tiedemann et al., 1979), air (Sandberg et al., 1979), flora (Lotan et al., 1981), 

fauna (Lyon et al., 1978), and fuels (Martin et al., 1979), providing a wealth of information 

and examples to advance understanding of basic concepts regarding fire effects in the 

United States and Canada (Neary et al., 2005). Several reviews dealing with post-wildfire 

hydrology and soil erosion worldwide have been published since then (e.g. Anderson et 

al., 1976; Swanson, 1981; Robichaud et al., 2000; Neary et al., 2005; Shakesby and 

Doerr, 2006; Moody et al., 2013), but few of them focused on the specific case of 

Mediterranean climate regions(Pausas et al., 2008; Shakesby, 2011). Publications 

related to post-fire studies in the Mediterranean initiated could only be found from the 

early 1980s onwards, following the beginning of the dramatic increase in fire activity 

(Moreno et al., 1998; Pausas, 2004). This rise in fire activity, resulting in 600,000 ha 

burnt annually by 50,000 ignitions by the end of the century (Lloret et al., 2009), allowed 

to view wildfire a natural phenomenon in regions with a Mediterranean-type climate 

(Naveh, 1990) and contributed to the increase of interest in this research line. 

The increase in sediment losses following wildfire already has been reported by 

several authors (Swanson, 1981; Scott and Van Wyk, 1990; Robichaud and Brown, 

1999; Moody and Martin, 2001; Meyer et al., 2001; Benavides-Solorio and MacDonald, 

2005), and can be described by the window of disturbance model (Figure 2). This model 

represents a simplification of the sediment yield response to the “new” fire induced 

hydro-geomorphic regime. However, the contribution of each fire induced change to the 

post-fire hydrological and erosive response is still not fully understood. Although the 

amount of research about this subject increased dramatically in the last 20 years, some 

comparability difficulties between studies still arise. This was verified by Moody et al. 

(2013) when comparing existing studies that identified distinct key processes regarding 

post-fire erosion. Some studies presented sediment contribution by channel erosion as 

the main source of post-fire erosion, while others attributed their main source to hillslope 

erosion. Runoff generation could be also originated by infiltration-excess in some studies 

while in others saturation-excess overland flow was the dominant process. The reasons 

for these discrepancies were mostly attributed to differences in fire regimes, precipitation 

regimes, hydro-geomorphic regimes and post-fire response domains (Moody et al., 

2013). Fire behaviour and recurrence, climate conditions (precipitation amounts) during 

the post-fire period, fire-induced changes (Figure 1) according to different burn 
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severities, and ecosystems specific characteristics combinations, can difficult the 

comparability among studies.  

 
Figure 2 - The hypothetical decline in sediment yield after wildfire, and the role of three other factors 

(vegetation cover, litter cover, and stone lag development) in reducing erosion rates (Shakesby and Doerr 
2006). 

 

The number and severity of wildfires all over the world have become a major 

concern in recent decades (Moody et al., 2013). In the Portuguese case, on average, 

wildfires consume each year 100,000 ha in Portugal (Pereira et al., 2006a), from the 

500,000 ha in southern Europe (San-Miguel and Camia, 2009) (Figure 3). Fire activity in 

Portugal is not expected to decline markedly in the foreseeable future, both because of 

the economic importance of the country’s forestry activities using flammable species and 

the likely increase in the occurrence of meteorological conditions conducive to fire 

(Carvalho et al., 2010; Pereira et al., 2006b; Harding et al., 2009). Galicia (NW Spain) 

faces a similar problem as Portugal, since about 8,000 fires per year burned in the period 

2001-2010 (MMA, 2010) (Figure 3). Additionally, wildfire frequency, severity and the size 

of burned areas are expected to increase under the probable future climate scenarios in 

NW Spain (Moreno, 2005; Carvalho et al., 2008; Good et al., 2008; Moreno, 2009; Vega 

et al., 2009).  

Wildfire occurrence raises some concerns mostly due to the above mentioned 

direct and indirect effects (Figure 1), but also due to concerns of fire effects on carbon 

storage, water quality, and ecosystem disturbances. Additionally, there are also 
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concerns related to population increase near wildfire-prone areas, so that post-wildfire 

enhanced runoff and erosion could result in catastrophic damage by destructive floods 

and debris flows (Neary and Gottfried, 2002; Pausas et al., 2008, Moody et al., 2013).  

 

 
Figure 3 - Burned area (a), number of fires (b) and average fire size (c) in Portugal (left) and in Spain(right) 

between 1980 and 2010 (European Commission, 2011) 

 

Human influence also has been viewed as one of the main drivers of the increase 

of the wildfire activity, through climate change (Scott et al., 2004; Harding et al., 2009), 

socio-economic changes and urban expansion (Pausas et al., 2008). Although the 

impacts of climate change on wildfire ignitions and behaviour have been researched for 

some time (Flannigan et al., 2000; Westerling et al., 2003; Bachelet et al., 2007; Littell et 

al., 2009; Moritz et al., 2010; Westerling et al., 2011), their implications for post-wildfire 

runoff and erosion response are only being explored recently (Pierce and Meyer, 2008; 

Moody and Martin, 2009; Goode et al., 2012). Human activities, such as rural 
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depopulation in the Mediterranean basin have been also a factor for the increasing 

wildfire ignitions. Moreover, during the last half century an abandonment of traditional 

land management practices (Pardini et al., 2003), led to an increase of fuel load and fire 

prone forest cover (Shakesby, 2011).  

The lack of land management due to land abandonment has been reported by 

Llovet (2005), as an additional cause of increased post fire soil losses. This author 

showed that recently abandoned fields (<15 years (Burnt abandoned), Figure 4 ) had a 

stronger vegetation recovery (70%) during first year after fire wildfire than long 

abandoned fields (>35 years (Burnt pine), Figure 4 ) (40%), leading to lower soil losses 

(Figure 4).  

 

Figure 4 - Sediment yield on erosion plots located in burnt (open symbols) and unburnt (black symbols) of 

fields of Alicante (SE Spain, Llovet 2005, Pausas et al, 2008) 

 

Other types of human influences in post-fire soil losses are the implementation of 

recent post-fire land management operations with heavy machinery (e.g. plowing; 

logging), that leads to forest soil disturbances. These post-fire forest management 

practices have been pointed out as an important cause for elevated soil erosion rates in 

some post-fire studies over the Mediterranean (Shakesby et al., 1994; Fernández et al., 

2004; Shakesby, 2011; Martins et al., 2013). The impacts of these commonly used 

practices, together with an increase of fire frequency and recurrence at the same 

location can represents one of the biggest threats to Mediterranean soils. 

According to Shakesby (2011), the Mediterranean basin can be considered as a 

‘global variant’ in respect to the post-wildfire erosion, mostly due to the strong influence 
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of the human activities, either through fire ignition, wildfire suppression and prescribed 

fire use or through land-use changes such as land abandonment and widespread 

introduction of highly flammable pine and eucalypt plantations (Moreira et al., 2009; 

Shakesby 2011). Thereby, should be considered that although post-fire soil losses in the 

Mediterranean are considered as low when compared to other regions, they are still very 

important. Sediment losses in the Mediterranean basin are generally low due to the 

frequent presence of shallow soils as a consequence of its history of intense 

disturbances. However these soil losses should be regarded as significant, not only 

because of the soil losses itself, but also because of the quality of the material that is 

being lost. Modest post-fire soil losses could be important for soil longevity in some 

areas, since organic matter and nutrient losses in solution or adsorbed onto eroded 

sediment particles (e.g. Kutiel and Naveh, 1987). Organic matter is mostly concentrated 

near the surface in Mediterranean soils, where it is particularly vulnerable to major losses 

when the protective vegetation and litter cover is depleted or removed by wildfire. 

Moreover, much of the post-fire nutrient content in the soils is in the form of ash (e.g. 

Ferreira et al., 2008).  

 
 
 
 

I.II Burn severity and the distinctive 

runoff and erosion response 

Burn severity can influence the magnitude and duration of post-fire effects. The 

term ‘burn severity’ was born out of the need to provide a description of how fire intensity 

affects ecosystems. This term has replaced ‘fire severity’ term, although the metric is 

very similar and is largely based on loss of organic matter in the soil and aboveground 

organic matter conversion to ash (Keeley, 2009). Is constrained to the loss of organic 

matter in or on the soil surface (NWCG, 2014), and also represents BAER assessments 

term ‘soil burn severity’ (Parsons, 2003). dependent of peak temperatures reached, 

duration of fire, and initial soil properties (soil type, soil moisture).  

The existing burn severity classification methodologies can be divided by three 

groups: 

 In situ measurements of one or more indexes providing a qualitative 

classification (e.g. Neary et al., 1999; Shakesby and Doerr, 2006; Keeley, 

2009; Jain et al., 2012; Vega et al., 2013); 
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 Estimation of  temperatures reached in soil and severity classification 

through calibration curves with Near Infrared (NIR) spectroscopy 

(Arcenegui et al., 2008; Guerrero et al., 2007; Maia et al, 2012); 

 Satellite imagery to estimate the relative amount of damage attributed to 

an area of vegetation (Key and Benson, 2006; Hammill and Bradstock, 

2006; Chafer, 2008). 

The usage of various methodologies for the same term, or similar terms, can 

create comparability difficulties. For example, burn severity is dependent on fire intensity 

(measure of the time-averaged energy flux) but also has a similar metric as used in fire 

severity. Given the numerous definitions of fire and burn severity, it is important for all 

users to explain how they define and assess severity (Jain et al. 2008). Since expert 

judgement can lead to different fire severity interpretations, because observers focus on 

fire effects selected for a particular set of local objectives or outcomes Morgan et al., 

2014). 

Burn severity has been assessed for different purposes (Morgan et al., 2014), 

such as: 

 mitigation of erosion potential , invasive species establishment and soil 

erosion risk (Fox et al., 2008; Clark and McKinley, 2011); 

 post-fire vegetation recovery (Miller et al., 2003; Pausas et al., 2003; 

Beschta et al., 2004; Lentile et al., 2006); 

 overall vegetation conditions (Bisson et al., 2008; Guay, 2011) 

‘Soil burn severity’ has been used to predict the physical, chemical or biological 

effects (Jain et al., 2012), including water repellency (Lewis et al., 2006), erodibility 

(Pierson et al., 2001), nutrient availability (Belillas and Feller, 1998), and also have been 

used to describe the fire regime (Beukema and Kurz, 1998; Morgan et al., 2001; Barrett 

et al., 2006; Keane et al., 2006),  

The knowledge of burn severity can be used by land managers to better predict 

the susceptibility of burnt areas to the post-fire occurrence of soil erosion and its 

implications in affecting the water quality of drinking water supply reservoirs (Lewis et al., 

2006; Blake et al., 2006; Doerr et al., 2006; Shakesby et al., 2007; Chafer, 2008). It is 

well documented in the literature, that understanding the spatially heterogeneous 

distribution of fire severity and its impacts on soils is an important management tool for 

identifying areas that may become impacted by post-fire erosion (Benavides-Solorio and 

MacDonald, 2005; Mayor et al., 2007; Gimeno-Garcia et al., 2007, Chafer, 2008). 

Information of burn severity, allied to post-fire rehabilitation/mitigation treatments, and to 
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a modelling tool (Robichaud et al., 2007), is the base for an emergency planning aiming 

at the prevention of flooding and increased soil losses, and at increasing vegetation 

recovery after fire (Robichaud et al., 2003). 

Low intensity fires such as prescribed fires commonly present low burn severity 

because they are used only to reduce fuel accumulation and are applied during specific 

meteorological conditions, frequently associated to high soil moisture content to avoid 

elevated impacts. The changes to the soil produced by this type of fire are in most cases 

only transient. Severe fires such as summer wildfires, however, generally have several 

negative effects on soil (Certini, 2005). High soil burn severity is often associated with 

the decrease of ground cover, increased soil water repellency, decreased infiltration and 

increased erosion (DeBano et al., 1998; Robichaud, 2000; Benavides-Solorio and 

MacDonald, 2001; Pierson et al., 2001, Robichaud et al., 2007).  

Despite the importance of the ‘burn severity ‘or ‘soil burn severity’ factor there is 

no unique use of the term, and the indicators by which burn severity is determined seem 

to vary among classification methodologies. Given the numerous definitions of fire and 

burn severity, it is important to clarify how severity is defined and assessed (Lentile et al., 

2006; Jain et al., 2008, Morgan et al., 2014). Moreover, not every post-fire related study 

contemplates burn severity classification.  

 
 
 
 

 

I.III Modelling post fire runoff and erosion 

rates 

The effect of wildfires on runoff and erosion has created a strong demand for 

model-based tools to predict the post-fire hydrological and erosion response. Post-fire 

runoff-erosion modelling has been a research topic of various studies (Díaz-Fierros et 

al., 1987; Soto and Díaz-Fierros, 1998; Benavides-Solorio and MacDonald, 2005; Larsen 

and MacDonald, 2007; Robichaud et al., 2007; Moody et al., 2008; Fernández et al., 

2010; Esteves et al., 2012; Vieira et al., 2014). Different models have been applied for 

this purpose, such as simple empirical models as the Universal Soil Loss Equation 

(USLE; Wischmeier and Smith, 1978) or the Revised Universal Soil Loss Equation 

(RUSLE; Renard et al., 1997) and the Revised Morgan–Morgan–Finney (MMF) model 

(Morgan, 2001). More complex and data-demanding models also have been used, such 

as process-based models, as the Water Erosion Prediction Project (WEPP; Nearing et 



 

Understanding and modelling hydrological and soil erosion processes in burnt forest catchments 

 

University of Aveiro 

 

11 

al., 1989) and the Pan-European Soil Erosion Risk Assessment (PESERA; Kirkby et al., 

2008).  

The development of tools integrating several models with probabilistic 

approaches, such as Erosion Risk Management Tool (ERMiT; Robichaud et al., 2007) 

for the USA, elevated the potential for this research subject. Soil erosion models adapted 

for burnt areas provide promising alternative routes for assessing medium- to long-term 

impacts of this landscape-disturbing agent, providing a complement to small-scale and 

short-term field monitoring (Esteves et al., 2012). 

As a very practical approach, the ERMiT tool has been developed for USA post-

fire conditions (Robichaud et al., 2007). It allows to predict erosion risk in burnt forest 

areas, as well as to evaluate the effectiveness of applied treatments. ERMiT provides 

probabilistic estimates of single-storm post-fire hillslope erosion by incorporating 

variability in rainfall characteristics, soil burn severity, and soil characteristics into each 

prediction. ERMiT uses WEPP technology for runoff and erosion calculations. WEPP 

incorporates the processes of evapotranspiration, infiltration, runoff, soil detachment, 

sediment transport, and sediment deposition to predict runoff and erosion at the hillslope 

scale and simulates both inter-rill and rill erosion processes (Flanagan and Livingston, 

1995). Through the ERMiT interface, stochastic weather files generated by CLImate 

GENerator (CLIGEN) (Nicks et al., 1995) are selected for use in WEPP.  

The output of ERMiT enables forest managers to assess the impact of fire on site 

productivity and potential benefits of rehabilitation treatments (Larsen and MacDonald, 

2007), and it can help them to formulate erosion mitigation treatment decisions based on 

the probability of the occurrence of high sediment yields (Robichaud et al., 2007). In 

Portugal and other Mediterranean regions, there is also a need for a similar tool to 

support post-fire management. However, the ERMiT tool and other models described 

above have been parameterized for specific circumstances that are not appropriate for 

Portuguese and Mediterranean conditions. Esteves et al. (2012), after applying PESERA 

to Portuguese post-fire conditions, highlighted that SWR, the influence of ash and the 

presence of a high stone content (frequently observed in burnt areas in Portugal and in 

the Mediterranean), are factors that need further consideration for locally-applied 

models. The authors also considered that these factors were the reasons why PESERA 

model overestimated post-fire soil erosion at both the plot and hillslope scale. 

Many models also require a very detailed input dataset from the site, often 

unavailable in the Mediterranean, especially for post-fire conditions. Empirically-based 

models require less field data than other more complex models and might therefore be 

more feasible as a local management tool.  
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I.IV Objectives and thesis structure 

The overall aim of this study was to further knowledge and understanding of the 

hydrological and erosion response in recently burnt forest areas, and of their modelling. 

The specific objectives were the following: 

 

i. To determine the effect of burn severity in ecosystems and its implications 

regarding post fire hydrological and erosive responses worldwide, based 

on a critical review of existing studies using rainfall simulation experiments 

(RSE’s) studies.  

 

ii. To assess the effects of different pre-fire land management practices 

(unplowed, downslope plowed and contour plowed) and time-since-fire on 

the post fire hydrological and erosive response for the two of the most 

common land uses in Portugal (pine and eucalypt) (ICNF, 2013), and to 

provide new insights about the long term post fire response, by comparing 

runoff and erosion rates with known window of disturbance models 

(Figure 2). 

 

iii. To determine the performance of two widely-known erosion models 

(RUSLE and Revised MMF) to predict soil erosion rates during the first 

year following two wildfires of distinctive burn severity, and to predict the 

efficiency of different post-fire rehabilitation treatments to reduce these 

erosion rates. 

 

iv. To improve the Revised MMF model for two different land uses (pine and 

eucalypt) by incorporating seasonal variations, such as climate, soil 

moisture and vegetation recovery and by including soil water repellency. 

As well as, to assess model performance for the two published erosion 

mitigation studies carried out in north-central Portugal. 

 

The organization of this thesis follows four main chapters. Chapters II and III, 

correspond to the publications in which these objectives were set: Afterwards, the thesis 

is followed by a chapter mentioning other contributions by the author (IV), and by general 

conclusions and future perspectives (IV).  
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II. Factors affecting post fire runoff and erosion 

 

In this chapter, two extensive post fire datasets were analysed to identify key 

factors in post fire runoff and erosion: (i) rainfall simulation experiences dataset; (ii) 

Four years monitoring dataset of Colmeal study site. 

The first database resulted in a review article in which results from different 

burn severities were compared by mean of Meta-analysis (II.I Burn Severity).  

The second database explored the effects of land use, pre-fire land 

management and time-since-fire (II.II Land cover, land management and time-since-

fire). A comparison was carried out between two land uses (pine and eucalypt), 

three pre-fire land management practices in eucalypt plantations (unplowed, 

downslope-plowed and contour-plowed), and the first four years after a wildfire. This 

comparison was done by mean of a two-way repeated ANOVA of annual runoff and 

erosion amounts at four study sites. This study also included auxiliary variables such 

as ground cover, soil water repellency, soil moisture, rainfall, rainfall intensity and 

rainfall erosivity.  

 

III. Modelling post fire runoff and erosion 

 

In this chapter, post fire runoff and erosion were predicted using two semi-

empirical models.  

The first approach (III.I Performance of two erosion models after fire and 

rehabilitation treatments) compared two different erosion model (RUSLE and revised 

MMF) estimations with the same dataset. This comparison was focused over soil 

erosion prediction efficiency of each model, between two study sites exposed to 

different burn severity wildfires. In this chapter a first approach to predict post fire 

rehabilitation treatments efficiency was also executed. 

The second part is a follow-up from the previous publication. This chapter 

presents modelling results with the revised MMF model only, but focused in both 

runoff and erosion estimations (III.II Improving runoff and erosion predictions in burnt 

forest using the revised Morgan-Morgan-Finney model). In this case, some 

improvements were also implemented in the MMF model allowing the improvement 

of its prediction efficiency, over post fire and post fire with rehabilitation treatments 

cases. Model adjustments to the post fire case were based with the long term 

monitoring observations of Colmeal study site. Continuous observations of seasonal 

patterns of rainfall and soil water repellency inspired such model improvements. 
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Model validation was also performed at two independent sites, subjected to a 

wildfire in 1991 and 1991. 

The four above-mentioned publications can also be organized in terms of time-

since-fire and space scale, as shown in Figure 5.  

Chapter II.I has a dataset of several rainfall simulation experiments, representing 

processes at micro-plot scale. At this scale erosion is controlled largely by the stability of 

the soil aggregates, and its breakdown is largely a result of raindrop impact, the 

frequency and erosivity of individual rainstorms (Morgan, 2005). And although these 

experiments were performed between the period, immediately after fire and 7 years after 

fire, each experiment represents a point-in-time measurement. The following chapter 

(II.II) still represent processes at micro-plot scale; however, the dataset contains 

continuous measurements in time during four years. Both modelling applications in 

chapter III were done at plot scale during 1 year. At plot scale, erosion is controlled by 

the processes that generate surface runoff, and usually include the infiltration 

characteristics of the soil and changes in the surface micro topography related to surface 

roughness (Morgan, 2005). 
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Figure 5 - Temporal and spatial scale for each publication/chapter of the thesis. 
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Soil burn severity has been widely used to describe the impacts of fire on soils 

and is increasingly being recognized as a decisive factor controlling post-fire erosion 

rates. However, there is no unique definition of the term and the relationship between 

soil burn severity and post-fire hydrological and erosion response has not yet been fully 

established.  

The objective of this work was to review the existing literature on the role of soil 

burn severity on post-fire runoff and erosion ratios. To this end, a meta-analysis was 

carried out of the runoff and inter-rill erosion data from field rainfall simulation 

experiments (RSE’s) that compared burnt and unburnt conditions. In this study, 109 

individual observations were analysed that covered a wide geographical range, various 

types of land cover (forest, shrubland, and grassland) and two types of fire types (wildfire 

and prescribed fire). The effect size of the post-fire runoff and erosion response was 

determined, for four key factors: i) soil burn severity; ii) time-since-fire; iii) rainfall 

intensity; and iv) bare soil cover.  

Statistical meta-analysis showed that fire occurrence had a significant effect on 

the hydrological and erosive response. However, this effect was only significantly higher 

with increasing soil burn severity for inter-rill erosion, and not for runoff. This study 

furthermore highlighted the incoherencies between existing burn severity classifications, 

and proposed an unambiguous classification.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Does soil burn severity affect the post-fire runoff and interrill erosion 
response? A review based on meta-analysis of field rainfall simulation data. 
 
Vieira, D.C.S, Fernández, C., Vega, J.A., Keizer J.J. (2015).  
Journal of Hydrology 523, 452-464.  
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Introduction 

 

Wildfire has been a natural disturbance factor in most forest ecosystems since 

late Devonian times (Schmidt and Noack, 2000). However, mankind’s key role in 

present-day fire regimes, especially through changes in land cover/use, has turned 

wildfires into an environmental problem in various countries over the last five decades 

(Cerdà and Mataix-Solera, 2009). Amongst other environmental impacts, wildfire is 

widely regarded as the principal agent of soil erosion and land degradation in woodlands 

and shrublands (DeBano et al., 2005; Shakesby and Doerr, 2006; Shakesby, 2011). 

Fire-enhanced runoff and erosion are commonly attributed to the (partial or total) 

removal of the protective soil cover by vegetation and litter, in combination with heating-

induced changes in soil properties such as aggregate stability and water repellency 

(Neary et al., 1999; Mataix-Solera and Guerrero, 2007; Úbeda and Outeiro, 2009; Varela 

et al., 2010). These changes can markedly enhance runoff and associated transport 

processes during the so-called window of disturbance, both at the hillslope and 

catchment scale (Prosser and Williams, 1998; Shakesby and Doerr, 2006; Shakesby, 

2011; Prats et al., 2013). 

Soil burn severity is a commonly-used term to describe the heating-induced 

alterations to soil properties caused by fire. However, there is not a single and unique 

definition of this term (Keeley, 2009). Besides as an indicator of the direct impacts of fire 

on soil properties, soil burn severity is often used as an indicator of the fire’s indirect 

impacts on the hydrological and erosion response of recently burnt areas. Most of the 

soil burn indices that have been proposed are based on the amount of surface litter layer 

consumed, the visually-observable changes of the mineral soil surface, the amount and 

colour of the deposited ashes, and/or the amount of charcoal present after the 

combustion of the aboveground biomass (Ryan and Noste, 1985; Neary et al., 2005; 

Shakesby and Doerr, 2006; Jain et al. 2012; Vega et al., 2013a). An indicator that is 

more closely linked to the soil heating regime itself is that of the maximum soil 

temperatures reached (MTR) estimated from Near Infrared (NIR) spectroscopy of 

laboratory-heated and field soil samples (Arcenegui et al., 2008; Guerrero et al., 2007; 

Maia et al., 2012). The use of distinct burn-severity classifications will hamper a direct 

comparison of the results obtained by different studies. 

Wildfires often produce mosaics of areas with different soil burn severities 

(Robichaud et al., 2000; Maia et al., 2012; Vega et al., 2013a). These spatial patterns in 

burn severity are often important in identifying areas with a high risk of post-fire erosion 

(Benavides-Solorio and MacDonald, 2005; Mayor et al., 2007; Gimeno-Garcia et al., 
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2007, Chafer, 2008). In fact, mapping of soil burn severity has become an integral part of 

operational procedures in the USA to assess the risks of soil erosion and off-site impacts 

on downstream “values-at-risk” and, thereby, to prioritize emergency measures for 

reducing these risks (e.g. USDA, 1995; Parsons et al 2010; Vega et al 2013b). In the 

USA, a high soil burn severity is often associated with a decrease in ground cover, an 

increase in soil water repellency, and a decrease in infiltration (DeBano et al., 1998; 

Robichaud, 2000; Benavides-Solorio and MacDonald, 2001; Pierson et al 2001; 

Robichaud et al., 2007). Even so, in other parts of the world the relationship between soil 

burn severity and post-fire erosion has not been extensively studied and remains to be 

fully quantified (Shakesby, 2011). The reviews on wildfire effects in the Mediterranean 

Basin by Pausas et al. (2008) and Shakesby (2011) did not include a comprehensive 

analysis of the role of burn severity. To gain further insight in this relationship between 

burn severity and post-fire erosion, the present study aimed to compile the existing 

rainfall simulation data from field studies across the world and to analyse them 

quantitatively by means of meta-analysis. 

Field rainfall simulations experiments (RSE’s) have been widely used to study the 

effects of fire on runoff and sediment losses (e.g. Emmerich and Cox, 1992; Robichaud, 

2000; De Luis et al., 2003; Ferreira et al., 2005; Fernández et al., 2008; Groen and 

Woods, 2008). Nevertheless, the most comprehensive recent reviews on post-fire 

erosion (Shakesby and Doerr, 2006; Shakesby, 2011; Moody et al., 2013) have not 

included these RSE studies. The last review that did include them was that of Rulli et al. 

(2006). While the limitations of RSE’s as a research tool are well-established , RSE’s do 

permit a direct comparison of the hydrological and inter-rill erosion response of different 

study sites, distinct soil conservation measures and different times-since-fire (e.g. Cerdà, 

1998; Nunes et al., 2009; Johansen et al., 2001a; Malvar et al., 2011; Fernández et al., 

2012). 

The specific objectives of the present meta-analysis were to quantify and critically 

review the association of differences in runoff and erosion between burnt and unburnt 

RSE plots with four potential key explanatory factors: (i) soil burn severity, irrespective of 

the underlying severity indicator ; (ii) time-since-fire; (iii) simulated rainfall intensity; (iv) 

bare soil cover. This included an assessment of the robustness of these associations by 

means of resampling (jack-knife) as well as  an analysis of the main limitations of the 

present dataset and of possible manner to overcome these limitations in future datasets.  
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Materials and Methods 

 

Origin of data 

 

Science Direct and Google Scholar were searched exhaustively for publications 

in peer-reviewed journals that addressed the effects of fire on runoff and erosion by 

comparing the results of field rainfall simulation experiments (RSE’s) carried out in 

recently burned vs. long-unburned areas that were otherwise comparable. From these 

publications, the present study selected those that provided the following elements: 

- the applied rainfall intensity and duration;  

- runoff and erosion figures that allowed computing runoff coefficients (%) 

and specific erosion rates (Mg.ha-1.mmrain
-1 ); 

- the timing of the RSE’s relative  to the occurrence of the fire; 

- the type of fire (wildfire or prescribed fire) and its soil burn severity, either 

simply stated as an expert opinion or sustained by observations on one or 

more indicators of soil burn severity. 

In total, 20 publications were included in the present meta-analysis (Table 1). 

Some publications, however, were only included after the authors had provided 

additional information or clarified specific doubts (such requests for further information 

were restricted to the studies published after 2000). The study by Cerdà and Doerr 

(2005) was an exceptional case in that it was included in spite of not involving a direct 

comparison between burnt and unburnt plots. This was done because the study included 

RSE’s that were carried out 11 years after a wildfire, i.e. under long-unburnt conditions 

closely approximating control conditions.  

 

Data compilation, revision and gap-filling 

 

A varied number of observations (1 to 26) were obtained among the 20 selected 

publications, providing a total of 109 observations (Table 1). Each observation is defined 

as a comparison of runoff and erosion ratios, obtained by concomitant RSE’s on recently 

burnt vs. long-unburnt plots. The identification of one or more observations in a specific 

study reflected the number of independent factors included in the study’s experimental 

set-up, and, thus, aimed at minimizing within-group variation in the observations. For 

example, the study by Kutiel et al. (1995) compared runoff and erosion on burnt vs. 

unburnt RSE plots on north-facing slopes as well as on south-facing slopes, so that two, 

exposition-specific observations were included in the meta-analysis.
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Table 1 – References used for Meta-analysis, and main conditions of performed rainfall simulations. 

Reference Vegetation Location 
Burn severity 

Time since fire 
Simulator 

type 
RSE Intensity 

(duration) 
Nº 

obs. classes method
(1)

 indicators
(2)

 

Benavides and 
MacDonald (2001) 

Ponderosa and 
Lodgepole Pine 

Colorado Front Range, 
USA 

low, moderate, 
high 

Wells et al. 
(1979) 

organic layer; litter; duff; 
mineral soil 

Immediately 
after fire 

Meyer and 
Harmon 
(1979) 

66-94 mm/h 
(60min) 

6 

Cerdà and Doerr (2005) 
Trees, herbs, 
shrubs, dwarf 

shrubs. 

Serra Grossa 
Range,Valencia, Spain 

high 
Bentley and 

Fenner (1958) 
ash 

1,2,3,6,8 and 
11 years after 

fire 

Cerdà et 
al. (1997) 

55 mm/h 
(60min) 

10 

De Luis et al. (2003) Shrubs Onil, SE Spain 
low, moderate, 

high 
expert judgment 

temperatures; ash; woody 
and litter debris 

Immediately 
after fire 

De Luis et 
al. (2003) 

156 mm/h 
(105min) 

9 

Dobrowolski et al. (1992) Longleaf pine Lousiana, USA high estimated 
temperatures; rel. humidity; 
bare soil; vegetation; litter; 

fire type 

Immediately 
after fire, One 

year 

Meyer and 
Harmon 
(1979) 

126 mm/h 
(45 min) 

26 

Emmerich and Cox 
(1992) 

Grass (introduced/ 
native) 

SE Arizona, USA low expert judgment biomass; litter; plant crowns 
Immediately 

after fire 
Swanson 

(1965) 

55 and 110 
mm/h 

(45 and 15min) 
1 

Emmerich and Cox 
(1994) 

Grass (introduced/ 
native) 

SE Arizona, USA low estimated 
temperatures; rel. humidity; 
bare soil; vegetation; litter; 

fire type 

Immediately 
after fire 

Swanson 
(1965) 

55 and 110 
mm/h (45 and 

15min) 
8 

Fernández et al. (2006) 
Pinus pinaster + 

shrubs 
Orense, N.W. Spain moderate request 

organic cover; ash; soil 
structure 

Immediately 
after fire 

Wilcox et 
al. (1986) 

120 mm/h 
(30min) 

1 

Fernández et al. (2008) Shrubs Pontevedra, NW Spain low request 
organic cover; ash; soil 

structure 
Immediately 

after fire 
Wilcox et 
al. (1986) 

67 mm/h 
(30 min) 

1 

Fernández et al. (2012) Shrubs 
Orense and Santander, 

N Spain 
low request 

organic cover; ash; soil 
structure 

Immediately 
after fire 

Wilcox et 
al. (1986) 

67 mm/h 
(30 min) 

2 

Hester et al. (1997) 
Oak, juniper, 

bunchgrass and 
shortgrass 

Texas, USA high expert judgment na 
Immediately 

after fire 

Blackburn 
et al. 

