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Chapter

Age-Related Thymic Atrophy: 
Mechanisms and Outcomes
Rachel Thomas and Dong-Ming Su

Abstract

Age-related thymic atrophy or involution, a hallmark of thymic aging, takes 
place both in humans and animals. In this chapter, we will discuss age-related 
thymic atrophy, outlining the underlying cellular and molecular mechanisms 
of its occurrence. We will also address the downstream influences on the aged 
T cell immune system, not only regarding insufficiency against pathogens, but 
also hyper-reactivity to self. Particularly, we will focus on how thymic atrophy 
disrupts efficient establishment of central T cell immune tolerance primarily via 
impairment of thymocyte negative selection, resulting in an increased number of 
self-reactive conventional T cells, and on thymic-derived regulatory T cell genera-
tion. Finally, we will provide a framework for understanding the significant role 
that the atrophied thymus plays in shaping inflammaging: a chronic, low-grade, 
systemic inflammatory phenotype observed in aged individuals in the absence of 
acute infection. The involvement of T cell adaptive immunity in mediating inflam-
maging plays a crucial role in the progression of many age-related neurological and 
cardiovascular diseases.

Keywords: thymic atrophy, aging, inflammaging, central tolerance, 
regulatory T (Treg) cells

1. Introduction

The thymus gland is the primary central lymphoid organ involved in develop-
ment and selection of T lymphocytes (T cells) [1]. It is also responsible for the 
establishment of central T cell immune tolerance, which includes two mechanisms: 
thymocyte negative selection, through which most self (auto)-reactive T cells are 
depleted [2], and the generation of CD4 single positive (CD4SP)FoxP3+ regulatory 
T (Treg) cells [3], which act to suppress self-reactive T cell-mediated reactions in 
the periphery [4]. It is thought that Treg cells provide some level of compensation 
for imperfections in negative selection that allow some self-reactive T cells to escape 
this protective process [5]. As part of the aging process, the thymus undergoes 
progressive involution or atrophy in most vertebrates, exhibiting not only morpho-
logical changes, but also a functional decline resulting in [6, 7] significantly lowered 
thymic output [8].

The theoretical causes of this age-related diminishment of thymopoiesis are 
two-fold. First, is the notion of a hematopoietic defect. This stems from the obser-
vations that there are reduced numbers of hematopoietic stem cell (HSC) progeni-
tors produced by the bone marrow with age, [9] that could cause a reduction in 
early T-cell progenitors (ETP) entering the thymus [10]. Second, is the notion of a 
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non-hematopoietic defect, which suggests that the primary age-related atrophy of 
the thymus is derived from HSC niche cells [11, 12] and thymic stromal cells, or ETP 
niches [13, 14]. The myriad of changes that characterize thymic atrophy first occur 
within the thymic niche and then extend to the ETPs as a result of age. We believe 
that these substantial age-related alterations in thymic microstructure and micro-
environment, which provide important thymic factors, contribute more heavily to 
the diminished thymopoiesis observed in the elderly [7, 13] The primary thymic 
stromal cells are thymic epithelial cells (TECs), including two subpopulations 
distinct in their localization, function, and molecular expression patterns, namely 
medullary TECs (mTECs) and cortical TECs (cTECs) [15]. Compelling evidence 
show that age-related thymic atrophy is tightly associated with postnatal TEC 
homeostasis, which is regulated by TEC autonomous transcription factors (TFs), 
such as Forkhead box N1 (FoxN1) [16].

Age-related changes to immune system function, often referred to as immu-
nosenescence [17–20], are generally thought of as immune insufficiency, such as 
reduced anti-infection and vaccine immunity [21] and reduced tumor surveillance 
[22, 23]. However, self-reactive immune responses are elevated in the elderly, 
which is a result of inflammaging, a chronic, low-grade, systemic inflammatory 
phenotype in the absence of acute infection observed in aged individuals [24–31]. 
Immunosenescence and inflammaging are antagonistic phenotypes, but they actu-
ally comprise two sides of the same coin in terms of age-related immune dysregula-
tion [19, 20, 32, 33]. It has been proposed that the basal inflammatory state defined 
by inflammaging greatly contributes to many age-related degenerative diseases, 
including neurodegenerative diseases, such as Alzheimer’s disease, metabolic 
diseases, and cardiovascular diseases, among others [30, 34, 35].

