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Chapter

Issues in Solid-State Physics
Roberto Raúl Deza

Abstract

In the first sections, we bring into the present context some of our past contri-
butions on the influence of quantum correlations on the formation of tightly bound
solids. We discuss the effects of the overlap between neighbor orbitals in diverse
situations of interest—involving both bulk and surface states—and call the reader’s
attention to an exact tight-binding calculation which allows gauging the errors
introduced by the underlying hypotheses of the usual tight-binding approximation.
We round up this part by reviewing a quantum Monte Carlo method specific for
strongly correlated fermion systems. In the last section, we explore some non-
equilibrium routes to (not necessarily tightly bound) solid state: we discuss spatio-
temporal pattern formation in arrays of FitzHugh-Nagumo (FHN) neurons, akin to
resonant crystal structures.

Keywords: quantum correlations, band structure, tight-binding approach,
neighbor orbital overlap, fermion Monte Carlo, non-equilibrium pattern formation,
spatiotemporal synchronization

1. Introduction

Since childhood, we all have an intuition of what a solid is. However, most
properties we intuitively assign to solids come in a vast range. Diamonds—and
some metals—are hard, and ordinary glasses are brittle; but vulcanized rubber is
neither, and it is a solid too. Perhaps the best characterization is this: at our human
timescales, a solid does not flow. That is why this category includes glasses and ice
(which do flow but at least at geological timescales).

Regarding their structure, a huge class of solids are crystalline. This is so to such
extent that solid state came to be synonymous of crystalline structure, and the more
comprehensive category of condensed matter (which admittedly includes condensed
fluids or liquids) came into fashion. The name crystal was assigned in the late
antiquity to precious and semiprecious stones that outstood for their transparency
and diaphaneity. In fact, the modern meaning of the term as “an almost perfectly
ordered structure” explains easily those properties.1

Many solids we interact with—metals, stones, etc.—are random assemblies of
grains, held together by strong adhesion forces. Like those of sand, quartz, or salt,
those grains are very likely to be themselves crystals (which as said do not imply
they are perfect: they may contain lots of impurities and defects). But there are
two particular aspects of crystals we are concerned with here. The first is that

1 For isolators like these, the bandgap is too large for visible light to be absorbed by creating electron-

hole pairs. Moreover, the absence of charge carriers rules out light scattering. Impurities provide

localized midgap states, which favor two-step electron-hole pair creation by visible light.
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unlike complex systems, which may display emergent structures at each scale
(think, e.g., of mitochondria, cells, tissues, organs, etc.), crystals are very simple:
they are huge assemblies of elementary building blocks (be they atoms, molecules,
nanoclusters, or whatever). The second is that since the building blocks obey
quantum mechanics, crystals inherit the quantum character (despite being them-
selves macroscopic).

As recent experiments have shown, whereas most interactions (but gravity) are
effectively short-ranged, there is no limit for quantum correlations; and this fact
makes them the most important fact to account for in modeling. Quantum correla-
tions manifest themselves in many ways, but the by far dominant one comes from
the indistinguishability of identical particles. Unless the crystal is a monolayer, the
state vector of a system of many indistinguishable particles must be either totally
symmetric or totally antisymmetric (a determinant) under exchange. In the first case,
the particles obey Bose-Einstein statistics and are called bosons. In the second, the
particles obey Fermi-Dirac statistics and are called fermions. The requirement that
the state vector of a system with many fermions be totally antisymmetric is the
celebrated exclusion principle, postulated by Pauli.

At present, there is no question that atoms are distinguishable. They can even be
individually manipulated.2 Since in modeling crystals, it suffices to take atoms as
building blocks (we resolve up to the nanoscale), it does not matter that they are
themselves composed of other indistinguishable particles (i.e., protons and neu-
trons, confined to �10�6 nm) besides electrons. Instead, considering the typical
effective masses of electrons in metals and semiconductors, their thermal lengths at
room temperature can reach the μm, so they are highly delocalized. The following
two sections illustrate two different ways of dealing with Pauli’s exclusion principle
when modeling crystalline solids, corresponding to two radically different ways of
doing quantum mechanics.