(1974) 

203 mm/h 
(50 min) 

1 

Johansen et al. (2001a) Ponderosa Pine 
NW Santa Fe, New 

Mexico, USA 
high 

BAER 
(Robichaud et al 

2000) 
na 

Immediately 
after fire 

Swanson 
(1965) 

60 mm/h 
(60+30+30min) 

4 

Johansen et al. (2001b) Desert grass 
Carlsbad, New Mexico 

and Westminster, 
Colorado; USA 

low estimated 
temperatures; rel. humidity; 
bare soil; vegetation; litter; 

fire type 

Immediately 
after fire 

Swanson 
(1965) 

60 mm/h 
(60+30+30min) 

2 

Knight et al. (1983) Shrubs Texas, USA low estimated 
temperatures; rel. humidity; 
bare soil; vegetation; litter; 

fire type 

Immediately 
after fire 

Blackburn 
et al. 

(1974) 

203 mm/h 
(30 min) 

1 

Kutiel et al. (1995) Pine, oak, shrub NW Israel low Sampson (1944) temperatures 
Immediately, 2 
weeks and 1 
year after fire 

Morin et 
al. (1967) 

30mm/h 
(60min) 

6 
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Reference Vegetation Location 
Burn severity 

Time since fire 
Simulator 

type 
RSE Intensity 

(duration) 
Nº 

obs. 
classes method

(1)
 indicators

(2)
 

Pierson et al. (2001) Sagebrush Denio, Nevada, USA high expert judgment ground cover; canopy 
Immediately 
and 1 year 
after fire 

Meyer and 
Harmon 
(1979) 

85 mm/h 
(60min) 

4 

Pierson et al. (2002) Sagebrush Idaho, USA 
low, moderate, 

high 

BAER 
(Robichaud et al 

2000) 

litter; duff and woody debris; 
ash color; mineral soil 

1 year 
Meyer and 

Harmon 
(1979) 

67 mm/h 
(10-30min) 

8 

Pierson et al. (2008) Sagebrush Denio, Nevada, USA high expert judgment ground cover; canopy 
Immediately, 1 

and 2 years 
after fire 

Meyer and 
Harmon 
(1979) 

85 mm/h 
(60 min) 

2 

Robichaud (2000) 
Ponderosa and 
Lodgepole Pine 

Western Montana and 
central Idaho, USA 

low, moderate, 
high 

expert judgment ground cover; duff thickness 
Immediately 

after fire 

USDA-
Forest 
Service 

oscillating 
nozzle 
rainfall 

simulator. 

94 mm/h (30 
min) 

6 

Sheridan et al. (2007) Eucalypts NE Victoria, Australia 
moderate, 

high 
expert judgment crown burnt/scorch levels 

Immediately, 
0.5, 1, 1.5, 2, 

2.5 and 3 
years after fire 

Bubenzer 
and Meyer 

(1965) 

100 mm/h 
(30min) 

7 

Zavala et al. (2009) Shrub Cádiz, SW Spain low expert judgment ashes; charred litter; soil 
Immediately 

after fire 
Navas et 
al. (1990) 

56.5 mm/h 
(30 min) 

4 

(1) Method cited by authors to justify burn severity classification; 
(2) Burn severity indicators taken into account for burn severity classification given by the authors in the articles, when those parameters were not described filled with “na”; 
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Data on the simulated rainfall (amount, intensity and duration) and on the area 

and slope angle of the RSE plots were available for (almost) all 109 observations (Table 

2, Figure 6, Figure 7). The height from which the simulated rainfall was falling was only 

specified for 30% of the observations. Data availability on soil properties was highly 

variable. While soil texture class was mentioned for 94% of the observations, the 

fractions of clay, silt and sand were referred for less than half (44%). Also potential key 

explanatory variables such as soil moisture content and bulk density were missing for a 

large part of the observations (45% and 62%, respectively). Data availability on soil 

cover reflected the importance that is commonly attributed to bare soil and vegetation 

cover, being referred for 77% and 70% of the observations, respectively. Other cover 

variables such as litter and stone/rock cover were available for less than a third of the 

observations.  

 
Table 2 – List of rainfall simulation variables and auxiliary parameters. The availability of each variable 

relatively to the total number of runs (n=109) in percent (%-available) and the fraction of estimates within the 
entire data set (%-flagged) are given. 

Variable Description Units Min Max %-available %-flagged 

Rainfall Total rainfall amount applied mm 24 273 100 0 

Rainfall Intensity Rainfall intensity mm.h
-1
 34 203 100 0 

Rainfall duration Rainfall duration min 30 120 100 0 

Plot Area Area of the RSE plot m
2
 0.13 32 100 0 

Slope angle Slope angle of the RSE plot % 4 51 99 0 

Simulator height Height from which rainfall  m 2 3.5 30 0 

Runoff Runoff coefficient over the entire RSE % 2 68 100 0 

Erosion 
Specific erosion rate per mm of rainfall 
over the entire RSE 

Mg.ha
-1
 mmrain

-1
 <0.01 0.11 100 0 

Antecedent soil 
moisture 

Soil moisture content immediately 
before rainfall simulation 

% 0 35 55 0 

Bulk density Air-dry bulk density kg.m
-3
 0.51 1.39 38 0 

Texture class Texture classification - - - 94 0 

Clay Clay fraction (<2 µm) % 5 91 44 0 

Silt Silt fraction (2–63 µm) % 4 47 44 0 

Sand Sand fraction (63–2000 µm) % 5 83 44 0 

Cover Total protective surface cover % 0 100 28 0 

Bare soil Cover of bare soil % 1 100 77 0 

Vegetation Cover by vegetation % 2 100 70 0 

Stone Cover by stones/rock % 0 2 7 0 

Ash Cover by ash % 26 64 16 0 

Litter Cover by litter % 37 27 22 0 

Time since Fire 
Time occurred between fire and 
rainfall simulation 

months 0 84 100 0 

Burn Severity 
Classification describing the heating-
induced alterations to soil 

- - - 68 32* 

(*) Corresponds to 4 studies (Dobrowolski et al. (1992), Emmerich-Cox (1994), Johansen et al. (2001b) and Knight et al. 
(1983) 
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Figure 6 – Histograms of rainfall properties for 109 runs; total rainfall amount in the left; mean rainfall 

intensity in the middle; and rainfall duration on the right.  

 
Figure 7 – Histograms of rainfall simulation experiments characteristics; plot area in the left (n=109); plot 

slope in the middle (n=108); and simulator height on the right (n=30). 

 

While soil burn severity was crucial to the aims of this meta-analysis, it was not 

explicitly referred in 7 out of the 20 publications (Figure 8). In three of these cases 

(Fernández et al., 2006, 2008, 2012), the authors of the publications provided this 

information, upon a specific request. In the remaining four cases (Dobrowolski et al., 

1992; Emmerich-Cox, 1994; Johansen et al., 2001b; Knight et al., 1983), the present 

authors felt confident to estimate soil burn severity following the classification by Vega et 

al. (2013a), based on the description of the fire and of post-fire conditions in the article. 
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All four studies concerned prescribed fire and, more specifically, headfires under 

temperature and relative humidity conditions guaranteeing the - intended - low soil burn 

severity. This low severity was also confirmed by studies’ data on bare soil and 

remaining vegetation-litter cover immediately after the fire. and on the degree of litter 

consumption Furthermore, the bulk of the other publications on prescribed fire included 

in the dataset reported low severity burning, with the two exceptions (De Luis et al., 

2003; Robichaud, 2000) having used prescribed fire with the explicit aim to study the 

effects of different burn severities.  

From the 13 publications that did explicitly refer soil burn severity, more than half 

involved expert judgement as opposed to being based on published data on one more of 

severity indicators (Table 1, Figure 8). The remaining five publications specifically 

referred the method that was used to classify soil burnt severity, i.e. the methods of 

Sampson (1944), Bentley and Fenner (1958), Wells et al., (1979), and Robichaud et al., 

(2000). These publications also provided information on the underlying burn severity 

indicator(s). The most referred severity indicators were, either the quantification of the 

remaining protective soil cover (litter, vegetation, duff, organic layer, canopy) or the 

absence of protection (bare soil). Followed by, vegetation consumption indicators (duff 

thickness, debris, scorch levels) and fire temperatures (prescribed fire studies only) and 

ashes (presence and colour). 

 

 
Figure 8 – Number of studies per burn severity classification sources in the meta-analysis database. 
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Statistical data analysis 
 

The effect of fire and, in particular, soil burn severity on the runoff and erosion 

response in the present dataset was analysed by means of meta-analysis (Cooper et al., 

2009). The same was done regarding the effects of time-since-fire and applied rainfall 

intensity. To this end, all three variables were divided into 3 or 4 classes on an interval 

scale. Following the terminology used throughout the 20 publications included in this 

meta-analysis, soil burn severity was divided into low, moderate and high. Time-since-

fire and rainfall intensity, however, were divided into arbitrary classes. These classes 

were respectively: (i) < 0.5; 0.5 - 1.5; 1.5 – 3; > 3 years after the fire; and (ii) 30 - 60, 60 - 

100, 100 - 150, and > 150 mm h-1.   

For each of the 109 observations, the average runoff coefficient (%) and the 

average specific erosion rate (Mg ha-1 mmrain
-1) of the multiple RSE’s that were carried 

out on recently burnt plots or on long-unburnt plots were compiled or computed. Also the 

corresponding standard deviations were compiled or calculated, based on the measures 

of variation provided in the publication or by the authors upon specific request.  

The meta-analyses tested the effects of soil burn severity, time-since-fire and 

rainfall intensity by means of fixed effects models. The logarithmic response ratio was 

used as test metric, since it is widely considered to be the most appropriate metric for 

meta-analysis of ecological data (e.g. Wan et al., 2001; Kopper et al., 2009; Kalies et al., 

2010 Abalos et al., 2014). This ratio expresses the proportional difference in a response 

variable between a “treatment” and a reference: 

 

, where stands for the average of the response variable for treatment; and  

for the average of the response variable for the reference. Mean effect size was 

calculated with bias-corrected 95% intervals. 

In the present meta-analysis, the treatment data corresponded to the results from 

the recently burnt RSE plots, either from a specific soil burn severity class or from all 

severity classes together (overall fire effect), while the reference data corresponded to 

the results from the long-unburnt RSE plots. The response variables analysed here were 

runoff coefficient (%) and specific erosion rate (Mg ha-1 mmrain
-1). The standard deviations 

in these response variables were used as weighting factors of the individual 

observations, also called as moderator variables. This allowed estimating the weighted 

least squares relationship between the moderator variables and the true effects 

(Viechtbauer, 2010).  
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The so-called effect size was determined for the three classes of soil burn 

severity separately as well as together (in the latter case being referred to as overall 

effect). The same applied for time-since-fire and applied rainfall intensity. Mean effect 

sizes were considered to be significantly different from zero if the 95% confidence 

interval did not overlap zero, and significantly different from one another if their 95% 

confidence intervals were not overlapped. A positive effect size then meant that, for 

example, a high soil burn severity significantly enhanced the average runoff coefficient or 

the average specific erosion rate compared to long-unburnt conditions, with the mean 

effect size expressing the extent of this fire effect on a logarithmic scale (see e.g. Kalies 

et al., 2010).  

A test for residual heterogeneity was carried out as integral part of the applied 

meta-analysis function considering that the applied model includes moderator variables. 

The applied test is the Cochran's QE-test (Cochran, 1954) for residual heterogeneity. 

This test assesses whether the variability in the observed effect sizes or outcomes that is 

not accounted for by the model’s moderator variables, is larger than would be expected 

based on sampling variability alone (Viechtbauer, 2014). 

The robustness of the meta-analysis results of the effects of fire severity, rainfall 

intensity and time-since-fire was assessed by means of a Jackknife procedure (Sokal 

and Rohlf, 1981). This was done in view of the heterogeneity of the data set as 

described in the next section and, in particular, to asses if individual observations unduly 

influenced effect size. The procedure involved repeating the meta-analysis while ignoring 

one of the observations at a time. All analyses were carried out using the R statistical 

package (R Development Core Team, 2012). 

 

Description of the dataset 

 

The 20 studies included in the present analysis involved a broad geographical 

range, covering four continents, but also revealed a strong geographical bias, since the 

bulk of the studies were carried out in the USA (60 %) and Spain (30 %) (Table 1). The 

109 observations revealed a similar predominance of the USA (63 %) and Spain (25 %). 

In terms of land-cover type, the 109 observations concerned noticeably more forest 

stands (62 %) than shrublands (28 %) or grasslands (10 %).  

A larger fraction of the 109 observations concerned the effects of prescribed fires 

as opposed to the effects of wildfires (58 vs. 42 %; Figure 9). The soil burn severity of 

these fires was mostly low (48 % of the observations), while it was moderate and high in 

roughly similar proportions (30 and 22 % of the observations, respectively). The bulk of 
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the RSE’s included in this analysis (58 % of the observations) were carried out during the 

first six months after the fire (Figure 9). The remaining observations decreased markedly 

with the three subsequent time-since-fire classes. Rainfall intensities within first two 

classes (30-60 and 60-100 mm h-1) had similar number of observations (27%). The class 

with most of the observations (37%) was 100-150 mm h-1, while the least represented 

was <150 mm h-1 with only 10% of the cases. 

 

 
Figure 9 – Number of observations from the meta-analysis database classified by type of fire, soil burn 

severity level and time since fire. 

 

Results  

 

The effects of fire occurrence and the role of soil burn severity  

 

The occurrence of fire by itself had a significant effect on the hydrological 

response, increasing the runoff coefficient compared to unburnt conditions (Figure 10). 

The same was true for each of the three soil burn severity classes (Figure 10). All four 

corresponding QE-test values were highly significant (p < 0.001). The runoff effect size, 

however, did not differ significantly between the three soil burn severity classes. 

Nonetheless, there was some suggestion that high burn severity had a lesser impact on 

overland flow generation than low as well as moderate burn severity, as there was very 

little overlap between the effect size of high severity and the effects sizes of the other 

severity classes. 

Fire per se also enhanced the erosion response in a significant manner but to a 

greater extent than it increased the runoff response, as indicated by the markedly larger 

overall effect size (1.73 vs. 0.84; Figure 10). There was again significant between-group 
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heterogeneity (P < 0.001) for severity classes. Unlike the runoff response ratio, however, 

the erosion response ratio differed significantly between all three severity classes. 

Furthermore, it increased with increasing burn severity and, most conspicuously, from 

the low to the moderate soil burn severity. 

 

The effects of time-since-fire 

 

The average effect size of the runoff response ratio decreased monotonically with 

the four classes of increasing time-since-fire (Figure 11). Even so, fire only had an 

unequivocal significant effect on overland flow generation in the case of the two initial 

time-since-fire classes, and this effect was significantly stronger immediately after fire 

than between 0.5 and 1.5 years after fire. The runoff-enhancing effect of fire also 

appeared to be significant between 1.5 and 3 year after fire but this hypothesis was 

rejected as the QE value was not statistically significant (p = 0.07). More than 3 years 

after fire, the effect size was not significant and also was not correspond to a significant 

QE value (p = 0.21). 

The effect size of the erosion response appeared to be significant for all four 

time-since-fire classes (Figure 11). In the case of the final class, however, this erosion-

enhancing effect was questionable because the corresponding QE-test of heterogeneity 

yielded a p-value that was clearly non-significant (0.24). The three remaining classes did 

not suggest an obvious pattern in erosion effect size with time-since-fire, unlike was the 

case for the runoff response ratio. Even so, the erosion response ratio did agree with the 

runoff response ratio in that effect size was significantly higher immediately after fire than 

between 0.5 and 1.5 years after fire. 
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Figure 10 – Effect size for runoff coefficients and specific erosion rates, for fire occurrence (“overall”) 

(n=109) and for the three classes of soil burn severity: Low (n=52); Moderate (n=24); and High (n=33). 
Confidence intervals (95%) that do not cross the zero y-axes are statistically significant. 

 

 
Figure 11 – Effect size for runoff coefficients and specific erosion rates, for fire occurrence (“overall”) 

(n=109) and for the four classes of time since fire: Immediately (n=63); 0.5-1.5 years (n=30); 1.5-3 years 
(n=9); and >3 years (n=7). Confidence intervals (95%) that do not cross the zero y-axes are statistically 
significant. 
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The effects of rainfall intensity 

 

All four classes of applied rainfall intensity revealed a significant effect size for 

overland flow generation (Figure 12). Also all four corresponding QE values were highly 

significant (p’s < 0.01). There was some suggestion that the average effect size 

increased with increasing rainfall intensity but this tendency was limited to the rainfall 

intensity classes that exceeded 60 mm h-1. The effect size of the lowest rainfall intensity 

class (30-60 mm h-1) was, on average, intermediate between those of the two highest 

classes (100-1500 and >150 mm h-1) and also strongly overlapped with them.  

The four rainfall intensity classes equally revealed a significant fire effect on 

specific erosion rates (Figure 12) and highly significant QE-test values (p’s < 0.01). 

However, there was no straightforward relationship of effect size with rainfall intensity, 

except that the effect size of the highest rainfall intensity class clearly contrasted with 

those of the other three classes.  

 

 
Figure 12 – Effect size for runoff coefficients and specific erosion rates, for fire occurrence (“overall”) 

(n=109) and for the four classes of rainfall intensity: 30-60 mm h
-1

 (n=29); 60-100 mm h
-1

 (n=29); 100-150 
mm h

-1
 (n=40); and 150-200 mm h

-1
 (n=11).  Confidence intervals (95%) that do not cross the zero y-axes 

are statistically significant. 
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Robustness of the meta-analysis results 
 

Generally, some differences between control and burned plots (besides the 

burning) will always exist, especially in the wildfire cases with plots outside the burning 

area, and less in the case of many prescribed fires, because RSE’s were made in the 

exact same plot (control plots = pre-burn plots) leading to a smaller error. Nevertheless, 

the coefficients of determination (R2) between the effect size for runoff and erosion and 

all the listed variables (Table 2) were calculated, and its result remained well below 0.3. 

Also, the meta-analysis results obtained through a Jackknife procedure revealed 

relatively minor variations in average effect size (Figure 13). Furthermore, the Jackknife 

results did not alter the statistical inferences on the role of fire occurrence or the different 

classes of soil burn severity, time-since-fire and rainfall intensity. Thus, the current data 

set appeared to be sufficiently robust against unduly impacts of individual observations, 

in spite the number of 109 observations was somewhat limited and the 109 observations 

included considerable variation in potential key factors such as vegetation type or slope 

angle. 

Runoff ratios effect size, were inverted for low and moderate burn severity 

classes in two occasions (2%), while the high burn severity group never intercepted 

another classification (Figure 13). However, standard error was always overlapped for all 

the classes and due to that they never differ significantly. In the case of the erosion, 

effect size variation for each burnt severity class never intercepted another class, and 

the standard error between low and moderate burn severity never overlapped. Also, high 

and moderate severity classes were significantly different for 74% of the runs (Figure 

13). 

Runoff effect size for RSE’s made immediately after fire were significantly higher, with no 

overlapping or interception from de other groups. Between 0.5-1.5 and 1.5-3 years few 

variation occurred (standard deviation, s.d. = 0.01), but no significant differences could 

be observed. In the case of the >3 years class a higher variation of results was observed 

(s.d.=0.06) due to 2 observations from 2 different studies. For erosion results however, 

this classification seem to show the same results as the meta-analysis with the entire 

dataset. 

 

In the case of the rainfall intensity groups, few variations were observed within 

each class regardless of the removed observation in the case of runoff (s.d. varied 

between 0.01-0.02) and in the erosion this variation was slightly higher (s.d. between 

0.02 and 0.06), however none of the effect sizes for runoff and erosion switched 

positions from the initial result (Figure 13). 
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Figure 13 – Average effect size of runoff coefficients (left) and specific erosion rates (right) for fire 

occurrence and the various classes of soil burn severity (up), time-since-fire (middle) and rainfall intensity 
(bottom) for the 108 realizations analysed through a Jackknife procedure. Error bars indicate max and min. 
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Discussion 

 

This meta-analysis study is the first quantitative synthesis of the literature in 

scientific journals on the role of soil burnt severity in the runoff and erosion response to 

simulated rainfall under field conditions. The number of encountered publications is 

surprisingly low compared to the number of studies included in a similar meta-analysis 

for arable soils (Fiener et al., 2011). Shakesby (2011) noted the same in relation to 

erosion studies using runoff plots. 

 

The role of fire and soil burn severity 

 

The present meta-analysis provided statistical evidence for the long-standing 

notion that the occurrence of fire tends to lead to an increase in overland flow generation 

and associated sediment losses (e.g. DeBano et al., 2005; Shakesby and Doerr 2006; 

Pausas et al., 2008; Shakesby, 2011). The present results further indicated that this fire 

effect is clearly less pronounced for the hydrological than erosion response. This 

enhanced impact on erosion rates as compared to runoff rates could be explained by 

heating-induced changes in soil properties that determine soil erodibility, such as 

aggregate stability and organic matter content (Varela et al., 2010; Mataix-Solera et al., 

2011). However, also the consumption of the ground-covering vegetation and/or the litter 

layer could play a role by reducing the resistance to flow and, hence, increasing the 

erosive power of the runoff (Shakesby and Doerr, 2006).  

This meta-analysis also provided statistical evidence for the increasingly 

widespread opinion that the geomorphological implications of fires depend strongly on 

their severity (Benavides-Solorio and MacDonald, 2005; Vega et al., 2005; Shakesby 

and Doerr 2006; Pausas et al., 2008; Fernández et al 2010; Shakesby 2011). The role of 

soil burn severity was found here to be statistically significant in the case of soil erosion 

but not in the case of overland flow. This was in line with the above-mentioned finding 

that fire per se had a more pronounced effect on soil erosion than on runoff. 

Furthermore, the fire-induced enhancement of the erosion response differed in a 

plausible manner among the three soil burn severity classes, as increasing fire severity 

can be expected to aggravate not only the heating-induced changes in key soil 

properties (Varela et al., 2010; Mataix-Solera et al., 2011) but also the consumption of 

the ground-covering vegetation and litter layer (Shakesby and Doerr, 2006). These 

findings sustain a generalization of the results obtained by several of the individual 

studies included in the present dataset. Benavides-Solorio and MacDonald (2001) found 
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much smaller differences in overland flow than in sediment yield between areas burnt at 

low, medium and high severity. However, contrasting results have been reported as well, 

Vega et al. (2005) found that both lightly and intensely burnt plots produced significantly 

more runoff than unburnt plots during the first year after a prescribed fire, while only the 

intensely burnt plots produced significantly more erosion than the unburnt plots.  

The high heterogeneity of the data highlights the use of different methods to 

estimate soil burn severity 

The meta-analysis of the runoff data revealed as main pattern among the three 

soil burn severity classes a tendency towards a smaller increase following burning at 

high severity than at low or moderate severity. This tendency could be explained by the - 

widely accepted - role of soil water repellency in post-fire overland flow generation (e.g. 

Crockford et al., 1991; Burch et al., 1989; Shakesby et al., 1993; Doerr et al., 1998; 

Scott, 2000), in combination with the non-linear relationship of changes in soil water 

repellency with changes in soil heating that is well-established by laboratory studies (e.g. 

DeBano, 2000; Doerr and Moody, 2004; Varela et al, 2005). In a field study, Doerr et al. 

(2006) found that burning at high severity typically destroyed the pre-existing water 

repellency, rendering the topsoil wettable at the majority of sampling points and, thus, 

less susceptible to the generation of overland flow. Unfortunately, it was impossible to 

analyse the role of soil water repellency in the present runoff results, as the bulk of the 

studies included in the dataset did not comprise detailed information on the levels of soil 

water repellency prior to the start of the RSE’s.   

In many of the studies included in the dataset analysed here, fire-induced 

increases in bare soil cover were referred as (one of the) cause(s) of higher runoff and/or 

erosion rates in recently burnt plots than in long-unburnt plots. Therefore, an additional 

analysis was carried out using bare soil cover as indicator of soil burn severity as follows: 

low severity – bare soil cover < 30 % (based on MacDonald and Larsen (2009)); medium 

severity – 30 % ≤ bare soil cover ≤ 60 %; high severity – bare soil cover > 60 % (based 

on Johansen et al. (2001a). This additional analysis, however, did not produce “better 

results” than those shown in Figure 10. In terms of runoff effect size, the additional 

analysis did in fact reveal statistically significant differences between the three severity 

classes but these differences involved a significantly greater effect of moderate than 

low/high severity and, as such, were more difficult to comprehend than the contrast 

between high and low/moderate severity in Figure 10. In terms of erosion effect size, the 

additional analysis equally suggested an increase in effect size with increasing burn 

severity but the difference between moderate and high severity was not statistically 

significant. Possibly, bare soil cover would have been a more informative proxy of 

hydrological and erosion effects, if the meta-analysis were limited to the immediate post-
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fire period and, hence, the confounding role of time-of-vegetation recovery were 

minimized.  

 

The role of time-since-fire 

 

An examination of the data used to develop the meta database revealed that in 

85 % of the studies examined were evaluated (i.e., monitored) for less than 1.5 years, 

strongly biasing the evaluation of hydrological responses to short-term fire effects (Figure 

11). Other authors (Moody and Martin, 2000; Moody et al., 2013) have also noted the 

inadequacy of short-term evaluations when evaluating hydrological responses to fire, 

particularly when delayed erosion occurs (Cerdà., 1998; Larsen, et al., 2009). The fact 

that led to the impossibility to separate runoff and erosion ratios per different periods 

since fire can be related site variability and burn severity in the different studies (Figure 

11). Several authors referred that the responses of burned areas are transient, often 

lasting less than seven years, depending on various aspects, as the speed of vegetation 

recovery, post-wildfire weather conditions, sediment availability and morphology (Rowe 

et al., 1954; Cerdà, 1998; Moody and Martin, 2001; Gartner et al., 2004; Shakesby et al., 

2007; Sheridan et al., 2007; Cannon et al., 2010; Moody et al 2013) and also as 

MacDonald and Larsen (2009) mentioned different fire severities led to different 

recovering periods until the background levels. 

 

The role of rainfall intensity 

 

Regarding rainfall intensities, the meta-analysis provided the separation of only 

one group corresponding to intensities between 60 and 100 mm h-1 (Figure 12), as the 

one that provided the lowest effect size in runoff ratio, and intensities higher than 150 

mm h-1 that provided the higher effect size for normalized erosion (Figure 12). The 

overall observation is that rainfall intensity groups might not result in different runoff 

ratios and normalized erosion responses, verified by the overlapped confidence intervals 

in most groups (Figure 12). This was also observed by Malvar et al. (2011), when 

different rainfall intensities from RSE’s in post-fire areas were compared. Runoff 

coefficients from RSE’s with 45 vs 80 mm h-1 resulted in 54% vs 55% runoff coefficient 

for one site and 34% vs 38% for another. In the case of the erosion rates the first site 

increased erosion with intensity 0.094 vs 0.192 g m-2 mmrain
-1, while in the other, similar 

ratios were obtained 0.051 vs 0.052 g m-2 mmrain
-1. The fact that this comparison 

corresponds to normalized data (divided by total applied rainfall (mm)), means the 
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possible effect of rainfall intensity might be already included due to the inclusion of the 

rainfall amounts. Thereby, the fact that few intensity classes separations were possible 

to be made, plus no significant relationship between intensity versus runoff and erosion 

were achieved, might indicate that rainfall intensity may not be significant variable as 

their differences are already included in data in the form of rainfall amounts for 

comparability purposes. However, the extrapolation of these observations into natural 

rainfall events might not be as straightforward as observed in this study.  

 

Limitations of the dataset and guidelines for future studies 

 

The observed data variability can be attributed to several database weaknesses 

to represent the study subject (Table 3). These weaknesses are mostly associated to 

lack of data of interest and lack of representativeness by a disproportional distribution of 

the cases according to the following categories: 

Environmental - Most of the studied cases concern USA (60%) and Spain (30%) 

and then two other reports in only one location as is the case of Israel and Australia 

(Table 1). Other regions across a broad range of soil types and environmental conditions 

have been scarcely studied under the parameters in which concerns this study. This 

might be related to national priorities in terms of fire related research, adding to the fact 

that burn severity classification only has been widely used in the last decade (Keeley 

2009), although one of the first metrics for fire severity was reported approximately 30 

years ago by Ryan and Noste (1985).  

Land-use/ Vegetation cover– Most of the analysed cases concern pine forest 

(38%) and shrubland (26%), followed by eucalypt (10%) and grasslands (10%) as the 

site dominant vegetation. A better balance and more number of cases between the 

affected vegetation could provide an improved overview about the effect-size of runoff 

and erosion after fire for each land-use type. More resource evaluations should be 

included to arrive at an overall burn severity rating for a particular burned area. 

Dataset size - The number of observations is reduced considering the amount of 

dependent variables of this dataset (Table 1). The leading cause is the fulfilling of these 

meta-analysis main requirements, which are the existence of a burn severity 

classification and control data for each study. The lack of such info is justified by the 

scope of each original study, and also because it could imply several difficulties for field 

site measurements (e.g. control plots). Nevertheless, we propose for future post-fire 

studies the inclusion of that information. Even if the study objective might not consider 

different burn severities or the existence of control plots, their results would improve 
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post-fire data comparability towards a global scientific context. It is as valid as soil 

texture, vegetation type, climate or amount of rainfall as indicator of comparability. 

Non-uniform burn severity classification –From all the possible studies to be 

included in this meta-analysis only 51% (20 studies out of 39) presented a burn severity 

classification (or the enough information to be estimated), and from these, only 50% (10 

studies out of 20) described a method and factors in which the classification was based. 

Also, most of the burn severity classification methodology in these studies was made by 

the author’s expert judgment, representing 40% of all the meta-analysis (Figure 8). 

The parameters that are more often used for burn severity classifications are 

post-fire descriptions of soil, ashes, vegetation, duff, litter and also fire temperatures 

(prescribed/experimental fires). However, frequently only one parameter is used, e.g. 

ashes for Bentley and Fenner (1958) and rarely all these parameters are used in a single 

classification, e.g. BAER classification (Robichaud et al 2000; Parsons et al., 2010). It is 

widely accepted that soil burn severity is low if the protective soil cover by vegetation and 

litter immediately after fire is higher than 70 %, or bare soil lower than 30% (MacDonald 

and Larsen, 2009), and that it is high if the bare soil cover is high, say more than 

exceeds 60 % (Johansen et al., 2001a); however, moderate burnt severity is less well-

define in literature, possibly contributing to the lower number of observations in the data 

set with moderate severity than with low and high severity.  

Should be highlighted that the concept of ‘burn severity’ and the criteria to 

classify it have been changing through time since the first severity indicators were 

published (Kelley 2009). Namely, the studies included in the present analysis covered a 

long period, ranging from 1983 to 2009. Likewise, the classifications applied in these 

studies were published between 1944 and 2000. 

It’s highly relevant to present the burn severity classification in any sort of study 

related with post-fire context. Allied to that, a uniform global classification is still needed, 

since burn severity classification depends of the combination of several indicators. 

