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Chapter

Decentralised Scalable Search
for a Hazardous Source in
Turbulent Conditions
Branko Ristic and Christopher Gilliam

Abstract

The problem is autonomous coordinated search by an interconnected group of
moving robots for the purpose of finding and localising a source of hazardous
emissions (e.g., gas and particles). Dispersion of the emitted substance is assumed
to be affected by turbulence, resulting in the absence of concentration gradients.
The chapter proposes a search strategy that operates in a completely decentralised
manner, as long as the communication network of the moving robots forms a
connected graph. By decentralised operation, we mean that each moving robot is
reasoning (i.e., estimating the source location and making decisions on robot
motion) locally. Coordination of the group is achieved by consensus via
communication with the neighbours only, in a manner which does not require
global knowledge of the communication network topology.

Keywords: autonomous search, machine intelligence,
sequential Monte Carlo estimation, infotaxis

1. Introduction

Searching strategies for finding targets using appropriate sensing modalities are
of great importance in many aspects of life. In the context of national security, there
could be a need to find a source of hazardous emissions [1–3]. Similarly, rescue and
recovery missions may be tasked with localising a lost piece of equipment that is
emitting weak signals [4]. Biological applications include, for example, protein
searching for its specific target site on DNA [5], or foraging behaviour of animals in
their search for food or a mate [6, 7]. The objective of search research [8] is to
develop optimal strategies for localising a target in the shortest time (on average),
for a given search volume and sensing characteristics.

The use of autonomous vehicles in dangerous missions, such as finding a source
of hazardous emissions, has become widespread [9–11]. Existing approaches to the
search and localisation in the context of atmospheric releases can be loosely divided
into three categories: up-flow motion methods, concentration gradient-based
methods and information gain-based methods, also known as infotaxis. Both the
up-flow motion methods and the concentration gradient methods are simple, in
the sense that they require only a limited level of spatial perception [12]. Their
limitations manifest in the presence of turbulent flows, due to the absence of
concentration gradients, when the plume typically consists of time-varying
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disconnected patches. The information gain-based methods [13] have been
developed specifically for searching in turbulent flows. In the absence of a smooth
distribution of concentration (e.g., due to turbulence), this strategy directs the
searching robot(s) towards the highest information gain. As a theoretically
principled approach, where the source-parameter estimation is carried out in the
Bayesian framework and the searching platform motion control is based on the
information-theoretic principles, the infotaxic (or cognitive) search strategies have
attracted a great deal of interest [3, 14–23].

This chapter summarizes our recent results in development of an autonomous
infotaxic coordinated search strategy for a group of robots, searching for an emit-
ting hazardous source in open terrain under turbulent conditions. The assumption is
that the search platforms can move and sense. Two types of sensor measurements
are collected sequentially: (a) the concentration of the hazardous substance; (b) the
platform location within the search domain. Due to the turbulent transport of the
emitted substance, the concentration measurements are typically sporadic and
fluctuating. The searching platforms form a moving sensor network, thus enabling
the exchange of data and a cooperative behaviour. The multi-robot infotaxis have
already been studied in [16, 17, 20, 24]. However, all mentioned references assumed
all-to-all (i.e., fully connected) communication network with centralised fusion and
control of the searching group.

We develop an approach where the group of searching robots operate in a fully
decentralised coordinated manner. Decentralised operation means that each
searching robot performs the computations (i.e., source estimation and path
planning) locally and independently of other platforms. Having a common task,
however the robotic platforms must perform in a coordinated manner. This
coordination is achieved by exchanging the data with immediate neighbours only,
in a manner which does not require the global knowledge of the communication
network topology. For this reason, the proposed approach is scalable in the sense
that the complexities for sensing, communication, and computing per sensor
platform are independent of the sensor network size. In addition, because all sensor
platforms are treated equally (no leader-follower hierarchy), this approach is robust
to the failure of any of the searching agents. The only requirement for avoiding the
break-up of the searching formation is that the communication graph of the sensor
network remains connected at all times. Source-parameter estimation is carried out
sequentially, and on each platform independently, using a Rao-Blackwellised
particle filter. Platform path planning, in the spirit of infotaxis, is based on entropy-
reduction and is also carried out independently on every platform.