Section 2 keeps within the framework of first quantization. It is assumed that
neither electrons (we mean crystal electrons, with effective masses) nor holes can be
either created or destroyed. There is only one electron in the whole crystal, submit-
ted to a potential which is mainly the juxtaposition of shielded Coulomb terms, due
to atomic orbitals located at the crystal’s lattice sites. The way Pauli’s principle is
dealt with is by comparing the one-electron band spectrum with the Fermi level of
an ideal free-electron gas (see Nomenclature). The Fermi level is the chemical
potential of such a gas. The exclusion principle can make it so high that for white
dwarfs and neutron stars, the pressure it generates prevents the system from
becoming a black hole. But the quantum correlation we are concerned with in this
section is not Pauli’s principle but the overlap between atomic orbitals, usually
neglected in simple tight-binding calculations of band structure. The main assump-
tion of the tight-binding approach to band spectra is that atoms in a crystal interact
only very weakly. As a consequence, the electron’s state vector should not differ
very much from that of the plain juxtaposition of atomic orbitals located at the
crystal’s lattice sites. However, neglecting almost all interaction terms and overlap
integrals (atomic states at different lattice sites need not be orthogonal to each
other) may be too drastic an approximation. Thus Section 2 is devoted to a thorough
discussion of the issue.

Instead, the framework of Section 3 is that of second quantization. Again, our
view of the crystal is that of tight-binding (atoms do not lose their identities).

2 Sadly, the generalized disbelief in the mere existence of atoms just one century ago may have

contributed to Ludwig Boltzmann’s suicide.
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Here we are indeed concerned with Pauli’s principle. But we deal with it in the style
of quantum field theory, by allowing at most one electron of each spin projection per
atom. For an electron to move (“hop”) one lattice site, it must be annihilated at its
former host atom and created in its nearest neighbor one. The purpose of this section
is to illustrate an efficient Monte Carlo scheme that implements this strategy to find
the ground state of many-electron systems. Recognizing that electrostatic (Cou-
lomb) interaction between electrons is not a weak effect but is simply overwhelmed
by Pauli’s principle, a popular model of itinerant magnetism (the Hubbard model)
adds to its Hamiltonian a repulsion term whenever an atom hosts two (opposite spin
projection) electrons.

Section 4 explores the boundaries of the concept of solid. Perhaps, it should be
regarded as a metaphor of this concept. We illustrate a non-equilibrium spatiotem-
poral pattern formation process, akin to resonant crystal structures, in arrays of
FitzHugh-Nagumo cells.

2. Band spectra in the tight-binding approach: effects of the overlaps
between neighboring orbitals

2.1 Quantum mechanics in a nutshell

For the benefit of those readers who are unfamiliar with the standard formalism
of quantum mechanics, we review its main facts:

• Dynamical states are vectors: one can account for the wavelike behavior of
quantum objects (e.g., diffraction of single electrons by two slits) by letting
their dynamical state ∣ψi belong to a vector space over the complex numbers.
In few problems (e.g., addition of angular momenta), this vector space is
finite-dimensional. But most problems entail infinite sequences (e.g., energy
spectrum of the hydrogen atom) or even a continuum of values (e.g., in the
measurement of positions and momenta), so the notion of dimension is
replaced by that of completitude (any state can be spanned in suitable “bases”).
By assigning a complex number φjψh i (their “internal product”) to every pair
of dynamical states ∣ψ⟩, ∣φ⟩, the complete vector space is made into a Hilbert
space.

• Probabilistic interpretation: if ∣ψ⟩ ¼ ∑I αIjψ Ii (be aware that the index set I

may be infinite or may even be a patch of Rd), then αIj j2 yields the probability
to find an outcome represented by ∣ψ I⟩, when the system is in state ∣ψ⟩. This
obviously requires normalization: ψ jψh i ¼ 1.

• Dynamical magnitudes are linear operators L, which take a vector into
another vector. For instance, the projector Pφ ≔ ∣φ⟩⟨ψ ∣ projects state ∣ψ⟩ onto
∣φ⟩. Measuring a dynamical magnitude thus means finding one of its
eigenvalues L∣lI⟩ ¼ lI∣lI⟩. Also of interest is the mean (or expectation) value
ψ jLjψh i of L in a generic state ∣ψ⟩. Correspondence with classical physics
imposes that those eigenvalues be real, and thus dynamical magnitudes must
be self-adjoint (Hermitian) operators (Pφ is thus not a dynamical magnitude).

• Unitary evolution: in order to conserve the probabilistic interpretation, the
dynamic evolution of the state is accomplished by a unitary operator. Again,
correspondence with classical physics (already implicit in Schrödinger’s
equation) forces this operator to be exp �iHð Þ.

3
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• Wave function: a possible “basis” set is that of eigenstates (X∣x⟩ ¼ x∣x⟩) of the
position operator, namely, ∣ψ⟩ ¼

Ð

dx ψ xð Þ∣x⟩. The wave function ψ xð Þ plays
here the role of the coefficients αI. In modern notation, ψ xð Þ is written as xjφh i,
so one writes ∣φ⟩ ¼

Ð

dx ∣x⟩ xjφh i.