Ideally, a sum of indicators that already are presented in the existing burn severity 

classification methodologies, with their respective impact on soil and hydrological 

response in a quantitative matter would be the answer for a more well defined 

methodology and accurate classification. Additionally, these severity indicators should 

take into account the pre-fire conditions, either by determination of these indices in site 

before the prescribed fire or by their estimation in adjacent unburnt areas in the case of 

the wildfires. This would allow the determination of the real fire impact in relation to the 

pre-fire conditions, whereas burn severity classification would represent a measurement 

of change between pre and post-fire. Some authors (Moody et al 2013) state that the 
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knowledge of the relations between soil properties and burn severity metrics are the 

highest priority for future post-fire runoff and erosion research.  

 

Table 3 - Main weaknesses and guidelines for future studies, in the current scientific evidence on the 

relationship between runoff and erosion after fire and fire severity classes (see for more detailed discussion 
chapter 4.2). 

Weaknesses 

Guidelines for future studies 

Categories Description 

Environmental 
Studied reports concern limited number of situations, 
climate and soil types. 

Authors should include control plots in their 
research, even if is not the objective of their 
study. Their results would improve post-fire 
data comparability towards a global scientific 
context. Burn severity classification should 
be present in all the studies related with post-
fire context. 

  

Land Use/ 
Vegetation 

Few vegetation and land uses types were analysed. 
Numbers of cases are not uniformly distributed according 
to their type. 

  

Numbers 
The number of observations is low considering the 
number of variables involved 

Non-uniform severity 
classification 

Usage of different classifications amongst the several 
studies, and the fact that they not always based in 
common fire severity factors. 

Any sort of study related with post-fire 
context, should present the fire severity 
classification and the criteria in which the 
burn severity is based. Control data could 
provide the level of change due to burn 
severity. 

Land Management 

Data lacking on soil management (e.g. tillage and 
rotation). Information about the use of heavy machinery, 
immediately after fire or just as regular use for site 
management is very scarce. 

The reference to several parameters, that 
reflect antecedent conditions, site 
characteristics and experiment conditions, 
would allow improving this meta-analysis in 
the determination of other variables in which 
data can be influenced besides the fire itself.  

  

Soil Characteristics 

Texture, Organic matter content, bulk density, soil 
moisture before/after rainfall simulation, soil moisture at 
field capacity, bare soil cover, are not always available 
for all the case studies 

  

Study design 

Rainfall amount/intensity, plot size, drop fall height, 
nozzle number variations, might influence the runoff and 
erosion rates, and thereby might be contradictory to the 
fire severity classifications in spite of the usage of 
normalized data. 

Time since fire 
Might influence the runoff and erosion and contradictory 
to the fire severity classifications. 

Long-term monitoring is advisable towards 
an adequate evaluation of burn severity 
impact  

 

Land Management – Would be important to refer also the existence of post-fire 

interventions (e.g. salvage logging using heavy machinery, erosion mitigation), also in 

the case of forests for commercial purposes information on soil management (e.g. tillage 

and rotation), to clarify the possible background factors that might influence the rainfall 

simulation results. 

Soil Characteristics – This analysis was made transversally to the soil 

characteristics, and thereby should include variability in the runoff and erosion data as a 

reflection of their differences (e.g. permeability, soil moisture field capacity, erodibility). 

Study design /Rainfall simulation auxiliary variables – The conditions in which the 

rainfall simulation took place. Plot size, slope and nozzle high in which the artificial rain 
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was applied can influence the results (Smets et al., 2008). In this study the wide range of 

conditions in which the RSE’s were performed, regarding rainfall properties (Figure 6) or 

field and equipment conditions (Figure 7), cause a correspondingly large range in the 

runoff and erosive response. However, the influence of this wide range of methodologies 

does not have major implications in the effect size result, since control and burned plots 

are submitted to similar RSE’s conditions.  

The reference to parameters such as bare soil, vegetation cover, soil moisture 

and soil water repellence before and after the simulation, number of replicates or 

standard deviation, could also improve this meta-analysis in the sense of determine the 

influence of several other variables in which data can be influenced besides the fire itself.  

Time since fire – Most of the study cases were included in the first 1.5 years after 

the fire (86%), however there are cases of rainfall simulations performed after that period 

in which the severity classification can be compromised. More data concerning long-term 

monitoring would also benefit such study as the one performed here, plus would allow 

the evaluation of the total impact of fire in the monitored areas, especially for different fire 

severities. 

 

Representativeness and maintenance of this meta-analysis 

 

The meta-database assembled for analysing the hydrological responses on 

wildland areas exposed to different soil burn severities during prescribed and wildfires 

was limited to a few vegetation types and climatic regimes. All studies complied were 

obtained from publications where rainfall simulators were used on small plots. The 

database generated for the current analysis is available to other fire researchers where it 

hopefully will be used by future fire researchers and managers to improve the 

understanding of soil burn severity effects on post-fire hydrological responses and lead 

to the improvement of the current fire severity classification systems. 

This meta-analysis is expected to be maintained and improved during the next 

years. Since the latest reviews (Shakesby 2011, Moody et al 2013) have highlighted a 

possible increase of wildfire occurrence, linked with increased human activity 

(Wittenberg and Malkinson 2009) and with climate change (Flannigan et al., 2000; 

Westerling et al., 2003; Bachelet et al., 2007; Moritz et al., 2010; Westerling et al., 2011). 

And by the expected increase of prescribed burning use as mitigation strategy to avoid 

highly severe fire occurrence as proposed by Shakesby (2011). In this way is expected 

that post-fire hydrological response studies will prevail for some time, especially with 

such widely used method as the RSE’s. Followed by that, is expected also that an 
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extension of this dataset would produce a more representative meta-analysis of the 

current subject 

All existing data should be made available as much as possible in a transparent 

way, with full disclosure of data, statistics and funding. In all cases, it is advised that 

studies are reported according to the guidelines described above. The database used for 

this meta-analysis is publicly available to download at (Background dataset for online 

publication). 

 

Conclusions 

 

The review, database compilation and meta-analysis on post-fire rainfall 

simulation studies, allowed to identify some important issues regarding burn severity. 

Statistical meta-analysis showed that fire occurrence had a significant effect on the 

hydrological response, increasing the runoff coefficient in comparison to unburnt 

conditions for each of the burn severity classes. The runoff effect size, however, did not 

differ significantly between the three soil burn severities. Meta-analysis also revealed a 

significantly enhanced post-fire erosion response ratio, and this enhanced response 

differed significantly between all three severity classes. Verifying an increasing erosion 

rate, with increasing burn severity. 

The analysis of the runoff and erosion ratios according to rainfall intensities and 

time-since-fire classes resulted in overlapped confidence intervals in most groups. 

Further analysis with other parameters couldn’t be performed without reducing the 

number of observations. Nevertheless, a meta-analysis focused in bare soil cover 

classes as a substitute for burn severity was performed, but no improvement were 

obtained. 

Dataset evaluation revealed several weaknesses, often associated to limited data 

availability in the research articles. The absence of burnt severity classification and 

control RSE’s limited greatly the number of observations for this review. While the limited 

availability of RSE’s auxiliary variables limited further explanatory analysis. 
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The impact of forest fire on overland flow and soil erosion has been assessed by 

many studies, and their effect on fires on hydrological and geomorphological activity both 

globally and in the Mediterranean region has been well established. However, few 

studies have assessed post-fire erosion over multiple years, and the authors are aware 

of none which assess runoff at the plot scale. In addition, few studies are available which 

consider the effect of pre-fire management practices. 

This study evaluates annual overland flow and erosion rates during four years after 

a wildfire between sites with different land uses (pine and eucalypt) and different pre-fire 

land management techniques (unplowed, eucalypt downslope plowing, and eucalypt 

contour plowing). After the four years, runoff coefficients in the unplowed pine site (34%) 

were higher than in the unplowed eucalypt site (14%). Runoff coefficients at the 

downslope plowed eucalypt site (26%) and contour plowed eucalypt (37%) were also 

higher than in the unplowed one. Median sediment losses over the four years followed 

runoff differences, with 0.39 (Mg.ha-1.year-1) in the pine, 0.11 (Mg.ha-1.year-1) in the 

eucalypt unplowed, 0.47 (Mg.ha-1.year-1) in the eucalypt downslope plowed, and 0.83 

(Mg.ha-1.year-1) in the eucalypt contour plowed. The type of land use affected annual 

runoff, while land management affected both annual runoff and erosion amounts 

significantly. Time since fire had an important effect on erosion amounts among 

unplowed sites, while for eucalypt sites time affected both annual runoff and erosion 

amounts. Annual runoff and erosion followed rainfall patterns during the four years of 

monitoring. At all studied sites, the runoff coefficients increased over the four years of 

monitoring. On the other hand, the sediment concentration in the runoff showed a 

decrease during the same period. The reasons for this divergence from the classic post-

fire recovery model are also explored. The severe soil degradation of this study site is 

primarily attributed to the interval of fire recurrence and forest management practices 

during the pre-fire period..  
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Introduction 

 

Frequent wildfire occurrence is a natural phenomenon in regions with a 

Mediterranean-type climate (Naveh 1990). However, the current rate of occurrence in 

southern Europe is unprecedented when compared to the natural cycle, and strongly 

reflects human activity both through direct ignition (Veléz, 2009) and  through land use 

changes, such as land abandonment and the widespread introduction of highly 

flammable pine and eucalypt plantations (Moreira et al., 2009; Shakesby, 2011). On 

average, wildfires consume 500,000 ha/yr. in southern Europe (San-Miguel and Camia 

2009), 100,000 ha of which typically occurs in only in Portugal (Pereira et al., 2006a). 

Fire activity in Portugal is not expected to decline markedly in the foreseeable future, 

both because of the use of highly flammable tree species in the economically important 

forestry sector, and the likely increase in the occurrence of meteorological conditions 

conducive to fire (Carvalho et al., 2010; Pereira et al., 2006b; Harding et al., 2009). 

The main hydrologic consequence of wildfire is an increase in runoff and erosion. 

This effect is commonly attributed to the partial or complete combustion of vegetation 

and litter, together with soil properties alterations associated to the impact of high 

temperatures in the soil. These change include a reduction in aggregate stability (e.g. 

Varela et al., 2010, Mataix-Solera et al., 2011) and an increase in soil water repellency 

(SWR; e.g. Scott et al., 1998), a phenomenon which is widely reported in burned forest 

soils (e.g. Wells 1981, Vega and Díaz-Fierros, 1987; Prosser, 1990; Walsh et al., 1994; 

Keizer et al., 2008). These increases in runoff and erosion following wildfire have been 

observed for the two principal forest types in north-central Portugal, i.e. maritime pine 

and eucalypt plantations (e.g. Coelho et al., 2004; Ferreira et al., 1997; Shakesby et al., 

1994).  

Another important factor in runoff and erosion in Portuguese woodlands are post-

fire management practices, such as plowing, terracing, clearcutting, and logging (Terry, 

1996, Fernández et al., 2004, 2007; Martins et al., 2013; Shakesby et al., 1993, 2002). 

Due to socio-economic drivers, the occurrence of these post-fire practices is becoming 

increasingly common. Post-fire practices involving ground preparations or heavy 

machinery can have significant impacts on topsoils, which can lead to similar or even 

higher hydrological effects compared to the fire (Fernández et al 2007, Martins et al 

2013, Shakesby et al., 2002). Over the long-term, these practices are seem to be 

executed between fire occurrences in the same site, which can magnify the negative 

effects of the fires. Limited research has been made examining the effect of pre-fire 

management practices on post-fire impacts (Malvar et al 2011; 2015). However, 
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Shakesby (2011) has highlighted that the significance of post-fire erosion in 

Mediterranean fire-prone areas can only be accurately assessed if associated land 

management changes and disturbance effects are also considered. 

Emmerich and Cox (1992) emphasized the low post-fire erosion rates reported in 

the Mediterranean, when compared to post-fire erosion rates reported elsewhere, and 

when compared to other forms of disturbances in unburned areas, such as tillage 

(García-Ruiz et al., 2015). These low post-wildfire erosion rates in the Mediterranean 

have been justified by several authors by the presence of shallow soils and high stone 

content (Cerdan et al., 2010). Due to the appearance of a stone armour, protecting the 

sediments availability of transport (Shakesby, 2011), providing a higher surface 

roughness thus limiting post-fire erosion (Kutiel et al., 1995), and due to the possible 

impact on water percolation through a water-repellent soils (Urbanek and Shakesby, 

2009). These thin soils with high stone content are a consequence of land degradation, 

caused by the long history of anthropogenic impacts in the Mediterranean, due to 

activities such as deforestation, intensive cultivation, land misuse, and rural 

abandonment (Dunjó et al., 2004). This degradation is particularly problematic, given the 

typically low soil formation rates in Mediterranean soils (Cerdà, 2001; López-Bermúdez, 

2002). 

There have been relatively few studies monitoring erosion continuously for 

several years following wildfire, and therefore less is known about erosion rates after the 

first year post-fire (Benavides-Solorio and MacDonald, 2001). Those studies which have 

been conducted suggest that post-fire erosion during the window of disturbance takes 

the form of a peak lasting 1–2 years, followed by a decline of varying degrees returning 

back to pre-fire conditions (e.g. Helvey, 1980; Robichaud and Waldrop, 1994; Inbar et 

al., 1998).  

The aim of this study is to compare long-term overland-flow and sediment losses 

within two distinctive representative Portuguese forest land use types, and between 

three different land management practices. The specific objectives of the study focus on 

the assessment of several factors that might influence post-fire hydrologic and erosive 

response: (i) the effect of land use among unplowed pine and eucalypt; (2) the effect of 

several pre-fire land management operations within unplowed, downslope plowed, and 

contour-plowed; and (3) the influence of time-since-fire during the four years of 

monitoring period, for both unplowed and eucalypt sites. Furthermore, these four years 

of observation will also be compared with the existing window of disturbance models 

(Prosser and Williams, 1998; Wittenberg and Inbar, 2009). 
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Materials and methods 

 

Study area and sites 

 

This study was carried out in an entirely burned catchment of approximately 10 

ha near Colmeal village (40º08’46’’N, 7º59’50’’W), in the municipality of Góis, central 

Portugal (Figure 14a). The catchment burned on August 27th 2008. Burn severity was 

classified through the description of several indicators along a transect from the bottom 

to the top of the studied slopes. These indicators included: tree canopy consumption of 

10 randomly selected trees (partial vs. total), degree of the litter consumption (partial vs. 

total), and ash colour (black vs. grey), which were compared to Hungerford (1996) and 

DeBano et al. (1998) classification methodologies. The selected indicators show that 

there was a moderate burn severity, which means a  total consumption of the litter layer, 

charred or consumed duff, charred bigger woody debris, and unchanged mineral soil 

structure. The diameter of the 3 thinnest remaining twigs for each described tree was 

also used to calculate the ‘Twig Measurement Index’ (TMS). TMS can vary between 0 for 

unburned, to 1 for severe burn. The result agreed with the previous classification of 

moderate, resulting in a value of 0.5.  

 
Figure 14 –Study area and sites: (a) location; (b) detailed topographic map of the burned catchment with 

specific locations of each study site and equipment. Note in (b): burned area in dark grey, red dots for micro 
plot locations, green dots for micro plots with soil moisture sensors; blue dots for rainfall gauges locations 
and other associated equipment (labelled); orange lines for soil water repellency (SWR) transects. 
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The climate of the study area is characterized as humid meso-thermal, with a 

prolonged dry and warm summer. The mean annual temperature is around 12 oC, 

whereas the mean annual precipitation amounts to about 1140 mm at the nearest 

climate station of Góis (SNIRH, 2012). 

The geology of the area is composed of pre-Ordovician schists and greywackes 

(Ferreira, 1978; Pimentel, 1994), which have given rise to shallow soils that typically 

correspond to Humic Cambisoils (Cardoso et al., 1971, 1973). 

The study site experienced a previous fire in 1990 (ICNF, 2014) and underwent 

several land management operations prior to the beginning of this study. Evidence of 

plowing operations immediately after the 1990 wildfire was found throughout the 

catchment. During the 18 years that separate these 2 wildfires, some eucalypt 

plantations were also continuously managed until the second fire, while other areas 

appeared to have been abandoned. This is evidenced by the eucalypt rotation cycle 

found at the beginning of this monitoring period. Some plantations were found to be in 

their 1st rotation cycle, implying another plowing during this interval to plant the new 

eucalypts, while other were found to be in their third rotation, and no other signs of 

management were found. 

At the time of the fire, the burned area comprised 4 main land units, i.e. 

combinations of forest type - maritime pine and (predominantly) eucalypt plantations - 

and land management operations (unplowed, downslope plowed, and contour-plowed). 

Two months after the fire, some land management operations were implemented over 

the study area, but only a small portion of the studied catchment was affected by 

terracing, a new type of land management operation in this site. However, this study 

concerned only 4 types of land units: Eucalypt Unplowed (EU), Pine Unplowed (PU), 

Eucalypt Downslope Plowed (EDP), and Eucalypt Contour Plowed (ECP). For each of 

these land units, one study site was selected (Figure 14b). After that, the contour-plowed 

site was logged during the first four months after fire, while the other three study sites 

were not subjected to any intervention. Burn severity among sites was uniform and 

classified as moderate. 

After the selection and monitoring of these four study sites, further soil 

characterization was performed through a destructive description of the plots (Table 4). 

This description allowed for an estimation of the timeline of events since 1990 for all the 

studied sites (Figure 15). This also allowed for verification of some inconsistencies in the 

initial study site classification. Although the EU site was initially classified as unplowed, 

as no ridges or furrows were observed at the soil surface, the profile description showed 

this location must have been plowed approximately 18 years ago.  
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Table 4 - General study site characteristics, standard deviation between brackets. 

  PU EU EDP ECP 

Land cover Pine Eucalypt Eucalypt Eucalypt 

Pre-fire land practices Unplowed Unplowed Downslope plowing Contour plowing 

Plot angle (º) 
(n=4) 

23 (2.9) 27 (5.5) 30 (4.5) 24 (6.6) 

Downslope random 
Roughness 

(n=4) 
0.71 (0.38) 1.12 (0.03) 1.53 (1.07) 2.00 (0.77) 

 O horizon - 0-4 0-3 0-3 

 

A horizon 0-7 
A1 - 0-10 

A2 – 10-22* 
A1 - 0-14 

A2 – 14-56* 
A1 - 0-15 

A2 – 15-29* 

B horizon - - - 29-36 

C horizon 7-15 22-60 56-60 36-60 

R horizon 15 - - 60-63 

Soil type classification 
(WRB, 2006) 

Lithic 
leptosol 

Haplic umbrisol & 
Umbric regosol 

Humic cambisol & 
Haplic umbrisol 

Humic cambisol & 
Haplic umbrisol 

Soil texture class 
(3-10 cm) (n=5) 

Sandy Loam 

Bulk density (g/cm3) 
(3-10 cm) (n=8) 

1.00 (0.12) 0.83 (0.10) 1.05 (0.16) 0.85 (0.24) 

Stone content (%) 
(3-10 cm) (n=8) 

40 (11) 42 (6) 40 (11) 46 (12) 

(*)- Presence of ashes in the profile.  
Standard deviation in brackets.  
Values in bold are the limit of the profile depth. 

 

The fact that buried ashes were found in all A horizons of the eucalypt sites 

proved that the plowing occurred immediately after the 1990 wildfire. It was also 

concluded that EU and EDP were last plowed on this occasion, and that the depth of 

disturbed soil (depth of plowing) allowed assuming different plowing techniques were 

used between those sites (22 vs 56 cm, respectively). Although the EU classification was 

not entirely correct, the classification was kept the same because: i) the surface 

roughness was much smaller than other sites with different land management; ii) the 

depth of plowing was much smaller than the EDP site; iii) although it was plowed at the 

same time as EDP, 18 years was enough time to remove the effects of plowing, while in 

EDP the micro-topography variance was still visible.  

The soil texture of the A horizon revealed a sandy loam texture in all sites, due to 

the elevated percentage of coarser material (sand >70%) in comparison to the fines (silt 

and clay). The stone content in the A horizon was approximately 40% in all plots. 
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Figure 15 – History of events that took place in the study site before the monitoring period. Affected plots by 

those specific events and general evidences found during the monitoring period (rotation cycle o  

 

Field experimental design and data collection 

 

This study used a set of 16 experimental plots (0.25 and 0.50 m2) equally 

distributed between the 4 land units described above. In each land unit, 4 plots were 

installed (2 of each size) at the base of the slope, and their relative position was 

attributed randomly. In the downslope plowed eucalypt site however, 2 plots were 

installed on the ridges, and another 2 in the furrows (both sizes), to capture a 

representative response of the land unit considering such micro-topographic variation. 

These plots were installed by 25 September 2008, and then monitored for four years till 1 

October 2012. It rained 27.7 mm between the time of the wildfire and plot installation 

(according to the nearest meteo station in Góis; SNIRH, 2012), however, no evidences 

of major overland flow response was found. 

Monitoring involved field trips at 1-weekly (first two years), to 2 -weekly (third 

year), and monthly (fourth year) intervals, also depending on rainfall. These plots were 

connected to 30 or 70 L tanks, the runoff volumes were determined by measuring the 

runoff collected in those tanks, and erosion was determined by gathering a runoff sample 

with a minimum volume of 250 mL from each tank for sediment concentration analysis. 

Sediment concentrations in the runoff samples were determined in the laboratory by 

filtration with a 330 mm VWR filter and oven dried at 105ºC for 24 to 48 hours. For the 

entire period of study, a total of 1663 samples were processed. 

The catchments was further instrumented with 4 tipping-bucket rainfall gauges 

(Pronamic Professional Rain Gauge, with 0.2 mm resolution) linked to an ONSET Hobo 
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Event Logger Automatic, as well as with 5 storage gauges for the purpose of validating 

the automatic data. The automatic rainfall data were used to compute maximum rainfall 

intensity over 30 min (I30, mm h-1) as well as rainfall erosivity (R, MJ mm ha-1 year-1) in 

accordance with the Universal Soil Loss Equation (Wischmeier and Smith, 1978) and 

using the rainfall kinetic energy equation of Coutinho and Tomás (1995), which is 

considered to be suitable for the western part of the Mediterranean Basin. 

Soil moisture sensors (DECAGON EC-5) were installed by 30 October 2008 at 

two of the study sites, at PU (4 sensors) at the bottom of the catchment and at EDP (4 

sensors). These data were recorded with DECAGON ECH20 data loggers with a 5 to 15 

minutes time step at 3-5 cm depth. 

Soil water repellence (SWR) was monitored on a monthly basis using the 

‘Molarity of Ethanol Droplet’ test (MED) (King, 1981; Doerr, 1998), in a representative 

pine (SWR Pine) and eucalypt (SWR Eucalypt) stand inside the catchment (Figure 14b). 

SWR was measured at the edge of the catchment, and not near the plots, to minimize 

the disturbance of these measurements on the surrounding plots. The molarity ethanol 

drop test was slightly modified in accordance with findings from prior studies in this 

region (e.g., Keizer et al., 2005a, 2005b, 2008). In this study, three drops of pure water 

were applied to the soil surface, and if two of the three drops did not infiltrate within 5 

seconds, then three drops with successively higher ethanol concentrations were applied 

until two of the three drops infiltrated within 5 seconds. The nine ethanol concentrations 

used were 0, 1, 3, 5, 8•5, 13, 18, 24, and 36%, corresponding to class 0 to 9 respectively 

(Santos et al 2013). Measurements were performed each month in each site over a five 

point transect, at the surface and at 5 cm depth (n=30). In the data analysis, the 

frequency of each class was calculated over the total measurements from that period, 

which was called SWR frequency. As a reference to these SWR measurements, average 

soil moisture from the week before was determined (antecedent soil moisture) through 

the previously described soil moisture sensor data. 

Ground-level soil cover (GC,%) was also monitored in the plots at a monthly 

frequency, through pictures and descriptions over a 5 x 5 cm grid. GC data was obtained 

by determining the variables: rock; stones; vegetation, litter, ashes and carbon, and bare 

soil, for all the grid intersections inside the plot.  

Soil profiling (n=16), downslope roughness (n=16), and surface soil sampling 

(n=20) was performed in each plot by end of the monitoring period to determine soil 

depth, soil texture, bulk density, and stone content of the surface soil (3-10cm) (Table 4). 
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Statistical analysis 

 

Simple linear regression was used to examine the influence of a set of variables 

on annual runoff and erosion figures. Annual rainfall and rainfall erosivity (R), annual 

frequency of high and very high (class 6-9) SWR, and end-of-year ground cover 

variables (GC), percentage of litter + vegetation, stones + rocks, bare soil and ashes, 

were used as independent variables. 

The effects of land use, land management, and time since fire on runoff and 

erosion response were assessed by 2-way repeated measures ANOVA against 2 groups 

of data. The first group consisted of unplowed sites, pine (PU), and eucalypt (EU) 

unplowed. The second group consisted of eucalypt sites, eucalypt unplowed (EU), 

eucalypt downslope plowed (EDP), and eucalypt contour plowed (ECP). The SAS 9.2 

software package (SAS Institute, Inc., 2008) was used to carry out the data analysis. 

When either the overall effect or the interaction was significant, a simple main effects 

and post-hoc LS-Means adjusted Tukey’s test were used to assess site variability on 

runoff and erosion values within years and vice versa (Littel et al., 2006). The variance-

covariance structure for the dependent variables was selected as first-order auto-

regressive, according to the smallest -2 restricted log likelihood (Littel et al., 2006). The 

significance level for the statistical tests was 0.01. The original values of runoff (mm), 

and runoff coefficient (%) did not violate the assumption of normality of the residuals, but 

the soil loss (g m−2) and specific soil loss (g m−2 mm−1 runoff) did, and were therefore 

square root and four root transformed, respectively. 

 

Results  

 

Ground cover  

 

By December 2008 no appreciable ground level vegetation was observed in any 

of the study sites, despite 4 months having passed since the wildfire (Figure 16). At the 

same time, a clear difference was found in mean litter cover between the different land 

uses (70% pine vs 35% eucalypt), and between unplowed and plowed sites (35% 

unplowed vs 20% plowed). Marked differences in stone cover were also found between 

land uses (7% pine vs 50% eucalypt), while between different land management types 

the cover was approximately the same (50%). Both unplowed sites had an average bare 

soil cover under 10%, while the cover in the plowed sites was slightly higher (15%). 
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During the subsequent years, the pine site had a steady increase in average 

vegetation cover up to 40%, while the eucalypt site recovery never reached 10% (Figure 

16a). Although vegetation cover in the pine site increased steadily, the litter cover also 

declined by approximately the same amount (37%) (Figure 16b). In the eucalypt site 

however, litter cover slightly increased during the same period. While the pine site had 

higher vegetation and litter cover during the monitoring period, the eucalypt site had 

much higher stone cover. Mean stone cover in the eucalypt site was approximately 68% 

by the end of the first year and 50% during the remaining years. These values were 

much higher than the pine site stone cover, which had a maximum of 23% (Figure 16c). 

The mean coverage of bare soil was very low in both locations, and decreased during 

the study period down to 2% in both sites (Figure 16d).  

 

 
Figure 16 - Average ground cover for (a) vegetation, (b) litter, (c) stones and (d) bare soil for each studied 

site (n=4). Standard error indicated by error bars. 

 

Mean vegetation cover showed variability between sites with different land 

management. While the contour-plowed site had almost no vegetation recovery, even 

less than unplowed site, the downslope plowed site had increasing vegetation cover, 

until October 2011 (Figure 16a At this time, average vegetation cover reached its 

maximum of 35%. During the four years, the plowed sites always had less litter cover 

than the unplowed eucalypt site (Figure 16b). Both plowed locations had a similar mean 

litter cover until October 2010, after which EDP stabilized at 25% and ECP at 13%. After 

October 2010, the mean stone cover also showed some variation between the eucalypt 

a) b) 

c) d) 
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sites (Figure 16c). The contour-plowed site had an increase in mean stone cover up to 

79%, while unplowed and downslope plowed sites had a decrease to 50%. Bare soil 

cover decreased from the first to the fourth monitoring year in all eucalypt sites (Figure 

16d). The plowed sites had higher mean bare soil cover than the unplowed site, and the 

maximum value (18%) was in the ECP site in October 2010.  

By December 2008, ash cover was approximately 10% at the unplowed sites and 

15% at the plowed sites, and had almost entirely disappeared by the end of the first year. 

Rock outcrop was only observed at the pine site where the soils were most shallow. 

 

Annual rainfall and soil water repellency 

 

Annual rainfall amounts varied substantially during the first four hydrological 

years after the wildfire (Table 5). When compared to the long-term mean annual rainfall 

of 1143 mm at the nearest climate station of Góis (SNIRH, 2012), the first year was 

average (1095 mm), while the second and third year were relatively wet (+13 and +15 

%). By contrast, the fourth year was markedly dry, with 34 % less rainfall. The above 

average rainfall observed in the second and third year were due to higher than average 

rainfall amounts in autumn. The second and third year autumn rainfall corresponded 

approximately to 2 and 3 times the amount which occurred in the first year during the 

same season. In the fourth year however, the low annual amount was due to an almost 

complete lack of winter rainfall. Annual rainfall erosivity closely followed these annual 

rainfall patterns, whereas the third and the fourth year were represented by the 

maximum and the minimum rainfall erosivity value, respectively.  

During the first year, both the pine and eucalypt sites showed a higher frequency 

of high and severe soil water repellency (SWRpine (6-9)=54% and SWReuc.(6-9)=52%) in 

comparison to the remaining years (Table 5). From the second year onwards, the 

eucalypt site had an increase in repellent conditions until the fourth year. By contrast the 

pine site stabilized at 29% from the 3rd to the 4th year. 

 

Table 5 – Annual figures regarding rainfall amounts (mm) and rainfall erosivity (MJ mm ha
-1

 year
-1

 h
-1

) for the 

entire study area, and Soil Water Repellency frequency (%) from pine and eucalypt site. 

  year 1 year 2 year 3 year 4 

Rainfall (mm)  1095 1295 1534 833 

Rainfall erosivity (RE) (MJ mm ha
-1

 year
-1

 h
-1)  2168

 
3938 5161 1679 

SWR freq. class 6-9 (%)  
(n=360) 

pine 54 24 29 29 

eucalypt 53 27 33 35 
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Overall and annual overland flow amounts 

 

Runoff amounts at all four study sites for the period 2008-2012 are presented in 

Table 6. These totals show the marked difference between land use and pre-fire land 

management practices. This can be observed at pine site (PU), which had 77% more 

runoff than the eucalypt site (EU), and the results of the variance analysis among 

unplowed sites (Table 7) show that annual runoff amounts and coefficients differ 

significantly between pine and eucalypt. In the comparison between land management 

(Table 6), the contour-plowed site (ECP) had 52% more runoff than the downslope 

plowed eucalypt site (EDP), and the unplowed eucalypt site (EU) generated substantially 

less overland flow in comparison to the plowed sites (55% and 31% less, than ECP and 

EDP respectively). This was equally suggested by the ANOVA analysis among eucalypt 

sites with different land managements. Indicating that land management was an 

important factor justifying runoff amounts and runoff coefficients differences (Table 8). 

 

Table 6 – Total rainfall (mm), runoff (mm), runoff coefficient (%), mean sediment losses (Mg.ha
-1

 year
-1

), 

Total sediment losses (Mg ha
-1

 4years
-1

) and mean sediment concentration in the runoff (g.m
-2

.mmRunoff
-1

), 
for the entire study period (bottom table). 

sites 

Total 
rainfall  

Total 
runoff  

Runoff 
coef. 

Mean sed. 
losses  

Total sed. losses   Mean Sed. conc. 