2. Mathematical models

First, we describe the measurement model. The concentration measurements are
modelled using a Lagrange encounters model developed in [13], based on an open
field assumption and a two-dimensional geometry. Let ith robotic vehicle position

(i ¼ 1, 2,…, N) at time tk be denoted by rik ∈R
2. Suppose that the emitting source is

located at coordinates specified by the vector r0 ¼ X0;Y0½ �⊺ and its release rate, or
strength, is Q0. The goal of the search is to detect and estimate the source-

parameter vector η0 ¼ r⊺0 Q0

� �⊺
in the shortest possible time. The particles released

from the source propagate with combined molecular and turbulent isotropic diffu-
sivity D, but can also be advected by wind. The released particles have an average
lifetime τ before being absorbed. Let the averagewind characteristics be the speed U
and direction, which by convention, coincides with the direction of the x axis.
Suppose a spherical concentration measuring sensor of small radius a is mounted on
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the ith robot, whose position at time k is1 rik ¼ xik;  y
i
k

� �⊺
. This sensor will experience

a series of encounters with the particles released from the emitting source. The
average rate of encounters can be modelled as follows [13]:

R η0; r
i
k

� �

¼
Q0

ln λ
a

� � exp
X0 � xik
� �

U

2D

� �

� K0
dik r0; rik
� �

λ

 !

(1)

where D, τ and U are known environmental parameters,

dik r0; rik
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xik � X0

� �2
þ yik � Y0

� �2
q

is the distance between the source and the

ith sensor platform, K0 is the modified Bessel function of the second kind of order

zero, and λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dτ∕ 1þ U2τ
4D

	 


r

depends on environmental parameters only.

The probability that a sensor at location rik is hit by z∈Z
þ∪ 0f g dispersed

particles (where z is a non-negative integer) during a time interval t0 is Poisson
distributed, i.e.,

P z; μik
� �

¼
μik

� �z

z!
e�μi

k : (2)

Parameter μik ¼ t0 � R η0; r
i
k

� �

in (2) is the mean number of particles expected to

reach the sensor at location rik during interval t0. Eq. (2) expressed the likelihood

function of a concentration measurement zik collected by ith sensor, i.e.,

ℓ zikjη0
� �

¼ P zik; μ
i
k

� �

.
The motion model of a coordinated group of robots is described next. Let the

pose vector of the ith robot platform at time tk be denoted θik ¼ rik
� �⊺

; ϕi
k

� �⊺
, where

rik ¼ xik; y
i
k

� �⊺
has already been introduced and ϕi

k is the vehicle heading. The group

of searching vehicles moves in a formation. The centroid of the formation at time tk
is specified by coordinates:

xck ¼
1

N
∑
N

i¼1
xik, yck ¼

1

N
∑
N

i¼1
yik: (3)

For each platform i ¼ 1,…, N, the offset Δxi;Δyi
� �

from the centroid xck; y
c
k

� �

is

predefined and known to it (i.e., xik ¼ xck þ Δxi, yik ¼ yck þ Δyi).
The measurements of concentration are taken at time instants tk, k ¼ 1, 2,⋯.

Between two consecutive sensing instants, each platform is moving. Let the dura-

tion of this interval (referred to as the travel time) for the ith platform be Ti
k ≥0.

The assumption is that sensing is suppressed during the travel time.