• Orthogonality ( φjψh i ¼ 0): a given eigenvalue l1 of a Hermitian operator L
may have a single eigenstate ∣ l1⟩ (the normalized one out of a dimension-1
subspace over the complex numbers) or more (in this case, it is said to be
degenerate). Eigenstates corresponding to different eigenvalues are automatically
orthogonal.

2.2 Naive tight-binding approach to band theory

As argued in Section 1, the starting point of this approach is to express the
electron’s state vector as a linear combination of atomic orbitals (LCAO) located at
the crystal’s lattice sites (we illustrate the procedure in 1D, but clearly, it can be
extended to any dimension and lattice symmetry). The eigenvalue problem of the
isolated atom centered at xc is Hatom ∣ψatom⟩ ¼ Eatom ∣ψatom⟩, with
Hatom ¼ T þ V x� xcð Þ. We then place a copy ∣i⟩ of ∣ψatom⟩ centered at each lattice
site i (xi ¼ ia) and write the electron’s state in the crystal as LCAO

∣ψcrystal〉 ¼ ∑
i
ci∣ii (1)

(clearly, ci ¼ 〈i∣ψcrystal〉). Now, even though the interatomic distance in the

crystal (the “lattice spacing” a) is usually larger than the range x0 of the atomic
orbitals, the atomic cores do interact, and one should include at least two effects:

• A correction to the isolated atomic level Eatom (we shall call α the corrected
level)

• Electron tunneling between neighboring orbitals (let γ be a gauge of the energy
involved in such a “hopping” process)

It thus makes sense to write up the lattice Hamiltonian in terms of projection
operators as

Hcrystal ¼ α∑
i
jii〈i∣� γ∑

i
jiþ 1i ijþjii iþ 1jh Þ:hð (2)

Two timely comments are:

1. The presence of ∣i⟩⟨iþ 1∣, the adjoint of ∣iþ 1⟩⟨i∣, ensures that Hcrystal be

Hermitian.

2. The minus sign in the second term ensures crystal stability (energy is released
by forming a crystal).

Using Eqs. (1) and (2), the eigenvalue problem Hcrystal ∣ψcrystal⟩ ¼ Ecrystal ∣ψcrystal⟩

for the electron in the crystal reads

½α∑
i
jii〈i∣� γ∑

i
ðjiþ 1i〈i∣þjii〈iþ 1∣Þ�∑

j
cj∣ ji ¼ Ecrystal ∑

j
cj∣ ji: (3)

4
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Assuming the states ∣i⟩ to be orthogonal to each other, the left-hand side of Eq. (3)
reads ∑i ci∣ii � γ∑i cijiþ 1ð i þ ciþ1∣i⟩). If the number of sites in the crystal is large
enough (usually it is �106), one can greatly simplify the problem by assuming
periodic boundary conditions (PBC). This allows to rearrange the sums (their
indices become dummy), and Eq. (3) reads ∑i Ecrystal � α

� �

ci � γ∑i ci�1þð
�

ciþ1Þ�∣ii ¼ 0 . Clearly, the LCAO assumes that the ∣i⟩ are linearly independent (be
they orthogonal or not), so we are left with the system of difference equations:

Ecrystal � α
� �

ci � γ∑
i

ci�1 þ ciþ1ð Þ ¼ 0, i ¼ 1…N � 0: (4)

Again invoking PBC, one tries the form cj ¼ exp ijka with �π, ka≤ π (Bloch
phase factors) and obtains the known cosine spectrum

Ecrystal ¼ α� 2γ cos ka, � π, ka≤ π: (5)

What has been left behind? Much indeed:

• We know that α equals Eatom plus some correction, but we do not know what
the correction is.

• Similarly, we know that γ is the expectation value of the effective potential
W i ≔ ∑j 6¼i V x� xj

� �

felt by an electron at x � ia, due to the presence of other

atoms. We have kept just j ¼ i� 1, but even in this approximation, we do not
know what the correction is.

• To what extent can one assume the states ∣i⟩ to be orthogonal to each other? This
assumption is correct in the absence of interatomic interaction, but not
necessarily when atoms interact.