(mm) (mm) (%) (Mg ha
-1

 year
-1

) (Mg ha
-1

 4years
-1

) (g m
-2

 mmRunoff
-1

) 

PU 

4756 

1532 32 0.43 1.72 0.47 

EU 865 18 0.31 1.26 0.49 

EDP 1257 26 0.52 2.09 0.87 

ECP 1915 40 0.98 3.94 0.89 

 

Contrary to the original hypothesis, annual overland flow did not reveal a marked 

decrease with time-since-fire. In fact, runoff amounts increased from the first to the third 

year, and then decreased until the fourth year. Exhibiting similar pattern to rainfall 

(Figure 17a, Figure 18a.), at unplowed pine (PU), unplowed eucalypt (EU), and at 

contour-plowed eucalypt site (ECP). The downslope plowed site (EDP) had a constant 

increase in runoff amount from the first to the fourth year, the runoff coefficients however 

showed another pattern (Figure 17b, Figure 18b). The maximum observed runoff 

coefficient in the pine site (PU) occurred during the first year. But after dropping to the 

minimum value in the second year, there was a constant increase in runoff coefficient 

from this point until the fourth year. At the same time, runoff coefficient in all eucalypt 

sites (EU, ECP, EDP) constantly increased from the first year until the last. Between the 

unplowed sites, the variance analysis suggested that neither time-since-fire, nor time 

combined with land use characteristics influence overland flow generation at pine and 
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unplowed eucalypt. Among the eucalypt sites however, time-since-fire has a strong 

influence on runoff amounts and especially in the runoff coefficient figures, as observed 

by their different F value (12.2 vs 18.6). This is easily observed in the runoff totals 

(Figure 18a) which show a similar time-since-fire effect (increase) among all the sites 

until the third year, while in runoff coefficients (Figure 18b) this occurs for all sites during 

the 4 years. 

 

Overall and annual erosion rates 

 

Total erosion amounts show higher sediment losses at the unplowed pine site 

(37% more) than the unplowed eucalypt site (Table 6). The observed difference between 

land uses are possibly caused by the substantially higher overland flow generated in 

pine site (+77%) when compared to the eucalypt site, since mean sediment 

concentration in runoff for both locations are similar. This is also shown by the 

comparative analysis of annual erosion figures at both unplowed sites through ANOVA 

(Table 7), indicating that land use was not a major factor controlling erosion amounts 

(F=2.09), and was even less of a factor in sediment concentrations in runoff (F=0.03). 

Overall erosion amounts at the eucalypt sites, show a production of 89% more erosion at 

the contour plowed site (ECP) when compared to the downslope plowed one (EDP), 

which in turn produced 66% more erosion than the eucalypt unplowed site (EU) (Table 

7). In this case however, the mean sediment concentration in runoff was almost double 

for plowed sites when compared to the unplowed one. Moreover, land management 

characteristics seemed to be the dominant factor explaining significant differences in 

erosion amounts and sediment concentration in runoff results among the eucalypt sites 

(Table 8). The effect of management, however, was more noticeable in erosion amounts 

(F=9.85) than in sediment concentrations (F=5.16). 

The annual erosion figures among unplowed sites for both pine and eucalypt 

sites had their maximum erosion amounts during the third year (62 vs 54 g m-2 y-1, 

respectively) (Figure 17c). However, contrary to the eucalypt site, the erosion pattern at 

the pine site was not always corresponding to rainfall amounts. In this site, a decrease in 

mean erosion amounts (-22%) occurred from the first year to the second, during a 13% 

rainfall increase. Consequently, no significant differences were found between years 

regarding annual erosion amounts. Between eucalypt sites with different managements, 

both unplowed (EU) and downslope plowed (EDP) sites had erosion patterns similar to 

the rainfall pattern, with an increase from the first to the third year after fire (maximum of 

54 and 82 g m-2 y-1, respectively), followed by a decrease until the fourth year (Figure 
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18c). The contour plowed eucalypt site (ECP) behaved differently, reaching its maximum 

in the second year (137 g m-2 y-1), and had a decrease only from the third (132 g m-2 y-1) 

to the fourth year (71 g m-2 y-1). Despite the different temporal patterns among these 

sites, time since fire seemed to influence annual erosion amounts between eucalypt sites 

(F=2.97).  

Annual sediment concentration shows a clear decrease from the first to the fourth 

year in all the study sites (Figure 17d, Figure 18d). These sediment concentration 

reductions were approximately 53% at the unplowed pine site (PU), and 65% in the 

unplowed eucalypt site (EU), indicating a possible recovery pattern. This was also shown 

by the variance analysis, whereas time-since-fire factor seemed to perform an important 

role between annual sediment concentrations in runoff (F=8.08), and even combined 

with land use factor, but only with a minor magnitude (F=4.09). Between different land 

management practices, the highest decrease was observed within the downslope 

plowed site (EDP) with a 79% reduction, and the least at the contour-plowed eucalypt 

site (ECP) at 49%. Again, time-since-fire seemed to be an important factor explaining 

differences in annual sediment concentration in runoff results (Table 8).  
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Table 7 - 2-way repeated measures ANOVA results (F-value) with plot-wise annual values by site (n=4), to 

determine land use (pine, eucalypt) and time since fire (4 years; N=32) effect over the studied variables. The 
underlined and bold F values are statistically significant at α ≤ 0.05. 

 
 
a) 

 

b) 

 
c) 

 

d) 

 
Figure 17 – Mean annual runoff and erosion of 4 years following the wildfire for PU and EU: (a) runoff (mm), 

(b) runoff coefficient (%), (c) sediment losses (Mg ha
-1

 y
-1

) and (d) sediment concentration in the runoff (g m
-2

 
mmRunoff

-1
). Note maximum and minimums in the error bars, boxplot line represent median value, filled 

squares mean values. 

 

Source of variation D.f  
Runoff 

(mm) 

Runoff 

coefficient 

(%) 

Sed. rate 

(g m
-2

) 

Sed. Conc. runoff 

(g m
-2

 mmRunoff
-1

) 

Land use 
1,24 8.68 9.10 3.34 0.03 

Time-since-fire 
3,24 2.09 1.38 2.13 8.08 

Land use*time 
3,24 1.77 1.83 0.55 4.09 

Df, degrees of freedom; num, numerator; den, denominator.  



 

Understanding and modelling hydrological and soil erosion processes in burnt forest catchments 

 

University of Aveiro 

79 

 

Table 8 - 2-way repeated measures ANOVA results (F-value) with plot-wise annual values by site (n=4), to 

determine land management (unplowed, contour plowed, down-slope plowed) and time since fire (4 years; 
N= 48) effect over the studied variables. The underlined and bold F values are statistically significant at α ≤ 
0.05. 

 

 

 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 18 –Mean annual runoff and erosion of 4 years following the wildfire for EU, EDP and ECP: a) runoff 

(mm), b) runoff coefficient (%), c) sediment losses (Mg ha
-1

 y
-1

) and d) sediment concentration in the runoff 
(g m

-2
.mmRunoff

-1
). Note maximum and minimums in the error bars, boxplot line represent median value, filled 

squares mean values. Different letters within a post-fire year represent least mean squares significances 
(p<0.05) on runoff/erosion response between sites for that year. 

 

 

 

 

Source of variation D.f 
Runoff 

(mm) 

Runoff 

coefficient 

(%) 

Sed. rate 

(g m
-2

) 

Sed. Conc. runoff 

(g m
-2

 mmRunoff
-1

) 

Management 
2,36 14.52 15.65 9.85 5.16 

Time-since-fire 
3,36 12.24 18.64 2.97 8.64 

Management*time 
6,36 1.4 1.75 0.45 0.81 

Df, degrees of freedom; num, numerator; den, denominator.  

a) 

b) 

a) 

b) 

a) 

b1) b2) 
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Potential explanatory variables 
 

The correlations between post-fire annual runoff and erosion with a set of 

independent variables are depicted in Table 9. Among the unplowed sites, only erosion 

response was significantly related with any of the independent variables. For both pine 

and eucalypt sites, bare soil cover was positively related with annual erosion amounts. 

This relationship was much stronger in the pine than in the eucalypt site. In the case of 

the pine site only, bare soil was followed by the variables litter+vegetation and rainfall 

amounts. In the case of the land managed eucalypt sites (EDP and ECP), a correlation 

was found with runoff and erosive response. Nevertheless, some relationships were 

contradictory to the expected (theoretical) relationship. This was the case with the 

litter+vegetation variable, which had a positive relationship with runoff amounts, 

coefficients, and sediment concentration at EDP, and SWR which had a negative 

relationship with runoff and runoff coefficient at the ECP site. 

The contour plowed site was the only location with annual runoff and erosion 

amounts that could be partially explained by the rainfall pattern. 

 

Table 9 – Linear model correlations between site variables (n=16). For each site dependent variables: 

annual runoff (runoff, mm), annual runoff coefficient (runoff coef., %) and annual sediment concentration in 
runoff (sed. Conc., g m

-2
 mmRunoff

-1
); were correlated with the independent variables: end-of-year ground 

cover (litter + vegetation, bare soil, stones, %), annual rainfall (mm), annual rainfall erosivity (R , MJ mm ha
-1

 
year

-1
) and soil water repellency frequency (SWR, %). Only linear models with p<0.05 are presented.  

Site dependent variables independent variables sign s.e. R
2
 Sig 

PU erosion litter + vegetation - 0.27 0.31 * 

  
bare soil + 0.93 0.51 ** 

  
rainfall + 0.02 0.25 * 

EU erosion bare soil + 2.03 0.26 * 

EDP runoff litter + vegetation + 1.59 0.44 ** 

  

stones - 1.99 0.36 * 

 

runoff coef. litter + vegetation + 0.17 0.37 * 

  

bare soil - 1.02 0.26 * 

  

stones - 0.22 0.28 * 

 

sed.conc. litter + vegetation + 0.00 0.37 * 

  

bare soil + 0.01 0.28 * 

  

stones + 0.00 0.34 * 

ECP runoff R + 0.03 0.44 ** 

  

SWR - 2.73 0.73 *** 

 

runoff coef. SWR - 0.32 0.51 ** 

  erosion R + 0.01 0.26 * 

*p<0.05 
**p<0.01 
***p<0.001 
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Discussion 

 

The role of land use and land management practices 

 

Previous studies in north-central Portugal have examined the importance of land-

use on hydrological and erosive response after wildfire, by comparing post-fire runoff and 

erosion at pine and eucalypt sites (Prats et al., 2012; Martins et al., 2013). In the 

beginning of these studies (first 3 months in Prats et al. (2012); first 7 months in Martins 

et al. (2013)), few differences were found between pine and eucalypt responses to the 

same rainfall events. Only later, and during one year, Prats et al. (2012) found 

substantially higher runoff and erosion amounts at the eucalypt site (466 mm and 5.41 

Mg ha-1) when compared to the pine site (93 mm and 0.32 Mg ha-1). However, the bigger 

plot size in Prats et al (2012), and the higher burn severity in the eucalypt site than in the 

pine site may limit the comparison with the present study. Nevertheless, both studies 

contrast with the findings of the current study, where the pine site had substantially 

higher runoff (1532 vs 865 mm) and erosion amounts (1.72 vs 1.26 Mg ha-1 4years-1) 

than eucalypt site.  

Land use was found in this study to have a significant influence over runoff 

variability. However, the differences between the studied unplowed pine and eucalypt 

sites might not be restricted to the type of land cover found in these locations. The higher 

runoff amounts observed in the unplowed pine site may be due to the low water storage 

capacity of this site, as a consequence of the shallow soil depth. In addition, the 

unplowed eucalypt site can promote higher infiltration than the pine site due to the higher 

surface roughness (Burwell and Larson, 1969) and elevated stone cover (Zavala et al., 

2010). The low runoff amounts in the eucalypt site, combined with the elevated stone 

cover that protects soil particle detachment (Shakesby, 2011) in this location, possibly 

led to a smaller transport capacity from runoff and, by consequence, less erosion 

amounts in comparison to the pine site.  

The occurrence of high SWR conditions presented similar frequencies between 

land uses at annual scale. However, several other studies contradict these observations, 

which show substantial differences among burned (Prats, et al 2012) and unburned 

(Santos et al., 2013) pine and eucalypt stands at smaller temporal scales (weekly to 

monthly intervals).  

Little research has been conducted which assesses the influence of pre-fire 

management practices over runoff and erosion in burned areas (Malvar et al., 2011, 

2013, 2015). These authors found that either by rainfall simulation campaigns or under 
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natural rainfall, pre-fire plowed sites showed less runoff and erosion when compared to 

unplowed sites. The results of the present study suggest that pre-fire land management 

practices, either by plowing or by the absence of soil interventions, strongly influences 

post fire runoff and erosion response. But in this study, plowing led to an increase of 

runoff and erosion when compared to the unplowed site, contrary to the observations of 

Malvar et al. (2015) and conflicting with the objective of plowing (i.e. soil conservation).  

When making these comparisons, the time-since-plowing and the degree of 

impact of the plowing technique variables should also be considered. It is known that 

after plowing an increase of runoff and erosion rates is usually observed (Shakesby et 

al., 1994, Walsh et al., 1995). The present study however used as comparison several 

sites at different stages of post-plowing recovery. Sediment exhaustion in the unplowed 

eucalypt site due to prior disturbances (plowed 18 years before, impacts only visible until 

first 22 cm soil depth) might explain the extremely low hydrologic and erosive response. 

The downslope plowed site on the other hand showed intermediate values of runoff and 

erosion amounts, between the unplowed and the contour-plowed (more recently plowed) 

sites, due to a deeper-in-soil intervention (evidences of disturbances until 56cm soil 

depth).  

The results of this study also contrast with the assumptions that contour plowing 

techniques are a good management practice for preventing soil losses, especially when 

compared to downslope plowing (Morgan, 2005), which is widely known for is enhanced 

impact on runoff and erosion (Shakesby et al., 1996, 2002). The scale of this study 

however, might limit this impact due to the lack of representativeness of the plowing 

effect at such small scale (micro-plot). Whereas in this study the downslope plowed 

results originated from two plots on the ridges and two in the furrows, and very likely did 

not capture the entire micro-topographic effect. Nevertheless, this scale might be 

suitable for determining plowing impact on soils and sediment availability for erosion. 

 

The role of time-since fire and its implications for Window of disturbance models 

 

Several researchers (Shakesby and Doerr, 2006, Shakesby, 2011) have revealed 

that the first post-fire rainstorms usually cause enhanced overland flow and erosion. The 

reasons for this are usually attributed to the vulnerable soil conditions caused by fire, due 

to the reduced infiltration capacity together with a lack of vegetation and litter cover. After 

that period, there is a decrease in the hydrological response corresponding with 

vegetation recovery (Prosser and Williams, 1998). In this sense, time-since-fire was 

expected to be an important factor, representing post-fire recovery through a decrease of 
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erosion with time. In fact, the analysis of variance showed that time-since-fire was an 

important factor controlling sediment concentration at unplowed sites, and also for runoff 

and erosion at eucalypt sites. Annual runoff coefficients and sediment concentration in 

both studied cases (unplowed and eucalypt) show a clear change with time. However, 

they show opposite patterns, runoff coefficient increased with time-since-fire, while 

sediment concentration shows a decrease during the same period.  

The rainfall increase from the first to the third year of study can explain the runoff 

coefficient increase until the third year. However, the reduction of rainfall amounts in the 

last year was contradicted by another increase in runoff coefficients in all sites. Some 

previous studies have indicated that similar rainfall events may produce different 

hydrological responses within wet and dry soil moisture conditions (Ferreira et al., 2000, 

Keizer et al., 2005b). Runoff generation might occur either by saturation excess overland 

flow in the case of wet conditions, or by infiltration excess in the case of dry conditions 

due to limited infiltration capacity, often attributed to SWR (Walsh et al., 1994). This 

might explain the elevated runoff coefficients verified in the fourth year when compared 

to the remaining years. Because the lack of rainfall in the wet season (winter) led to an 

increase in the contribution of runoff generation by infiltration excess (typically observed 

at autumn and spring) in comparison to the contribution by saturation overland flow, 

which may have increased the runoff coefficients. Unfortunately, the annual SWR pattern 

does not provide enough detail about the formation of high or severe repellent conditions 

among dry periods. 

Soil protection by vegetation and litter (Prats et al, 2014) or stones (Shakesby 

and Doerr, 2006) might play a significant role in erosive processes. However, vegetation 

growth in this area seems to have had a slow recovery within the four years of study, 

when compared to other burned areas for the same period (Wittenberg and Inbar, 2009), 

or even less time (Fernández and Vega, 2014). Similar results (vegetation<50%) were 

obtained by Mayor et al. (2007) within a similar period after fire at E Spain, in a dry–

subhumid Mediterranean climate. Which was attributed to the presence of several dry 

periods that delayed plant regrowth and increased the length of the critical period for 

elevated post-fire erosion risk in the area. Additionally, the elevated stone cover that was 

present since the beginning of this study, together with the reduced bare soil cover, 

might be an important factor explaining low post-fire soil losses. This is primarily due to 

the protective effect of stones for erosion (Shakesby, 2011), and secondly because bare 

soil cover in all plots never reached critical levels. Bare soil cover was always under 

30%, which according to MacDonald and Larsen (2009) is the limit of bare soil in which 

the sediment yields drop to near background levels. These explanatory variables, 

however, did not contribute in the same way for all the study sites, as shown by the 
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linear model correlations. But its simplification into annual values might underestimate its 

importance. In this case, even a slight protection increase from vegetation, litter, or 

stones may have substantially reduced sediment losses, as indicated by the sediment 

concentration in runoff reduction. 

Past interventions and fire recurrence in this location may also have limited the 

recovery of this study area. Fire recurrence might increase “baseflow” sediment yield 

during the window of disturbance (Wittenberg and Inbar, 2009), and soil fertility might be 

compromised due to management practices (Shakesby, 2011). This could arguably be 

considered as evidence that this long-term analysis may not have been sufficiently long 

to observe the hydrological response decrease, until background levels as described in 

the window of disturbance model (Prosser and Williams, 1998). Or that past 

disturbances (wildfires and others) have effectively enlarged the window of disturbance 

in this specific place, and a model such as Wittenberg and Inbar (2009) might be more 

realistic. The sediment concentrations in the runoff pattern might be comparable to the 

above cited window of disturbance behaviour, indicating a possible recovery of the site. 

However, this decrease might also be a reflection of sediment exhaustion in the bounded 

plots, as observed in Malvar et al. (2015) study. 

As highlighted by Shakesby (2011), few studies have reported post-fire runoff 

and erosion rates for periods longer than 2 years for plot scale within the Mediterranean. 

Only 3 post-fire erosion studies were found which had 4 years of monitoring at the plot 

scale under natural rainfall conditions (Lavabre and Martin, 1997; Butorac, 2009; 

Wittenberg and Inbar, 2009) (Figure 19). However, the plot size used in these studies 

were considerably larger (75-200 m2) than those used in the current study (0.25-0.5 m2). 

Nevertheless, all of these studies showed a decrease in erosion rates from the first to the 

fourth year, this decline occurred in the second year for Butorac (2009) and Wittenberg 

and Inbar (2009), while Lavabre and Martin (1997) only presented evidence of recovery 

in the fourth year. Although the erosion records in the unplowed sites (PU and EU) are 

lower than the Lavabre and Martin (1997) (Figure 19) case and always inferior to the 

tolerable rate of soil losses (Verheijen et al., 2009), the inter-annual response is similar. 

Post-fire erosion rates in micro-plots in Portugal were also compared with a two 

year (Malvar et al., 2015) and three year (Prats et al, 2013) study. Results show that soil 

losses of this specific study are much lower when compared to others in North-Central 

Portugal at the same spatial scale.  

Soil losses in sites subjected to pre-fire (Malvar et al,. 2015) and post-fire 

(Martins et al., 2013) land management practices at the micro-plot scale were also 

included in this comparison (Figure 19). Results from Malvar et al., (2015) go against the 
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findings of the present study. Pre-fire plowing not only resulted in less erosion than the 

unplowed plots, it also decreased the rates in the plowed site, while at the same time the 

erosion rates in the unplowed site increased. Post-fire terracing, as studied by Martins et 

al. (2013), show an extreme increase of the erosion rates in a small period of time for 

eucalypt and pine sites.  

 

 
Figure 19 – Comparison of soil losses after wildfire with: (a) Long-term field studies (black lines); (b) Micro-

plot scale measurements in Portugal (grey lines); (c) pre-fire plowing (dash line-); (d) post-fire plowing (dash-
dot line). 

Looking into the significance of the observed erosion rates, considering all the 

changes that these sites have been subjected to, before the most recent fire and other 

changes that we are unaware of prior to the 1990’s fire. The sustainability of these soils 

seems to be compromised, and most likely this system will never recover back to the 

background runoff and erosion levels. It’s true that sediment losses in the unplowed sites 

were always under the tolerable soil loss rate (Verheijen et al., 2009), but these very 

shallows soils, especially at the pine site with 7cm maximum soil depth, there is very little 
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soil remaining to erode. In the case of the plowed sites, this limit of tolerable soil losses 

was reached, indicating higher sediment availability for transport. Nevertheless the most 

recent plowing seems to still have an arguably more significant impact after the wildfire. 

 

Conclusions 

The main conclusions of this study regarding overland flow and interrill erosion 

during four years after a wildfire in contrasting forest plantations are: 

• Land use differences might be responsible for runoff generation variability, 

as the pine site consistently produced higher runoff amounts and coefficients than the 

eucalypt site.  

• Different plowing techniques and time since implementation may be an 

important factor for both runoff and erosive processes. The plowed sites showed higher 

runoff and erosive response than the unplowed site. However, this comparison between 

plowed and unplowed sites might be influenced by the highly degraded soil conditions 

that the unplowed soils have already been subjected to, as well as the time since 

plowing and the type of technique used.  

• The sediment concentration results highlighted a possible decrease in 

post-fire erosion response among all study sites. However, annual runoff, runoff 

coefficients, and erosion amounts do not seem to be attenuated with time since fire, 

most likely due to the reduced ground vegetation recovery. Thus it wasn’t possible to 

observe similar behaviour to the classic window of disturbance model; or the window of 

disturbance was possibly enlarged due to past disturbances in this specific location.  

• The recurrence of fires, together with several forest interventions in this 

location, might compromise the sustainability of these soils. And due to that, even the 

low erosion rates found in this study represent a threat to such degraded soils.  

  



 

Understanding and modelling hydrological and soil erosion processes in burnt forest catchments 

 

University of Aveiro 

87 

 

Acknowledgments 

 

We thank all the ESP team for their help with the laboratory and field work, 

especially to Óscar González-Pelayo for assistance with the soil profile descriptions, 

Martinho Martins for his work in the fourth year of monitoring and Isabel Fernandes for 

her dedication in the early steps of Colmeal study area. 

This research was supported financially by the Fundação para a Ciência e a 

Tecnologia (FCT), through individual research grants attributed to DCSV 

(SFRH/BD/65907/2009) and MMC (SFRH/BD/41320/2007), as well as by the 

EROSFIRE-II (PTDC/AGR-CFL/70968/2006) project, co-funded by the European Social 

Fund and the European Regional Development Fund. 

 

 

References 

Benavides-Solorio, J., MacDonald, L.H., 2001. Post-fire runoff and erosion from 

simulated rainfall on small plots, Colorado Front Range. Hydrological Processes 

15, 2931–2952. 

Burwell, R.E., Larson, W.E., 1969. Infiltration as influenced by tillage-induced random 

roughness and pore space. Soil Sci. Soc. Am. Proc., 33: 449-452. 

Butorac, L., Topic, V., Jelic, G., 2009. Surface runoff and soil loss in burnt stands of 

Aleppo pine (Pinus halepensis Mill.) growing on colluvial soils. Sumarski List 133, 

165–174 (English summary). 

Cardoso, J.C., Bessa, M.T., Marado, M.B., 1971. Carta dos solos de Portugal 

(1:1.000.000). Serviço de Reconhecimento e de Ordenamento Agrário, 

Secretaria de Estado da Agricultura, Lisboa, Portugal. 

Cardoso, J.C., Bessa, M.T., Marado, M.B., 1973. Carta dos solos de Portugal 

(1:1.000.000). Agron Lusit 33: 461–602. 

Carvalho, A., Flannigan, M., Logan, K., Gowman, L., Miranda, A.I., Borrego, C., 2010. 

The impact of spatial resolution on area burned and fire occurrence projections in 

Portugal under climate change. Climatic Change 98: 177–197 

Cerdà, A., 2001. Erosión Hidrica del Suelo en Territorio Valenciano. El Estado de la 

Cuestión a través de la Revisión Bibliográfica. Geoforma Ediciones, Logroño. 



 

Diana Catarina Simões Vieira PhD thesis 

 

Centre for Environmental and Marine Studies(CESAM)  

Department of Environment and Planning  

88 

 

Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, 

A., Vacca, A., Quinton, J., Auerswald, K., Klik, A., Kwaad, F.J.P.M., Raclot, D., 

Ionita, I., Rejman, J., Rousseau, S., Muxart, T., Roxo, M.J., Dostal, T., 2010. 

Rates and spatial variations of soil erosion in Europe: a study based on erosion 

plot data. Geomorhology 122, 167–177. 

Coelho, C.O.A., Ferreira, A.J.D., Boulet, A.K., Keizer, J.J., 2004. Overland flow 

generation processes, erosion yields and solute loss following different intensity 

fires. Quarterly Journal of Engineering Geology and Hydrogeology 37, 233–240. 

Coutinho, M.A., Tomás, P., 1995. Characterisation of raindrop size distributions at the 

Vale Formoso Experimental Erosion Centre. Catena 25: 187–197. 

DeBano, L.F., Neary, D.G., Ffolliott, P.F., 1998. Fire’s Effects on Ecosystems. Wiley, 

New York. 

Doerr, S.H., 1998. On standardizing the “Water Drop Penetration Time” and the “Molarity 

Ethanol Droplet” techniques to classify soil hidrophobicity: a case of study using 

medium textured soils. Earth Surface Processes and Landforms 23: 663–668. 

Dunjó, G., Pardini, G., Gispert, M., 2004. The role of land use-land cover on runoff 

generation and sediment yield at a microplot scale, in a small Mediterranean 

catchment. Journal of Arid Environments 57, 99–116. 

Emmerich, W.E., Cox, J.R., 1992. Hydrologic characteristics immediately after seasonal 

burning on introduced and native grasslands. Journal of Range Management. 45: 

476–479. 

Fernández, C., Vega, J.A., Gras, J.M., Fonturbel, T., Cuiñas, P., Dambrine, E., Alonso, 

M., 2004. Soil erosion after Eucalyptus globulus clearcutting: differences between 

logging slash disposal treatments. Forest Ecology and Management 195: 85–95. 

doi:10.1016/J.FORECO.2004.02.052 

Fernández, C., Vega, J.A., Fonturbel, T., Pérez-Gorostiaga, P., Jiménez, E., Madrigal, 

J., 2007. Effects of wildfire, salvage logging and slash treatments on soil 

degradation. Land Degradation and Development 18, 591–607. 

Fernández, C., Vega, J.A., 2014. Efficacy of bark strands and straw mulching after 

wildfire in NW Spain: Effects on erosion control and vegetation recovery. 

Ecological Engineering 63: 50-57. 



 

Understanding and modelling hydrological and soil erosion processes in burnt forest catchments 

 

University of Aveiro 

89 

 

Ferreira, de B.A., 1978. Planaltos e montanhas do norte da Beira - estudo de 

geomorfologia. Centro de Estudos Geográficos, Lisboa 

Ferreira, A.J.D., Coelho, C.O.A., Shakesby, R.A., Walsh, R.P.D., 1997. Sediment and 

solute yield in forest ecosystems affected by fire and rip-ploughing techniques, 

central Portugal: a plot and catchment analysis approach. Physics and Chemistry 

of the Earth 22, 309–314. 

Ferreira, A.J.D., Coelho, C.O.A., Walsh, R.P.D., Shakesby, R.A., Ceballos, A., Doerr, 

S.H., 2000. Hydrological implications of soil water repellency in Eucalyptus 

globulus forests, north-central Portugal. Journal of Hydrology 231–232, 165–177. 

García-Ruiz, J.M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J.C., Lana-

Renault, N., Sanjuán, Y., 2015. A Meta-Analysis of soil erosion rates across the 

world, Geomorphology, Available online 17 March 2015, ISSN 0169-555X, 

http://dx.doi.org/10.1016/j.geomorph.2015.03.008. 

Harding, A., Palutikof, J., Holt, T., 2009. The climate system. In: Woodward, J. (Ed.), The 

Physical Geography of the Mediterranean. Oxford University Press, Oxford, pp. 

69–88. 

Helvey, J.D., 1980. Effects of a north central Washington wildfire on runoff and sediment 

production. Water Resources Bulletin 16, 627–634. 

Hungerford, R.D., 1996. Soils-fire in ecosystem management notes:unit II-I. Marana, AZ: 

U.S. Department of Agriculture, Forest Service, National Advanced Resource 

Technology Center. 

ICNF, 2014. http://www.icnf.pt/portal/florestas/dfci/inc/info-geo consulted 9 January 2014 

Inbar, M., Tamir, M., Wittenberg, L., 1998. Runoff and erosion processes after a forest 

fire in Mount Carmel, a Mediterranean area. Geomorphology 24, 17–33. 

Keizer, J.J., Coelho, C.O.A., Matias, M.J.S., Domingues, C.S.P., Ferreira, A.J.D., 2005a. 

Soil water repellency under dry and wet antecedent weather conditions for 

selected land-cover types in the coastal zone of central Portugal. Aust. J. Soil 

Res. 43 (3), 297–308. 

Keizer, J.J., Coelho, C.O.A., Shakesby, R.A., Domingues, C.S.P., Malvar, M.C., Perez, 

I.M.B., Matias, M.J.S., Ferreira, A.J.D., 2005b. The role of soil water repellency in 



 

Diana Catarina Simões Vieira PhD thesis 

 

Centre for Environmental and Marine Studies(CESAM)  

Department of Environment and Planning  

90 

 

overland flow generation in pine and eucalypt forest stands in coastal Portugal. 

Australian Journal of Soil Research 43(3), 337-350 

Keizer, J.J., Doerr, S.H., Malvar, M.C., Prats, S.A., Ferreira, R.S.V., Oñate, M.G., 

Coelho, C.O.A., Ferreira, A.J.D., 2008. Temporal variation in topsoil water 

repellency in two recently burnt eucalypt stands in north-central Portugal. Catena 

74: 192-204. 

King, P.M., 1981. Comparison of methods for measuring severity of water repellence of 

sandy soils and assessment of some factors that affect its measurement. 

Australian Journal of Soil Research 19: 275–285. 

Kutiel, P., Lavee, H., Segev, M., Benyamini, Y., 1995. The effect of fire-induced surface 

heterogeneity on rainfall-runoff-erosion relationships in an eastern Mediterranean 

ecosystem, Israel. Catena. 25, 77–87. 

Lavabre, J., Martin, C., 1997. Impact d'un incendie de forêt sur l'hydrologie et l'érosion 

hydrique d'un petit bassin versant méditerranéan. Human Impact on Erosion and 

Sedimentation (Proceedings of Rabat Symposium S6, April 1997): IAHS 

Publication, no. 245, pp. 39–47. 

Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D., Schabenberger, O., 2006. 

SAS for mixed models, 2nd ed. SAS Institute Inc.: Cary, NC. 

López-Bermúdez, F., 2002. Erosión y Desertificación. Nivola, Madrid. 

MacDonald, L.H., Larsen, I.J., 2009. Effects of forest fires and post-fire rehabilitation: a 

Colorado Case study. In: Fire Effects on Soils and Restoration Strategies, edited 

by A. Cerda and P.R. Robichaud. Science Publishers, Enfield, NH, pp. 423-452. 