Motion of the ith platform during interval Ti
k is controlled by linear velocity V i

k

and angular velocity Ω
i
k. Given that the motion control vector ui

k ¼ V i
k;Ω

i
k;T

i
k

� �⊺
is

applied to the ith platform, its dynamics during a short integration time interval

δ≪Ti
k can be modelled by a Markov process whose transitional density is

π θitjθ
i
t�δ;u

i
k

� �

¼ N θit; β θit�δ;u
i
k

� �

;Q
� �

. The process noise covariance matrix Q cap-

tures the uncertainty in motion due to the unforeseen disturbances. The vehicle

motion function β θit�δ;u
i
k

� �

is:

1 Robot locations are assumed to be non-coincidental with the source location r0.
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β θit�δ;u
i
k

� �

¼ θit�δ þ δ

V i
k cos ϕi

k�1

� �

V i
k sin ϕi

k�1

� �

Ω
i
k

2

6

4

3

7

5
þ Bi

k�1, (4)

where vector Bi
k�1 ¼ εix

δ

Ti
k

εiy
δ

Ti
k

0
h i⊺

is introduced to compensate for a distor-

tion of the formation due to process noise with parameters:

εix ¼ xik�1 � xik�1 � Δxi
� �

4að Þ

εiy ¼ yik�1 � yik�1 � Δxi
� �

: 4bð Þ

Here, xik�1 and yik�1 are the estimates of the coordinates of the formation centroid
at k� 1 (that is of xck�1 and yck�1, respectively) available to the ith platform. Coordi-

nates xik�1 and yik�1 refer to the known ith vehicle position at k� 1. Figure 1 illus-
trates the trajectories of N ¼ 7 autonomous vehicles in a formation using the

described transitional density π θitjθ
i
t�δ;u

i
k

� �

. In the absence of process noise (i.e.,
Q ¼ 0), the vehicles would move in a perfect formation if (a) all control vectors are
identical (i.e., u1

k ¼ u2
k ¼ ⋯ ¼ uN

k ), and (b) all headings are identical (i.e.,

ϕ1
k�1 ¼ ϕ2

k�1 ¼ ⋯ ¼ ϕi
k�1). In this case, each platform would know the true coordi-

nates of the formation centroid (i.e., xik ¼ xck, y
i
k ¼ yck, for i ¼ 1,…, N), and hence the

correction vectors Bi
k�1 would be zero.

A robotic platform can communicate with another platform of the formation, if
their mutual distance is smaller than a certain range Rmax. Because of process noise
in motion, the distance between the vehicles in the formation will vary and conse-
quently the topology of the communication network graph may also vary. For
simplicity, we will assume that communication links (when established) are error
free. Figure 1 illustrates the communication graphs of a formation consisting of
N ¼ 7 searching platforms at two consecutive time instants.

Figure 1.
An example of a formation of N ¼ 7 searching platforms at k ¼ 1, 2. The communication graphs (based on
established links between the platforms) are indicated with green lines. Note that communication network
topology is time-varying. The red line, starting from the centroid of the formation, indicates the instantaneous
velocity vector.
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3. Decentralised sequential estimation

Estimation and robot motion control are carried out using the measurement
dissemination-based decentralised fusion architecture [25]. Measurement locations2

and the corresponding measured concentration values, i.e., the triple xik; y
i
k; z

i
k

� �

, are

exchanged via the communication network. The protocol is iterative. In the first
iteration, platform i broadcasts its triple to its neighbours and receives from them
their measurement triples. In the second, third and all subsequent iterations, plat-
form i broadcasts its newly acquired triples to the neighbours, and accepts from
them only the triples that this platform has not seen before (newly acquired).
Providing that the communication graph is connected, after a sufficient number of
iterations (which depends on the topology of the graph), a complete list of measure-
ment triples from all platforms in the formation, denoted dk ¼ xik; y

i
k; z

i
k

� �� �

1≤ i≤N
,

will be available at each platform.
Suppose the posterior density function of the source at discrete-time k� 1 and

platform i be denoted pi η0jd1:k�1ð Þ, where d1:k�1 � d1, d2,⋯, dk�1. Given
pi η0jd1:k�1ð Þ and dk, the problem of sequential estimation is to compute the poste-
rior at time k, i.e., pi η0jd1:kð Þ. Using the Bayes rule, the posterior is