Here, we will outline the cellular and molecular mechanisms underlying the 
occurrence of age-related thymic atrophy including some of the aforementioned 
hallmarks, and its effects on general T cell output. We will also describe its effects 
on the establishment of central T cell immune tolerance via a combination of both 
mechanistic arms of central tolerance: thymocyte negative selection and thymic-
derived CD4SPFoxP3+ T regulatory (tTreg) cell generation. We will discuss why we 
believe many aspects of the adaptive immune system’s role in the development of 
inflammaging can be attributed to these thymic manifestations. Finally, in light of 
new trends in T cell immune system aging, we will expand on some future research 
goals in the field of thymic atrophy interventions and therapeutics as a potential 
conduit for normalizing aged T cell-mediated immunity. This is of clinical signifi-
cance for combating age-related neurological and cardiovascular diseases.

2. Hallmarks of age-related thymic atrophy

During aging, the thymus undergoes progressive atrophy [36]. In addition to 
a reduction in thymic mass (size and thymocyte numbers), there is substantial 
remodeling of the thymic microstructure. The thymus is characterized by two 
primary compartments, namely the cortex and the medulla. In between the 
cortex and medulla, there is a zone termed the corticomedullary junction (CMJ) 
(Figure 1a). These two compartments contain specialized thymic epithelial cells 
(TECs), cortical (cTECs) or medullary (mTECs), and these cellular compart-
ments are responsible for different stages of thymocyte development and selec-
tion [37, 38]. Regarding thymic microstructure, the aged, involuted thymus, in 
addition to an overall decline in TEC-associated markers, such as keratin and 
major histocompatibility complex class-II (MHC-II), also manifests altered ratios 
of cTECs to mTECs, and an overt change in microstructure due to disrupted 
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CMJ, resulting in a disorganized medullary region (Figure 1b). A decline in 
MHC-IIhi expressing TECs is a sign of the reduction of mature mTECs [39, 40]. 
Additionally, increased numbers of fibroblasts [39] and accumulation of adipose 
tissue in the thymus is also observed [40].

Increased senescent cells (β-Gal+, p21+, and TAP63+) [41] in the aged thymus are 
also present, and it has been demonstrated that TECs contribute to the senescence 
observed in the aged thymus [39, 41, 42]. This possibly contributes to an increased 
inflammatory environment (increased levels of IL-6, IL-1β, etc.) within the invo-
luted thymus [30, 43]. Additionally, there is augmented apoptosis in TECs of the 
atrophied thymus, contributing to diminished stromal cellularity [39].

3. Mechanisms of age-related thymic atrophy

3.1 Mechanisms of diminished thymic input and output associated with aged 
thymus

Perhaps the most noted outcome of age-related thymic atrophy is diminished 
thymic output and thymopoesis. This attracts attention and has led many groups to 
examine whether the bone marrow (BM) derived hematopoietic stem cell (HSC) 
lymphoid progenitors are sufficiently able to seed the thymus during aging. This 
is because HSCs are reduced [9] with a myeloid biased development in advanced 
age [44]. There have been many studies investigating this aspect of thymopoiesis 
and it is suggested that age-related HSCs contain defects [9] that could contribute 
to insufficient entry of early T-cell progenitors (ETPs) into the aged thymus [10]. 
Thus, this result could explain decreased thymic output with age [45].