Malvar, M.C., Prats, S.A., Nunes, J.P., Keizer, J.J., 2011. Post-fire overland flow 

generation and inter-rill erosion under simulated rainfall in two eucalypt stands in 

north-central Portugal. Environmental Research 111, 222–236. 

Malvar, M.C., Martins, M.A.S., Nunes, J.P., Robichaud, P.R., Keizer, J.J., 2013. 

Assessing the role of pre-fire ground preparation operations and soil water 

repellency in post-fire runoff and inter-rill erosion by repeated rainfall simulation 

experiments in Portuguese eucalypt plantations. Catena 108, 69–83 



 

Understanding and modelling hydrological and soil erosion processes in burnt forest catchments 

 

University of Aveiro 

91 

 

Malvar, M.C., Prats, S.A., Keizer, J.J., 2015. Runoff and inter-rill erosion affected by 

wildfire and pre-fire ploughing in eucalypt plantations of North-Central Portugal. 

Land Degrad. Develop. (2015). DOI: 10.1002/ldr.2365 

Martins, M.A.S., Machado, A. I., Serpa, D., Prats, S.A., Faria, S.R., Varela, M.E.T., 

Gonzalez-Pelayo O., Keizer, J.J., 2013. Runoff and inter-rill erosion in a Maritime 

Pine and a eucalypt plantation following wildfire and terracing in north-central 

Portugal. Journal of Hydrology and Hydromechanics 61, 4, 261-269 

Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M., 2011. Fire effects 

on soil aggregation: a review. Earth Sci. Rev. 109 (1–2), 44–60. 

Mayor, A.G., Bautista, S., Llovet, J., Bellot, J., 2007. Post-fire hydrological and erosional 

responses of a Mediterranean landscape: seven years of catchment-scale 

dynamics. Catena 71, 68–75. 

Morgan, R.P.C., 2005. Soil Erosion and Conservation. Blackwell, Oxford. 

Moreira, F., Vaz, P.J.G., Catry, F.X., Silva, J.S., 2009. Regional variations in wildfire 

susceptibility of land cover types in Portugal: implications for landscape 

management to minimize fire hazard. International Journal of Wildland Fire 18: 

563-574.  

Naveh, Z., 1990. Fire in the Mediterranean – a landscape ecological perspective. In: 

Goldammer, J.G. and Jenkins, M.J. (eds.), Fire in ecosystem dynamics. Pp. 1-20. 

SPB Academic Publishing, The Hague, Netherlands 

Pereira, J., Carreira, J., Silva, J., Vasconcelos, M., 2006a Alguns conceitos básicos 

sobre os fogos rurais em Portugal. In: Pereira J.S., Pereira J.M.C. et al. (eds.), 

Incêndios florestais em Portugal – caracterização, impactes e prevenção, pg 133-

16, ISAPress, Lisbon. 

Pereira, J., Correia, A.V., Correia, A.C., Ferreira, M., Onofre, N., Freitas, H., Godinho, F., 

2006b. Florestas e biodiversidade. In: Santos, F., Miranda, P. (Eds.), Alterações 

climáticas em Portugal—cenários, impactos e medidas de adaptação (Projecto 

SIAM II). Gradiva, Lisbon, pp. 301–343. 

Pimentel, N.L., 1994. As formas do relevo e a sua origem. In: Brito RS (ed) Portugal 

Perfil Geogra´fico. Editorial Estampa, Lisboa, pp 29–50. 



 

Diana Catarina Simões Vieira PhD thesis 

 

Centre for Environmental and Marine Studies(CESAM)  

Department of Environment and Planning  

92 

 

Prats, S.A., MacDonald, L.H., Monteiro, M., Ferreira, A.J.D., Coelho, C.O.A., Keizer, J.J., 

2012. Effectiveness of forest residue mulching in reducing post-fire runoff and 

erosion in a pine and a eucalypt plantation in north-central Portugal, Geoderma 

191: 115-124. 

Prats, S.A., Malvar, M.C., Vieira, D.C.S, MacDonald, L.H., Keizer, J.J., 2013. 

Effectiveness of hydro-mulching to reduce runoff and erosion in a recently burnt 

pine plantation in central Portugal. Land Degradation & Development. (DOI: Link: 

10.1002/ldr.2236) 

Prats, S.A., Martins, M.A.S., Malvar, M.C., Ben-Hur, M., Keizer, J.J. 2014. 

Polyacrylamide application versus forest residue mulching for reducing post-fire 

runoff and soil erosion. Science of the Total Environment 468–469: 464–474 

Prosser, I.P., 1990. Fire, humans and denudation at Wangrah Creek, Southern 

Tablelands, N.S.W. Australian Geographical Studies 28: 77–95. 

Prosser, I.P., Williams, L., 1998. The effect of wildfire on runoff and erosion in native 

Eucalyptus forest. Hydrological Processes. 12, 251–265. 

Robichaud, P.R., Waldrop, T.A., 1994. A comparison of surface runoff and sediment 

yields from a low- and high-severity site preparation burns. Water Resources 

Bulletin 30, 27– 34. 

San-Miguel, J., Camia, A., 2009. Forest fires at a glance: facts, figures and trends in the 

EU. In: Birot, Y. (ed.), Living with wildfires: what can science tell us, Chp. 1, pp 

11-19. European Forest Institute, Discussion Paper 15. 

Santos, J.M., Verheijen, F.G.A., Wahren F.T., Wahren A., Gosch L., Bernard-Jannin L., 

Rial-Rivas M.E., Keizer J.J., Nunes, J.P., 2013. Soil water repellency dynamics in 

Pine and Eucalypt plantations in Portugal – a high resolution time series. Land 

Degradation & Development. DOI: 10.1002/ldr.2251 

Scott, D.F., Versfeld, D.B., Lesch, W., 1998. Erosion and sediment yield in relation to 

afforestation and fire in the mountains of the Western Cape Province, South 

Africa. South African Geographical Journal. 80: 52-59. 

Shakesby, R.A., 2011. Post-wildfire soil erosion in the Mediterranean: Review and future 

research directions. Earth-Science Reviews 105: 71–100. 



 

Understanding and modelling hydrological and soil erosion processes in burnt forest catchments 

 

University of Aveiro 

93 

 

Shakesby, R.A., Doerr, S.H., 2006. Wildfire as a hydrological and geomorphological 

agent. Earth-Science Reviews 74: 269–307. 

Shakesby, R.A., Coelho, C.O.A., Ferreira, A.D., Terry, J.P., Walsh, R.P.D., 1993. 

Wildfire impacts on soil erosion and hydrology in wet Mediterranean forest, 

Portugal. International Journal of Wildland Fire 3: 95–110. 

Shakesby, R.A., Coelho, C.de O.A., Ferreira, A.D., Terry, J.P., Walsh, R.P.D., 1994. 

Fire, post-burn land management practice and soil erosion response curves in 

eucalyptus and pine forests, north-central Portugal. In: Sala, M., Rubio, J.L. 

(Eds.), Soil Erosion as a Consequence of Forest Fires. Geoforma, Logroño, 

Spain, pp. 111–132. 

Shakesby, R.A., Boakes, D.J., Coelho, C.O.A., Gonçalves, A.J.B., Walsh, R.P.D., 1996. 

Limiting the soil degradational impacts of wildfire in pine and eucalypt forests in 

Portugal. Applied Geography 16: 337–356. 

Shakesby, R.A., Coelho, C.O.A., Ferreira, A.J.D., Walsh, R.P.D., 2002. Ground-level 

changes after wildfire and ploughing in eucalyptus and pine forests, Portugal: 

implications for soil micro-topographical development and soil longevity. Land 

Degradation & Development 13, 111 –127. 

SNIRH, 2012. Sistema Nacional de Informação de Recursos Hídricos. http://snirh.pt/. 

Accessed 1 March 2012 

Terry, J.P., 1996. Erosion pavement formation and slope process interactions in 

commercial forest plantations, northern Portugal. Zeitschrift für Geomorphologie 

40: 97–115. 

Urbanek, E., Shakesby, R.A., 2009. The impact of stone content on water flow in water-

repellent sand. European Journal of Soil Science 60, 412–419. 

Varela, M.E., Benito, E., Keizer, J.J., 2010. Effects of wildfire and laboratory heating on 

soil aggregate stability of pine forest in Galicia: the role of lithology, soil organic 

matter content and water repellency. Catena 83, 127-134 

Vega, J.A., Díaz-Fierros, F., 1987. Wildfire effects on soil erosion. Ecologia Mediterranea 

13 (4): 119–125. 



 

Diana Catarina Simões Vieira PhD thesis 

 

Centre for Environmental and Marine Studies(CESAM)  

Department of Environment and Planning  

94 

 

Veléz, R., 2009. The causing factors: a focus on economic and social driving forces. In: 

Birot, Y. (ed.), Living with wildfires: what can science tell us? pp 21-26. European 

Forest Institute, Discussion Paper 15. 

Verheijen, F.G.A., Jones, R.J.A., Rickson, R.J., Smith, C.J., 2009. Tolerable versus 

actual soil erosion rates in Europe. Earth-Science Reviews 94: 23–38. 

Walsh, R.P.D., Boakes, D.J., Coelho, C.O.A., Gonçalves, A.J.B., Shakesby, R.A., 

Thomas, A.D., 1994. Impact of fire-induced water repellency and post-fire forest 

litter on overland flow in northern and central Portugal. In: Proceedings of the 

Second International Conference on Forest Fire Research, November 1994, 

Coimbra, Portugal, Volume II: 1149–1159. 

Walsh, R.P.D., Boakes, D.J., Coelho, C.O.A., Ferreira, A.D., Shakesby, R.A., Thomas, 

A.D., 1995. Post-fire land use management and runoff responses to rainstorms in 

Portugal. In: McGregor, D.F.M., Thompson, D. (eds), Geomorphology and land 

management in a changing environment. Wiley, Chichester, pp. 283-308. 

Wells, W.G., 1981. Some effects of brushfires on erosion processes in coastal southern 

California. Erosion and Sediment Transport in Pacific Rim Steeplands, 

International Association of Hydrological Sciences Publication No. 132. IAHS 

Press, Institute of Hydrology, Wallingford, UK, pp. 305– 342. 

Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall-erosion losses- a guide to 

conservation planning. Agriculture Handbook. No. 537. USDA. Washington, D.C; 

58. 

Wittenberg, L., Inbar, M., 2009. The role of fire disturbance on runoff and erosion 

processes — a long-term approach, Mt. Carmel case study, Israel. Geographical 

Research 47, 46–56. 

WRF, 2006.World Reference Base (FAO). Rome. 

Zavala, L.M., Jordán, A., Bellinfante, N., Gil, J., 2010. Relationships between rock 

fragment cover and soil hydrological response in a Mediterranean environment. 

Soil Science and Plant Nutrition 56, 95–104. 

 

  



 

Understanding and modelling hydrological and soil erosion processes in burnt forest catchments 

 

University of Aveiro 

95 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. Modelling post fire runoff and erosion 



 

Diana Catarina Simões Vieira PhD thesis 

 

Centre for Environmental and Marine Studies(CESAM)  

Department of Environment and Planning  

96 

 

  



 

Understanding and modelling hydrological and soil erosion processes in burnt forest catchments 

 

University of Aveiro 

97 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III.I Performance of two erosion models 

after fire and rehabilitation treatments 

 



 

Diana Catarina Simões Vieira PhD thesis 

 

Centre for Environmental and Marine Studies(CESAM)  

Department of Environment and Planning  

98 

 

  



 

Understanding and modelling hydrological and soil erosion processes in burnt forest catchments 

 

University of Aveiro 

99 

 

 

Although the Revised Universal Soil Loss Equation (RUSLE) and the revised 

Morgan–Morgan–Finney (MMF) are well-known models, not much information is 

available as regards their suitability in predicting post-fire soil erosion in forest soils. The 

lack of information is even more pronounced as regards post-fire rehabilitation 

treatments. 

This study compared the soil erosion predicted by the RUSLE and the revised 

MMF model with the observed values of soil losses, for the first year following fire, in two 

burned areas in NW of Spain with different levels of fire severity. The applicability of both 

models to estimate soil losses after three rehabilitation treatments applied in a severely 

burned area was also tested.  

The MMF model presented reasonable accuracy in the predictions while the 

RUSLE clearly overestimated the observed erosion rates. When the R and C factors 

obtained by the RUSLE formulation were multiplied by 0·7 and 0.865, respectively, the 

efficiency of the equation improved. 

Both models showed their capability to be used as operational tools to help 

managers to determine action priorities in areas of high risk of degradation by erosion 

after fire.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Assessing soil erosion after fire and rehabilitation treatments in NW Spain: 
performance of RUSLE and revised Morgan–Morgan–Finney models.  
 
Fernández, C., Vega, J.A., Vieira, D.C.S. (2010). 
Land Degradation and Development. 21, 774–787.  
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Introduction 

 

Post-fire erosion is a major concern to society because of the potential effects on 

soil and water resources. Increases in soil erosion rates are frequently observed 

following wildfire (e.g. Megahan and Molitor, 1975; Campbell et al., 1977; San Roque et 

al., 1985; Shakesby et al., 1993; Scott et al., 1998; Robichaud and Brown, 2000; 

Johansen et al., 2001; Martin and Moody, 2001; Meyer et al., 2001; Benavides-Solorio 

and MacDonald, 2005; Shakesby and Doerr, 2006). Fire severity, as a descriptor of the 

magnitude of the changes occurred in the soil, has been recognized as a decisive factor 

controlling those post-fire soil erosion rates (e.g. Benavides-Solorio and MacDonald, 

2005; Vega et al., 2005). 

Most of these studies have emphasized the reduction or elimination of vegetation 

cover and ground cover as the main factors explaining the increased soil losses. Soil 

cover increases infiltration, maintains high soil porosity, prevents soil sealing and 

increases surface roughness, reducing thus soil erosion (De Bano et al., 1998; Larsen et 

al., 2009). Fire can also alter the soil structure, by affecting bulk density and total 

porosity, thus reducing infiltration and promoting overland flow (e.g. De Bano et al., 

1998; Neary et al., 2005). Fire-induced hydrophobicity (De Bano, 1981; De Bano et al., 

1998; Robichaud, 2000; Huffman et al., 2001; Keizer et al., 2008a) may also contribute 

to increased soil losses. The effect of fire on soil water repellency depends primarily on 

the amount and type of litter consumed, the duration and amount of soil heating, and the 

amount of oxygen available during burning (De Bano et al., 1998; Doerr et al., 2009). 

Various models already exist that predict soil erosion for a great variety of crop 

characteristics. Models such as WEPP (Nearing et al., 1989) and EUROSEM (Morgan et 

al., 1998) can simulate the effects of vegetation on erosion in individual storms, but are 

often too complex to be used as operational tools. Simpler, empirically based models 

such as the revised Morgan–Morgan–Finney (MMF) (Morgan, 2001), USLE (Wischmeier 

and Smith, 1978) or its revised version Revised Universal Soil Loss Equation (RUSLE) 

(Renard et al., 1997) may be useful for estimating soil erosion on an annual basis (De 

Roo, 1996; Tiwari et al., 2000; Morgan, 2001; Morgan and Duzant, 2008). They require 

less field data than other more complex models and are therefore more feasible as 

management tools. The USLE model predictions have shown relatively good agreement 

with other soil erosion estimation data after fire in Galicia (Díaz-Fierros et al., 1987). 

Acceptable results were also obtained using WEPP and Disturbed WEPP to predict 

particular soil erosion episodes after fire in Galicia (Soto and Díaz-Fierros, 1998) and the 

United States (Larsen and MacDonald, 2007). Likewise, the MMF model has performed 
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reasonably well to estimate soil losses in burnt areas in Portugal (Keizer et al., 2008b; 

Vieira, 2008). However, most of the validation studies of RUSLE and MMF models have 

been made on agricultural soils (e.g. Shrestha, 1997; Tiwari et al., 2000; Morgan, 2001; 

Vigiak et al., 2005; López-Vicente et al., 2008; Morgan and Duzant, 2008) and there is a 

lack of information on the performance of such models in forest soils and, particularly 

after fire (Dissmeyer and Foster, 1984; Larsen and MacDonald, 2007). Moreover, the 

validation of soil erosion models after post-fire rehabilitation treatments is particularly 

scarce all over the world (Robichaud et al., 2007). 

Over the last 11 years, there have been about 9000 fires per year in Galicia, 

representing 47 per cent of forest fires in Spain (Ministerio Medio Ambiente, 2006). 

Increases in wildfire frequency and burned area are commonly expected under the 

probable future climate scenarios for the Mediterranean region countries (Moreno, 2005; 

Carvalho et al., 2008; Good et al., 2008; Moreno, 2009) and also in NW Spain (Vega et 

al., 2009). 

Post-fire soil erosion rates have been assessed in different situations in Galicia, 

NW Spain (Díaz-Fierros et al., 1987; Vega and Díaz-Fierros, 1987; Díaz-Fierros et al., 

1990; Soto et al., 1994; Vega et al., 2005; Fernández et al., 2007, 2008). Operationally 

useful tools providing reasonable accurate predictions of post-fire sediment yields are 

needed to guide management decisions to mitigate post-fire soil loss and land 

degradation and for post-fire rehabilitation planning. 

The objective of this study was to assess the performance of the RUSLE and 

MMF models to predict first-year soil erosion following two wildfires of distinctive severity 

and after the application of different post-fire rehabilitation treatments in an area affected 

by a high-severity fire. 

 

Materials and methods 

 

Study Sites 

 

The study was carried out in two burned areas with distinct levels of fire severity 

in Galicia (NW Spain): Verín (418 57’ 10’’ N; 78 23’ 30’’ W; 550 m a.s.l.) and Soutelo 

(428 30’ 31’’ N; 88 17’ 17’’ W; 800 m a.s.l.). The main characteristics of the areas are 

summarized in Table 10. 
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Table 10 - General characteristics of study sites 

 Verín Soutelo 

Location Ourense province Pontevedra province 
Wildfire date Summer 2003 Summer 2006 
Fire Severity Moderate soil burn severity 

=1.0 
Severe soil burn severity 
= 2.7 

Dominant vegetation Pinus pinaster stand Ulex europaeus shrubland 
Climate Mediterranean Oceanic 
Mean air temperature (ºC) 12 11 
Mean annual precipitation (mm) 800 1500 
Mean rainfall erosivity (MJ mm h

-1
 

ha
-1

 y
-1

) 
1000 3000 

Soil Alumi-umbric Regosol Alumi-umbric Regosol 
Substrate Schist Schist 

 

Data Collection and Field Measurements 

 

This study used a set of plots initially installed for quantifying soil erosion after 

wildfire (Verín) and to assess the effect of different soil rehabilitation treatments on soil 

erosion (Soutelo). 

Fourteen and sixteen experimental plots (50 x 10 m2 each) with their longest 

dimension along the maximum slope, were installed in Verín and Soutelo, respectively, 

just after wildfire and before any appreciable rainfall. The plots were delimited by a 

geotextile fabric fixed to posts. Uphill borders of the plots were trenched to avoid external 

inputs from runoff or erosion. Sediment fences, made from a geotextile fabric similar to 

that described by Robichaud and Brown (2002), were located at the downhill portion of 

the plots and were used for periodic collection of sediment. 

In the Soutelo experimental site to study the effect of different soil rehabilitation 

treatments on erosion control, three different treatments were assigned at random: straw 

mulch, wood chip mulch, cut shrub barriers and a control (untreated burned soils). Wheat 

straw and wood chips were spread manually at a rate of 2·5 and 4 Mg ha-1, respectively. 

Four barriers made from shrubs cut in an unburned adjacent area were located along the 

longest dimension of each plot, spaced at regular intervals of 10 m. The barriers were 10 

m long, 0·5 m wide and 0·7 m high. Immediately after application of the treatment, the 

mean soil cover was 80 per cent in the straw mulched plots and 45 per cent in the wood 

chip mulched plots. 

At each study site, amount and intensity of rainfall were measured by two 

recording rain gauges positioned at 1·20 m above ground, adjacent to the experimental 

site. 

A few days after the wildfire, the percentage of soil organic cover was visually 

estimated by use of a 20 cm x 20 cm quadrat at 20 systematically selected points along 

two transects parallel to the plot longest dimension in each plot. Reference quadrats, 
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corresponding to 1, 5, 10, 15, 20, 25 and 50 per cent cover of a 20 x 20 cm2 quadrat, 

were prepared on paper to calibrate visual estimates of cover. In addition, each quadrat 

was assigned to one of the levels of a soil severity index with a modified version of the 

classification from Ryan and Noste (1983). Four degrees of fire severity were 

distinguished (Vega et al., 2008): (1) Burnt litter (Oi) but limited duff (Oe + Oa) 

consumption. (2) Forest floor (Oi + Oe + Oa layers) completely consumed (bare soil) but 

soil organic matter not consumed and surface soil intact. (3) Forest floor completely 

consumed and soil organic matter in Ah horizon also consumed, a thick layer of ash 

deposited and soil structure altered. (4) As (3) and colour altered (reddish). A mean 

value of these scores was used to assess the impact of fire on soil in each burnt plot. 

A few days after fire, the percentage of ground cover by plants established from 

seeds or resprouting after fire was estimated visually, in a 70 x 70 cm2 quadrat, at 20 

systematically selected points in each plot. Measurements of vegetation height were also 

made. Sampling was repeated every 3 months in each experimental plot. 

Immediately after fire, soil shear strength (0–5 cm) was measured with a vane 

tester (Eijkelkamp) at 20 points in each experimental plot. Measurements were made 

quarterly during the study period. 

Samples of surface mineral soil (0–10 cm) were taken at 15 systematically 

chosen points within each plot to determine moisture content by gravimetry (oven-dried 

for 24 h at 1058C). The samples were taken at monthly intervals during the period of 

study. 

Soil bulk density was determined immediately after fire in both study areas. In 

Soutelo, the measurements were repeated quarterly. A metal cylinder of 15 cm diameter 

was inserted into the upper 5 cm layer of mineral soil and bulk density was calculated by 

dividing the oven-dried soil mass by the volume of the soil core (free of gravel). 

Soil depth was measured with a metal stick at 20 randomly selected points inside 

each plot. Further details about the study sites are available in Fernández et al. (2007) 

and Fernández et al. (2011). 

 

Application of RUSLE Model 

 

Application of this model (Renard et al., 1997) was based on the procedure 

described by Wischmeier and Smith (1978) to estimate soil losses, A (Mg ha-1 y-1), which 

consists of the product of five factors, rainfall erosivity, R (MJ mm h-1 ha-1 y-1), soil 

erodibility K (Mg h MJ-1 mm-1), and the non-dimensional topographic factor (LS), crop 

factor (C) and soil conservation practices factor (P): 
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A = R x K x L x S x C x P 

Determination of the R factor was initially based on rainfall data for all the events 

that occurred in both study areas during the year of study. The topographic factor was 

obtained according to the characteristics of the different plots. 

The soil erodibility, K, was calculated by use of the equation proposed by 

Wischmeier and Smith (1978) because in both areas the percentage of organic matter 

was higher than 4 per cent (Renard et al., 1997). 

The C factor was calculated according to the following equation: 

C = PLU x CC x SC x SR x SM 

Where PLU is the prior land use subfactor, CC is the canopy cover subfactor, SC is the 

surface cover subfactor, SR is the surface roughness subfactor and SM is the soil 

moisture subfactor (Renard et al., 1997). 

The PLU subfactor is computed from a soil reconsolidation factor, the mass of 

roots and the mass of buried residue (Renard et al., 1997). A value of 0·45 was assigned 

to the reconsolidation factor as proposed by Dissmeyer and Foster (1981) for forest 

soils; the mass of buried residue was assumed to be zero and the mass of roots was 

obtained according to Achat et al. (2008) for Pinus pinaster and Soto and Díaz-Fierros 

(1998) for Ulex europaeus. 

The CC subfactor was calculated from percent canopy cover and fall height 

obtained from vegetation surveys in the field. 

We used the values proposed by Larsen and MacDonald (2007) to calculate the 

SC subfactor: a value for the unitless coefficient that indicates the effectiveness of 

surface cover in reducing erosion (b) of 0·05 as rilling is the dominant process, percent 

of surface cover (Sp) as the mean of spring and autumn cover in each plot and for 

roughness of an untilled surface (Ru), a value of 1·52 cm in the severely burned plots 

and 2·54 cm in the moderately severely burned plots. The SR subfactor was calculated 

using the same Ru values. 

Since the SM subfactor has not been calibrated yet for burned forest soils 

(González-Bonorino and Osterkamp, 2004), a value of 1·0 was used following Larsen 

and MacDonald (2007). 

Variation in the C and R factors throughout the period of study in both areas is 

shown in Figure 20. The mean C factor was obtained according to the distribution of 

rainfall erosivity in each study area. 

The maximum value of the P factor was 1 for the plots in which no conservation 

practices were applied. For the plots in which rehabilitation treatments were carried out, 

this value changed according to the effectiveness of treatments determined (Fernández 

et al., 2011) in terms of the ratio between annual soil losses measured in treated and 
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untreated plots (0·343 straw mulch; 0·943 wood chip mulch and 0·857 cut shrub 

barriers). 

The input parameters for the RUSLE model are listed in Table 11. 

 

Table 11 - Input parameters for RUSLE model in both study sites 

Factor Parameter Verín Moderate fire Soutelo Severe fire 

Rainfall erosivity R (MJ mm h
-1
 ha

-1
 y

-1
) 224 (0·01) 2547 (0·02) 

Soil erodibility K  (Mg ha
-1
 MJ

-1
 mm

-1
) 0·015 (0·001) 0·017 (0·001) 

Topographic factor LS 6·37 (0·24) 8·70 (0·10) 

Crop factor C 0·002 (0·0001) 0·249 (0·001) 

Soil conservation practices P 1 1 

Standard errors are given in parentheses 

 

Application of Revised Morgan–Morgan–Finney Model (MMF) 

 

The revised MMF model (Morgan, 2001) used the concepts by Meyer and 

Wischmeier (1969) and Kirkby (1976). This model separates the soil erosion process in 

two phases: the water phase and the sediment phase. The water phase determines the 

energy of rainfall available for soil particles detachment from the soil and the volume of 

runoff. In the erosion phase, rates of soil particle detachment by rainfall and runoff are 

determined along with the transport capacity of runoff. Predictions of total particle 

detachment and transport capacity are compared and erosion rate is equated to the 

lower of the two rates. 

The input parameters in the model are grouped in four factors. The rainfall factor 

includes annual rainfall (R), rainfall per rainy days (Rn) and the typical value for intensity 

of erosive rain (I). The soil factor includes, soil moisture at field capacity (MS), bulk 

density of the top soil layer (BD), hydrological depth of soil (EHD), soil detachability index 

(K) and cohesion of the surface soil (COH) parameters. The landform factor includes 

only slope steepness (S). The land cover factor includes rainfall interception (A), actual 

evapotranspiration (Et), potential evapotranspiration (E0) and crop cover management 

factor (C), canopy cover (CC), ground cover (GC) and vegetation cover to the ground 

surface (PH) parameters. 

Rainfall parameters (R, Rn and I) were obtained from the recording rain gauges 

installed in each study site. The rainfall kinetic energy equations used were those 

proposed by Coutinho and Tomás (1995) in Verín, and by Marshall and Palmer (1948) in 

Soutelo. 

Soil moisture, bulk density, hydrological depth of soil and cohesion of the surface 

soil parameters were measured in both areas during the year of study as explained 
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before. The detachability index (K) was obtained according to the soil texture (Morgan, 

2001). 

The rainfall interception (A) was computed according to previous studies made in 

Galicia for pine stands (Gras, 1993) and shrublands (Vega et al., 2005). The potential 

and actual evapotranspiration were estimated by the methods proposed by Thornthwaite 

(1948) and Turc (1955), respectively. The C factor of MMF is the product of the C and P 

factors from the USLE equation (Wischmeier and Smith, 1978), and in the application of 

this model the same values as obtained from the RUSLE model were applied. Canopy 

cover (CC), ground cover (GC) and vegetation cover to the ground surface (PH)  

parameters were measured in both areas during the year of study as explained before. 

The model inputs are listed in Table 12. 

 

 
Figure 20 - Variation in R and C factors from RUSLE during the period of study in both study areas. (a, 

Verín; b, Soutelo). 
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Table 12 - Input parameters for MMF model in both study sites 
Factor 

Parameter Verín Moderate fire Soutelo Severe fire 

Rainfall R (mm y
-1
) 640·4 (0·2) 1554·9 (0·5) 

Rn (mm raining day
-1
) 4·5 (0·2) 15·5 (0·5) 

I (mm h
-1
) 18 30 

Soil MS (%) 27 (0·02) 25 (0·01) 

BD (g cm
-3
) 0·59 (0·02) 0·69 (0·01) 

EHD (m) 0·266 (0·02) 0·270 (0·03) 

K (g J-1) 0·5 (0·01) 0·5 (0·01) 

COH (kPa) 26 (0·8) 33 (2·5) 

Landform S (º) 16·2 (0·7) 22·2 (0·2) 

Land cover A 0·20 0·13 

Et/E0 0·56 0·75 

C 0·002 (0·0001) 0·249 (0·001) 

CC (%) 34 (0·5) 0 (0·0) 

GC (%) 100 (0·01) 1 (0·01) 

PH (m) 13·1 (0·20) 0·6 (0·01) 

Standard errors are given in parentheses 

 

Statistical Analysis 

 

Predicted annual soil losses values were evaluated by 

Coefficient of efficiency (Nash and Sutcliffe, 1970), Ef, a descriptor of the 

predictive accuracy of model outputs. Ef can range from -1 to 1. A negative value 

indicates that the mean observed value is a better predictor than the model, a value of 

0·0 indicates that the mean observed value is as accurate a predictor as the model and 

an efficiency of 1 corresponds to a perfect match of predicted to the observed data. The 

closer the Ef is to 1, the more accurate the model is. 

The root mean squared errors, RMSE, measures the average magnitude of error 

between observed and forecasted values. 

The Wilcoxon rank sum method for the difference between forecasted and 

observed sediment losses. It is a non- parametric test for assessing if two independent 

samples come from the same distribution. 

 

Results 

 

Soil losses after moderate and severe fires 

RUSLE 
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The results showed that the model overestimated erosion rates by one order of 

magnitude, particularly in the severe fire, and whereas the mean measured value of 

annual soil losses in Soutelo was 3·5 kg m-2, those predicted by RUSLE were 9·2 kg m-2 

(Figure 21). In Verín, the corresponding values were 0·003 and 0·005 kg m-2, 

respectively. 

The validation statistics for the RUSLE are shown in Table 13. The negative 

value of the efficiency index indicates that the mean of observed values is a better 

predictor than the model. 

 

MMF 

When the MMF model is applied according to the procedure described by 

Morgan (2001), all the results depend on the annual transport capacity of runoff. The 

MMF model tended to underestimate soil erosion rates (Figure 21). The mean predicted 

value of annual soil losses in Soutelo was 2·6 kg m-2 versus 3·5 kg m-2 observed and in 

Verín, 0·0001 kg m-2 versus 0·003 kg m-2. However, the validation statistics were better 

than those obtained with the RUSLE model (Table 13) and annual values of predicted 

and measured soil losses did not differ according to the Wilcoxon test. 
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Figure 21 - Measured and RUSLE or MMF-predicted soil losses for both study areas. 

 
 
Table 13 - Validation statistics for the RUSLE and MMF modelling for both study areas 

 RUSLE MMF 

Ef -2·208 0·736 

RMSE (kg m
-2
) 3·146 0·902 

Wilcoxon test—p-value 0·000 0·913 

 

Soil Losses after Post-fire Erosion Control Treatments 

 

RUSLE 

The application of the RUSLE model to the different treatments applied for 

erosion control was based on the same inputs that were used for the severe fire in 

Soutelo (Table 11) with the exception of the P factor, which was different in the 

treatments: 0·343 for straw mulch, 0·857 for cut shrub barriers and 0·943 for wood chip 

mulch. 
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The results showed that the RUSLE model overestimate the soil losses when 

compared with the measured values (Figure 22). The validation statistics obtained to test 

the efficacy of RUSLE to predict soil erosion were also very poor (Table 14). 