pi η0jd1:kð Þ ¼
g dkjη0ð Þpi η0jd1:k�1ð Þ

Ð

g dkjη0ð Þpi η0jd1:k�1ð Þdη0
(5)

where g dkjη0ð Þ is the likelihood function. Assuming that individual platform
measurements are conditionally independent, g dkjη0ð Þ can be expressed as

g dkjη0ð Þ ¼
Y

N

i¼1

ℓ zikjη0
� �

¼
Y

N

i¼1

P zik;Q0 ρ r0; r
i
k

� �� �

(6)

where

ρ r0; r
i
k

� �

¼ t0R η0; r
i
k

� �

=Q0 ¼
t0

ln λ
a

� � exp
X0 � xik
� �

U

2D

� �

� K0
dik r0; rik
� �

λ

 !

(7)

is independent of Q0. The posterior density pi η0jd1:kð Þ is computed using the
Rao-Blackwell dimension reduction scheme [26]. Using the chain rule, the posterior
can be expressed as:

pi η0jd1:kð Þ ¼ pi Q0jr0; d1:kð Þ � pi r0jd1:kð Þ (8)

where the posterior of source strength pi Q0jr0; d1:kð Þ will be worked out
analytically, while the posterior of source position pi r0jd1:kð Þ will be computed
using a particle filter. Following [27], we express the posterior pi Q0jr0; d1:k�1ð Þ

with the Gamma distribution whose shape and scale parameters are κk�1 and ϑk�1,
respectively. That is

pi Q0jr0; d1:k�1ð Þ ¼ G Q0; κk�1; ϑk�1ð Þ

¼
Q

κk�1�1ð Þ
0 e�Q0=ϑk�1

ϑ
κk�1

k�1 Γ κk�1ð Þ
:

(9)

2 Because the measurement locations are assumed to be known exactly, they will not be treated as

random variables.
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Since the conjugate prior of the Poisson distribution is the Gamma distribution
[28], the posterior p Q0jr0; d1:kð Þ is also a Gamma distribution with updated param-
eters κk and ϑk, i.e., p Q0jr0; d1:kð Þ ¼ G Q0; κk; ϑkð Þ. The computation of κk and ϑk can
be carried out analytically as a function of r0 and the measurement set
dk ¼ rik; z

i
k

� �� �

1≤ i≤N
[27]:

κk ¼ κk�1 þ ∑
N

i¼1
zik, ϑk ¼

ϑk�1

1þ ϑk�1∑
N
i¼1ρ r0; rik

� �
: (10)

The parameters of the prior for source strength, p Q0ð Þ ¼ G κ0;ϑ0ð Þ are chosen so
that this density covers a large span of possible values of Q0.

Next, we turn our attention to the posterior of source position pi r0jd1:kð Þ in the
factorised form (8). Given p r0jd1:k�1ð Þ, the update step of the particle filter using dk
applies the Bayes rule:

p r0jd1:kð Þ ¼
g dkjr0; d1:k�1ð Þp r0jd1:k�1ð Þ

f dkjd1:k�1ð Þ
(11)

where f dkjd1:k�1ð Þ ¼
Ð

g dkjr0; d1:k�1ð Þp r0jd1:k�1ð Þdr0 is a normalisation constant.
The problem in using (11) is that the likelihood function g dkjr0; d1:k�1ð Þ is unknown;
only g dkjη0ð Þ of (6) is known. Fortunately, it is possible to derive an analytic
expression for g dkjr0; d1:k�1ð Þ:

g dkjr0; d1:k�1ð Þ ¼
ϑ
κk
k Γ κkð Þ

ϑ
κk�1

k�1 Γ κk�1ð Þ

Y

N

i¼1

ρ r0; rik
� �zi

k

zik!
(12)