Mechanisms of diminished thymic input resulting in thymic involution and 
declined thymic output are mainly based on bone marrow transplantation (BMT) 
experiments using mouse models. In these models, transferring aged HSCs into 
young mice could not rejuvenate the thymic involution induced by irradiation prior 
to bone marrow transplantation [46]. Additionally, the HSC progenitors have been 
shown to exhibit an age-related skewed proportion within the HSC pool towards 
myeloid lineage versus lymphoid lineage [44, 47–49]. It has also been observed 
that early stage thymocytes, defined as the ETPs in the triple negative-1 (TN1) 
thymocyte population, from aged mice demonstrated decreased differentiation 

Figure 1. 
Thymic microstructural changes characterized by K8 and K5 fluorescent staining. In the aged thymus, the 
CMJ is not clear, because the medulla is disorganized and medullary TECs are dispersed and do not form a 
distinct compartmental region. Normally, K8+ TECs (green) are primarily localized in the cortical region, 
while K5+ TECs (red) are primarily localized in the medullary region. A) Young (~2 months old) murine 
thymus; B) aged (>18 months old) murine thymus. C = cortex, M = medulla, CMJ = corticomedullary junction, 
SC = subcapsule.
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after in vitro fetal thymic organ culture [10]. This group also reported declined 
proliferation and enhanced apoptosis of these early thymocytes taken from aged 
animals compared to young controls. The overall assertion was that the deficiency 
in thymocyte differentiation and development past this early stage was attributed 
to the production of the HSCs in the aged bone marrow [10]. Therefore, aged HSCs 
and ETPs were regarded as having an intrinsic defect [50].

Given the comprehensive microenvironments in young and aged animals, and 
the vulnerability of HSCs or ETPs during in vitro preparation, these experiments 
using BMT and ETP culture may not provide the necessary rigor for the conclusions 
drawn from them, and certainly do not adequately reflect physiological conditions. 
Therefore, we designed an age-mismatched experimental system with less in vitro 
preparation to reexamine these biological events [13, 51]. One design was to utilize 
young or aged IL-7R knockout mice as recipients [13, 52, 53], in which their BM 
niche is relatively open and available to accept exogenous BM cells without irradia-
tion [52, 54]. After grafting young BM cells into young and aged IL-7R knockout 
mice, the young BM cells produced a young profile in young recipients, but the 
same young BM cells produced an old profile in aged recipients [13], which implies 
that the microenvironment directs BM cell aging, rather than the HSCs themselves 
[14]. The other design was to utilize mouse fetal thymus transplantation into young 
or aged mice, in which BM progenitors from young or aged recipients seed the 
grafted young thymus in vivo [51]. After grafting fetal thymic lobes into young and 
aged wild-type recipient mice, BM progenitors from young and old mice were able 
to grow equally well in the engrafted thymus (with young thymic microenviron-
ment) [51]. In addition, aged HSCs seeding the engrafted thymus did not demon-
strate any intrinsic defects [13, 55]. These comprehensive experiments provide solid 
evidence that the non-hematopoietic microenvironment, rather than HSCs, direct 
hematopoietic progenitor aging [14], thereby mediating the kinetics of thymic 
involution [7].

An important fact linking these potential mechanisms is the unique cross-talk or 
interaction that occurs between the developing hematopoietic progenitors (such as 
thymocytes) and the stromal microenvironment (such as TECs) in the thymus [15]. 
For example, there are reports that several key thymic factors involved in this cross-
talk are adversely impacted by age-related thymic atrophy. One such factor is IL-7, 
secreted by TECs, which is important for thymopoiesis and has been shown to be 
reduced in the aged thymus [56]. Interestingly, direct exogenous supplementation 
of IL-7 helped to improve aged thymopoiesis [57]. On the other hand, thymocytes 
provide signals to promote TEC development, at least during thymic organogen-
esis [58, 59], but the dynamics of this phenomenon during thymic aging remain 
unknown.

