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Chapter

Advanced Monitoring of Wind
Turbine
Steve Alan Talla Ouambo, Alexandre Teplaira Boum

and Adolphe Moukengue Imano

Abstract

This chapter presents a general framework for the doubly fed induction genera-
tor (DFIG). We apply and analyze the behavior of three estimation techniques,
which are the unscented Kalman filter (UKF), the high gain observer (HGO) and
the moving horizon estimation (MHE). These estimations are used for parameters
estimation of the doubly fed induction generator (DFIG) driven by wind turbine.
A comparison of those techniques has been made under different aspects notably,
computation time and estimation accuracy in two modes of operation of the DFIG,
the healthy mode and the faulty mode. The performance of the MHE has been
clearly superior to other estimators during our experiments. These estimation tools
can be used for monitoring purposes.

Keywords: doubly-fed induction generator, high gain observer, unscented Kalman
filter, moving horizon estimation, parameters estimation, monitoring

1. Introduction

Nowadays most of generated electricity comes from nonrenewable sources of
fuel. These products transfer to the atmosphere important quantities of CO2, and
inescapably leading to the warming up of the atmosphere [1]. The production of the
wind energy spreads through the world, and significantly, it imposed itself during
the past decade [2]. Doubly-fed induction generators (DFIGs) are actually the most
used wind power generators in many countries [3].

Therefore, many contributions have been made to the inverters and converters
usually in DFIG used in the power electronics domain [4]. A doubly fed induction
generator model for transient stability analysis has been proposed in [5], in which
authors focused their study on the control loops of instantaneous response. In [6],
authors have been proposed some robust observers to estimate states and actuator
faults for different class of linear and nonlinear systems at the same instant. Though
systems are becoming more and more complex, DFIG can be subject by many types
of faults [7], diagnosis and faults estimation issues have become primordial to
ensure a good supervision of systems and guarantee the safety of materials and
operators (humans) [8].

A survey based on current sensor fault detection and isolation and control
reconfiguration current for doubly fed induction generator has been proposed by
[9]. Studies led by [10], have contributed to an adaptive parameter estimation
algorithm used for estimating the rotor resistance of the DFIG, however, the others
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parameters were assumed to be constant. To improve the extended Kalman filter
(EKF), a new nonlinear filtering algorithm named the unscented Kalman filter
(UKF) has been developed in [11]. Widely used in some fields, UKF has been found
in several studies such as training of neural networks [12], multi-sensor fusion for
instance.

This chapter investigates the usage of the unscented Kalman filter UKF, high
gain observer (HGO) and the moving horizon estimator (MHE) to estimate the
dynamic states and electrical parameters of the wind turbine system. These esti-
mates can be used to enhance the performance of doubly fed induction generator in
power systems, for rotor and stator resistances faults in the circumstances where
internal states will be involved in a control design [3] and the acquisition of internal
states, which are relatively difficult to get can realized from the dynamic state
estimation and for monitoring purposes. The chapter is organized as follows: in
Section 2, the mathematical model for DFIG is presented, followed by the descrip-
tion of estimation algorithms in Section 3. The results of the parameter estimation
tests are presented in Section 4. Finally Section 5 gives the conclusions.

2. Mathematical model for DFIG

In this section, we deal with the mathematical modeling of the DFIG-based wind
energy system, we will only describe the wind turbine (also called drive train), and
the asynchronous generator (also called induction generator) because this chapter
focuses on estimating of the parameters and dynamic states of the DFIG Figure 1.
Two frames of reference are used in this model: stator voltage (d-q) reference frame
and mutual flux (d-q) reference frame. In Tables 1 and 2, all parameters and
constants are given.

2.1 Modeling of the wind turbine

From the wind, the power extracted can give the mechanical torque. The energy
from the wind is extracted from the wind turbine and converted into mechanical
power [14]. The wind turbine model is based on the output power characteristics, as
Eqs. (1) and (2), [15].