2.3 Tight-binding band calculation: properly done

Recognizing that Hcrystal ¼ ∑i Hatom
i þW i

� �

and using Eq. (1), Ecrystal turns out

to be [1, 2]

Ecrystal ¼ Eatom þ ∑
i
αi cij j2 þ∑

ij
γijc

∗
i cj

" #

�

∑
i
cij j2 þ∑

ij
Sijc

∗
i cj

" #

, (6)

where

αi ≔Hii ¼ 〈i∣W i∣i〉, γij ≔Hij ¼ ijW ij ji, Sij ≔ ij ji, j 6¼ i:h
�

(7)

The contribution of the Sij (known as overlap integrals) to the band spectrum is
our main concern in this section. But not less interesting are that of the αi terms—
which, as argued, shift the electronic energy in an atom from its isolated value
Eatom, as a collective effect of the other atoms—and that of the γij. The latter can be

regarded as the sum of two contributions, as V j ≔V x� xj
� �

can be singled out from

W i. Then whereas the two-center integrals γ 2ð Þ
ij ≔ ijV jj j

��

involve only sites i and j,

the three-center integrals γ
3ð Þ
ij also involve the sum∑l 6¼i, j V x� xlð Þ of the potentials

5
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of the remaining atoms in the solid. Hence, the γ 3ð Þ
ij can be interpreted as the

collective effect on the overlap between orbitals i and j.
Variation of Eq. (6) with respect to the LCAO coefficients of Eq. (1)—namely,

∂Ecrystal=∂a
∗
j ¼ 0—yields Hij � EcrystalSij

� �

aj ¼ 0,∀j. Assuming PBC, Hij and Sij are

functions only of the interatomic distance na, with n ¼ ∣i� j∣. Again using
an ¼ exp inka with �π, ka≤ π, Eq. (6) yields

Ecrystal ¼ Eatom þ αþ 2∑
n
Hn cos nka

� 	�

1þ 2∑
n
Sn cos nka

� 	

: (8)

Note however that the number of multicenter integrals to be computed is
immense! Because of that, most tight-binding calculations plainly ignore almost all
the multicenter integrals (keeping only those involving nearest neighbors) and
neglect orbital non-orthogonality. This way, the familiar cosine spectrum is
obtained. Often, multicenter integrals are just regarded as parameters to fit the
results of more sophisticated calculations made by other methods at the highest
symmetry points of the Brillouin zone.

In the following, we compute all the multicenter integrals exactly in the frame-
work of a simple model for the atomic potential. The results help get an intuition on
the effect on band spectrum of neglecting overlap integrals and distant-neighbor
interactions.

2.4 A simple model that yields an exact tight-binding band spectrum

We restrict ourselves to a 1D monoatomic crystal and assume the interatomic
distance a to be larger than the effective range of the screened Coulomb potential
representing the atomic core. In such a situation, we can approximate the latter by a
Dirac δ-function (complete screening up to the scale of the nucleus):

Vcrystal xð Þ ¼ �V0∑nδ x� nað Þ: (9)

The solution to Hatom ∣ψatom⟩ ¼ Eatom ∣ψatom⟩, with Hatom ¼ � ℏ
2

2m
d2

dx2
� V0δ xð Þ, is

an exponential function of the form ψatom xð Þ ¼ 〈x ψatomj i ¼ x
�1

2
0 exp � xj j

x0


 �

. Its

range x0 is related to Eatom by�Eatom ¼ ℏ
2=2mx20 ¼ mV0=2ℏ

2 .
The only two spatial scales involved in this problem are x0 and the lattice spacing

a. The parameter t ¼ a=x0 will thus allow us to follow the formation of energy
bands (k-space picture) as atoms get close together (real-space picture). All the
multicenter integrals can be computed analytically in terms of t. The results are
Sn ¼ 1þ ntð Þ exp �tð Þ, α ¼ 2Eatom exp �tð Þ=sinh t, and
γn ¼ 2Eatom nþ exp �tð Þ=sinh t½ � exp �ntð Þ [3]. We thus get the following closed

expression for λ≔ Ecrystal � Eatom

� �

=Eatom:

λ k; tð Þ ¼ A0 tð Þ þ A1 tð Þ cos ka½ �= 1þ S tð Þ cos ka½ �, � π, ka≤ π, (10)

where A0 ¼ exp �tð Þsinh t= sinh tcosh t� t½ �, A1 ¼ sinh t= sinh tcosh t� t½ �, and
S ¼ tcosh t� sinh t½ �= sinh tcosh t� t½ � [3].

Explicit evaluation of Eq. (10) at the bottom (ka ¼ 0) and top (ka ¼ π) of the
band shows that for t,4, the cosine spectrum of Eq. (5) underestimates both.
Moreover, the multicenter integrals neglected in the cosine spectrum shift unevenly
the top and bottom of the exact spectrum. Hence, the approximation performs
worse for the top than for the bottom of the band.