In general, adult organ size is governed by the tissue-specific stem cell pool 
[60, 61]. It is known that there are two types of tissue-specific stem pools: infinite 
pools, such as in the liver, and restricted pools, such as in the pancreas. For example, 
if the liver is injured, its infinite stem pool can expand at a high capacity; whereas, 
if the pancreas is injured, the expansion of its tissue-specific stem cell pool is very 
 limited due to its restricted and finite epithelial progenitor pool. The thymic epithe-
lial progenitor pool has characteristics of the restricted, finite epithelial progenitor 
pool [61]. Therefore, it is conceivable that aging TECs exhibit limited turnover com-
pared to mobile thymocytes, which are periodically entering from the BM [62, 63].

Taken together, deficiencies in thymocyte-TEC interactions in the thymus [15] 
promote thymic atrophy during aging. However, given the fact that thymocytes are 
mobile with a relatively short period of thymic residency, while TECs have perma-
nent residency in the thymus, experimental evidence [13, 51] and the “seed and 
soil” theory describing how the soil (stem niche) directs seed (HSC) fate [64–66], 
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lead us to conclude that age-related thymic involution begins with defects in the 
TEC compartment.

3.2 Mechanisms of thymic stromal cell-mediated structural thymic atrophy

In light of the aforementioned evidence of age-related TEC defects and the 
decline in total TEC numbers in the aged, atrophied thymus, we now move to 
discuss the underlying mechanisms of these alterations. Many studies have been 
conducted to identify factors involved in the cellular and molecular aspects of TEC 
aging (cytokines, transcription factors, microRNAs, sex steroids, etc.). The single 
most predominant factor currently accepted as significantly contributing to this 
phenomenon is the TEC autonomous transcription factor FoxN1. This idea was 
based on the athymic nude mouse phenotype [67, 68]. FoxN1 is expressed mainly 
in epithelial cells of the thymus and skin to regulate epithelial cell differentiation 
in these organs [67]. It is thereby responsible for thymic organogenesis and subse-
quent T cell development in the thymus [16], as well as hair follicle development in 
the skin [69, 70]. Many past and current studies utilize nude mice, which exhibit a 
null mutation in FoxN1 resulting in the lack of hair and the thymus, which explains 
the lack of T cells in these mice [71, 72].

FoxN1 is noted to be reduced in expression in the age-related atrophied thymus 
and has even been described as one of the first markers of the onset of thymic 
involution [73, 74]. The question is whether this reduced FoxN1 expression is 
due to TEC aging, which results in a decline in many TEC-associated genes, or 
if primary FoxN1 decline with aging induces a TEC defect that then results in 
age-related thymic involution. This cause-and-effect relationship had been sub-
stantially debated prior to the generation of a conditional knock-out (cKO) FoxN1 
mouse model [75]. In this model, the murine FoxN1 gene is loxP-floxed and the 
uCreERT is introduced through crossbreeding [76]. In this model, the tamoxifen 
(TM)-inducible ubiquitous Cre-recombinase (uCreERT) transgene has a low level 
of spontaneous activation, even without TM induction [77, 78], causing gradual 
excision of the FoxN1flox/flox gene over time. This results in progressive loss of 
FoxN1 with age and thymic involution that is positively correlated with reduced 
FoxN1 levels [79]. Supplying exogenous FoxN1, such as via plasmid [79] or trans-
gene [80, 81], into the aged thymus greatly reduces thymic atrophy and improves 
function. Additionally, the use of FoxN1 reporter mice has enabled further eluci-
dation of the timeline and kinetics of thymic atrophy with age [82]. For example, 
one group recently published a study demonstrating that the reduction in FoxN1 
initiates the onset of thymic involution, beginning predominantly in the cTEC 
compartment [82]. Therefore, a decline in FoxN1 expression with aging causally 
induces flaws in TEC homeostasis, thereby resulting in age-related thymic atrophy, 
as opposed to the notion that age-induced thymic atrophy causes FoxN1 decline in 
the thymus.