Figure 1.
Configuration of DFIG-based wind turbine system [13].
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Pm ¼ Cp λ; βð Þ 1
2
ρAν3w ¼ Cp λ; βð ÞEw (1)

λTS ¼
Rωt

νw
(2)

where the aerodynamic extracted power is Pm, which depends on CP, the
efficiency coefficient,the air density ρ, the turbine swept area A, and the wind
speed νw. The kinetic energy contained in the wind at a particular wind speed is
given by Ew. The blade radius and angular frequency of rotational turbine are R and
wt, respectively. CP(λ; β) the efficiency coefficient depends on tip speed ratio λTS
and blade pitch angle β, determines the amount of wind kinetic energy that can be
captured by the wind turbine system [13]. CP(λ; β) can be described as:

Cp λ; βð Þ ¼ 0:5
116

λi
� 0:4β � 5

� �

e�21=λi (3)

where

1

λi
¼ 1

λTS þ 0:08β
� 0:035

β3 þ 1
(4)

Parameters Values

Rated active power (Ps)/(MW) 1.5

Rated voltage (line to line) (Vs)/(V) 575

Rated DC-link voltage (Vdc)/(V) 1200

Number of poles 4

Frequency (f)/(Hz) 60

Stator resistance (Rs)/(pu) 0.00707

Rotor resistance (Rr)/(pu) 0.005

Stator leakage inductance (Ls)/(pu) 0.171

Rotor leakage inductance (Lr)/(pu) 0.156

Magnetizing inductance (Lm)/(pu) 2.9

DC-link capacitance (C)/(F) 0.04

Table 1.
Parameters of the DFIG.

Parameters Values

Rated wind speed (vw)/(m s�1) 12

Number of blade 3

Radius of blade (R)/m 35.25

Gearbox gain (G) 91

Moment of inertia (Jeq)/(kg m2) 1000

Viscosity factor (feq)/(N m s rad�1) 0.0024

Table 2.
Parameters of the wind turbine.

3

Advanced Monitoring of Wind Turbine
DOI: http://dx.doi.org/10.5772/intechopen.84840



2.2 Modeling of the asynchronous generator

For the induction generator, the Park model is the model that is commonly used
[16]. After applying the synchronously rotating reference frame transformation to
the stator and rotor fluxes equations of the generator, the following differential
equations describe the dynamics of the rotor and stator fluxes [17]:

_Φdr ¼ wb vdr þ ws � wrð ÞΦqr � Rridr
� �

_Φqr ¼ wb vqr � ws �wrð ÞΦdr � Rriqr
� �

_Φds ¼ wb vds þ wsΦqs � Rsids
� �

_Φqs ¼ wb vqs �wsΦds � Rsiqs
� �

8

>

>

>

>

<

>

>

>

>

:

(5)

where ws = 1 is the synchronous angular speed in the synchronous frame and
wb = 2πf rad/s is the base angular speed, with f = 60 Hz. With additional variables
stator-rotor mutual flux Φdm and Φqm, rotor current idr and iqr and stator current ids
and iqs can be expressed as:

idr ¼
Φdr �Φdm

Llr

iqr ¼
Φqr �Φqm

Llr

8

>

>

<

>

>

:

(6)

ids ¼
Φds �Φdm

Lls

iqs ¼
Φqs �Φqm

Lls

8

>

>

<

>

>

:

(7)

where

Φdm ¼ Lad
Φdr

Llr
þΦds

Lls

� �

Φqm ¼ Laq
Φqr

Llr
þΦqs

Lls

� � (8)

are the stator-rotor mutual flux.
Where constants Lad and Laq are the (d-q) mutual flux factors, expressed as:

Lad ¼ Laq ¼
1

1
Lm

þ 1
Lls
þ 1

Llr

(9)

The relationship between mechanical torque Tm, electrical torque Te and rotor
speed wr can be shown by the following differential equation,

_wr ¼
1

2H
Tm � Te � Fwrð Þ (10)

where constant F is the friction factor and H is the generator inertia, and Te, the
electrical torque which can be expressed as:

Te ¼ Φdsiqs �Φqsids (11)

These equations are derived in [4] and all parameters are defined in per unit
based on the generator ratings and synchronous speed.
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3. Estimation algorithms

3.1 High gain observer

This observer class is applied for nonlinear system classes of the form Eq. (12).
Its applications are so large [18, 19]. We briefly present the developed survey in
[20] that points up the synthesis of observers adapted to the observable nonlinear
systems. Consider the following nonlinear system:

_x ¼ f xð Þ þ g xð Þu
y ¼ h xð Þ

�

(12)

where x∈Rn, u∈Rm, y∈Rs.
First, the system Eq. (12) must be uniformly locally observable, and then it will

be possible to make the variable change z = Γ(x) that will transform the system
Eq. (12) in the following form:

_z ¼ Azþ φ u; zð Þ
y ¼ Cz

�

(13)

The observer must satisfy the following theorem [20]:

i. The function φ is globally Lipschitz uniformly to u.