 

MMF 

As in RUSLE, the application of the MMF model to the different treatments used 

for erosion control was based on the same inputs used for the severe fire in the Soutelo 

site (Table 12), with the exception of the P factor, which varied in the different 

treatments. 

The poor agreement between observed and predicted values can be observed in 

Figure 22. The MMF presented a comparatively better efficiency index that RUSLE 

(Table 14). No differences between predicted and observed valves of soil losses were 

found (Table 14). 

 
Figure 22 - Measured and RUSLE or MMF-predicted soil losses for the treatments applied 

 
 
 
 
Table 14 - Validation statistics for the RUSLE and MMF modelling for the treatments applied 
 

RUSLE MMF 

Ef -6·009 -0·687 

RMSE (kg m
-2
) 1·914 2·457 

Wilcoxon test—p-value 0·041 0·347 

 

Discussion 

 

The reasonably good predictions of post-fire soil losses achieved with MMF is 

consistent with those previously observed in burned areas in Portugal (Keizer et al., 

2008b; Vieira, 2008). The poorer results obtained with RUSLE are similar to those 

reported by Larsen and MacDonald (2007), who also observed negative efficiency 
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indexes when predicting sediment yields the first year after fires of different levels of fire 

severity in Colorado (USA) with RUSLE. Better results were obtained by Díaz-Fierros et 

al. (1987) with the application of USLE, although the different methodology used to 

measure soil losses in the field do not allow direct comparison with data obtained in the 

present study. Soto and Díaz-Fierros (1998) obtained efficiency indexes of 0·6 and 0·03 

after prescribed burning and wildfire, respectively, in shrublands in NW Spain, with the 

WEPP model. 

The results presented here correspond to the first year after fire and this may limit 

the accuracy of the predictions as it has been shown that models are better for predicting 

average conditions than soil losses for particular years (Larsen and MacDonald, 2007). 

There is no data available from rehabilitation studies of burned areas for 

comparing the accuracy of prediction achieved by the models in the plots to which 

rehabilitation treatments were applied. 

Although there are a considerable number of studies testing RUSLE, the 

available information on burned soils is particularly scarce. The overestimation of soil 

losses predicted by RUSLE, particularly in the severe fire, contrasts with the findings of 

Larsen and MacDonald (2007). 

One of the possible reasons for the overestimates may be the use of an 

inadequate kinetic energy equation of rainfall for this climate, although its original 

formulation seems to be appropriate under oceanic influence climates (Van Dijk et al., 

2002). Larsen and MacDonald (2007) suggest the incorporation of a rainfall erosivity 

threshold and a nonlinear relationship between rainfall erosivity and soil losses to 

improve the ability of RUSLE to predict post- fire soil erosion. However, in their case, 

convective storms were the dominant type of rainfall events. 

In the present study, an alternative estimation of R according to the formulation 

proposed by Roose (1975) and Morgan (1995) for tropical areas, which involves 

multiplying the annual rainfall by 0·865, would result in a lower R value and increased 

the efficiency index from -2·208 (Table 13) to 0·690 and the RMSE decreased to 0·977 

kg m-2. This suggests that R calculated by the Wischmeier and Smith (1978) equation 

would overestimate the rainfall erosivity effect in this area. 

The primary effects of burning are to alter the soil and surface cover, so this may 

induce noticeable changes in the K and C factors. The model estimations suggest that 

the K and C factors do not adequately describe soil modifications after fire. 

The K factor is based on soil texture, soil organic matter, permeability class and 

soil structure. The decline in infiltration caused by increased post-fire soil water 

repellency is often considered as the primary cause of the increase in runoff after 
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burning (e.g. DeBano, 2000; Shakesby and Doerr, 2006), although soil water repellency 

is not explicitly considered in the RUSLE model and was not measured in this study. 

Miller et al. (2003) suggested changing the permeability class chosen in the initial 

calculations to very slow, to take into account the effect of post- fire soil water repellency 

in the K factor. Moreover, very severe fires may also reduce the structural stability of the 

soil and increase the soil erodibility (Soto et al., 1991; Cerdà et al., 1995; Andreu et al., 

2001; García-Corona et al., 2004; Mataix-Solera and Doerr, 2004). However, the 

opposite relationship is assumed in the quantitative effect of the structure classes on the 

K factor. As a result, a decrease in aggregate stability after fire decreases rather than 

increases the K factor. Larsen and MacDonald (2007) suggest that the current 

algorithms for calculating K values are not consistent with the understanding of erosion 

processes after fire and propose that a reformulation would be required to achieve more 

precise predictions. However, in the present case, the proposed modifications would 

produce an increase in the RUSLE predictions. The influence of the reduction of the soil 

organic matter content on soil erodibility after fire is not clear in these soils, because of 

the observed high content even after very severe fire and may partially explain the 

overestimation observed in the present study. 

The cover-management factor (C) is one of the most important variables because 

soil organic cover is a major determining factor as regards post-fire sediment yields (e.g. 

Pierson et al., 2001; Pannkuk and Robichaud, 2003; Benavides-Solorio and MacDonald, 

2005; Vega et al., 2005, Wagenbrenner et al., 2006; Fernández et al., 2007, 2008). The 

values of C obtained here appear to contribute to an overestimation of soil erosion 

losses in the high- severity area. The problem is that data on soil consolidation over time, 

soil root mass over time, drop fall height and surface roughness are approximations, 

because of the absence of detailed field data for an accurate calculation of this factor. In 

the absence of such data, it is not possible to assess the validity of the relationships 

used to calculate the C factor (González-Bonorino and Osterkamp, 2004; Larsen and 

MacDonald, 2007). 

As stated before with the K factor, the high soil organic matter content of these 

soils could affect the computation of the C factor. Dissmeyer and Foster (1981) proposed 

a correction in the C factor for soils with high soil organic matter content that consists in 

multiplying the previously computed value of C by 0·7. If we use this correction factor, 

the C values would be 0·002 and 0·17 for the moderately and severely burned areas, 

respectively. Taking into account the above modifications in the C and R factors (Figure 

23), the efficiency index increased to 0·872 and the RMSE decreased to 0·628 kg m-2. 

Unexpectedly, although the MMF model was not developed for burned soils, the 

Ef index obtained suggests the suitability of this model for predicting soil erosion after a 
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fire. The discrepancies between observed and predicted data may be related to the fact 

that estimated values of evapotranspiration were used and there was no vegetative 

cover during some months. It is uncertain how these estimations could affect the soil 

moisture storage capacity in these burned soils and, thus the model predictions. 

As stated by Morgan (2001), the hydrological depth of soil is a controversial 

parameter, and although in the present case the values used were based on field 

measurements, there remain uncertainties as regards the real value. Better knowledge 

of these parameters would probably produce more accurate estimations of soil erosion. 

As regards as soil losses after post-fire erosion control treatments predictions, 

there are several possible reasons for the poor results obtained. For example, the values 

assigned to the P factor. As pointed out by Miller et al. (2003), P factor values are usually 

unreliable because of the lack of validation of the effectiveness of post-fire rehabilitation 

treatments. However, in the present study, we chose the values according to the 

respective efficacy values for the soil rehabilitation treatments measured in a field 

experiment (Fernández et al., 2011). The value of P for cut shrub barriers is consistent 

with that proposed by Miller et al. (2003) and with the results of some field studies on the 

effectiveness of rehabilitation treatments after fire (Wagenbrenner et al., 2006; 

Robichaud et al., 2008). A reduction in factor LS, taking into account the distance 

between barriers along the slope did not improve predictions. 

The proposed modifications of R and C factors in the RUSLE substantially 

improved the predictions (Ef = 0·333). 

 



 

Understanding and modelling hydrological and soil erosion processes in burnt forest catchments 

 

University of Aveiro 

115 

 

 
Figure 23 - Measured and RUSLE-predicted soil losses for both study areas after the modification of the R 

and C factors. 

 

Conclusions 

 

Post-fire soil losses predicted by the RUSLE and Morgan–Finney models were 

compared in two burned areas with different levels of fire severity in NW Spain. An 

acceptable efficiency index was only obtained with the MMF model although it slightly 

underestimates post-fire soil losses. 

RUSLE model predictions overestimated actual annual soil losses. RUSLE K 

factor did not allow to reflect the changes on soil permeability and structure after fire. A 

correction of C factor to take into account the high organic matter content of the studied 

soils and a modification of the R factor could improve the applicability of RUSLE on 

similar burned soils as those under study. 
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The differences between observed and predicted values with MMF may be 

caused by using estimated values for evapotranspiration and how they affect the soil 

moisture storage capacity. More research on this aspect is needed. 

No accurate prediction of soil erosion after soil rehabilitation was achieved with 

the models tested. The role played by the C and P factors was not fully established and 

may have led to the poor results. 

Despite their limitations, both models were able to clearly distinguish situations of 

high and low post-fire erosion risk. This shows the applicability of both models to be used 

as operational tools in terms of prioritizing management areas. 
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The revised Morgan–Morgan–Finney (MMF) model was used as a modelling 

approach, which has performed reasonably well to estimate soil losses for burned areas 

in humid Mediterranean forests in Portugal, and NW Spain. Simple model enhancement 

approaches are applied to recently burned pine and eucalypt forested areas in north-

central Portugal and to subsequent post-wildfire rehabilitation treatments. Model 

enhancement is validated by applying it to another similar burned area to evaluate model 

calibration robustness and wider applicability. Model modifications involved: (1) focusing 

on intra-annual changes in parameters to incorporate seasonal differences in runoff and 

erosion; and (2) inclusion of soil water repellency in runoff predictions. The main results 

were that following wildfire and mulching in the plantations: (1) the revised model was 

able to predict first-year post-fire plot-scale runoff and erosion rates (NSRunoff = 0.54 and 

NSErosion = 0.55) for both forest types, and (2) first year predictions were improved both 

by the seasonal changes in the model parameters (NSRunoff = 0.70 and NSErosion = 0.83); 

and by considering the effect of soil water repellency on the runoff (NSRunoff = 0.81 and 

NSErosion = 0.89), (3) the individual seasonal predictions were considered accurate 

(NSRunoff = 0.53 and NSErosion = 0.71), and the inclusion of the soil water repellency in the 

model also improved the model at this base (NSRunoff = 0.72 and NSErosion = 0.74). The 

revised MMF model proved capable of providing a simple set of criteria for management 

decisions about runoff and erosion mitigation measures in burned areas. The erosion 

predictions at the validation sites attested both to the robustness of the model and of the 

calibration parameters, suggesting a potential wider application. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Modelling runoff and erosion, and their mitigation, in burned Portuguese 
forest using the revised Morgan–Morgan–Finney model. 
 
Vieira D.C.S., Prats S.A., Nunes J.P., Shakesby R.A., Coelho C.O.A., Keizer J.J. (2014) 
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Introduction 

 

Wildfires are a natural phenomenon in regions with a Mediterranean-type climate 

(Naveh, 1990). However, the present-day widespread occurrence of fires in southern 

Europe is unprecedented and strongly reflects human activity, not only directly through 

ignition (Veléz, 2009) but also indirectly through land/use changes such as land 

abandonment and widespread introduction of highly flammable pine and eucalypt 

plantations (Moreira et al., 2009; Shakesby, 2011). On average, wildfires consume each 

year 500,000 ha in southern Europe (San-Miguel and Camia, 2009), 100,000 ha of which 

in Portugal (Pereira et al., 2006a).Wildfire occurrence in Portugal is also not expected to 

decline markedly in the foreseeable future, both because of the economic importance of 

the country’s forestry activities using flammable species and of the likely increase in 

meteorological conditions conducive to wildfires (Carvalho et al., 2010; Pereira et al., 

2006b; Harding et al., 2009). 

Wildfires are widely regarded as an important cause of increased runoff and soil 

erosion, and hence, land degradation in Mediterranean forests and woodlands, even 

though there remains considerable uncertainty about the long-term and landscape-scale 

impacts (e.g. Cerdà and Doerr, 2007; Shakesby and Doerr, 2006; Shakesby, 2011).This 

also applies to Portugal, where the degradational effects of post-fire land-use practices 

have equally been highlighted (Shakesby et al., 1993, 1996; Walsh et al., 1992, 1995; 

Ferreira et al., 2005, 2008; Malvar et al., 2011, 2013; Martins et al., 2013; Prats et al., 

2012,2013).Fire-enhanced runoff and erosion are commonly attributed to the (partial) 

removal of the protective soil cover of vegetation and litter, in combination with heating-

induced changes in soil properties such as aggregate stability (e.g. Varela et al., 2010; 

Mataix-Solera et al., 2011) and soil water repellency (SWR)(e.g.Scottetal.,1998).SWR is 

widely reported in burned forest soils (e.g. Wells, 1981; Vega and Díaz-Fierros, 1987; 

Prosser, 1990;Walsh et al., 1994;Keizer et al., 2008a) but is also commonly found in 

unburned soils (e.g. Imeson et al., 1992; Arcenegui et al., 2007; Martínez-Zavala and 

Jordán-López, 2009; Jordán et al., 2010; Keizer et al., 2005a). Although SWR can be 

induced and enhanced by wildfire (DeBano, 2000; Doerr et al., 2000; Doerr and Moody, 

2004), the principal consequence of fire seems to be that SWR becomes 

geomorphologically ‘activated’ (Doerr et al., 1996; Doerr, 1998; Shakesby et al., 2000; 

Keizer et al., 2005b). 

Many authors have investigated the relationships between SWR and soil 

moisture content and/or antecedent rainfall and overland flow response (Doerr and 

Thomas,2000;Doerr et al.,2003;Ferreira et al., 2005; Keizer et al., 2005a; Malvar et al., 
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2011; Santos et al., 2013). Apparently, the predominant runoff generating process can 

shift from saturation-excess to Hortonian overland flow when pre-storm soil conditions 

change from moist and wettable to dry and repellent (Doerr et al., 2003). In water 

repellent soils, the common assumption that infiltration capacity is inversely related to 

soil moisture content does not apply. Depending on the degree of water repellency, 

infiltration capacity is reduced for soil moisture contents below a critical threshold 

(Dekker and Ritsema, 1996) and often increases as soils become wet (Burch et al., 

1989; Imeson et al., 1992; Doerr et al., 2003). 

The effect of wildfires of increasing runoff and erosion has created a strong 

demand for a model-based tool for post-fire sediment loss prediction. Post-fire erosion 

prediction has been a research target by a number of authors (Benavides-Solorio and 

MacDonald, 2005; Díaz-Fierros et al., 1987; Fernández et al., 2010a; Larsen and 

MacDonald, 2007; Moody et al., 2008; Soto and Díaz-Fierros, 1998), and, in the case of 

Portugal, by the EROSFIRE-I and -II projects (Keizer et al., 2008b; Vieira et al., 2010). A 

variety of erosion models originally developed for agricultural areas have been applied to 

burnt areas. They range from simple empirical models such as the Universal Soil Loss 

Equation (USLE; Wischmeier and Smith, 1978) and the Revised Universal Soil Loss 

Equation (RUSLE; Renard et al., 1997), to semi-empirical models such as the revised 

Morgan–Morgan–Finney (MMF) model (Morgan, 2001) and the WEPP-based Erosion 

Risk Management Tool (ERMiT; Robichaud et al., 2007), and to process-based models 

such as the Water Erosion Prediction Project (WEPP; Nearing et al., 1989) and the Pan 

European Soil Erosion Risk Assessment (PESERA; Kirkby et al., 2008). Besides for 

evaluating post-fire erosion risk, soil erosion models have elevated potential for 

assessing the medium- to long-term impacts of fire as a landscape-disturbance and soil 

degradation agent, providing a welcome complement to the field studies that typically 

involve monitoring at small spatial scales and over short periods (Esteves et al., 2012; 

Shakesby, 2011). 

The ERMiT tool deserves special mention as it has been developed as an 

operational tool for decision support in post-fire land management in (parts of) the USA 

(Robichaud et al., 2007). It allows predicting erosion risk during the early stages of the 

window-of-disturbance and, at the same time, the reduction of this risk by selected 

erosion control measures. This complementary information enables forest managers to 

evaluate the impact of fire on site productivity and the potential benefits of rehabilitation 

treatments (Larsen and MacDonald, 2007), and helps to formulate scenarios of erosion 

mitigation treatments to reduce the probabilities of high sediment yields (Robichaud et 

al., 2007). The ERMiT tool, however, has not been tested for post-fire conditions in 
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Portuguese or the Mediterranean in general. The need for testing and, in many cases 

adjusting existing models to local conditions is generally accepted (Shakesby, 2011). For 

example, Esteves et al. (2012) applied PESERA to post-fire conditions in central 

Portugal, and recommended that future applications would highlight factors such as 

SWR, the (temporary) presence of an ash layer and stone content (which is often high in 

the mountain soils in north-central Portugal). 

The authors have been focusing their post-fire erosion modelling efforts on the 

revised MMF model (Morgan, 2001), as a relevant development compared to (R)USLE 

while maintaining much of (R)USLE’s ease-of-application, especially in comparison to 

process-based models with their elevated model input requirements. Furthermore, the 

revised MMF model has shown considerable promise for predicting soil losses in 

recently burnt woodlands in the humid Mediterranean climate region of the Western 

Iberian Peninsula (Fernández et al., 2010a; Vieira et al., 2010). It is a semi-empirical 

model that was originally developed for predicting annual soil loss from field-sized areas 

on hillslopes (Morgan, 2001). While MMF inherited many concepts of USLE (Wischmeier 

and Smith, 1978), its conceptualisation aimed at improving USLE physical basis by 

separating the soil erosion process into a water phase and a sediment phase (Figure 

24). The water phase determines the energy of the rainfall available to detach soil 

particles from the soil mass as well as the volume of runoff; the sediment phase 

determines the rates of soil particle detachment by rain splash and runoff as well as the 

transporting capacity of the runoff volume. Runoff in MMF is estimated based on the 

method proposed by Kirkby (1976) which assumes that runoff occurs when the daily 

rainfall exceeds the soil moisture storage capacity and that daily rainfall amounts 

approximate an exponential frequency distribution (Morgan, 2001, 2005). The transport 

capacity of this runoff is then determined through a simplification of the scheme 

described by Meyer and Wischmeier (1969). MMF can easily accommodate soil 

conservation practices in its different phases. For example, agronomic measures can be 

simulated through the changes they produce in evapotranspiration, interception and crop 

management, which, in turn, affect the volume of runoff, the rate of detachment and the 

transport capacity, respectively (Morgan, 2005).  

The overall aim of this study was to apply the revised MMF, testing simple 

enhancements of the model for recently burned pine and eucalypt forest in north-central 

Portugal. These model enhancements involved: (1) implementing seasonal changes in 

model parameters, in order to accommodate seasonal patterns in runoff and erosion as 

had been measured in the field trail; and (2) incorporating the role of SWR in overland 

flow generation, taking into account the findings of various post-fire hydrological/erosion 

studies in (north-) central Portugal (Walsh et al., 1994, 1995; Ferreira et al., 2005, 2008; 
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Esteves et al., 2012; Prats et al., 2012; Malvar et al., 2011, 2013). Worth stressing is that 

SWR has rarely (if ever) been incorporated explicitly in the modelling of post-fire runoff 

and erosion. These model enhancements were applied to two independent data sets 

collected by Shakesby et al. (1996) and Prats et al. (2012) at comparable sites at nearby 

locations but burnt and studied more than two decades apart. The data set of Prats et al. 

(2012) was used to calibrate the enhanced model, whilst the data set of Shakesby et al. 

(1996) was then used to validate it. The enhanced MMF model was evaluated to predict 

runoff and erosion following fire as well as following the application of mulching, a post-

fire emergency treatment that both studies found to be highly effective. 

 

Materials and methods 

 

Study areas and sites 

 

The two study areas in north-central Portugal where Shakesby et al. (1996) and 

Prats et al. (2012) collected their data sets were located near the villages of Falgarosa 

(40º 32’N, 8º 22’ W) and Lourizela (40º 38’ N, 8º 19’ W), in the Águeda municipality, and 

near the village of Pessegueiro do Vouga 40º 43’ 05’’N; 8º 21’ 15’’ W), in the Sever do 

Vouga municipality, respectively. The former, validation data set concerned two sites 

covered by a pine plantation and a eucalypt plantation that burnt in 1991 and 1992, 

respectively; the latter, calibration data set concerned two nearby sites planted with pine 

and eucalypt that both burnt in 2007,in a single wildfire. A characterisation of wildfire 

severity at the four sites is given in Table 15. 

 

Field experimental design and data collection 

 

Calibration sites  

 

Prats et al. (2012) used erosion plots to study the effectiveness of forest residue 

mulching in reducing post-fire runoff and erosion in their pine as well as a eucalypt site. 

In total, 12 experimental plots (8 m long x 2 m wide) were installed immediately after the 

wildfire and before any appreciable rain, 8 of which at the eucalypt site and 4 at the pine 

site. The plots were left untreated during most of the autumn (pre-treatment period) in 

order to assess the variability in erosion rates between the individual plots. However, the 

present study focused on the post-treatment period or, more specifically, the first year 

following mulch application. Mulch was applied to four randomly selected eucalypt plots 
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and two randomly selected pine plots. This was done in December 2007, applying 

chipped eucalypt bark to the eucalypt plots at a rate of 0.87kg m-2 and, achieving a 

ground cover of 67%, while applying eucalypt logging residue to the pine plots at a rate 

of 1.75 kg m-2 and achieving a ground cover of 76%. Worth stressing is that the 

untreated pine plots had a markedly higher ground cover than the untreated eucalypt 

plots (60 vs. <10%) and, at the same time, a similar ground cover as the treated pine 

plots (Table 15).  

 

 
Figure 24 - Simplified flow chart of the revised Morgan–Morgan–Finney model, showing the key equations 

for the different model phases (adapted from Morgan, 2005).The boxes in black indicate the parameterized 
model inputs, whereas the grey area indicates model inputs considered when applied to post-fire conditions.  
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Table 15 – Main characteristics of the study sites 

 

Rainfall was monitored continuously using two tipping-bucket rain gauges, and 

weekly using seven standard gauges. Runoff was monitored continuously using tipping-

bucket devices, from where it was directed to storage tanks and measured weekly as a 

check. Eroded sediments were collected with modified Gerlach traps (Gerlach, 1967), 

whilst suspended sediment losses were determined using runoff samples collected from 

the storage tanks at weekly intervals. Ground cover on the plots was determined every 

15 days from October 2007 to June 2008, and again at the end of the study period. This 

was done using a 100 cm2 quadrat, and identifying four cover categories: stones, bare 

soil (including ash), litter and vegetation. Soil moisture was measured weekly using 

permanent access tubes, into which a TDR-type Delta-T® PR2-probe was inserted to 

carry out readings at different soil depths (0–10 cm); no soil moisture data could be 

collected in the pine control plots due to a malfunction. SWR was measured weekly at 

three different soil depths (0–5 cm, 5–10 and 10–20cm), using the Molarity of Ethanol 

Droplet (MED) test. The methods, materials and data collection are described in more 

detail in Prats et al. (2012). 

 

Validation sites  

 

 
Calibration sites Validation sites 

 Eucalypt Pine Eucalypt Pine 

Source of 
measurement data 

Prats et al. (2012) Shakesby et al. (1996) 

Forest plantation type 
Eucalyptus globulus 

Labill. 
Pinus pinaster Ait. 

Eucalyptus globulus 
Labill. 

Pinus pinaster Ait. 

Wildfire characteristics 

Date August 2007 August 2007 August 1992 July 1991 

Fire severity Moderate Low 
Severe burn 
Understorey 

Severe burn 
Understorey 

Consumption of tree 
canopy 

Total Partial Partial Partial 

Post-fire litter cover 
(%) 

< 10 60 90 8 

(Top-)soil properties 

Soil type 
(FAO, 1988) 

Umbric Leptosol 
(25-30 cm depth) 

Umbric Leptosol 
(≤ 40cm depth) 

Bulk density  
(0 –15 cm)( g m-3) 

0.95 - 1.26 1.17 - 1.35 0.85 - 1.29 0.73 - 99 

Texture class  
(0 –15 cm) 

Sandy loam Silt loam 
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Shakesby et al. (1996) used erosion plots of the same dimensions and materials 

as Prats et al. (2012) but assessed the effectiveness of a variety of post-fire land 

management strategies: application of different quantities of logging litter, removal of 

pine needles (in order to assess their protective effect), rip-ploughing (deep ploughing 

achieved with long steel tines dragged behind heavy plant machinery used to clear old 

eucalypt or pine stumps in preparation for planting eucalypt seedlings), and minimum 

tillage prior to planting eucalypt seedlings. In total, 13 plots were installed, of which 6 at 

the eucalypt site and 7 at the pine site. The plots were installed immediately after the 

wildfires but were only treated one year (eucalypt site) and two years (pine sites) 

afterwards, in July 1994. The present study is limited to the first year of the post- 

treatment monitoring period. The treatments with logging litter were defined based on the 

collection and weighing of the waste slash that was left on the ground in 100 m2 squares 

after the felling and removal of the trees at an unburned eucalypt stand as well as an 

unburned pine stand. Three application rates were selected that corresponded to 100% 

(‘high’), 50% (‘medium’) and 10% (‘low’) of the mean weight per unit area of 

eucalypt/pine waste slash. The pine needle treatment involved a negative treatment, i.e. 

the removal of the pine needle cast that had fallen on the pine plot after the fire; in 

addition, all vegetation was clipped at the soil surface and then removed (‘bare soil’). 

At the eucalypt site, the following treatments were applied: high litter (1 plot), 

medium litter (1 plot), low litter (2 plots) and untreated (2 plots). At the pine site, the litter 

treatments comprised only two waste slash categories (because the amount of waste 

was relatively low): high litter (100%, 2 plots) and medium litter (50%, 1 plot). The 

treatments further included: bare soil following needle removal and vegetation clipping (1 

plot), minimum tillage and seedling planting (1 plot), and untreated (2 plots).  

Rainfall was measured using standard rain gauges installed at the plot locations. 

Daily and hourly rainfall intensities were extrapolated from continuous records from 

tipping-bucket gauges installed at Falgueirinho (altitude, 460 m) and Castanheira (200 

m). The plots themselves were all linked to a sediment trap, tipping bucket flow recorder 

and a series of large collecting tanks (Shakesby et al., 1991; Walsh et al., 1995). Eroded 

sediments were collected in these traps, while suspended sediment losses were 

determined using runoff samples collected from the tanks. Overland flow, however, was 

neither measured continuously nor for the entire sampling period, so that MMF model 

assessment was limited to erosion rates The vegetation cover in the plots was estimated 

in June 1993 and July 1994, using mosaics constructed with vertical photographs (taken 

from a 3-m-high movable frame) and directly in the field (details in Coelho et al., 1995). 
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Application of revised Morgan–Morgan–Finney model 

 

The revised MMF model (hereafter referred to as MMF) was first applied to the 

untreated and treated, eucalypt and pine plots at the calibration sites studied by Prats et 

al. (2012). The plots will hereafter be designated as EC (eucalypt control), ET (eucalypt 

treated), PC (pine control), PT (pine treated) and (Figure 25). MMF was applied at two 

time scales: the entire 1-year post-treatment period from December 2007 to December 

2008 and the individual seasons, hereafter designated as FP (full-period modelling) and 

SM (seasonal modelling). 

Table 16 gives an overview of the model input parameters as well as of their 

values for the FP modelling and the methodology used to arrive at these values. From 

the 16 model inputparameters, 9 were available from Prats et al. (2012), whereas the 

remaining 7 had to be estimated from literature. The parameters can be divided in four 

different datasets (Figure 25): 

- a universal dataset, comprising the parameters that have the same values 

for all 12 plots, i.e. R, Rn, I, EHD, COH and A;  

- a land-use dataset, comprising the parameters with distinct values for the 

eucalypt plots and for the pine plots, i.e. BD, K, Et/E0, C, CC and PH;  

- a treatment dataset, comprising the MS parameter and reflecting the 

observed differences in soil moisture contents on the mulched vs. control 

plots;  

- a plot-specific dataset, comprising the parameters with differed values for 

each of the individual plots, i.e. S, P and GC. 

The full-period (FP) modelling approach involved the following assumptions: 

Et/E0 and GC could be represented by their mean values over the full post-treatment 

period, and MS could be approximated by the maximum soil moisture content recorded 

during the 1-year study period. In the case of the pine site, MS could only be estimated 

directly from measurement data for the mulched plots, due to the above-mentioned 

malfunctioning of soil moisture sensors in the control plots. however, it was decided to 

use the same MS values in both plots Since the control pine plots presented a similar 

ground cover as well as a similar overland flow responses as the treated pine plots 

(Prats et al., 2012), MS was assumed to be the same at the control than untreated pine 

plots. 
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Table 16 – Model input values (values or range of values) used in the full period MMF application (FP) for 

the control and treated plots at the eucalypt and pine calibration sites. 

Factor Parameter 

Eucalypt Pine 

Methodology applied to input determination 

control treated control treated 

Rainfall 

R (mm yr
-1
) 1684 Recorded at the study sites by Prats et al. (2012); 

the rainfall kinetic energy was then calculated 
following the procedure outlined by Coutinho and 
Tomás (1995). 

Rn (mmrain day
-1
) 9.8 

I (mm h-1) 30 

Soil 

MS (%) 20 28 35 Derived from measurements by Prats et al. 
(2012). BD (g cm-3) 1.1 1.2 

EHD (m) 0.09 
Estimated following Morgan (2001), considering 
“bare soil without a surface crust”, as the best 
approximation to a burned bare soil. 

K (g J-1) 0.7 0.5 Estimated on base of the measured soil texture 
class, following Morgan (2001). COH (kPa) 2 

Landform S (º) 22-26 22-29 22-22 24-28 Measured in the field by Prats et al. (2012). 

Land 
 cover 

A 0.1 
Based on the findings of Ferreira (1996) for newly 
burnt eucalypt stands in north-central Portugal. 

Et/E0 0.7 0.6 

Computed with the Thornthwaite-Mather (1957) 
method, using temperature and climate data from 
the nearest weather station at Castelo-Burgães 
(SNIRH, 2011) and using the measured rather 
than calculated soil moisture values to estimate 
Et. 

C(a) 0.02 0.005 

Estimated using the RUSLE methodology 
(Renard et al. 1997), as was done by Larsen and 
MacDonald (2007) and Fernández et al. (2010), 
and taking into account estimates of soil biomass, 
surface roughness and ground cover. 

P(a) 0.6-0.9 0.3-0.5 0.3-0.4 0.2-0.3 

Calculated from the measured cover values using 
the equation P = 1 - (GC/100), as justified by the 
negative relationship between soil organic matter 
cover and cumulative soil losses reported by 
Fernández et al. (2004). 

CC (%) 1 5 

Measured in the field by Prats et al. (2012). GC (%) 6-40 54-69 56-66 74-83 

PH (m) 0 0 
a
 In the original input table (Morgan, 2001), the C factor represented a combination of C and P parameters, which are 

presented separately here. 