4. Outcomes of age-related thymic atrophy

Overt outcomes of age-related thymic atrophy include reduction of functional 
naïve T cells, which is related to a decline in T cell receptor (TCR) repertoire 
diversity [8, 55, 83, 84]. However, the atrophied thymus is still functioning, albeit 
with limitations, in the elderly, continuing to select T cells for the lifetime of the 
individual. This causes a potential for the atrophied thymus to generate harmful T 
cells that could increase autoimmune predisposition the elderly [26]. Therefore, we 
will review recent research progress regarding this area of concern.
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4.1 Decreased naïve conventional T cell output

As stated previously, the most readily observed outcome of age-related thymic 
involution is the decline in thymic output, which includes reduced naïve con-
ventional T (Tcon) cell output over time [85] and fewer recent thymic emigrants 
(RTEs) [8]. However, peripheral T cell numbers are not decreased in aged individu-
als [36, 86, 87]. The actual effect is an overall diminished TCR repertoire diversity 
observed in the aged peripheral T cell pool [8, 55, 83, 84], which is due to oligo-
clonal expansion of memory T cells along with insufficient RTE output. This has 
been suggested to contribute to the decreased capacity for new immune responses 
to infection and poor vaccination efficacy, which are typical phenotypes of immu-
nosenescence [17–20], observed in the elderly [35].

This phenotype has been recapitulated in FoxN1 cKO mice, which have acceler-
ated aging in the thymus, but maintain a young periphery, as they exhibit impaired 
peripheral T cell responses in infection with influenza virus [88]. This study also 
demonstrated a direct role for thymic atrophy in the impairment of T cell function 
during aging.

4.2 Increased self-reactive conventional T cells due to perturbed negative 
selection

In light of the alterations in thymocyte number and diminished naïve T cell out-
put with age-related thymic atrophy, it is of paramount importance to understand 
the effects of the altered thymic micro-environment on central tolerance establish-
ment of the thymocytes that are still being developed in the atrophied thymus.

Under the current paradigm, negative selection is the process by which thymo-
cytes with high affinity for self-peptides presented by MHC are deleted from the 
developing thymocyte repertoire via apoptosis [2, 38, 89]. Studies also show that 
when these high affinity TCRs receive strong signaling, negative selection takes 
place [90, 91]. However, the TCR signaling strength is not based solely on TCR 
affinity, but is also influenced by avidity, or the quantity of interactions between 
self-peptide/MHC (self-pMHC) complexes and the TCR (Figure 2). Therefore, if 
the thymocyte-intrinsic factors (i.e., TCR affinity and number), of self-reactive 
thymocytes are unchanged, the TCR signaling strength varies based on the abil-
ity of effective self-pMHC-II expression. In other words, if self-antigen can be 
normally presented in the MHC-II groove, the reciprocal TCR signaling should 
be produced through a strong interaction. We know that MHC-II is expressed 
on mTECs, however, aging induces mTEC defects (Figure 1b), resulting in 
reduced capacity for self-pMHC-II ligand expression. Therefore, we suggest that 
a strong signaling strength shifts either to an intermediate strength, which favors 
CD4SPFoxP3+ tTreg cell generation (Figure 2, arrow-a), or to a low strength, which 
results in the generation of self-reactive thymocytes (Figure 2, arrow-b). The self-
reactive thymocytes via this pathway are neither depleted nor shifted to Treg cells, 
but become Tcon cells that are released to the periphery. If they encounter specific 
self-tissues, they may become effector T (Teff) cells that can attack self-tissues and 
induce pathological inflammation.

The FoxN1 cKO mouse model is a useful model for studying the capacity for 
efficient self-pMHC-II ligand expression, because it exhibits a defect in the non-
hematopoietic TECs, but maintains intrinsically normal hematopoietic lineage cells 
and a young periphery. We demonstrated that thymic involution perturbs negative 
selection, as revealed by the enhanced release of autoreactive interphotoreceptor 
retinoid-binding protein (IRBP)-specific Tcon cells from the atrophied thymus of 
FoxN1 cKO mice compared to the thymus from young normal controls [25]. This 
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result is presumably due to decreased self-pMHC-II expression, confirmed via 
assessment of a mock self-antigen in normal versus atrophied thymus [92].