Let K ¼
K1

⋱

Kp

2

6

4

3

7

5
an adequate size matrix such as, for every Ki block, the

matrix.
Ak � KkCk should give all its eigenvalues with negative real part:
Let’s suppose that there exists two integer sets σ1,⋯,σn ∈Zf g and

δ1 >0;⋯; δp >0∈N ∗
� �

such as:

ii. σμkþv ¼ σμkþv�1 þ δr, k ¼ 1,⋯, p, v ¼ 1,⋯, ηk � 1

iii. ∂φi

∂zj
6¼ 0 ) σi ⩾ σj, i, j ¼ 1,⋯, n, j 6¼ μk, k ¼ 1,…, p

So,

_̂z ¼ Aẑ þ φ ẑ; uð Þ � S�1
θ K Cẑ � yð Þ (14)

is an exponential observer for the system Eq. (13) as well.
And there exists T1 such as, for all T, 0 < T < T1.
With,

S S; δð Þ ¼
Sδ1Δ Sδ

1
	 


⋱

SδpΔ Sδ
p� �

2

6

4

3

7

5

Δθ Sð Þ ¼

1

S

⋱

Sηθ�1

2

6

6

6

4

3

7

7

7

5
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By operating a reverse variable change for coming back to the initial nonlinear
system, the observer for the system Eq. (12) is given by:

_̂x ¼ f x̂ð Þ þ g x̂ð Þu� ∂Γ

∂x̂
x̂ tð Þð Þ

� ��1

S�1
θ h x̂ð Þ � yð Þ (15)

x̂: Estimated value of x.
Γ: An application Rn ! Rn.
With,

Γ ¼ h1;Lfh1;L
2
f h1;…;Lδ1

f h1; h2;Lfh2;L
2
f h2;…;Lδ2

f h2;…; hp;Lfhp;L
2
f hp;…;L

δp

f hp
h iT

And Lδk
f is the Lie δik derivative.

P: Number of outputs.
And Sθ satisfies the following Lyapunov relation:

_S ¼ �θSθ � ATSθ � SθAþ CTC ¼ 0 (16)

In [20], the demonstration is done.

3.2 The unscented Kalman filter

The unscented Kalman filter (UKF) has been essentially designed for the state
estimation problems, and applied in some nonlinear control applications [11]. The
unscented Kalman filter (UKF) compensates for approximation issues of the
extended Kalman filter (EKF). A Gaussian random variable represents the state
distribution, which is specified using a set of sample points chosen very carefully
[12]. The unscented transformation (UT) is a method to estimate or calculate
statistics of a random variable which is subjected to a nonlinear transformation [11].
In stochastic estimation problems, a common assumption usually is used which
underline the fact that the process and measurement noise terms are additive, as in:

xk ¼ f xk�1; uk�1ð Þ þwk�1

yk ¼ h xk; ukð Þ þ vk
(17)

The dimension of the sigma-points is the same as the state vector, that is to say
L = nx. The UKF is recursively executed, starting with the assumed initial conditions
x̂0 and P0. First a set of sigma-points are generated from the prior state estimate
x̂k�1 and covariance Pk � 1 at each discrete-time step, as in:

χk�1 ¼ x̂k�1 x̂k�1 þ
ffiffiffiffiffiffiffiffiffiffiffi

Lþ λ
p ffiffiffiffiffiffiffiffiffi

Pk�1

p

x̂k�1 �
ffiffiffiffiffiffiffiffiffiffiffi

Lþ λ
p ffiffiffiffiffiffiffiffiffi

Pk�1

p

h i

(18)

For the next point, each sigma point is passed through the state prediction
function f that is nonlinear.