The Rao-Blackwellised particle filter (RBPF) fully describes the posterior
pi η0jd1:kð Þ by a particle system

Si
k � wm, i

k ; rm, i
0,k; κ

i
k;ϑ

m, i
k

n o

1≤m≤M
:

Here,M is the number of particles, wm, i
k is a (normalised) weight associated with

the source position sample rm, i
0,k, while κik and ϑ

m, i
k are the parameters of the

corresponding Gamma distribution for the source strength. Initially, at time k ¼ 0,

the weights are uniform (and equal to 1=M), rm, i
k,0

n o

are the points on a regular grid

covering a specified search area, while κi0 ¼ κ0 and ϑ
m, i
0 ¼ ϑ0. The sequential com-

putation of the posterior pi η0jd1:kð Þ using the RBPF is carried out by a recursive

update of the particle system Si
k over time.

4. Decentralised formation control

In decentralised multi-robot search, each platform autonomously makes a
decision at time tk�1 about its next control vector u

i
k, as described in Section 4.1.

However, in order to maintain the geometric shape of the formation and thus avoid
its break-up, there is a need to impose a form of coordination between the
platforms. This will be explained in Section 4.2.
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4.1 Selection of individual control vectors

A robot platform i autonomously decides on the control vector ui
k using the

infotaxis strategy [13], which can be formulated as a partially observed Markov deci-
sion process (POMDP) [29]. The elements of POMDP are (i) the information state,
(ii) the set of admissible actions and (iii) the reward function. The information state at
time tk�1 is the posterior density pi η0jd1:k�1ð Þ; it accurately specifies the ith platform
current knowledge about the source position and its release rate. Admissible actions
can be formed with one or multiple steps ahead. A decision in the context of search is
the selection of a motion control vector ui

k ∈U which will maximise the reward
function. According to Section 2, the space of admissible actions U is continuous with
dimensions: linear velocity V, angular velocityΩ and duration of motion T. In order to
reduce the computational complexity of numerical optimisation, U is adopted as a
discrete set with only myopic (one step ahead) controls. In addition, U is time-
invariant and identical for all platforms. If V, O and T denote the sets of possible
discrete-values ofV,Ω and T, respectively, then U is the Cartesian productV�O� T .
The myopic selection of the control vector at time tk on platform i is expressed as:

ui
k ¼ argmax

v∈U
E D pi η0jd1:k�1ð Þ; zik vð Þ

� �� �

(13)

where D is the reward function and zik is the future concentration measurement
collected by the ith platform if the platform moved under the control v∈U to

position xik; y
i
k

� �

. In reality, this future measurement is not available (the decision
has to be made at time tk�1), and therefore the expectation operator E with respect
to the prior measurement PDF features in (13).

Previous studies of search strategies [3, 20] found that the reward function
defined as the reduction of entropy, results in the most efficient search. Hence, we
adopt the expected reward defined as

Ri ¼ E D pi η0jd1:k�1ð Þ; zik vð Þ
� �� �

¼ Hi
k�1 � E Hi

k zik vð Þ
� �� �

(14)

where Hk�1 is the current differential entropy, defined as

Hi
k�1 ¼ �

ð

pi η0jd1:k�1ð Þ ln pi η0jd1:k�1ð Þdη0, (15)

while Hi
k zik vð Þ
� �

≤Hk�1 is the future differential entropy (after a hypothetical

control vector v has been applied to collect zik):

Hi
k zik vð Þ
� �

¼ �

ð

pi η0jd1:k�1; d
i
k vð Þ

� �

ln pi η0jd1:k�1; d
i
k vð Þ

� �

dη0, (16)

where dik ¼ xik; y
i
k; z

i
k

� �

. The expectation operator E in (14) is with respect to the

probability mass function P zikjd1:k�1

� �

¼
Ð

ℓ zikjη0
� �

pi η0jd1:k�1ð Þdη0, that is:

E Hi
k zik vð Þ
� �� �

¼ ∑
zi
k

P zikjd1:k�1

� �

�Hk zik vð Þ
� �

: (17)