 

Seasonal modelling (SM) involved estimating the seasonal (winter, spring, 

summer, autumn) variations in the following four input parameters: soil moisture at field 

capacity (MS) (Figure 26a); evapotranspiration (Et/E0) (Figure 26b); land cover (GC, C) 

(Figure 26c); soil effective hydrological depth (EHD) (Figure 26d). The seasonal changes 

in EHD were meant to represent the observed changes in ground cover (GC), reflecting 

post-fire vegetation and litter recovery, on the one hand, and, on the other, the 

decomposition and erosion of the applied mulch at the treated plots. To this end, EHD 

was estimated as a linear function of GC, such that the EHD for a GC of 0% 

corresponded to that of shallow soils on steep slopes (EHD =0.05 m; Morgan, 2001) and 

the EHT for a GC of 100% to that of a mature forest (EHD =0.20 m; Morgan, 2001).  
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Figure 25 - Overview of the model input datasets used in applying MMF to the plots of Prats et al. (2012). 

For more details on model, please see Table 16 and/or Morgan (2001); plots are numbered according to 
their position on the study slope (left to right). 

 

 
Figure 26 - Seasonal variations in four MMF parameters at the eucalypt and pine calibration sites: (a) soil 

moisture content at field capacity (MS, %); (b) evapotranspiration (Et/E0); (c) ground cover (GC, %) and (d) 
hydrological depth of soil (EHD, m). 
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The hydrological effects of SWR in MMF could only be simulated through 

calibration of soil storage capacity (Rc, Figure 24), decreasing it with increasing level of 

SWR. Soil storage capacity is determined by four parameters: Field Capacity (MS), 

Effective Hydrological Depth (EHD), Bulk Density (BD) and the evapotranspiration ratio 

(Et/E0). Given this limited choice of adjustable parameters and given the fact that EHD 

already needed to be calibrated for the seasonal modelling, MS seemed the most 

appropriate parameter for mimicking the effects of SWR. To this end, the ‘‘SM-SWR’’ 

modelling approach consisted of multiplying the MS value with a scalar that decreased 

with increasing severity SWR, ranging from 0.8 under extremely repellent conditions to 

1.1 under wettable conditions (Table 17). The exact values of these multipliers were 

determined to be those that provided the best model performance. In the model runs, the 

scaling of MS is achieved by inferring the severity classes of SWR from the inter-annual 

variations in soil moisture, since the original version (Morgan, 2001) at annual scale is 

intended to represent both repellent and non-repellent conditions. 

 

Table 17 –Multiplication factors used to parameterize soil moisture at field capacity (MS) in the SM-SWR 

modelling approach for different repellency severity classes. 

 

After application to the calibration sites, MMF was applied to the validation sites 

studied by Shakesby et al. (1996). This was done using a similar procedure as described 

above and selecting values for the calibration parameters as close as possible to those 

used for the data set of Prats et al. (2012), in the following manner: 

- when measurements were available, parameter values were calculated 

directly, i.e. for of R, Rn and the plot-specific dataset (S, P, GC);  

- from the unmeasured parameters, MS, BD, K and COH were inferred 

from Morgan (2001), based on the soil texture data available for the 

validation site;  

- for the remaining unmeasured parameters (I, EHD, A, Et/E0, C, CC, PH), 

the same values were used as for the calibration sites, differentiating 

between eucalypt and pine plots; the values of the C factor, however, 

were estimated anew for the plots whose treatment that had not been 

Repellency severity class 
 
(Adapted from Keizer et al., 2008b) 

Ethanol 
class 

MS multiplication factor 

Extreme 8 0.8 

Very strong 7 – 6 0.9 

Slight to strong 3-5 1 

None 0-2 1.1 
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tested by Prats et al. (2012), i.e. minimum tillage and removal of pine 

needle cast; 

- the seasonal variation in MS and EHD were calculated in the same way 

as for the calibration sites, but the seasonal patterns in Et/E0 and SWR 

were assumed to be the same as at the calibration sites, in view of the 

lack of soil moisture data for the plots studied by Shakesby et al. (1996). 

 

Model assessment 

 

Model performance was evaluated using two commonly-used assessment 

indicators (e.g. Moriasi et al., 2007): the coefficient of efficiency (NS: Nash and Sutcliffe, 

1970) and the root mean squared error of the observed vs. predicted values (RMSE). 

The NS is a descriptor of the predictive accuracy of model outputs. It can range from -∞ 

to 1. A negative value indicates that the mean observed value is a better predictor than 

the model output. A value of 0 indicates that the mean observed value is as accurate a 

predictor as the model output, and an efficiency of 1 corresponds to a perfect match of 

the predicted with the observed values. NS values greater than 0.5 are widely 

considered to indicate satisfactory model performance (Quinton, 1997), while values 

exceeding 0.7 should not be expected (Nearing, 1998; Morgan, 2001). 

 

Results 

 

Seasonal calibrated parameters 

 

Before presenting the modelling results themselves, further insight in the values 

attributed to the parameters varying seasonally was deemed helpful for a better grasp of 

the differences in model output between the full-period (FP) and seasonal (SM and 

SMSWR) modelling approaches. Each of these seasonal parameters influences how 

runoff varies with the various seasons. Following calibration, evapotranspiration (Et/E0) 

revealed marked seasonal differences (Figure 26b). These differences produced a 

reduction in water available for runoff generation during the dry seasons and an increase 

during the wet seasons. The Et/E0 parameter also contributed to runoff differences 

between the pine and eucalypt plots.  

The ground cover parameter (GC, %) allowed accommodating the temporal 

patterns in cover and to do so for each plot individually (Figure 26c). By contrast, the FP 
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approach involved using the mean ground cover over the entire 1-year study period, 

thereby ignoring the sometimes substantial changes in, for example, mulch cover 

(through decomposition and erosion) or in litter cover (due to pine needle cast). The 

seasonal variations in GC were used to produce changes in EHD with time (Figure 26d), 

avoiding the use of a single reference value (in particular, ‘‘bare soil without surface 

crust’’ from Morgan (2001)) for the entire post-treatment period.  

Soil moisture at field capacity (MS, %) was estimated in the same manner for the 

individual seasons as it was for the full post-treatment period. Following calibration of MS 

to mimic SWR patters, MS values revealed a clear increase from winter to their 

maximum in spring and again a decrease until autumn (Figure 26a). Furthermore, MS 

values provided a distinction between pine and eucalypt plots and, at the same time, 

between control and treated eucalypt plots. 

 

Annual runoff rates at the calibration sites 

 

Overall, the application of MMF enabled the distinction between the three 

contrasting magnitudes of annual runoff volumes as produced by the pine plots, the 

treated eucalypt plots and the untreated eucalypt plots. Predictions with acceptable 

accuracy were obtained with the FP as well as the two seasonal modelling approaches. 

The field measurements by Prats et al. (2012) showed a marked difference in 

annual runoff produced by the untreated eucalypt plots and the untreated pine plots, with 

consistently higher runoff amounts at the eucalypt (EC, 466 mm) than pine site (PC, 93 

mm). Treatment effectiveness was high at the eucalypt site but inexistent at the pine site, 

with a decrease in average runoff of 43 % as opposed to an increase of 10%. The 

observed difference in average annual runoff between the mulched and untreated plots 

was predicted by all three modelling approaches in the case of the eucalypt plantation, 

but not in the case of the pine plantation. The seasonal approaches predicted less 

instead of more runoff for the treated (PT) and untreated (PC) pine plots, whereas the FP 

approach gave identical runoff estimates with and without mulching. The annual runoff 

predictions for the individual plots were plotted against the observed values in Figure 

27a. The three modelling approaches captured well the three observed levels of runoff 

generation (high = eucalypt untreated vs. medium= eucalypt treated vs. low =pine 

treated and untreated) but did not provide accurate estimates for all of the individual 

plots. Plot-specific runoff differences were not represented in the FP modelling approach, 

providing the same prediction for each plot at the same site and with the same treatment. 

They were, however, represented in both seasonal modelling approaches, through the 
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seasonal parameters (see Section 3.1). The spatial variation in overland flow was 

predicted more accurately for the untreated (EC) than treated (ET) eucalypt plots, 

especially because one of the treated plots produced noticeably more runoff than 

predicted. At the same time, however, this plot produced clearly more runoff than the 

other ET plots.  

In general, the original FP modelling approach performed reasonably well in 

predicting annual runoff, with a NS index of 0.54 and a RMSE of 121mm (Table 18). 

Both seasonal approaches clearly improved model performance. The seasonal 

component in the SM approach increased the NS index to 0.70 and reduced the RMSE 

by 20 %, whereas the inclusion of soil water repellency in the SM-SWR approach 

improved the NS index to 0.81 and decreased the RMSE by a further 20%. 

 

Table 18 – Average amounts of annual runoff and erosion of the control and mulched plots at the eucalypt 

and pine calibration sites as measured by Prats et al. (2012) and as predicted using the FP, SM and SM-
SWR modelling approaches. Model performance was assessed by means of the NS index and the RMSE. 
 

 Predicted 

Measured Full period (FP) Seasonal (SM) 
Seasonal-SWR. (SM-

SWR) 

Runoff (mm) 

Eucalypt site Control 466 335 406 454 

Treated 267 185 253 297 

      

Pine site Control 93 120 117 124 

Treated 103 120 89 95 

Mean erosion (kg m
-2
) 

Eucalypt site Control 0.541 0.799 0.411 0.629 

Treated 0.074 0.122 0.026 0.049 

      

Pine site Control 0.032 0.011 0.003 0.004 

Treated 0.037 0.007 0.001 0.001 

Model performance 

NS Runoff - 0.54 0.70 0.81 

Erosion - 0.55 0.83 0.89 

      

RMSE Runoff (mm) - 121 98 78 

Erosion (kg m
-2
) - 0.18 0.11 0.09 

 

Annual erosion rates at the calibration sites 

 

The overall model performance regarding annual soil loss estimations, allowed 

differentiation between the three main levels of observed erosion rates, corresponding, in 

increasing order, with the pine plots, and the treated and the untreated eucalypt plots, 
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respectively. Predictions of annual soil losses had higher accuracy than predictions of 

annual runoff volumes.  

 

 
Figure 27 - Scatter plots of the measures vs. predicted annual runoff (a) and erosion (b1 and, zoomed-in, 

b2) values for the control and treated plots at the eucalypt and pine calibration sites, as measured by Prats 
et al. (2012) and predicted using the three modelling approaches. 

 

Annual soil losses, like annual runoff amounts, revealed marked differences 

between the eucalypt and the pine site with a higher loss in the eucalypt (EC, 0.54kg m-2) 

than in the pine (PC, 0.032 kg m-2) plots. Treatment effectiveness in soil losses was 

improved in the eucalypt plots and worsted in the pine, comparably to the obtained runoff 

amounts. A decrease of 86% in erosion following mulching was observed for the 

eucalypt study site, while the control plots at the pine site produced 16% less erosion 

than the treated ones. The mulch effect was predicted by all the three approaches as 

effective either in eucalypt and pine sites, although the pine plot observations resulted in 

increased soil losses in the PT. 
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When individual plot predictions were plotted against the observed erosion 

results (Figure 27b1 and Figure 26b2), the same 3 levels were verified for erosion in 

similarity to the runoff (high, medium and low). In the case of the eucalypt site, observed 

soil losses for treated and control conditions were represented by all modelling 

approaches, improving overall model accuracy when compared to runoff predictions. 

However, in the pine site, this differentiation was not possible; due to a systematic 

underestimation of the observed soil losses for all the approaches, plus the prediction of 

less erosion in the PT instead of more in comparison to the PC, resulting in poor NS 

efficiencies for this specific land use. 

The systematic overestimation of soil losses by the FP modelling approach was 

improved by introducing the seasonal component (SM), then it performed more 

accurately for the untreated than treated eucalypt plots. The second adaptation (SM-

SWR) improved the predictions for all eucalypt plots, although the predictions for the 

treated plots continued to underestimate the observed values.  

In general, the FP modelling approach can be considered accurate when 

predicting soil losses on a year basis, with a NS index of 0.55 and a RMSE of 0.18 kg m-

2. The seasonal approaches were able to improve model performance to a NS index of 

0.83 and reduced RMSE by 40%, and, when incorporating SWR (SM-SWR), to further 

improve the NS index to 0.89 and further reduce the RMSE by 20%. 

 

Seasonal runoff rates at the calibration sites 

 

The seasonal pattern of mean observed runoff values was similar in all the sites, 

although the different levels of low (PC and PT), medium (ET) and high (EC) runoff 

amounts found. The observations reveal higher runoff amounts in winter and autumn, 

separated by a decrease in spring and the minimum in summer (Figure 28). These 

results justify by themselves the need of a seasonal modelling, since there was a 

pronounced variation of rainfall through the year (Prats et al. 2012), and the estimated 

parameters such as MS, EHD and Et/E0 reveal variations between seasons.  

The eucalypt site presented the highest overland flow from this study (EC), with a 

runoff coefficient of 36% most of the year, with the exception of spring with 19%. While 

the pine site (PC) presentedrunoffamountsaround10%inthe winter, decaying dramatically 

to 2% in spring, increasing to 8%, followed by 7%, for summer and autumn periods. 

Prats et al. (2012) attributed these results primarily to the total rainfall amounts and 

secondly to the frequency of extreme repellence 

 



 

Understanding and modelling hydrological and soil erosion processes in burnt forest catchments 

 

University of Aveiro 

145 

 

 
Figure 28 - Mean seasonal runoff amounts of the control and treated plots at the eucalypt and pine 

calibration sites, as measured by Prats et al. (2012) and predicted using the two seasonal modelling 
approaches (SM and SM-SWR). The legend of the symbols is given in graph (a); note the different scales for 
the pine and eucalypt plots as well as for the control than treated eucalypt plots. 

 

Figure 28 compares the seasonal patterns of measured and predicted runoff. In 

the case of the seasonal approach (SM), the control eucalypt plots runoff amounts are 

underestimated in winter and autumn, then the predictions are overestimated mostly in 

spring and slightly in summer (Figure 28a). In the treated ones, by the other hand, 

present an underestimation of the runoff predictions for most of the year (Figure 28b). In 

the case of the control pine plots, runoff was overestimated from winter to summer and 

underestimated autumn (Figure 28c). While the treated ones the behaviour is 

approximated with the exception of the underestimated runoff amounts for the winter 

period (Figure 28d). The inclusion of SWR in the model (SM-SWR) caused the greatest 

improvements in winter and autumn for both eucalypt plots. For the pine runoff 

predictions (Figure 27c and d), these improvements are not so noticeable since the 

model predictions were improved in spring but became worse in autumn for both control 

and treated plots. The inclusion of SWR improved the model runoff predictions, as 

indicated by the NS index for all the plots increasing from 0.53 to 0.72, and the RMSE 

was reduced 40%. This improvement is also applied when model performance is 

evaluated for each land use and treatment, where all NS and RMSEs underwent 

improvement (Table 19). This was particularly true for the pine plots (and especially for 

the control), where model performance was raised from being poor to acceptable. 
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Seasonal erosion rates at the calibration sites 

 

Following the same trend as the observed runoff, there are three levels of soil 

losses amounts, low for pine plots, medium for treated eucalypt plots and high for 

eucalypt control. However the soil losses behaviour does not correspond totally to the 

observed runoff, and also is not similar between site (eucalypt/pine) and treatment 

(control/treated) (Figure 29). From the modelling point of view the results in soil losses 

predictions differences depend mostly in predicted runoff amounts for these periods, plus 

the changes in ground cover (GC) as a protection agent.  

The eucalypt site presented the highest soil losses means from this study (EC), 

with elevated erosion amounts in winter, spring and autumn (seasons with runoff 

coefficient around 36%). The minimum was verified in summer (0.03kg m-2) and the 

maximum in spring (0.21kg m-2) (Figure 29a). In the last case, the season not only had 

an elevated runoff coefficient, as also presented the highest rainfall events from the 

study period (Prats et al., 2012). In the case of the ET plots, some similarities in the 

erosion observations were found, more soil losses in autumn relatively to winter season, 

same minimum in summer. And the difference is basically the inexistence of the extreme 

soil losses verified in the spring season when compared to the untreated plots.  

In the case of the pine site (Figure 29c), control plots present its maximum in 

autumn, and the minimum in spring, while the others presented intermediate values, but 

always with reduced soil losses under 0.012 kgm-2. Similar figures were observed in the 

treated pine site in all the seasons (Figure 29d) with the exception of the winter season, 

the observed maximum, presenting a slightly increased amount of 0.015 kg m-2.  

The seasonal modelling approach (SM) when applied to eucalypt plots, either 

from control or treated ones, result in a systematic underestimation of soil losses 

amounts, although their differences in the magnitudes (high and medium). The EC plots 

present a more similar trend to the observed values in accordance to the obtained NS 

indexes, than the ET ones. In the pine sites either for control or treated, the soil losses 

amounts estimations are much reduced, and no trend is possible to be observed for 

comparison.  

The inclusion of SWR in the revised MMF (SM-SWR), did not substantially 

improve the soil losses predictions, in contrast to the runoff amounts. This approach led 

to a slight increase of the soil losses in periods that had higher frequency of soil water 

repellency, resulting in some overestimation in the eucalypt control plots (Figure 29a) for 

winter and spring. In the overall evaluation, regarding soil losses predictions by land use, 

only the eucalypt site presented an accurate estimation (Table 19).  
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Table 19 – Model performance for seasonal runoff and erosion predictions at the calibration sites using the 

SM and SM-SWR modelling approaches. Model performance was assessed by means of the NS index and 
the RMSE. 

 Seasonal (SM) Seasonal-SWR (SM-SWR) 

 NS 

Runoff predictions 

All plots 0.53 0.72 

   

Eucalypt site 
Control 

0.66 
0.31 

0.78 
0.57 

Treated 0.44 0.55 

      

Pine site 
Control 

0.09 
-0.26 

0.5 
0.33 

Treated 0.64 0.69 

Erosion predictions 

All plots 0.71 0.74 

   

Eucalypt site 
Control 

0.64 
0.41 

0.66 
0.45 

Treated -3.16 -2.9 

      

Pine site 
Control 

-0.69 
-0.83 

0.05 
0.13 

Treated -2.5 -1.08 

      

  RMSE 

Runoff predictions (mm) 

All plots 115 71 

   

Eucalypt site 
Control 

56 
54 

44 
43 

Treated 14 13 

      

Pine site 
Control 

59 
58 

44 
42 

Treated 12 12 

Erosion predictions (kg m
-2
) 

All plots 0.15 0.09 

Eucalypt site 
Control 

0.09 
0.09 

0.09 
0.09 

Treated 0.01 0.01 

      

Pine site 
Control 

0.02 
0.02 

0.02 
0.01 

Treated 0.01 0.01 

 

In this site, the improvement was verified in both treatments, but the final NS 

index result showed that ET predictions were not improved enough to be considered 

accurate. The soil losses predictions are still far from accurate in the pine plots when NS 

index is used for comparison, however, is the RMSE shows the reduced error in 

sediment losses amounts. Overall, SM modelling approach can be considered accurate 
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when predicting soil losses seasonally, with a NS index of 0.71 and a RMSE of 0.15kg 

m-2. The inclusion of soil water repellency (SM-SWR) improved this performance to a NS 

index of 0.74 and a reduction of the RMSE by 40%. 

 

 
Figure 29 - Mean seasonal erosion rates of the control and treated plots at the eucalypt and pine calibration 

sites, as measured by Prats et al. (2012) and predicted using the two seasonal modelling approaches (SM 
and SM-SWR). The legend of the symbols is given in graph (a); note the different scales for the pine and 
eucalypt plots as well as for the control than treated eucalypt plots. 

 

Annual and seasonal erosion rates at the validation sites 

 

There is a marked difference in runoff and erosion amounts between the 

untreated plots for pine and eucalypt sites in the model validation results, which agrees 

with the field results for the validation site (Shakesby et al., 1996), as well as with the 

conclusions from the calibration test site (Prats et al., 2012). This difference between 

treated and untreated plots was identified in the model for the different modifications 

when annual soil losses were compared (Figure 30a). As far as the litter cover 

differences were explored, three soil losses amounts levels can be highlighted: high-

medium litter (Figure 30b), low litter, and bare soil; these differences were also 

recognised by the model predictions (Figure 30a).  
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Figure 30 - Scatter plots of the measured vs. predicted annual erosion values (a and, zoomed-in, b) for the 

control and treated plots at the eucalypt and pine validation sites, as measured by Shakesby et al. (1996) 
and as predicted using the three modelling approaches (FP, SM and SM-SWR). Note the different scales for 
the pine and eucalypt plots as well as for the control than treated eucalypt plots. 

 

Table 20 shows model efficiency as regards erosion rate predictions. FP 

modelling performed poorly compared with the seasonal modelling approaches (SM and 

SM-SWR). Negative NS efficiencies were obtained for the first, and similar efficiencies 

were obtained for seasonal modelling in comparison to the calibration results.  

 

Table 20 – Model performance in predicting overall erosion rates at the calibration and validation sites using 

the three different modelling approaches. Model performance was assessed by means of the NS index and 
the RMSE. 

Model efficiency for erosion predictions Full Period (FP) Seasonal (SM) 
Seasonal-SWR 

(SM-SWR) 

 NS 

Calibration 

All plots 0.55 0.83 0.89 

Eucalypt site 0.38 0.70 0.82 

Pine site -7.96 -9.58 -10.00 

     

Validation 

All plots -0.08 0.81 0.84 

Eucalypt site 0.50 0.67 0.69 

Pine site -0.20 0.90 0.93 

 RMSE (kg m
-2
) 

Calibration 

All plots 0.18 0.11 0.09 

Eucalypt site 0.18 0.12 0.09 

Pine site 0.02 0.02 0.02 

Validation 

All plots 0.22 0.11 0.12 

Eucalypt site 0.21 0.12 0.13 

Pine site 0.24 0.10 0.11 

 

The model performed more accurately for pine than for eucalypt regarding the 

validation site, this situation was reversed in the calibration plots. This change occurred 
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due to the very low erosion rates recorded on the pine plots (Prats et al., 2012), which 

required a prediction detail beyond model capacity.  

In the validation pine plots (Shakesby et al., 1996), the presence of a ‘‘bare soil’’ 

treatment with high measured erosion rates provided a better test of model performance. 

Excluding this treatment, however, the model also performed poorly in distinguishing 

between control and treated pine plots, also due to the very low observed soil losses 

amounts, as can be seen in Figure 30b. 

Overall, the original FP modelling approach performed poorly predicting erosion 

amounts, with a NS index of -0.08, and a RMSE of 0.22kg m-2 (Table 20). Seasonal 

approaches improved substantially the model performance. The seasonal component in 

the SM approach increased the NS index to 0.81 and reduced the RMSE by 50%, 

whereas the inclusion of soil water repellency in the SMSWR approach improved the NS 

index to 0.84 although increased the RMSE by 8%.  

Between calibration and validation model applications, soil loss predictions 

enabled differentiation between the three main observed erosion groups for all the model 

approaches. However, only SM and SM-SWR in the validation site provided accuracy 

comparable to that obtained for the calibration plots. 

 

Discussion 

 

Model evaluation and comparison with other studies 

 

Table 21 compares model accuracy for runoff and erosion predictions between 

this study and other approaches applied to burned areas. There have been few studies 

that have tested model accuracy for runoff predictions in recently burned forests and 

none was found for periods shorter than one year. The obtained efficiency for the annual 

runoff amounts predictions in this study, for full period modelling (FP, NS= 0.54), 

seasonal modelling (SM, NS= 0.70), and seasonal modelling with repellency calibration 

(SM-SWR NS = 0.81) are consistent with those of Soto and Díaz-Fierros (1998) (years 

1–4) for prescribed burning and wildfire calculated using the WEPP model (Table 21). 

However, this comparison is limited, since high repellency periods were excluded by the 

authors while modelling with WEPP, and the period of study is much longer.  

The accurate predictions of sediment losses achieved with the revised MMF in 

this study, for the FP, SM and SM-SWR modelling approaches (NS =0.55, NS = 0.83 

and NS = 0.89, respectively) were consistent with those previously observed in burned 

areas in Portugal (Vieira et al., 2010) and NW of Spain (Fernández et al., 2010a). Model 
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accuracy also agree with the results by Larsen and MacDonald (2007) for periods of 1–

10 years after wildfire (Table 21); they were, however, better than the results for the first 

year after fire, for which the authors found negative efficiency indices for sediment yield 

when applying the standard and modified versions of RUSLE and disturbed WEPP. Also, 

model accuracy was better that one obtained by Soto and Díaz-Fierros (1998). It is 

important to mention that the prediction efficiencies with MMF achieved in the present 

study represent improvement over the previous MMF application by Fernández et al. 

(2010a). Finally, the results for accuracy from the present study were also in line with 

those generally obtained when applying the MMF model (as reported by Morgan (2001)).  

Overall, comparison between the results obtained in the present study and those 

listed in Table 21 indicates that the accuracy in modelling annual runoff and erosion was 

similar to, or better than, that generally achieved with similar approaches for burned 

areas.  

 

Table 21 – Overview of prior studies modeling erosion with MMF and/or modeling post-fire erosion 

Study Location Land Use Model 
Burning 
conditions 

Untreated/ 
treated 

NSRunoff NSErosion 
RMSE RMSE 

(mm) (kg m
-2
) 

Fernández et 
al. (2010) 

NW of 
Spain 

Forest 
(pine) and 
shrubland 

RUSLE Wildfire 
Untreated - 0.87

a 
- 0.63

a 

Treated - 0.33
a 

- 1.55
a 

MMF Wildfire 
Untreated - 0.74

a 
- 0.90

a 

Treated - -0.59
a 

- 2.38
a 

          

Larsen and 
MacDonald 
(2007) 

Colorado 
Front 
Range, 
USA 

Forest 
(pine) 

RUSLE Wildfire Untreated - 0.52
b 

- 0.36
b 

Modified 
RUSLE 

Wildfire Untreated - 0.31
b 

- 0.43
b 

Disturbed 
WEPP 

Wildfire Untreated - 0.53
b 

- 0.35
b 

Modified 
Disturbed 
WEPP 

Wildfire Untreated - 0.65
b 

- 0.30
b 

          

Morgan 
(2001) 

Various Agriculture MMF Unburned 
n.a. 0.58 0.65 - - 

n.a. 0.94 0.84 - - 

          

Soto and 
Díaz-Fierros 
(1998) 

NW of 
Spain 

Shrubland WEPP 

Prescribed 
fire 

Untreated 0.34
d 

0.61
d 

- - 

Wildfire Untreated 0.84
d 

0.03
d 

- - 
a
 Best achieved Nash Sutcliffe efficiency index and RMSE after RUSLE and revised MMF model modification. 

b
 Statistics of grouped hillslope data, periods of 1 to 10 years after wildfire by Larsen and MacDonald (2007). 

c
 From 67 sites data set within Foulam and Ødum in Denmark, El Ardal in Spain, Spata in Greece and Pakhribas in Nepal. 

d
 Statistics were calculated from data provided in Soto and Díaz-Fierros (1998). 

 

Runoff and erosion annual predictions were acceptable for all the proposed 

approaches. No studies were found that included seasonal runoff and erosion 

predictions within a burned area. In this study, model efficiency for seasonal predictions 

of runoff and erosion, was lower than that for annual predictions in both approaches (SM: 
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NSRunoff = 0.53, NSErosion = 0.71; SM-SWR: NSRunoff =0.71, NSErosion =0.74); however, 

these values can also be considered as acceptable. Furthermore, Morgan (2005) argued 

that it was necessary to know whether an erosion prediction has been achieved without 

having to compromise runoff figures, and that validation should also be made to all of its 

constituent models. Therefore, the accurate NS erosion indices shown in Table 21 do not 

necessarily mean that the model itself is valid unless runoff predictions can also be 

considered accurate. In the present study, NS runoff predictions were lower than 

measured values but still acceptable, providing a further indication of the validity of the 

model structure.  

In general terms, the present application of the MMF model, with its different 

approaches, has allowed the identification of different hydrologic responses from the two 

studied land uses. In the case of the runoff predictions, this was mainly due to 

differences in the soil field capacity (MS parameter), the lower MS value for the eucalypt 

site leading to lower infiltration capacity, higher sensitivity to changes in SWR and, 

consequently, higher runoff rates than in the pine site. It should be noted that MS was 

estimated from in situ soil moisture measurements, and therefore might have been 

affected by measurement difficulties. Another important factor that allowed distinction 

between land uses and treatments was the EHD variation according to ground cover in 

the SM and SM-SWR approaches, allowing a higher saturation capacity in the plots with 

higher ground cover, where runoff rates were reduced. Despite their dependence on 

runoff amounts, the greater ground cover at the pine than at the eucalypt site led to lower 

predicted erosion rate predictions; this difference can be attributed to the thicker litter 

layer in the pine site, in agreement with the results and data from validation study site 

taken from Shakesby et al. (1996). The ability of MMF to distinguish erosion rates in 

different land use and fire conditions was noted by Fernández et al. (2010a), for a fire of 

moderate severity in a Pinus pinaster stand and one of high severity in Ulex europaeus 

shrubland.  

For the post-fire rehabilitation treatments modelled with the MMF, Fernández et 

al. (2010a) found erosion predictions of low accuracy and the runoff outputs were not 

evaluated. In the present study, the accuracy of predictions for all modelling approaches, 

although more efficient, was also limited for two main reasons. First, the number of 

evaluated treated/control plots was comparatively small, and, second, there were 

limitations as regards the soil moisture and SWR data available for model calibrations. In 

particular, SWR data were only collected for untreated plots, and it is reasonable to 

assume that treatments might have led to lower repellency values (Prats et al., 2012). A 

better estimate of the impacts of post-fire rehabilitation treatments on repellency would 
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be necessary to improve MMF runoff predictions for the treated plots; quite possibly, this 

would also improve runoff results from other models used for predicting the impact of 

rehabilitation treatments. 

 

Sources of error 

 

Prediction errors can usually be attributed to errors in the model, the input data, 

and the data used for validation (Nearing et al., 1999). In this study, one important 

source of error might stem from the revised MMF model being an empirical one 

developed from hillslope-scale data and validated by the developers using mostly 

smaller-scale erosion plot data derived from agricultural fields (Morgan et al., 1984; 

Morgan, 2001). The relationships between the hydrologic response at plot- and hillslope- 

or even catchment-scales are not well known. Typically, small-scale measurements are 

often compared, even though there is an approximately inverse relationship between 

erosion amounts and the scale of measurement (Shakesby and Doerr, 2006) and 

therefore the model is probably overestimating hillslope-scale erosion in post-fire 

situations. The empirical equations of MMF might, therefore, not be expected to 

represent sufficiently well key processes in burned areas. However, the objective of this 

work was to test, adapt and validate the MMF model with appropriate modifications for 

burned areas. The accurate predictions achieved with the model at both the calibration 

and, more importantly, the validation site, together with successful application of the 

model to other burned sites (Vieira et al., 2010; Fernández et al., 2010a) indicate that the 

model structure is valid for these situations and also provide a robust calibration for 

burned areas.  

Two additional sources of errors were analysed: measurement limitations, related 

to values that were obtained in the site and used as model inputs or for calibration and 

validation; and modelling errors, related to difficulties in estimating inputs and model 

modifications. 

 

Measurement errors  

 

Uncertainties in rainfall, surface cover, and sediment yields are the most 

important potential sources of measurement errors (Pietraszek, 2006; Larsen and 

MacDonald, 2007). A good agreement was found between the automatic tipping-bucket 

rainfall gauges installed at the calibration site, and the seven standard rainfall gauges 

and rainfall data from the nearest long-term climate station (Castelo Burgães; SNIRH, 
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2012). The rainfall figures can, therefore, be regarded as accurate, with negligible 

differences between eucalypt and pine. The same is true of the accuracy of ground cover 

measurements, because they were always carried out frequently by the same observer, 

thereby reducing possible errors.  

As regards sediment losses, weekly monitoring, together with the high capacity of 

runoff collection tanks, provided an overview of the hydrological response of each plot. 

The collected runoff in the tanks was also cross-checked with the tipping-bucket 

measurements in order to minimise the possibility of runoff losses not accounted for. 