χ
ið Þ
k,k�1 ¼ f χ

ið Þ
k�1; uk�1

	 


, i ¼ 0, 1, 2,…, 2L (19)

χk,k�1 means that this is the predicted value of the sigma-point based on the
information from the prior time step. Sigma-points transformed, the post transfor-
mation mean and covariance are computed using weighted averages of the
transformed sigma-points [21],

6
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x̂k,k�1 ¼ ∑
2L

i¼0
ηmi χ

ið Þ
k,k�1 (20)

Pk,k�1 ¼ Qk�1 þ ∑
2L

i¼0
ηci χ

ið Þ
k,k�1 � x̂k,k�1

	 


χ
ið Þ
k,k�1 � x̂k,k�1

	 
T
(21)

where ηm0 ¼ λ= Lþ λð Þ and ηc0 ¼ λ= Lþ λð Þ þ 1� α2 þ β. The measurement noise
is also omitted from the observation function, as for the prediction as in:

ψ
ið Þ
k,k�1 ¼ h χ

ið Þ
k,k�1; uk

	 


(22)

where is a matrix of output sigma-points. Output sigma-points are used to calcu-
late output covariance matrix, the predicted output and cross-covariance by using:

ŷk,k�1 ¼ ∑
2L

i¼0
ηmi ψ

ið Þ
k,k�1

P
yy
k ¼ Rk þ ∑

2L

i¼0
ηci ψ

ið Þ
k,k�1 � ŷk,k�1

	 


ψ
ið Þ
k,k�1 � ŷk,k�1

	 
T

P
xy
k ¼ ∑

2L

i¼0
ηci χ

ið Þ
k,k�1 � x̂k,k�1

	 


ψ
ið Þ
k,k�1 � ŷk,k�1

	 
T

(23)

Due to the additive noise assumption, R is added to the output covariance
matrix. For calculating the Kalman gain matrix K, covariance matrices are used,
using:

Kk ¼ P
xy
k P

yy
k

� ��1
(24)

And then this Kalman gain matrix is used to update covariance estimates and the
state, as in:

x̂k ¼ x̂k,k�1 þ Kk yk � ŷk,k�1

	 


Pk ¼ Pk,k�1 � KkP
yy
k K

T
k

(25)

With yk, the measurement vector, x̂k is the a posteriori state and Pk is the
covariance estimates.

3.3 The moving horizon estimation

The moving horizon estimation is a powerful means of estimating the states, and
having in particular the possibility to constrain the outputs, states and noises. We
can be described it as a least-squares optimization that leads to a states’ estimation
and working with a limited amount of information. Its particularity is to avoid the
recursive manner characteristic of the extended Kalman filter. Under different
approaches, several researchers [22–28] studied it, however presenting many simi-
larities. The moving and full state estimations almost follow the same steps. In the
moving state estimation, variables can be handled contrary to the full state estima-
tion. In the full state estimation, at current time k, all variables from initial time
n = 0 to n = k are used in the calculation. With a horizon H, the moving state
estimation uses in the calculation only the concerned variables (measured outputs,
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manipulated inputs and estimated states) from n = k + 1 � H to n = k, a moving
vectors collect them. First of all, consider the full state estimation problem. Let
assume that the process can be represented by the following continuous-time model
[29–31]:

_x tð Þ ¼ f x tð Þ; u tð Þð Þ þ Gw tð Þ (26)

where wk is the control noise.
Where the Gaussian noise of zero mean is w. We can describe the measured

outputs y by the discrete-time model

yk ¼ h xkð Þ þ vk (27)

where vk is the observation noise.
The equivalent linear discrete model is given by:

xkþ1 ¼ Axk þ Buk þ Gwk (28)

where the matrices A and B are the Jacobian matrices with respect to f in relation
to xk and uk, respectively. The measurement model is linearized as:

ykþ1 ¼ Cxkþ1 þ vkþ1 (29)

where the matrix C is the Jacobian matrix of h with respect to xk. In the full state
estimation problem, we have to minimize the following criterion with respect to the
sequence of noises w0;…;wk�1f g and to the initial state x0, and then the states x̂i are
obtained by using Eq. (28).