4.3 Changes in thymic-derived regulatory T cell generation

As mentioned earlier, central tolerance establishment encompasses two mecha-
nisms. The first mechanism, negative selection, is not entirely perfect [5] resulting 
in some self-reactive T clones being released into the periphery as Tcon cells. The 
second defense against self-reactivity is CD4SPFoxP3+ peripheral Treg (pTreg) 
cell-mediated autoimmune suppression. It is believed that 80–95% of pTreg cells 
are generated within the thymus, as thymic-derived T regulatory (tTreg) cells 
[93–95]. Under the current paradigm, the processes of both negative selection and 
tTreg generation in the thymus utilize the same set of agonist self-peptides [93, 96]. 
Whether self-reactive thymocytes developing in the thymus are negatively selected 
or develop into tTreg cells depends on TCR signaling strength, or the sum of TCR 
affinity and avidity, (or the number of TCR interactions with self-peptide/MHC) 
when all other variables, such as IL-2, etc., are fixed. Put simply, strong signaling 
induces the apoptosis of self-reactive thymocytes, intermediate signaling leads to 
tTreg generation, and weak signaling results in the survival of thymocytes that 
differentiate into Tcon cells (Figure 2). This paradigm implies that depletion or 
survival for thymocytes is dependent on overall TCR signaling strength [38, 93].

Although there are cell extrinsic factors that can impact thymocyte develop-
ment, such as the thymic cytokine milieu (IL-2 [97, 98], TGF-β [98, 99], etc.), we 
propose that there are two cell types that directly regulate TCR signaling strength. 
One is intrinsic to thymocytes and the other is intrinsic to TECs. When the TCR 
binds to self-peptide/MHC on an antigen presenting cell, the immunoreceptor 
tyrosine-based activation motifs (ITAMs) are activated and the Zap70 kinase is 
subsequently phosphorylated. A mouse model with a knock-in allele of TCR zeta 
(ζ) chain gene with tyrosine-to-phenylalanine mutations in 6 out of 10 ITAMs led 
to a 60% decrease in TCR signaling potential [100]. This mouse model exhibited a 

Figure 2. 
Signaling strength decides self-reactive CD4SP T clone fates. Interaction between self-pMHC on mTEC and 
self-reactive TCR on CD4SP thymocyte produces thress types of signaling strength: a strong signal leads to 
negative selection, resulting in depletion, an intermediate signal leads to tTreg generation, and a weak signal 
results in thymocyte survival to differentiate into Tcon. Thymic aging (green arrow—a) shifts signaling strength 
from strong to intermediate and relatively enhances polyclonal tTreg generation; while some antigen-specific 
interactions exhibit an extremely weak signal, resulting in diminished antigen-specific tTreg cells and increased 
antigen-specific Tcon cells (green arrow—b).
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defect in negative selection, but an increase in tTreg generation [100]. The second 
variable is the relative expression level of self-peptide/MHC on TECs. Transgenic 
expression of a microRNA targeting the MHC class-II transactivator (CIITA) 
resulted in reduced MHC-II on mTECs [37], leading to insufficient mTEC presenta-
tion of self-peptides thus reducing the overall avidity of the TCR interaction with 
self-peptide/MHC. This also resulted in the enhancement of tTreg generation at the 
expense of negative selection [37].

In the aged thymus, as we mentioned earlier, mTECs are flawed and self-antigen 
cannot be normally presented in the MHC-II groove, which results in a diminished 
interaction with TCRs on developing thymocytes. This is similar to the second 
scenario described above, in which a defect exists in the TEC compartment causing 
reduced TCR signaling strength. We observed a relatively enhanced tTreg genera-
tion in the atrophied thymus, exhibiting no change in overall tTreg numbers, but 
an increased ratio of tTreg to tTcon cells in the aged, atrophied thymus compared 
to young controls [92]. This is probably a demonstration of the atrophied thymus 
attempting to compensate for defective negative selection [25] in order to maintain 
central T cell tolerance in the elderly.