Given that pi η0jd1:k�1ð Þ is approximated by a particle system Si
k�1, one can

approximately compute Hi
k�1, which features in (14), as
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Hi
k�1≈� ∑

M

m¼1
wm, i

k�1 ln wm, i
k�1: (18)

In order to compute E Hi
k zik vð Þ
� �� �

of (17), first note that

P zikjd1:k�1

� �

¼ P zik; μ̂
i

k�1

	 


, where μ̂i
k�1 is the predicted mean rate of chemical par-

ticle encounters at location rik (where the platform i would move after applying a
hypothetical control v), computed based on d1:k�1. According to Section 2,

μ̂i
k�1≈ ∑

M

m¼1
wm, i

k�1κ
i
k�1ϑ

m, i
k�1ρ rm, i

0,k�1; r
i
k

	 


(19)

where the product κik�1ϑ
m, i
k�1 approximates the source release rate as the mean of

the Gamma distribution with parameters κik�1; ϑ
m, i
k�1

� �

. Next, we find the value of
zmax as the minimum value of z0 such that the cumulative distribution function

∑z0

z¼0P z; μ̂i
k�1

� �

is greater than a certain threshold 1� ε, where ε≪ 1. The summa-

tion (17) is then computed only for zik ¼ 0, 1,⋯, zmax. Computation of Hk zik vð Þ
� �

is

carried out according to (18), except that wm, i
k�1 is replaced with

wm, i
k ¼ wm, i

k�1 � P zik; μ
m, i
k�1

� �

, where

μm, i
k�1 ¼ κik�1ϑ

m, i
k�1 ρ rm, i

0,k�1; r
i
k

	 


:

Thus, (17) is approximated with

E Hi
k zik vð Þ
� �� �

≈ ∑
zmax

z¼0
P z; μ̂i

k�1

� �

� ∑
M

m¼1
wm, i

k lnwm, i
k

� �

(20)

Pseudo-code of the routine for the computation of control vector on platform i is
given by Algorithm 1.

Algorithm 1 Computation of ui
k

1: Input: Si
k�1 � wm, i

k�1; r
m, i
0,k�1; κ

i
k�1; ϑ

m, i
k�1

n o

1≤m≤M
,

2: Compute Hk�1 using (18)
3: Create admissible set U ¼ V�O� T

4: for every v∈U do
5: Compute the future platform location rik vð Þ

6: Compute μ̂i
k�1 using (19)

7: Determine zmax s.t. ∑
zmax

z¼0P z; μ̂i
k�1

� �

>1� ε

8: Compute E Hi
k zik vð Þ
� �� �

using (20)
9: Calculate the expected reward ℛi using (14)
10: end for
11: Find ui

k using (13)

12: Output: ui
k

4.2 Cooperative control through consensus

So far, we have explained how platform i would independent of the other
platforms in the formation determine the best action for itself, i.e., ui

k. In general,
individual platforms will disagree on the best action, and in the extreme

8
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u1 6¼ u2 6¼ ⋯, 6¼ uN. In order to maintain the shape of the formation during the
motion period (from time tk�1 to tk), the platforms need to reach an agreement on
the common action uk, to be applied to all platforms at the same time. But this is not
sufficient; according to the motion model in Section 2, the platforms also need to
agree on the formation centroid coordinates and the common heading angle ϕk�1 to
be applied in (4).

We apply decentralised cooperative control based on the average consensus
[30, 31]. In a network of collaborating agents, consensus is an iterative protocol
designed to reach an agreement regarding a certain quantity of interest. Suppose
that every platform, as a node in the communication network, initially has an
individual scalar value. The goal of average consensus is for every node in the
network to compute the average of initial scalar values, in a completely
decentralised manner: by communicating only with the neighbours in the commu-
nication graph (without knowing the topology of the communication graph).