Jk ¼ x0 � x̂0ð ÞTΠ�1
0 x0 � x̂0ð Þ þ ∑

k�1

i¼0
vTiþ1R

�1viþ1 þ wT
i Q

�1wi

� �

(30)

The weighting matrices Π�1
0 , Q�1 and R�1, respectively, symbolize the initial

estimation, the confidence in the dynamic model and the measurements. The main
disadvantage of full state estimation is that during the computation we notice the
size of the optimization problem grows as time increases, and would likely cause a
failure in the optimization. The favorable solution to this increasing size is to set the
problem according to a moving-horizon approach.

Let us consider the problem of moving state estimation. The criterion Eq. (30) is
split into two parts [24, 25]:

Jk ¼ Jk�H þ ∑
k�1

i¼k�H

vTiþ1R
�1viþ1 þ wT

i Q
�1wi

� �

¼ Jk�H þ Jmhe (31)

The second term Jmhe of the criterion Eq. (31) depends on the sequence of noises
wk�H;…;wk�1f gand on the state xk�H. Assume that k > H and set the optimized

criterion:

J ∗k�H ¼ min
x0,w0,…,wk�H�1

Jk�H (32)

And then, in the full optimized criterion becomes:

J ∗k ¼ min
x0,w0,…,wk�1

Jk (33)

8
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¼ min
z,wk�H,…,wk�1

∑
k�1

i¼k�H

vTiþ1R
�1viþ1 þ wT

i Q
�1wi

� �

� 

þ J ∗k�H zð Þ (34)

where z is the arrival state xk�H based on the optimized variables
w ∗

k�H;…;w ∗
k�H�1

� �

and x0.
In practice, it is very complicated and almost impossible to really minimize

Jk�H zð Þ when k becomes large enough as this would be a full estimation problem
again. The recommend solution is to retain the previous values of the optimized

criterion J ∗k obtained by moving horizon estimation denoted by Jmhe
k zð Þ along time k

and to approximate Jk�H zð Þ as:

Jk�H zð Þ≈ z� x̂mhe
k�H

	 
T
Π

�1
k�H z� x̂mhe

k�H

	 


þ Jmhe
k�H zð Þ (35)

where x̂mhe
k�H is the state estimated by moving horizon observer at time (k�H).

Under these assumptions, the criterion Eq. (31) becomes:

Jk ¼ ∑
k�1

i¼k�H

vTiþ1R
�1viþ1 þwT

i Q
�1wi

� �

þ z� x̂mhe
k�H

	 
T
Π

�1
k�H z� x̂mhe

k�H

	 


þ Jmhe
k�H zð Þ

(36)

The discrete Riccati equation we used for the covariance matrix of the Kalman
filter is called to update Πk:

Πk ¼ AΠk�1A
T þ GQGT � AΠk�1C

T CΠk�1C
T þ R

� ��1
CΠT

k�1A
T (37)

Figure 2.
Moving horizon estimation algorithm.
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With Π0 given. The Moving horizon estimation algorithm is described by the
diagram in Figure 2.

4. Numerical results

In this section, the performances of the proposed observers are illustrated in
simulation. Observers’ algorithms have been implemented in MATLAB/SIMULINK
software. The doubly-fed induction generator system states which have been used
for estimation are expressed into a vector x, this vector includes as parameters to
estimate the stator and rotor resistances, as follows:

x ¼ Φds Φqs Φdr Φqr Rs Rr

� �T
(38)

The inputs of the system are the rotor angular electrical speed, stator and rotor
voltages, as in:

u ¼ vds vqs vdr vqr ωr

� �T
(39)

The d and q axis of stator and rotor currents and the mechanical torque consti-
tute the measurements of the systems,

y ¼ Tm ids iqs idr iqr
� �T

(40)

Table 3 shows a comparison of the running time of high gain observer (HGO),
the unscented Kalman filter (UKF), and the moving horizon estimation (MHE) for
the DFIG system. The high gain observer being the fastest among the three methods
under various modes especially the healthy mode which represents a healthy DFIG
and the faulty mode where stator and rotor resistance would have changed value
during the operation of the DFIG. Tables 4 and 5 give the parameters of UKF and
MHE only. For the UKF, the primary, secondary, and tertiary scaling parameters α,
β and κ are chosen as 1, 2, and 0, respectively.

HGO UKF MHE

Healthy mode 1.200 1.190 152.978

Faulty mode 1.901 1.666 154.234

Table 3.
Running time of the three observers for the DFIG (in seconds).