6
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3. Quantum Monte Carlo method for systems with strongly
correlated fermions

3.1 Quantum statistical mechanics in a nutshell

The state vectors dealt with in Section 1 represent pure states. They are the ones
which display the spectacular effects seen in recent experiments. Since in this
section, we will allow creation annihilation of electron states, we must work in the
framework of the grand canonical ensemble.3 When one deals with statistical ensem-
bles of quantum states, the object of interest is the Hermitian operator exp �βHð Þ,

called the density matrix operator (here β≔ kBTð Þ�1 and kB ¼ R=NA are Boltzmann’s
constant).

What drives our interest in the density matrix—namely, the matrix elements
between pure states of exp �βHð Þ—is the fact that it can be used to find the ground
state of many-body systems by stochastic methods. For β large enough, exp �βHð Þ
acts effectively as a projector over the lowest-lying energy eigenstate to which the
initial (trial) state ∣φ⟩ is not definitely orthogonal. Let E be the corresponding
eigenvalue, and consider another trial state ∣χ⟩ over which we will project the result.
Then we may numerically compute E from

exp �∆βEð Þ ¼ lim
β!∞

⟨ χj exp � β þ ∆βð ÞH½ �jφ⟩=⟨ χj exp �∆βHð Þjφ⟩½ �: (11)

But what is yet more interesting is that in the process, we find a good estimate of
the eigenstate itself, namely, its composition in terms of a known basis.

3.2 Monte Carlo pursuit of the ground state

The first step in this computation is to divide the interval 0; β½ � into L “time”
slices of width ∆τ ¼ β=L. Some comments are in order:

a.We take our language from the formal analogy between the density matrix
and the evolution operators.

b.Note that in our case, exp �βHð Þ is not meant to be traced over as it should be
in a thermodynamic calculation: here it must rather be considered as a formal
tool to make sense in the limit β ! ∞.

c.We may call U ¼ exp �∆τHð Þ the transfer matrix operator.

If we can decompose H into a sum of several terms Hi which (although not
commuting among them) are themselves sums of commuting terms, then for L large
enough, the error of approximating

U ¼ exp �∆τ H1 þ 2ð Þ½ � ¼ exp �∆τ1ð Þ exp �∆τH2ð Þ exp � ∆τð Þ2 H1;H2½ �
n o

¼ U1U2 1� ∆τð Þ2 H1;H2½ � þ…
n o

� U1U2

would be at most of order ∆τð Þ2. Hence

3 We have already stated that the Fermi level is the chemical potential of an ideal free-electron gas. This

concept is peculiar of the grand canonical ensemble.
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χj exp �βHð Þjφh i � χj U1U2ð ÞLjφ
D E

: (12)

In order to evaluate expression (12), we introduce complete sets of states at each
time slice.

The clue to quantumMonte Carlo simulation of Eq. (11) resides in evaluating the
sums over complete states by importance sampling: in order to do that, observe first
that we can rather arbitrarily decompose

ψ jj U1U2ð ÞLjψ i

D E

¼ SijPij (13)

as the product of a probability times a (complex) number which we will call a
“score.” The probability distribution Pij is at our disposal in order to optimize
numerical convergence, minimize statistical error, etc. It can be shown that the way
to achieve the last goal is by assigning to every matrix element the same score: that
is the basis for the so-called population method. Here the initial (trial) state is
represented by a “population” in which there are ni copies of state ∣ψ i⟩. The latter
corresponds to a definite assignment of occupation numbers both in coordinate and
spin (always belonging to the Hilbert space of the problem, i.e., compatible with the
conserved quantum numbers). To each individual in the population, we apply the
evolution operator, thus obtaining a new state after one time slice. That particular
matrix element can be decomposed as indicated in Eq. (20) (but being now
Sij ¼ S ¼ const). The way in which we implement the Pij is by making as many

copies of that particular resulting state as indicated by 〈ψ j∣ U1U2ð ÞL∣ψ i〉=S. Proceed-

ing this way, we will get a different population after each time slice which we expect
to approach successively to one representing the lowest reachable energy eigenstate.

We have not said anything about the way in which we evaluate the alluded
matrix elements, besides the fact that we resort to the decomposition (20): if, as
we have already assumed, the term Hi can itself be decomposed into mutually
commuting terms, we need only to focus on the Hilbert space of that (much
smaller) system. We can compute exactly the matrix elements of the evolution
operator for that cluster, write them as the product of a probability times a score
(now we can choose the probability distribution to minimize total computing time),
and make transitions among cluster states according to those probabilities,
assigning then the corresponding score to the particular transition.

3.3 The case of fermions

Again within the tight-binding approach to crystalline solids, quantum creation (c†is)
and annihilation (cis) operators determine the existence of electrons with spin projec-
tion σ at site i. For the state vector of the whole set of electrons in the crystal to be
totally antisymmetric under exchange, those operators must anticommute with each
other, unless they refer to the same site and spin projection. In such a case, there can
be at most one electron per site and spin projection, as required by Pauli’s principle.