If self-reactive TCR signaling strength is too low these thymocytes may neither 
be depleted nor form tTreg cells, but rather may directly differentiate into self-
reactive Tcon cells. As an artifact of impaired promiscuous self-antigen expression 
in mTECs through an autoimmune regulator (Aire) knock-out model, the Aire-
dependent TCAF3 epitope of prostate antigen cannot be promiscuously expressed 
on mTECs [101]. This resulted in prostate-specific thymocytes, which should be 
negatively selected, but in contrast were redirected into prostate-reactive Tcon cells. 
The authors observed loss of prostate-specific tTreg cells for this same epitope, and 
heightened prostate-reactive Tcon cells that infiltrated the prostate of these mice 
causing auto-inflammatory lesions [102, 103]. Defects in self-peptide expression on 
mTECs due to protein knock-out [104], are beginning to suggest that some of the 
same impairments exhibited by the atrophied thymus, may impact antigen-specific 
(monoclonal) tTreg generation, meanwhile increasing this same self-antigen 
specific Tcon generation, despite an unchanged or increased total (polyclonal) 
tTreg population [105]. It will be interesting to see what further subtle implications 
the aging thymus has on central tolerance establishment via potentially altering 
certain self-tissue specific tTreg populations and altering the overall aged Treg TCR 
repertoire, in spite of a relatively increased aged polyclonal Treg population [92].

4.4 Overall contribution to inflammaging

Inflammaging or the age-related, persistent increase in basal pro-inflammatory 
phenotype, has long been thought to be primarily a result of senescent somatic cells 
exhibiting senescence-associated secretory phenotype (SASP) [30, 31, 34, 106]. 
However, it is has come to be appreciated that chronic immune activation in the 
elderly contributes to a pro-inflammatory secretory milieu. This activation in the 
elderly includes chronic innate immune activation, which may result from immu-
nosenescence related to accumulation of memory T cells. Chronic innate immune 
activation is also attributed to long-term virus, such as cytomegalovirus (CMV) 
[29, 107, 108], infection; or a degeneration-associated autotoxic reaction [109]. 
However, age-related autoimmune predisposition (an adaptive immune activation), 
induced by adaptive immune reaction to self-tissues by self-reactive T cells, has 
recently been recognized as a potential factor and/or synergistic cause of chronic 
inflammation in the elderly [25, 34]. Therefore, the role of the adaptive immune 
system in mediating inflammaging, as a result of self-reactive T cell immune 
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responses to self-tissue that increases with age, is directly related to the atrophied 
thymus [25, 34].

Since it has recently been confirmed that the involuted thymus releases self-
reactive Tcon cells as a result of perturbed negative selection, the direct implica-
tions of age-related thymic atrophy on the risks of inflammaging and the associated 
subclinical increase in the pro-inflammatory milieu has become more clear [25].

Subsequent alterations in tTreg development may also play an unappreciated 
role in the increased self-reactivity associated with aging, as changes in the tTreg 
repertoire may in fact impair sufficient suppression of appropriate self-reactivity in 
the periphery, however, this still remains largely uninvestigated.

5. Trends in rejuvenation of age-related thymic atrophy

Rejuvenation of aged thymic function is one of the strategies to reduce inflam-
maging because it can reduce self-reactive Tcon cell release and potentially readjust 
tTreg cell function so that the adaptive immune aspects of inflammaging may 
be ameliorated. Several strategies to rejuvenate the atrophied thymus have been 
reported, including: (1) TEC stem cell-based strategies, including utilization of 
human embryonic/pluripotent stem cells [110–112], FoxN1eGFP/+ knock-in epithelial 
cells [113], young TEC-based [114] or inducible TEC-based [115] strategies;  
(2) cytokine-to-TEC based therapy, such as keratinocyte growth factor (KGF) [116, 
117] and IL-22 [118–120]; (3) genetically-based methods (enhancement of exog-
enous FoxN1 expression with FoxN1 cDNA plasmid and FoxN1 transgene) [79–81], 
and (4) epigenetically-based methods (via exosomes extracted from young healthy 
serum) [121].