Parameters Values

Weight matrix G eye(6)

Covariance matrix P0 3eye(6)

Covariance matrix Q 0.5eye(6)

Covariance matrix R eye(5)

Length horizon H 10

Initial guess [0; 0:5; 0:5; 1; 0:02; 0:02]

Table 4.
MHE parameters.

10
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Figures 3 and 4 show the generated estimates of the rotor and stator resistances
by the HGO, UKF and the MHE in the healthy mode of working of the DFIG.
Nevertheless, Figures 5 and 6 show the generated estimates of the rotor and stator
resistances by the HGO, UKF and the MHE in the faulty mode of working, let us
mention that faulty mode is simply a mode where the DFIG undergoes a fault on its
stator and/or rotor resistances during the operation. We just simulated those sce-
narios to appreciate the estimation performance of different observers in particular
the HGO, UKF and MHE for process monitoring or diagnostics purposes. We can
observe that the estimates by the MHE converges to the actual parameters in fewer
time compared to the HGO and UKF. In Table 3, we notice the total computation
time to obtain an estimate for the HGO algorithm is about 1.200 seconds, for the
UKF algorithm is also about 1.190 seconds while the MHE algorithm took
152.978 seconds to estimate the parameters in the normal mode of working, and in
the faulty mode, we have about 1.901, 1.666 and 154.234 seconds for those
observers, respectively. We can conclude that when the asynchronous machine has
a stator or rotor resistance fault, the estimation time increases. The reason the MHE
algorithm takes longer to make an estimate is that in simulation, the optimization of
the objective function, through a nonlinear programming algorithm has been
performed at each time step, in this case study the nonlinear programming algo-
rithm used is the sequential quadratic programming in the MATLAB in-built func-
tion fmincon. For the HGO we can underline this, a big value of θ leads to
consolidate the linear part and to guarantee the stability of the nonlinear part
through the fact that φ is imposed globally Lipschitz in relation to x [27]. If θ are big
enough, the time of convergence decreases, but the observation becomes extremely
sensitive to the measurement noises. A small value of θ leads to the reverse effect
obviously. In comparison with the extended Kalman filter, this observer contains a
lot less of setting variables that facilitates its optimization. Besides the number of
equations to solve are a lot weaker and it decreases the time of calculation consid-
erably. To know that the number of differential equations to solve for the Kalman

filter is of nþ n nþ1ð Þ
2 such as, n is the size of observation vector, when that number is

n for the high gain observer [18], for our experiment the value of the gain is θ = 27,
on the other hand, the UKF algorithm has to handle.

2 L + 1 sigma points and associated weights to represent state of the system.
Tables 6 and 7 show the standard deviation and the variance of the estimation
error. The comparison of these observers can be made by finding the mean squared
error (MSE) value. The MSE can be evaluated as:

MSE ¼ 1

N � n
∑
N

i¼1
θi � θ̂ i
� �2

(41)

where N is the number of time steps, n is the dimension of state vector, θi is the

simulated value and θ̂ i is the estimated value from the filters. Table 8 shows a
comparison of the three observers by finding the mean squared error in the healthy

Parameters Values

Covariance matrix P0 eye(6)

Covariance matrix Q 10�2diag([111110–410�4])

Covariance matrix R 10�2diag([11111])

Initial guess [0; 0:5; 0:5; 1; 0:02; 0:02]

Table 5.
UKF parameters.
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Figure 3.
Rotor resistance estimation in a healthy mode with HGO, UKF and MHE. (a) Rotor resistance estimation
(HGO), (b) Rotor resistance estimation (UKF), (c) Rotor resistance estimation (MHE).
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Figure 4.
Stator resistance estimation in a healthy mode with HGO, UKF and MHE. (a) Stator resistance estimation
(HGO), (b) Stator resistance estimation (UFK), (c) Stator resistance estimation (MHE).
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Figure 5.
Rotor resistance estimation in a faulty mode with HGO, UKF and MHE. (a) Rotor resistance estimation
(HGO), (b) Rotor resistance estimation (UKF), (c) Rotor resistance estimation (MHE).
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Figure 6.
Stator resistance estimation in a faulty mode with HGO, UKF and MHE. (a) Stator resistance estimation
(HGO), (b) Rotor resistance estimation (UKF), (c) Rotor resistance estimation (MHE).
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and the faulty mode of operation of the DFIG and we can notice that generally, the
mean squared error of states and parameters in faulty mode is relatively greater
than those in the healthy mode because of the fault occurring suddenly during the
operation, but we can always see the high performance of the moving horizon
estimation on the others observers.