In the problem we consider, there is not only a single individual scalar value, but

six of them. They include three motion control parameters, i.e., for platform i, Vi
k,

Ω
i
k and Ti

k, two formation centroid coordinates, i.e., xik�1, y
i
k�1 and the heading angle

of each platform ϕi
k�1.

Let us denote the scalar value of interest by bi, that is

bi ∈ V i
k;Ω

i
k;T

i
k; x

i

k�1; y
i
k�1;ϕ

i
k�1

n o

:

Ideally, we want every platform in the formation to compute the mean value

b ¼ 1
N∑N

i¼1bi. If all platforms in the formation were to use identical average values
for motion control, centroid coordinates and heading, then their motion would be
coordinated (except for process noise, which will be taken care of through vector

Bi
k�1 in (4)) and the shape of the formation would be maintained (provided Rmax is

adequate).
Average consensus is an iterative algorithm. At iteration s ¼ 0, the node in the

communication graph (the robot platform) will initialise its state bi 0ð Þ using either
a component of vector ui

k (if bi is a motion control parameter) or the platform pose

θik�1 (if bi is a formation centroid coordinate or heading angle). This value is locally
available. The initial values of centroid coordinates are the actual ith platform

coordinates, i.e., xik�1 0ð Þ ¼ xik�1 and yik�1 0ð Þ ¼ yik�1. At each following iteration
s ¼ 1, 2,⋯, each platform updates its state with a linear combination of its own state
and the states of its current neighbours. Let us denote the set of current neighbours
of platform i by J i. Then [30]:

bi sð Þ ¼ 1�
∣J i∣

N


 �

bi s� 1ð Þ þ
1

N
∑

j∈J i

bj s� 1ð Þ (21)

where ∣J i∣ is the number of neighbours of platform i. This particular linear
combination is based on the so-called maximum degree weights [32]. Other weights
can be also used. It can be shown that if the communication graph is connected, the

values bi sð Þ after many iterations converge to the mean b [32].
The search continues until the global stopping criterion is satisfied. The local

stopping criterion is calculated on each platform independently based on the spread

of the local positional particles rm, i
0,k

n o

, measured by the square-root of the trace of

its sample covariance matrix Ck. For example, if the spread of particles on platform
i is smaller than a certain threshold ϖ, then the local stopping criterion is satisfied
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and is given a value of one, otherwise it is zero. This local stopping criterion value
(zero or one) becomes the initial state of the global stopping criterion on platform i,
denoted σi 0ð Þ:

σi 0ð Þ ¼
1 if

ffiffiffiffiffiffiffiffiffiffiffiffiffi

tr Ck½ �
p

<ϖ

0 otherwise

(

(22)

The global stopping criterion is computed on each platform using the average
consensus algorithm, using (21), but with bi replaced by σi. After a sufficient
number of iterations, S, platform i decides to stop the search if at least one of the
platforms in the formation has reached the local stopping criterion, that is, if
σi Sð Þ>0.

We point out that both estimation and control are based on the consensus
algorithm. While the cooperative control is using the average consensus (21), the
decentralised measurement dissemination of Section 3 achieves the consensus on
the set of measurements at time k. The consensus algorithm is iterative, and hence
its convergence properties are very important. First note that, although the network
topology changes with time (as the robots move while searching for the source),
during the short interval of time when the exchange of information takes place, the
topology can be considered as time-invariant. Furthermore, assuming bidirectional
communication between the robots in formation, the network topology can be
represented by an undirected graph. The convergence of the consensus algorithm
for a time-invariant undirected communication topology is guaranteed if the graph
is connected [31–33]. Note that this theoretical result is valid for an infinite number
of iterations. In practice, if the communication graph at some point of time is not
connected, or if an insufficient number of consensus iterations are performed, it
may happen that one or more robots are lost (they could re-join the formation only
by coincidence). This event, however, does not mean that the search mission has
failed: the emitting source will be found eventually, albeit by a smaller formation in
possibly longer interval of time.