As to the genetic rejuvenation strategy via exogenous FoxN1, intrathymic injec-
tion of plasmid vectors carrying FoxN1-cDNA into middle-aged and aged mice was 
able to partially rescue thymic atrophy and function. The investigators observed 
increased thymic size and thymocyte number in the treated group compared to 
mice receiving empty vector [79]. Another group utilized an inducible FoxN1 over-
expression reporter gene system, and it was demonstrated that in vivo upregulation 
of FoxN1 expression in middle-aged and aged mice resulted in increased thymic size 
and thymocyte numbers as well as increased numbers of early thymic progenitor 
cells [81]. Additionally, the ratio of mTECs to cTECs, which is normally declined, 
was restored to normal levels [81].

As to cell-based therapy, this has also been investigated as a potential source 
of thymic rejuvenation via the use of exogenous TECs from newborn thymi. The 
investigators, after observing that circulating factors alone (via a heterochronic 
parabiosis model, in which young and aged mice are surgically joined resulting in 
mutual influence of blood-borne factors [122–130]) did not rejuvenate the aged 
thymus, utilized a model of direct transplantation of TECs from newborn mice 
intrathymically into middle-aged recipients [114]. This group observed renewed 
growth of the thymus as well as enhanced T cell generation [114].

Other groups are investigating the use of reprogrammed mouse embryonic 
fibroblasts (MEF), as sources of exogenous FoxN1, as a means of generating de novo 
ectopic thymus. One such group generated induced TECs (iTECs) from MEF cells 
by initiating FoxN1 expression that converted MEF cells into epithelial-like cells in 
vitro [115]. Then, these iTECs, after some testing, were re-aggregated and grafted 
under the kidney capsule of syngenic adult mice to evaluate the ability of these 
iTECs to develop into a functional thymus-like organ. Interestingly, the grafts were 
seeded by host T cell progenitors and reflected thymocyte distributions associated 
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with the normal thymus at endpoint (4 weeks after engraftment). Additionally, 
typical thymus microstructure was observed in these grafts [115].

The overarching conclusions taken from these cytokine, cellular, genetic, or 
epigenetically-based rejuvenation strategies are that FoxN1 expression is a key 
target for rejuvenating TECs, resulting in a more functional thymus able to produce 
normal T cells. However, we need to recognize that any rejuvenation therapy has 
its pitfalls. For example, intrathymic injection of newborn TECs can rejuvenate 
middle-aged thymus [114], but the source of newborn TECs is limited and may not 
be ideal as a translational therapy. Additionally, generation of an ectopic de novo 
thymus under the kidney capsule [115] can generate naïve T cells, but this does not 
remedy the increased self-reactive T cells released by the original atrophied thymus 
remaining in the host. Also, the use of cytokines may help revitalize the thymus, 
but as a systemic therapy could present various detrimental side-effects. Therefore, 
further studies to develop practical and effective therapies are necessary.

6. Conclusion

In conclusion, age-related thymic atrophy is a dynamic process beginning 
early in life that shapes T cell development and the establishment of central T cell 
tolerance. There is substantial clinical significance in further exploring the under-
lying mechanisms of its effects on the various subsets of T cells developed in the 
atrophied thymus, namely Treg and Tcon cells. Also, continued investigation into 
potential avenues of thymic rejuvenation are striving to reverse the adverse effects 
of age-related thymic atrophy on the aged T cell immune system, since increased 
self-reactive T cells are observed with age, contributing to inflammaging. Moreover, 
there are numerous areas still to explore in this field with far-reaching applications.
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