To verify the robustness, we have performed parametric variation on the
observer in relation to the identified values. Figures 7 and 8 show the responses
obtained when a rotor inductance variation of +50 and �50% is considered for the
observer test. The robustness of the observers’ scheme with respect to this parame-
ter changes is clearly shown. In Figures 7 and 8, it is clearly shown that a +50 and
�50% rotor inductance variation generates a high statistical difference on rotor and
stator resistances for the unscented Kalman filter. For the high gain observer, that
variation is much more felt on the rotor resistance on the both figures. Incontestably
the moving horizon estimation seems remain insensitive to the parametric

Std (HGO) � 10�5 Std (UKF) � 10�5 Std (MHE) � 10�5

Rs 350 7450 57.75

Rr 7.29 3940 41.38

Variance (HGO) � 10�5 Variance (UKF) � 10�5 Variance (MHE) � 10�5

Rs 1.26 550 0.033

Rr 0.0053 160 0.017

Table 6.
General statistics of the three observers (healthy mode).

Std (HGO) � 10�4 Std (UKF) � 10�4 Std (MHE) � 10�4

Rs 25 8208 270

Rr 4.86 278 26

Variance (HGO) � 10�5 Variance (UKF) � 10�5 Variance (MHE) � 10�5

Rs 0.62 6737 0.74

Rr 0.024 77.47 0.702

Table 7.
General statistics of the three observers (faulty mode).

HGO UKF MHE

Healthy Faulty Healthy Faulty Healthy Faulty

Rs 4.73E�06 8.02E�06 8.66E�04 9.65E�04 1.11E�07 1.27E�07

Rr 1.77E�09 1.79E�05 9.36E�05 1.14E�04 5.71E�08 7.33E�08

Φds 5.70E�04 6.31E�04 9.02E�05 9.23E�05 21.0E�04 11.0E�04

Φqs 1.93E�06 2.10E�06 1.10E�16 1.10E�16 39.0E�04 27.0E�04

Φdr 2.08E�08 16.00E�04 6.47E�06 6.87E�06 246E�04 210E�04

Φqr 1.73E�10 4.81E�06 1.10E�06 1.10E�06 67.0E�04 70.0E �04

Table 8.
MSE values of nonlinear observers: HGO, UKF and MHE are compared.
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variations but it is not so, it is just that the statistical difference generated is weak
enough compared to others. From these responses, we can conclude that the rotor
inductance changes do not affect the performance of the moving horizon estimation

Figure 7.
Robustness test. Rotor inductance variation (+50%). (a) Rotor resistance estimation, (b) Stator resistance estimation.
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considerably, but in regard to the other observers, the changes disturb their perfor-
mance a lot as shown in the figures and that the MHE scheme is robust enough
under parametric uncertainties.

Figure 8.
Robustness test. Rotor inductance variation (�50%). (a) Rotor resistance estimation, (b) Stator resistance
estimation.
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5. Conclusion

In this chapter, a general framework for the doubly fed induction generator has
been presented in order to carry out a dynamic estimation of states and parameters
of the DFIG. The DFIG parameters are largely influenced by different factors (for
instance, temperature, magnetic saturation and eddy current) that is why it is
necessary to develop techniques to estimate the changes of parameters. The pro-
posed techniques are performed with high gain observer (HGO), unscented Kalman
filter (UKF) and moving horizon estimation algorithms using noisy measurements.
A comparison of the three estimation techniques has been made under different
aspects notably, computation time and estimation accuracy, in two modes of oper-
ation of the DFIG, the healthy mode and the faulty mode. The MHE estimation
technique has significantly lower estimation error and converges with fewer sam-
ples time than the HGO and the UKF. Whatever the mode of functioning, the
simulation results showed that a good standard of performance could be obtained
even in the presence of measurement noise.
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