In the case of the 1D Hubbard model, we chose the following decomposition of
the Hamiltonian, which allows us to consider clusters of only two sites:

H1 ¼ �t∑oddj∑σ c†jþ1σcjσ þ h:c:

 �

¼ �t ∑
oddj

∑
σ

hj, jþ1

H2 ¼ �t∑evenj∑σ c†jþ1σcjσ þ h:c:

 �

¼ �t ∑
evenj

∑
σ

hj, jþ1 (14)

8
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H3 ¼ �t∑all jnj↑nj↓:

The corresponding matrix elements are then ψ iþ1jU3U2U1jψ i

� �

with U1 ¼
Q

oddj exp �∆τhj, jþ1

� �

, U2 ¼
Q

evenj exp �∆τhj, jþ1

� �

, U3 ¼
Q

j exp �∆τ nj↑nj↓

� �

, and

01j exp �∆τhj, jþ1

� �

j01
� �

¼ 10j exp �∆τhj, jþ1

� �

j10
� �

¼ cosh∆τ,

10j exp �∆τhj, jþ1

� �

j01
� �

¼ 01j exp �∆τhj, jþ1

� �

j10
� �

¼ sinh∆τ, (15)

00j exp �∆τhj, jþ1

� �

j00
� �

¼ 11j exp �∆τhj, jþ1

� �

j11
� �

¼ 1,

from which we write up the (a priori) transition probabilities. Then, in case
there is only one occupied site in the block, we draw a random number r and
compare it with the a priori transition probability p for the state to remain the same.
In case that r. p, we make a hopping, i.e., exchange empty and occupied states in
the block.

The a priori probabilities can be better chosen if we take into account the
occupation of those same two sites by electrons with the other spin projection, thus
anticipating to the fact that they will penalize doubly occupied sites [4, 5]. This will
certainly improve convergence.

4. Non-equilibrium routes to soft solids

Up to now, we have dealt with crystalline solids. This means that disregarding
the topology4 of the interaction network, we paid attention to the underlying
geometry of the quantum problem. At present, a host of synthetic materials has
outperformed metals at their initial tasks. Some of them still display a varying
degree of crystalline character, but others are not crystalline at all. Vulcanized
rubbers are an example: created by forcing random chemical bonds in a melt
(a “spaghetti dish”), they are inhibited to flow, and, thus, they are amorphous
solids.5 But they exhibit a varying degree of viscoelastic behavior. In the last
decades, the vast discipline of soft condensed matter has incorporated to mainstream
research in solid-state physics, at equal footing with crystalline solids. The scope of
soft condensed matter is very wide. In particular, it considers many non-
equilibrium routes to self-assembled emergent structures. Of huge interest is the
neocortex (not just because understanding the brain’s behavior is one of the “Holy
Grails” of science, but because in doing it we may achieve to master a computa-
tional strategy which is far more efficient than the present one).

We devote this section to the emergence of non-equilibrium routes to spatio-
temporal patterns in an assembly of model “neurons” which keep their essential
trait, namely, excitability. Admittedly, here the interaction network has the topology
of a lattice, but here it is not the underlying geometry that is at stake. What does
matter here is that the boundary condition be compatible with the interaction, a fact
that contributes to the network’s topology.

4 It will be a lattice only if all interactions but nearest neighbor ones are neglected. Note that crystals

may even have a Cayley tree structure, like the so-called “Bethe lattices.”
5 The electronic properties of amorphous solids are also of interest, e.g., in the photovoltaic (PV)

industry.
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4.1 The non-equilibrium potential (NEP)

It is often hard to tell to what extent an innovation embodies a paradigm shift,
for the high diversity (both in scope and extent) of innovations. The formalism of
quantum mechanics can be regarded as such—with respect to the Newtonian para-
digm—despite the strict correspondence between commutator and Poisson bracket
Lie algebras. Also can Einstein’s three papers in his “annus miraculus” be considered
as such, for they demolished our former conceptions of time, of the nature of
particles and waves, and of a clockwork universe. In 1908, Paul Langevin
supplemented the Newtonian paradigm by letting the forces be of stochastic nature
[6]. It is up to your taste to call this innovation a paradigm shift: it definitely
abolished our clockwork universe conception and opened up a new chapter in the
theory of differential equations. The resulting paradigm is well suited to the current
situation, urged by the challenges of nanoscience (where the “systems” are submit-
ted to strong ambient fluctuations) and favored by the increasing parallelism of
computational architectures (the simulation schemes are essentially local).