Given that both suspended sediments collected in the runoff tanks and the trapped 

coarse material were measured, it seems reasonable to suggest that the erosion 

measurements were accurate, within the limitations of a plot-based set-up (e.g. Boix-

Fayos et al., 2006).  

Since the repellency measurements were conducted on an untreated transects 

parallel to the plots, their representativeness might be less for the control than for the 

treated plots. Because repellency measurement involves soil disturbance, 

measurements were made outside the plots. In an attempt to control for the known high 

spatial variability in this phenomenon (Leighton-Boyce, 2002), a large number of 

individual measurements were conducted (1179 measurements), at several depths and 

at five equidistant points down the slope to improve the representativeness of the results. 

 

Modelling errors  

 

As discussed above, the revised MMF model might still need to be adapted to 

specific conditions for each burned area, especially for primary effects such as fire-

induced changes in the soil and surface cover. The inclusion of these changes in the 

model inputs led to some limitations, which might have been only partially solved by the 

calibration applied in this study. 

One source of error is the effective hydrological depth of soil (EHD). In this study, 

guide values from Morgan (2001) were used, but they might not be very representative 

of the study sites where soils are very thin, especially for the applied treatments. The 

variation in EHD with ground cover for the SM and SM-SWR approaches seems, 

however, to have partially addressed this issue. 

For the actual and potential evapotranspiration (Et and E0) estimates during the 

study period, uncertainties in evapotranspiration behaviour in a burned site were 

circumvented by using measured soil moisture data from the study sites to drive the soil 

water balance calculations. The calculation of Et using measured data could include a 
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mixture of observation and parameterization, but we believe that this was not important 

since water balance calculations without measured soil moisture led to an estimation of 

similar seasonal Et patterns. In fact, the seasonal patterns of the Et/E0 ratio estimated in 

the calibration site could be representative, in an approximate way, of what happens in 

other burned areas during a typical year, as indicated by the acceptable MMF model 

performance for the validation site using Et/E0 patterns calculated for the calibration site.  

The C factor estimation methodology used in this work, based on RUSLE 

(Renard et al., 1997), takes into consideration disturbed soils; however, it is not possible 

to assess how burning affects each of the subfactors used in the RUSLE methodology, 

or the validity of the relationships used to calculate the C factor (González-Bonorino and 

Osterkamp, 2004). These problems arise because most studies of post-fire sediment 

yields do not incorporate detailed measurements of C subfactors overtime (Larsen and 

MacDonald, 2007),even though there are many studies that have tested the RUSLE 

model. 

Another concern is that the MMF model estimates erosion from whichever is the 

lower of estimated soil detachment and transport capacity. The sites in this study, and 

others, have a much reduced canopy cover because of the fire; the resulting high values 

of kinetic energy in rainfall lead to high estimates of detachment. Consequently, all 

erosion quantities were dictated by the simulated transport capacity. Since the K and 

COH factors are used in soil particle detachment determination and not in the transport 

capacity calculations (Meyer and Wischmeier, 1969; Morgan, 2005), it is impossible to 

include fire-induced soil changes over time (such as texture, soil organic matter, 

permeability class and soil structure) in the erosion predictions.  

There is also the problem of changes after the initial impact of the wildfire on the 

soil and ground surface, such as vegetation recovery, repellency patterns, litter cover 

changes (natural or applied) and soil moisture changes. Owing to the lumped nature of 

MMF (Figure 24), these changes could not be translated into a single input value. In 

addition, the inverse relationship between soil moisture and SWR is not reproduced by 

the C factor formulation (Larsen and MacDonald, 2007). The seasonal modelling 

approaches adopted in the present study provide a possible way of avoiding this 

problem: in these approaches, the C factor is calculated to represent the initial soil 

conditions taking into account fire severity, while the litter cover changes are represented 

in the GC and P factors, and the SWR-soil moisture relationship are represented in the 

MS factor. This conflicts with Larsen and MacDonald’s (2007) proposal to include the K 

factor in the soil water repellency-soil moisture relationship in RUSLE, arguing that it is a 

soil-related issue. However, this approach was not considered in the present study since 
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(as stated above) the K factor is not relevant to the final erosion results of the MMF 

model.  

Although adding the SWR effect in the MS input was considered the best option 

for the revised MMF model when applied to burned areas, some assumptions might 

have associated errors. Error propagation occurred by assuming that the SWR was the 

same for the treated as for the control plots, but it was not measured. In the control plots, 

SWR variations might have been more pronounced than in the treated plots as a result 

of higher soil moisture variations and therefore more SWR variability than in the treated 

plots, where the applied mulch maintained moist conditions for longer.  

The presence of both ash at the soil surface and stones in large concentrations at 

the surface and within soils in burned forested areas of the Iberian Peninsula have been 

highlighted by different researchers (e.g. Cerdà and Doerr, 2008; Esteves et al., 2012). 

The effect of the former was not considered very important in the present study since 

most of it was removed during early storms during the pre-treatment period. The stone 

content influence could not be included because it was not contemplated in the model 

formulations, and also the impact of stones in the post-fire response is not fully known. 

Several authors have referred to elevated stone content reducing erosion by promoting 

structural stability thereby forming a protective surface stone lag (Shakesby, 2011), and 

also reducing the effect of soil water repellency by providing preferential flow routes 

through the soil (Urbanek and Shakesby, 2009). Thus both this factor and ash 

(particularly where it reaches considerable thicknesses) need to be considered in future 

model development as regards their different effects on infiltration and on sediment 

availability.  

Finally, the adjustment of the land use dataset for the MS input into three groups 

(ET, ET and PT&C), carried out because of measurement limitations, led to the 

prediction of runoff rates which varied little for plots within each of these groups. Even 

though the plot-specific dataset contributed to erosion predictions, it was not possible for 

the model to explain the hydrological variability between individual plots belonging to 

each of these groups.  

This problem with predicting variability between plots highlights a more general 

limitation in runoff and erosion modelling. Models intended for application to unmonitored 

slopes must use site-averaged parameters that can be estimated in more general terms, 

but which might not capture the smaller-scale variations in plot conditions and key 

processes such as infiltration (Beven, 2000). 
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The revised Morgan–Morgan–Finney model as a management tool 

 

The main objective of this study has been to evaluate the revised MMF model as 

a management tool for burned areas, in order to predict not only areas with higher 

erosion risk but also the efficiency of post-fire rehabilitation treatments. Despite the 

advances made in recent years in developing physically-based models, a simple 

empirical model is often more successful at predicting soil erosion and usually easier to 

use (De Roo, 1996). In simple models, the data input is not so demanding and therefore 

easier to obtain; in the case of MMF, De Roo presented some input ranges for cases 

where site determinations could not be made. However, most of these inputs were not 

calibrated for burned areas, and (as the present study has shown) some modifications 

have to be made. 

In particular, the present study indicates that the most likely constraint to the 

MMF, when applied to an unmonitored site, is that of SWR; first, because there is still a 

lack of knowledge associated with its occurrence, pattern and time of residence and 

erosional impact in a burned area (Shakesby et al., 2000; Shakesby, 2011); and, 

second, because the calibration presented here is specific to the present dataset and to 

the SWR methodology used, which does not necessarily mean it will be suitable 

elsewhere. However, after model calibration and application to the study sites, it was 

possible to derive accurate estimates of erosion similar to those obtained at the 

calibration plots, and therefore to consider the model as being robustly calibrated for this 

parameter. Limitations in repellency data were circumvented, for the validation site, by 

linking repellency to soil moisture, and therefore to seasonal rainfall (see Keizer et al., 

2008a, for an example of annual repellency patterns in a similar burned area). However, 

and as noted before, there are possible impacts of treatment on repellency, which have 

not been studied in detail. 

For the rehabilitation treatment predictions, the model performed accurately for 

the pine and eucalypt stands, but it still needs to be evaluated for other types of cover. 

Also, the model responded well to the simulation of the treatments with their different 

mulching application rates and therefore ground cover percentages. It was also able to 

simulate post-treatment losses of mulch by overland flow and the removal of pine 

needles. This good response means that the revised model is capable of providing an 

accurate indication of the amount of treatment required to protect a given soil, and 

therefore a means of determining the cost-effectiveness of any treatment. Opening with 

this, a new research opportunity under the subject of modelling post-fire management 

practices, either by mulch application (Fernández et al., 2010a,b; Prats et al., 2012, 
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2013) or other common techniques such as logging or clearcutting (Fernández et al., 

2004, 2007). 

 

Conclusions 

 

The main conclusions of this application of the revised MMF model to post-

wildfire treatments in pine and eucalypt forests in maritime north central Portugal, 

following wildfire and forest residue mulching are as follows. 

(1) The revised MMF model was able to predict plot-scale runoff and erosion 

rates of the year following the wildfire with acceptable accuracy (NS> 0.5) in both forest 

land uses. 

(2) The runoff and erosion predictions were improved by addressing seasonal 

changes in model parameters (NS > 0.7), and by incorporating soil water repellency into 

the runoff predictions (NS > 0.8). 

(3) For the eucalypt plots, individual seasonal predictions for all the plots were 

less accurate than the full period ones, but were still satisfactory (NS> 0.6), with more 

efficient runoff and erosion predictions for the eucalypt control plots than for treated 

plots. 

(4) For the pine site, seasonal predictions of runoff and erosion were poor, but it 

was impossible to adjust the model due to the small number of plots, data limitations, a 

marked variability in the hydrological and erosion response between plots, and the small 

amounts of erosion recorded. 

(5) It has been shown that the revised MMF model can easily provide a set of 

simple criteria for management decisions for runoff and erosion in burned areas. The 

successful predictions of runoff and erosion at the validation site attest to its applicability 

to other eucalypt and pine sites in Portugal, and suggest that it may well have wider 

applicability to post-fire conditions for other vegetation types elsewhere in the 

Mediterranean. 

(6) The modifications made to the MMF model have improved its capacity to 

determine the efficiency of soil rehabilitation treatments in preventing post-wildfire runoff 

and erosion, but the approach still requires improvement. 
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The effects of two different soil rehabilitation treatments on runoff, infiltration, 

erosion and species diversity were evaluated in a shrubland area in Galicia (NW Spain) 

after an experimental fire by means of rainfall simulations. The treatments compared 

were: seeding, seeding + mulching and control (untreated). Rainfall simulations were 

conducted 9 months after fire and the application of soil rehabilitation treatments. A 

rainfall rate of 67 mm h−1 was applied for 30 min to each runoff plot. Seeding significantly 

increased plant species richness in the treated plots relative to the control plots, although 

it had no effect on diversity or evenness. Rehabilitation treatments did not significantly 

increase soil cover or affect runoff and infiltration. Soil losses were low in all cases, 

varying from 75·6 kg ha−1 in the seeded + mulched plots to 212·1 kg ha−1 in the 

untreated plots. However, there were no significant differences in sediment yields 

between treatments. The percentage of bare soil appeared to be a critical variable in 

controlling runoff and erosion.  
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Seeding and mulching+seeding effects on post-fire runoff, soil erosion and 
species diversity in Galicia (NW Spain) 
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Forest fires can greatly increase runoff and surface erosion rates. Post-fire soil 

erosion control measures are intended to minimize this response and facilitate 

ecosystem recovery. In a few recent cases, hydromulch has been applied, and this 

consists of a mixture of organic fibers, water and seeds. The objectives of this research 

were to (i) analyze the effectiveness of hydromulch in reducing post-fire runoff and 

sediment production and (ii) determine the underlying processes and mechanisms that 

control post-fire runoff and erosion. After a wildfire occurred in August 2008, 14 plots 

ranging in size from 0·25 to 10 m2 were installed on a 25 degree slope in a burnt pine 

plantation that had also been subjected to salvage logging. Half of the plots were 

randomly selected and treated with hydromulch. One of two slope strips adjacent to the 

plots was also hydromulched and used for monitoring some soil properties. 

Measurements made in each of the first 3 years following the wildfire included (i) the 

plot-scale runoff volumes and sediment yields; (ii) soil shear strength, soil moisture, and 

soil water repellency; and (iii) surface cover. The hydromulch reduced overland flow 

volume by 70% and soil erosion by 83%. The decrease in runoff was attributed to the 

increase in soil water retention capacity and the decrease in soil water repellency, 

whereas the reduction in soil erosion was initially attributed to the protective cover 

provided by the hydromulch and lately to an enhanced vegetative regrowth in the third 

year after burning.   
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V.I From pre-fire to post fire 

One of the most noticeable changes brought by wildfires is the dramatic reduction 

of vegetation. This absence of protective cover after fire has been used as one of the 

main justifications for enhanced post-fire hydrologic and erosive behaviour (Neary et al., 

1999; Shakesby and Doerr, 2006; Pausas et al., 2008; Shakesby, 2011). The degree of 

change from pre to post fire conditions is frequently related with burn severity, and its 

metric is usually based on the loss or decomposition of organic matter, both 

aboveground and belowground (Keeley, 2009). 

Burn severity classification methodologies worldwide show some inconsistencies 

between authors. These burn severities classifications were associated with a significant 

increase in erosion rates from low to moderate and to high burn severity (Figure 31, 

Vieira et al, 2015). These results are even more surprising, considering the additional 

variability found within reviewed studies regarding types of fires, environments or rainfall 

simulations methodological procedures. Thus, burn severity can be considered as one of 

the most important factors influencing post-fire erosive response, and could also be the 

most reliable and robust predictor of erosion risk.  

This review study (Vieira et al., 2015) further indicated that this fire effect is more 

clearly pronounced for erosion response than for hydrological response. It also showed a 

tendency towards a smaller increase in runoff generation following burning at high 

severity than at low or moderate severity. This tendency could be explained by the role 

of soil water repellency in post-fire overland flow generation (e.g. Crockford et al., 1991; 

Burch et al., 1989; Shakesby et al., 1993; Doerr et al., 1998; Scott, 2000), in combination 

with the non-linear relationship of soil water repellency formation with soil heating (e.g. 

DeBano, 2000; Doerr and Moody, 2004; Varela et al., 2005). However, this possible role 

of soil water repellency could not be analysed within this review database, since most of 

the studies did not present data regarding SWR or just initial soil moisture content. 

Nevertheless, this highlighted a possible research gap, i.e. the need to clarify the link 

between SWR, burn severity and overland flow generation needs to be clarified. 

Furthermore, Chapter II.I (Vieira et al., 2015) highlighted the absence of several auxiliary 

variables of potential interest, among the reviewed studies regarding post-fire rainfall 

simulation experiments (Table 3). The absence of information regarding burn severity 

and plots/experiments, restricted the statistical meta-analysis greatly, and should be a 

concern for the future post-fire research studies. 

The impacts of fires in the studied ecosystems are known to last several years, 

depending on various factors, such as vegetation recovery, post-fire climate conditions, 

sediment availability, and basin morphology (Rowe et al., 1954; Cerdà, 1998; Moody and 
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Martin, 2001; Gartner et al., 2004; Shakesby et al., 2007; Sheridan et al., 2007; Cannon 

et al., 2010, Moody et al., 2013). In this sense, some authors recently referred that the 

window of disturbance model (Swanson, 1981; Prosser and Williams, 1998, Shakesby 

and Doerr, 2006), might vary from the original form. That is the case, of MacDonald and 

Larsen (2009), mentioning that sediment yield peak and recovery period varies 

according to different burn severity conditions, and Wittenberg and Inbar (2009), that 

projected an enlargement of the ‘classical’ window of disturbance with fire recurrence 

(Figure 31).  

 

 

Figure 31 – Post-wildfire soil erosion patterns associated to (a) single wildfire event, (b) after 

multiple fire events, leading to an increase of the window of disturbance and return to higher background 

levels, (c) after different burn severities, with the increase of burn severity higher erosion and higher recovery 

periods are achieved, and (d) wildfire followed by management practices. Note: x: undefined addition of time 

or sediment yields from the disturbance in comparison to a single wildfire; L: low burn severity, M: moderate 

burn severity and H: high burn severity. 
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Due to the reduced number of observations, the compiled RSE’s database (Vieira 

et al, 2015), didn’t allow a separated meta-analysis with time-since-fire factor for each 

individual severity class. In the future, this analysis is expected to be done, determining 

this way how much the window of disturbance change with burn severity. That could only 

be possible if the number of the database observations increase, with likely data 

inclusion from future post-fire RSE’s studies. In the case of the Wittenberg and Inbar 

(2009) model, more studies are required to validate such enlargement of recovery 

period. Nevertheless unveils a research gap regarding the role of pre-fire disturbances 

as a contribution for post-fire response. 

Chapter II.II, emphasized the possibility of pre-fire disturbances, such as the ones 

involving a deep soil mobilization together with a previous wildfire, being a major 

influence in post-fire hydrological and erosive behaviour. Although the burn severity in 

the studied locations was very similar, the type of management and the time since they 

were implemented might help to understand their differences. This influence could be 

seen by the higher hydrological and erosive response at the most recently plowed site 

(eucalypt contour-plowed), in comparison to another deeply plowed 18 year before 

(eucalypt downslope plowed), and even higher when compared to the unplowed one 

(eucalypt unplowed). However, this doesn’t explain why annual post-fire hydrological and 

erosive response during the 4 monitored years, didn’t show any clear decline with time 

since fire. Instead, the observed pattern generally followed the rainfall pattern. Moreover, 

in the case of runoff coefficients an increase from the first to the 4th year of the study was 

visible, accompanied by a general decrease of sediment concentration in runoff. This 

unexpected response was accompanied with a low, and in some sites almost inexistent, 

vegetation recovery. After 4 years no more that 40% of ground level vegetation grew, 

whereas the shallow soils were still protected by a very representative stone and litter 

cover. 

Chapter II.II also highlighted how past and recent forest management practices 

led to an escalated degradational effect over forest soils in this location. Very often, post-

fire related studies all over the Mediterranean basin are also associated to impacting 

forestry practices (Shakesby et al., 1996, Martins et al., 2013; Malvar et al., 2015), land 

abandonment (Llovet, 2005; Pausas et al., 2008) and fire recurrence (Wittenberg and 

Inbar, 2009). The long human exploitation of the Mediterranean soils for cultivation has 

been the distinctive justification of many authors of post-fire studies when characterizing 

these soils as highly degraded and with low erosion rates, in comparison to other post-

fire erosion rates elsewhere (Shakesby and Doerr, 2006, Shakesby, 2011) or other forms 

of disturbances (García-Ruiz et al., 2015). These soils have been also described as 

stony and shallow (also called as skeletal soils), and although sediment losses are low, 
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they are still very important due to the removal thin and vulnerable near surface organic 

matter and nutrients. Moreover, the soil small depth leads to reduced water retention, 

promoting runoff and erosion of any sediment and organic matter, thus tending to 

maintain the degraded state of the soil (Wainwright, 2009).  

Looking into the studied sites in chapter II.II, only contour-plowed eucalypt (ECP) 

presented erosion rates above the tolerable soil losses limits (Verheijen et al., 2009), 

during the second and the third year after wildfire. This site was also the location that 

was most recently subjected to soil mobilization (6 -12 years ago) for cultivation 

purposes, but at the same time is also the only location where the applied management 

practice is considered less damaging for soil losses when compared to downslope 

plowing (Morgan, 2005). Nevertheless, during the monitoring period it also showed 

several signs of elevated degradation, such as an increase of stone cover until 80% and 

no ground vegetation recovery whatsoever. The other sites, however, revealed lesser 

erosion rates, but still with evidences of elevated degradation, such as reduced soil 

depth (7 cm) in the unplowed pine site (PU), absence of significant vegetation recovery 

after 4 years of study (8%) in the unplowed eucalypt site (EU) and the elevated presence 

of erosion features among the downslope ridges and furrows as a consequence of a 

deep plowing from 18 years before in the eucalypt downslope plowing (EDP) site.  

Thus, the knowledge of past disturbances seems to be important to understand 

the future response of that same location, even after such an impacting event as a 

wildfire. These factors have been poorly explored among post-fire studies, whereas the 

wildfire usually takes credit for all the enhanced hydrologic and erosive response. 

Alternatively, as mentioned before, the inclusion of control plots in the experimental 

design would allow to identify the effect of the wildfire alone. 

Analysing the overall erosive response between all the datasets concerning 

natural rainfall used in this research study, it is possible to verify similar increase in 

erosion rates with burn severity (Figure 32) as the one from Vieira et al. (2015). It was 

also verified that moderate burn severity at pine sites, showed a generally lower erosive 

response in comparison to the eucalypt sites at the same severity. This can be justified 

with the appearance of the post-fire pine needle cast in all pine sites, without exception 

(Shakesby et al., 1996; Fernández et al., 2007, Fernández et al., 2011; Prats et al., 

2012, chapter II.II), providing efficient mulch over the recently burned area.  

Between various unplowed eucalypt sites, subjected to the same burn severity, is 

possible to observe some variability regarding the erosion response. In this case, past 

disturbances such as plowing operations, or fire recurrence, could clarify this variability.  
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Note: 
i) land uses: pine, eucalypt, shrubs; 
ii) burn severity:low, moderate, high; 
iii) locations: Verín (VE), Pessegueiro do Vouga(PE), Colmeal (CO), Lourizela (LO), Falgueirinho (FA), Soutelo (SO). 

Figure 32 – Overall erosion rates comparison among used datasets, (a) at several land uses, burn severities and locations; (b) zoomed and separated by land use; 

during the first year after the wildfire.  
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Comparison between different land uses subjected to low, moderate and high 

burn severity, under natural rainfall could highlight how burn severity methodologies 

require adaptations to different land use or land cover. A quantitative methodology for 

burn severity impact determination, and their relationship with erosion rates is required 

within post-fire research. This could work integrated within an existing model application, 

or just built as an individual burn severity model. 
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V.II From field measurements to model 

improvements 

One of the main difficulty regarding model improvements for post-fire conditions 

is to translate fire induced changes into different model inputs. Usually model calibration 

with a burned area dataset might overcome the limitations associated to site variability or 

even with burn severity characteristics. However, few post-fire models have been 

developed exclusively for this purpose, and the others (like the ones used in this study) 

are mostly hydrological models initially projected for agricultural areas adapted to forest 

and burned situations. Therefore they require an investment in model adaptation by the 

alteration or addition of new parameters that were not contemplated before, besides the 

usual model calibration. 

The first attempt performed by these authors to estimate post fire erosion rates 

within two distinct burn severities, was made with two distinct empirical models RUSLE 

and revised MMF (Fernández et al., 2010). Burn severity was not included in each model 

directly as an input, instead, during model evaluation was verified if they were able to 

capture such difference by themselves. Burn severity differences were captured 

indirectly from variances in important factors, as ground cover (GC, %), canopy cover 

(CC) and hydrological soil depth (EHD, m) (Fernández et al., 2010). 

Soil alterations due to fire could be easily contemplated in the RUSLE model, but 

not in the case of the revised MMF. Many authors proposed that these changes should 

be considered in the K factor, where the soil erodibility would increase with burn severity 

(Larsen and MacDonald, 2007). However, many soil characteristics cannot be 

considered for post-fire conditions in the revised MMF, or every time the ground cover is 

extremely reduced. As a consequence, the revised MMF model considers that sediment 

losses are transport limited, since the equations for sediment detachment by rainfall 

would easily overestimate sediment losses in such bare ground situation (Vieira et al., 

2014). Nevertheless, the revised MMF was considered to be the most flexible model for 

post-fire response. Firstly due to its capacity of estimating runoff and erosion rates even 

not considering post-fire soil changes, while RUSLE is only focused over sediment 

losses. Secondly, the revised MMF revealed a higher efficiency in comparison to the 

RUSLE model.  

In this first approach an attempt to model post-fire rehabilitation treatments was 

also performed, but both models revealed a week efficiency results, where RUSLE was 

worse than revised MMF. The causes for that low efficiency were related to the nature of 

those rehabilitation treatments. Two treatments (wheat straw and wood chips) concerned 

two types of mulching, thus could provide an increase of ground cover, and that could be 
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effectively included in both models. While the third treatment (barriers), provided lower 

cover and higher resistance for overland flow generation. That became very difficult to 

model, since runoff couldn’t be estimated with RUSLE model and the dataset didn’t 

contemplate runoff data for calibration. 

The follow-up study of that first attempt concerned only one model and was 

focused over land use differences, and less over burn severity differences. The chosen 

model was the revised MMF, due to the high efficiency previously obtained (Fernández 

et al., 2010), and also because it was possible to calibrate the model for runoff and 

erosion response. In Vieira et al (2014) several conceptual model configurations were 

explored, whereas changes in the model such as time step changes and inclusion of soil 

water repellency into the model were implemented. The separation of the original annual 

modelling into seasonal modelling was performed in order to accommodate seasonal 

patterns in runoff and erosion as had been measured in the field. The incorporation of 

SWR in overland flow generation hasn’t been (as far as we know) explicitly incorporated 

in any modelling of post-fire runoff and erosion. 

 In the end, the revised MMF model improved from the original annual basis (FP) 

to the seasonal approach (SM), and from that also improved to the seasonal approach 

with SWR (SM-SWR). The obtained model efficiencies were consistent with those 

previously observed in burned areas in Portugal (Vieira et al., 2010), NW of Spain 

(Fernández et al., 2010) and with the results by Larsen and MacDonald (2007) for 

periods of 1–10 years after wildfire. There was a significant improvement from the 

previous version of this model from how was implemented by Fernández et al. (2010) to 

the version of Vieira et al. (2014). In the last version, it was also effectively possible to 

model post-fire rehabilitation treatments. 

 The next step of these model improvements would be, to test and calibrate 

barriers treatments with runoff data, and also to include pre-fire disturbances or a control 

sediment yield response, so that the background levels before the wildfire could be 

represented. Other possible improvement could be related to the response of different 

land use to burn severity, since pine site with low or moderate burn severity, is followed 

by a natural and significant needle cast cover formation. And this info might be crucial for 

a modelling tool with the aim of helping forest management and decision making 

regarding post-fire rehabilitation treatments. 
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VI. General conclusions and future 

perspectives 
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VI.I Conclusions  

This study allowed identifying several factors affecting post-fire runoff and 

erosion. Regarding the burn severity factor it is possible to conclude that fire occurrence 

had a significant effect on the hydrological response, increasing the runoff coefficient in 

comparison to unburnt conditions for each of the burn severity classes. However, runoff 

effect size did not vary significantly between the three soil burn severities. Furthermore, 

post-fire erosion response ratio significantly increased with increasing burn severity. 

Land use is a factor that might be responsible for runoff generation variability, 

whereas pine site constantly produced higher runoff amounts and coefficients than the 

eucalypt one. Erosion rates were also higher in the pine site, however not significantly. 

Different plowing techniques and the since they have been implemented might be 

determinant for both runoff and erosive processes. Plowed sites seem to present a 

higher erosion risk than the unplowed ones. However, this comparison between plowed 

and unplowed site, might be influenced by the highly degraded soil conditions the 

unplowed soils already have been subjected to, the time since plowing and the type of 

technique used.  

Fire recurrence, together with several forest interventions might compromise the 

sustainability of this site. Several indicators of a continuous degradation have been 

observed in this area. And due to that, an increased importance is given to the low 

erosion rates verified in such poor and damaged soils.  

Sediment concentration results highlighted a possible decrease of the erosion 

risk in the area. However, annual runoff and erosion amounts do not seem to be 

attenuated with time since fire, most likely due to the reduced ground vegetation 

recovery. Which, together with the constant elevated stone cover during the monitoring 

period, might indicate: either the period of monitoring didn’t allow observing a similar 

behaviour to the classic window of disturbance model; or this window of disturbance was 

possibly enlarged due to past disturbances in this specific place. 

Modelling studies allowed to compare post-fire soil losses predicted by the 

RUSLE and Morgan–Finney model in two burned areas with different levels of fire 

severity in NW Spain. An acceptable efficiency index was only obtained with the MMF 

model although it slightly underestimates post-fire soil losses. 

Despite their limitations, both models were able to clearly distinguish situations of 

high and low post-fire erosion risk. This shows the applicability of both models to be used 

as operational tools in terms of prioritizing management areas. However revised MMF 

shown a greater potential for post-fire runoff and erosion predictions. 
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Revised MMF model was able to predict plot-scale runoff and erosion rates of the 

year following the wildfire with acceptable accuracy in two forest land uses. And these 

estimations were improved by addressing seasonal changes and by incorporating soil 

water repellency into the runoff predictions. 

It has been shown that the revised MMF model can easily provide a set of simple 

criteria for management decisions for runoff and erosion in burned areas. The successful 

predictions of runoff and erosion at the validation site attest to its applicability to other 

eucalypt and pine sites in Portugal, and suggest that it may well have wider applicability 

to post-fire conditions for other vegetation types elsewhere in the Mediterranean. 

No accurate prediction of soil erosion after soil rehabilitation was achieved with 

the tested models at first attempt. However, after model modifications to the revised 

MMF in the second study, its capacity to determine the efficiency of ‘mulch type’ soil 

rehabilitation treatments in preventing post-wildfire runoff and erosion was improved. 
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VI.II Future studies and perspectives 

The elaboration of this research work highlighted several research gaps that 

deserve further investigation. That is the case of the burn severity, and its relationship 

with overland flow generation and SWR occurrence. Additionally, it would be important to 

know how much impact burn severity has in the ‘window of disturbance’ model regarding 

sediment yield variation and required post-fire recovery period. It would be also 

interesting, to test the possibility to determine burn severity quantitatively either by 

developing a model for that or just by the integrating it in a post-wildfire erosion model. 

Other research subjects should be investigated, such as site history or pre-fire 

disturbances and how can they affect post-fire studies. Moreover, how do these common 

plowing techniques and management practices affect the Mediterranean basin in the 

long term?  

In the post-fire modelling framework, the improvement of a tool for forest 

managers regarding erosion risk and to help in the decision making of post-fire 

rehabilitation measures, applicable for Portugal or elsewhere in the Mediterranean basin 

it’s still necessary. 

The potential of the data collected within this study, can still reach additional 

research gaps, especially regarding modelling post-fire runoff and erosive response. The 

integrated fieldwork installation in the Colmeal study area, can reach other scales 

besides the presented one (micro plot) and be upscalled until the catchment. This would 

allow understanding and integrating in models, processes transitions and contributions 

through the scale increase.  

Another fact is that this small-catchment field installation that lasted for 4 years 

could provide calibration inputs for further event modelling within bigger basins just by 

being an intermediate size between slope and catchment scale (Figure 33). Furthermore, 

this is one of the few post-fire Mediterranean catchments being monitored for so long. 

The inclusion of burn severity in post-fire erosion models is already halfway done, 

by the fact that models already have the potential to distinguish erosion rates for areas 

subjected to different burn severities (e.g. Fernández et al., 2010). The quantification of 

such qualitative metrics would allow distinguishing two areas with the same burn severity 

that presents distinct responses. That would be the case for different land uses as 

already seen before, whereas pine sites seem to produce less erosion than eucalypt 

sites from low to moderate severity, due to the formation of a needle cast. This would 

also allow to determine a clearer boundary between burn severity classifications, 

whereas moderate burn severity seemed to be very difficult to classify, since it’s possible 

to find indicators for high, moderate and low burn severity in the same area. 
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Regarding the modelling, the determination of the impact of stone cover or stone 

content in the infiltration process could be important for modelling development in the 

Mediterranean Basin. Its presence is very representative in these highly degraded soils, 

and might have a role attenuating the effect of SRW. Model improvement in the 

rehabilitation treatment with barriers, would be an interesting contribution, in the sense 

that it’s commonly applied after the wildfires, using the vegetation leftovers or from the 

surrounding areas. The output of the model would help the managers deciding if those 

treatments were sufficient to reduce the impact or extra mitigation measures were still 

required. 
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Figure 33 - Temporal and spatial scale for each thesis publication/chapter together with potential future publications. 
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