5. Numerical results

The proposed search algorithm has been applied to an experimental dataset,
collected by COANDA Research & Development Corporation using their large
recirculating water channel. The emitting source was releasing fluorescent dye at a
constant rate from a narrow tube. The dataset comprises a sequence of 340 frames
of instantaneous concentration field measurements in the vertical plane and is
sampled at every 10/23 s. The size of a frame is 49� 49 pixels, where a pixel
corresponds to a square area of 2:935� 2:935mm2. As the size of the data is
relatively small, we follow the approach used in [24]: upscale each frame by a factor
of 3 using bicubic interpolation and place the result in the top left corner of a
500� 500 search area. A measurement obtained by a platform is, thus, the integer
value of the concentration of the dye taken from the closest spatial and temporal
sample from the experimental data.

An example of the search algorithm running on the experimental data is shown
in Figure 2. All physical quantities are in arbitrary units (a.u.). The following
environmental/sensing parameters were used: D ¼ 1, τ ¼ 250, U ¼ 0, a ¼ 1 and
t0 ¼ 1. Algorithm parameters are selected as follows: κ0 ¼ 3, ϑ0 ¼ 5:2, number of

particles M ¼ 252, V ¼ 1f g, O ¼ �3;�2;�1;0; 1; 2; 3f g degrees per unit of time and
T ¼ 0:5; 1; 2;4; 8; 16; 32; 64f g. The number of iterations, both for the exchange of
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measurement triples and in the consensus algorithm, was fixed to 30. The local
search stopping threshold was ϖ ¼ 3.

Figure 2 displays the top-down view of the search progress at step indices
k ¼ 0; 12; 22; 32. The formation consists of N ¼ 7 platforms, whose trajectories are
shown in different colours. The search algorithm terminated at K ¼ 33. Note that
the plume size is much smaller than the search area. Panels (a)–(c) of Figure 2
show the particles before resampling: the particles are placed on a regular grid, thus
mimicking a grid-based approach, with the value of particle weights indicated by
the grey-scale intensity plot (white means a zero weight). This provides a good
visual representation of the posterior p r0jd1:kð Þ. Panel (d) shows the situation after a
non-zero concentration measurement was collected by the search team. The posi-
tional particles have been resampled at this point of time and moved closer to the
true source location.

Using 200 Monte Carlo simulations, the mean search time for the algorithm was
2525 a.u., with a 5th and 95th quantile of 1840 and 3445 a.u., respectively. Note that
in all simulations the formation started from the bottom right hand corner indicated
in Figure 2(a).

Figure 2.
Experimental dataset: an illustrative run of the decentralised multi-robot search using N ¼ 7 platforms.
Graphs (a)–(d) show the positions and trajectories of the platforms at step indices k ¼ 0,12,22 and 32,
respectively. The concentration of the plume is represented in grey-scale (darker colours represent higher
concentration).
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6. Conclusions

The chapter presented a decentralised infotaxic search algorithm for a group of
autonomous robotic platforms. The algorithm allows the platforms to search and
locate a source of hazardous emissions in a coordinated manner without the need
for a centralised fusion and control system. More precisely, this distributed coordi-
nation is achieved only by local exchange of measurement data between
neighbouring platforms. Similarly, the movement decisions taken by the platforms
were reached using a distributed average consensus algorithm over the whole for-
mation. The key aspect is that individual platforms only require knowledge of their
neighbours; the global knowledge of the communication network topology is
unnecessary. An advantage of adopted distributed framework is that all platforms
are treated equally, making the proposed search algorithm scalable and robust to the
failure of a single platform. Numerical results using experimental data confirmed
the robust performance of the algorithm. The main limitation of the algorithm is
that the environmental parameters (such as diffusivity, the average direction and
speed of the wind, particle lifetime), must be known. Future work will explore
sensitivity to parametrisation and will aim to develop a team of “search and rescue”
robots for further experimentation in realistic environments.
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