The modern approach to continuous-time dynamic flows is of first order.6 Given
an initial state xi of a continuous-time, dissipative, autonomous dynamic flow
_x ¼ f xð Þ, its conditional probability density function (PDF) P x; tjxi;0ð Þ when
submitted to a (Gaussian, centered) white noise ξ tð Þ with variance γ, namely,

_x ¼ f xð Þ þ ξ tð Þ,with  ξ tð Þh i ¼ 0 and  ξ tð Þξ t0ð Þh i ¼ 2γδ t� t0ð Þ (16)

obeys the Fokker-Planck equation (FPE):

∂P x; tjx;0ð Þ þ ∂ J x; tjx;0ð Þ ¼ 0,with J x; tjx;0ð Þ ¼ D 1ð ÞP� ∂x D 2ð Þ xð ÞP
h i

(17)

in terms of the “drift” D 1ð Þ ¼ f xð Þ and “diffusion” D 2ð Þ ¼ γ Kramers-Moyal
coefficients. Being the flow nonautonomous but dissipative, one can expect gener-
ically situations of statistical energy balance in which the PDF becomes stationary,
∂tPst xð Þ ¼ 0, thus independent of the initial state. Then by defining the non-

equilibrium potential Φ xð Þ≔ �
Ð x
x0
f yð Þdy, it is immediate to find

Pst xð Þ ¼ N x0ð Þ exp �Φ xð Þ=γ½ �: (18)

For n-component dynamic flows, Φ xð Þ is defined as � limγ!0 γ lnPst x; γð Þ [7],
but finding it ceases to be a straightforward matter.7 The purpose of this section is
to illustrate its usefulness when known. It is a Lyapunov function for the deterministic
dynamics, and the barriers for activated processes can be straightforwardly
computed limγ!0 γ ln.

4.2 The FitzHugh-Nagumo model and its NEP

Neurons communicate with each other through “action potentials,” which are
pulsed variations in the polarization of their membranes. The celebrated Hodgkin-
Huxley model of neural physiology was one of the great scientific achievements of
the past century. When the goal is insight, however, it is too cumbersome a model

6 Recall it was Hamilton who first succeeded in casting conservative systems as first-order ones. In so

doing, he put coordinates and momenta on the same footing. Systems are conservative if their phase space

does not contract.
7 A key is to ensure the multidimensional version of D 2ð Þ (a symmetric tensor) to be nonsingular.
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to work with. A caricature of this model which nonetheless stresses its essence is
thus far more desirable in many situations. The FitzHugh-Nagumo model is the
minimal model capable to produce action potentials, and the key to this behavior is
excitability. In its minimal expression, the FHN model reads

_u ¼ f uð Þ � v,

_v ¼ ϵ βu–vð Þ: (19)

The activator field u relaxes very fast and displays autocatalytic dynamics (the
more there is, the more it produces, but in a nonlinear fashion) as needed to produce
an action potential. Its nullcline v ¼ f uð Þ (the locus of _u ¼ 0) is a decreasing
S-shaped (typically cubic) curve. On the other hand, the inhibitor or recovery field v
relaxes very slowly (it mimics the time-dependent conductance of the K+ channels
in the axon membrane), so in the end, it enslaves the dynamics. Parameter ϵ is
usually very large, to account for the large difference in relaxation rates. Calling λ1
and λ2 the eigenvalues of the diffusion tensor, the NEP for the autonomous system
described by Eq. (19) is [8]

Φ u; vð Þ ¼ λ2
�1 βu–vð Þ2 þ λ1ϵð Þ�1

βu2–2

ðu

u0

f xð Þdx

� 
2

: (20)

For nonautonomous cases, one can draw consequences from Eq. (20) as far as the
driving is much slower than the involved relaxation times (adiabatic approxima-
tion). In the following, we exploit this advantage.

4.3 Arrays of excitable elements

The result (20) has been employed [9–13] to find the optimal noise variance γ
for arrays of excitable elements to display stochastic resonance synchronized behavior
(see Nomenclature). Here, we briefly illustrate one such a case, where the coupling
is inhibitory (when neuron i fires, neurons i� 1 are less likely to fire) [14]. Inhibi-
tory coupling is central in the dynamics of neocortical pyramidal neurons and
cortical networks, and plays a major role in synchronous neural firing. On the other
hand, inhibitory interneurons are more prone to couple through gap junctions
(diffusive or “electric” coupling) than excitatory ones. In the transition from wake
to anesthetic coma, for instance, diffusive coupling of inhibitor fields helps
explaining the spontaneous emergence of low-frequency oscillations with spatially
and temporally chaotic dynamics.

We consider a ring of N identical excitable FHN cells, with their inhibitor fields
electrically coupled to those of their nearest neighbors. The system is moreover
submitted to a common subthreshold (see Nomenclature) harmonic signal S tð Þ and
independent additive Gaussian white noises in each component and each site, all
with the same variance γ.

Numerical simulation of this stochastic system with increasing γ—for appropri-
ate values of the diffusive coupling E between neighboring inhibitor fields—reveals
the noise-induced phenomena taking place: synchronization with the external signal
of the ring’s activity and (imperfect) spatiotemporal self-organization of the cells.
For an optimal value of γ, a stochastic resonance phenomenon takes place, and the
degree of spatiotemporal self-organization—alternancy between two antiphase states
(APS)—is maximum.

For very low γ, only small-amplitude and highly homogeneous [ui tð Þ ≈ uj tð Þ]
subthreshold oscillations (induced by the adiabatic signal) occur around the S ¼ 0
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rest state. As γ increases, so does the number of cells that become noise-activated
during roughly half a cycle of the external signal. For γ even higher, the cells’
activity enhances its coherence with the external signal as a consequence of its
coupling-mediated self-organization: as one neuron activates, it usually inhibits its
nearest neighbors. The outcome of this phenomenon is the APS, which partially
arises along the ring during the stage of activation by noise. In this scenario, noise
(together with coupling and signal) plays a constructive role. Nonetheless for γ too
large, the sync becomes eventually degraded.

4.4 Spatiotemporal pattern formation in arrays of FHN neurons

We exploit the knowledge of the NEP in Eq. (20) to attempt an analytical
description of the problem in Section 4.3. The case of perfect spatiotemporal self-
organization would be equivalent to a two-neuron system with variables u1, u2, v1,
and v2 and PBC. This simple model allows the formation of an antiphase state. Since
a NEP cannot be easily found for this system—and with the only purpose of
calculating barrier heights—we further reduce this description by projecting the
dynamics along the corresponding slow manifolds:

ϵβu1,2 � v1,2 þ 2E v2þ v1� v1,2ð Þ ¼ 0: (21)

The projected two-variable system turns out to be gradient, a situation in which
a NEP can always be found. As a consequence of the PBC, the NEP landscape along
the slow manifolds is symmetric with respect to the u1 ¼ u2 line. For E ¼ 0:5 and
maximum signal amplitude, the system has two uniform attractors (both cells
inhibited, both cells activated), two APS (with one cell activated and one inhibited)
with the same value ofΦ u1; u2ð Þ, four saddles, and one maximum. For S ¼ 0 instead,
the uniform attractor with both cells activated has collapsed with the maximum,
and, hence, two saddles have disappeared.

When the value of Φ u1; u2ð Þ at the uniform attractor, either APS and either
corresponding saddle, is plotted as a function of S, one can see the following:

• Near maximum signal, the uniform attractor yields its stability to the APS.
From this value of S on, the NEP barrier for the uniform attractor to decay into
the APS (a noise-activated process) is small enough.

• Way before minimum signal, each APS collapses with its own saddle.

One then understands the picture: as S increases, whatever of the APS is chosen.
As S decreases past the collapse, only the uniform attractor survives. However, the
neuron which was activated before has not recovered completely. Hence in the next
signal cycle, the other APS is more likely to appear.

5. Conclusions

In Sections 2 and 3, we have discussed the influence of quantum correlations on
the formation of tightly bound solids. Section 2 is devoted to the effects of the
overlaps and neglected multicenter integrals on tight-binding band spectra. An
exact calculation in the framework of a simple atomic model has shown that they
shift unevenly the top and bottom of the band spectrum (their effects are more
pronounced at the top). Section 3 introduced a quantum Monte Carlo method
specific for strongly correlated fermion systems. Section 4 addressed the stochastic
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dynamics of a ring of FHN cells—with nearest neighbor electric (diffusive) coupling
between their inhibitor fields—undergoing spatiotemporal pattern formation
induced by noise and coupling. By means of a simple model for which a NEP can
be found, the mechanism whereby the process takes place was investigated
analytically.
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Nomenclature

Ideal gas the (identical) particles composing such a gas do not
interact between themselves.

Free electrons they are not submitted to any external (e.g., crystal)
potential.

Chemical potential it is the cost of adding a particle to the system. For two
open systems (which can exchange matter and energy
with their environments) to come to equilibrium, not only
their temperatures but their chemical potentials must be
equal.

Subthreshold unable by itself to drive a transition.
Stochastic resonance nonlinear systems may display the property of amplifying

a subthreshold input signal in the presence of noise with
the right intensity.
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