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Chapter

A New Mouse Model of 
Aortic Aneurysm Induced by 
Deoxycorticosterone Acetate or 
Aldosterone in the Presence of 
High Salt
Ming C. Gong, Shu Liu and Zhenheng Guo

Abstract

The renin-angiotensin-aldosterone system (RAAS) is implicated in the etiolo-
gies of many cardiovascular diseases, including abdominal aortic aneurysm (AAA) 
and thoracic aortic aneurysm (TAA). In particular, the infusion of angiotensin II 
(Ang II) in hyperlipidemia mice to induce AAA and TAA has been extensively used 
in the field, suggesting a critical role of Ang II in aortic aneurysm. In contrast, 
whether aldosterone (Aldo), a downstream effector of Ang II, is involved in aortic 
aneurysm is unknown. Here, we describe a new mouse model of AAA and TAA 
induced by subcutaneous implantation of deoxycorticosterone acetate (DOCA) 
pellets or infusion of Aldo using osmotic pumps to 10-month-old C57BL/6 male 
mice in the presence of high salt. The DOCA- or Aldo-salt-induced aortic aneurysm 
is dependent upon mineralocorticoid receptor activation but independent of Ang 
II and hypertension and exhibits several unique features that mimic human aortic 
aneurysm. This review aims to discuss the common animal models of AAA, TAA, 
and aortic dissection currently studied in the world with the most focus on the 
DOCA- or Aldo-salt mouse model of aortic aneurysm.

Keywords: aortic aneurysm, angiotensin II, aldosterone, DOCA, high salt,  
animal model

1. Introduction

An aortic aneurysm is defined as a permanent localized dilation of the aorta 
with at least a 50% increase in diameter compared with a normal aortic diameter 
[1]. Aortic aneurysms can be classified according to location as thoracic aortic 
aneurysm (TAA) and abdominal aortic aneurysm (AAA). TAA occurs in all-age 
people without sexual dimorphism and is highly associated with hereditary condi-
tions [2]. By contrast, AAA is typically associated with aging, male sex, smoking, 
atherosclerosis, and hypertension [3–5]. AAA is the most common form of aortic 
aneurysm [6], affecting 4–8% of men and 0.5–1.5% of women over the age of 60 
and currently accounting for nearly 2% of all deaths in Western countries [2, 3, 7]. 
Aortic aneurysm is an asymptomatic condition that tends to progress over time with 
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a high mortality rate (65–85%) if rupture occurs [8]. Unfortunately, repair through 
open or endovascular surgery is currently the only therapeutic option for aortic 
aneurysm; no drug has been approved for treatment of this devastating disease 
[3, 5]. One of the major barriers in the field is a lack of an animal model that fully 
resembles human aortic aneurysm.

Over the last few decades, a number of rodent models of AAA and TAA have 
been developed and have been increasingly utilized to be used in understanding 
the etiology of human AAA and TAA [2, 9–11]. Aortic aneurysm animal models 
can be classified into three groups [2, 9–11]: (1) genetically predisposed animal 
models (i.e., fibrillin-1 (FBN1) mutation (Marfan syndrome) mouse model [2, 12]), 
(2) chemical-induced animal models (i.e., Ang II infusion hyperlipidemia mouse 
model [9, 13]), and (3) physical or surgical animal models (i.e., decellularized 
aortic xenograft rat model [10, 14]). Among them, calcium chloride adventitial 
application model [15, 16], porcine pancreatic elastase (PPE) model [17, 18], and 
Ang II infusion hyperlipidemia mouse model [13, 19–23] are the commonest animal 
models currently studied in the world.

One of the fundamental pathological characteristics in human TAA and AAA 
is thoracic aortic dissection (TAD) and abdominal aortic dissection (AAD), both 
of which can lead to aneurysmal rupture with high mortality [1–7]. Many geneti-
cally predisposed animal models have TAD and AAD (i.e., fibrillin-1 mutation 
mouse model [2, 12]). Some of the chemical-induced animal models also have 
TAD and AAD (i.e., fibrillin-1 mutation and Ang II infusion hyperlipidemia 
mouse models [13, 19–23]). Recently, a new chemical-induced mouse model for 
more potently induction of TAD and AAD was developed by administration of 
β-aminopropionitrile monofumarate (BAPN) to mice to inhibit lysyl oxidase (LOX) 
and/or Ang II infusion [24, 25]. Kurihara et al. demonstrated that BAPN/Ang II 
induced TAD in 100% of FVB mice [24]. Ren et al. confirmed this finding and 
further demonstrated that BAPN/Ang II induced TAD and AAD in 75% of C57BL/6J 
mice, whereas BAPN alone induced TAD in 87% of C57BL/6J [25].

Although no single animal model fully reproduces the histological characteris-
tics and natural history of the human aortic aneurysm, each of these animal models 
more or less recapitulate human aortic aneurysm and have significantly contributed 
to the current understanding of clinical management and treatment of patients 
with AAA and TAA [2, 9–11]. Several clinical trials have begun enrollment to 
examine whether angiotensin-converting enzyme (ACE) inhibitors or angiotensin 
receptor blockers (ARB) are effective in the treatment of human aortic aneurysm. 
However, the results from these clinical trials are inconsistent and disappointing: 
either effective [26], no effect [27], or, even worse [28], indicating that the current 
understanding about the etiologies of aortic aneurysm is limited and additional 
unknown signaling and mechanism may underlie aortic aneurysm and account for 
the failure of these clinical trials.

In sharp contrast to the well-established role of Ang II in aortic aneurysm  
[13, 19–23], little is known about the role of aldosterone (Aldo) in aortic aneurysm. 
Aldo is a steroid hormone primarily synthesized and released by the adrenal 
glands. Aldo is a downstream effect of Ang II and is well recognized for its critical 
role in renal sodium reabsorption and water retention and consequently extracel-
lular volume and blood pressure [29, 30]. Accumulated data over the last decade, 
however, demonstrate that Aldo not only acts on the kidney but also targets many 
other organelles, including those in the cardiovascular system, where it is critically 
involved in diverse pathophysiological processes [31–33].

Several lines of clinical study implicate Aldo signaling in aortic aneurysm. First, 
individual case reports demonstrated that primary hyperaldosteronism is associated 
with aortic dissection [34–36]. Second, a retrospective study demonstrated that 
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aldosteronism is associated with high morbidity and mortality from the early onset 
of hemorrhagic stroke and ruptured intracranial aneurysms [37]. Third, a few small 
studies have shown an association between obesity and increased levels of Aldo [38] 
and increased AAA [39]. Finally, perhaps also the most compellingly, an analysis 
of drug modulation of AAA development through 25 years of surveillance in 1269 
patients demonstrated a strong association between mineralocorticoid receptor 
(MR; also known as Aldo receptor) blockers and slowed AAA progression [40]. 
However, whether Aldo causes aortic aneurysm is unknown.

By incidence, we discovered that administration of deoxycorticosterone acetate 
(DOCA) to 10-month-old C57BL/6 male mice caused substantial animal death in the 
presence of high salt due to aortic aneurysmal rupture. A subsequent serial of sub-
stantial studies demonstrated that activation of MR by either implantation of DOCA 
pellet or infusion of Aldo in 10-month-old C57BL/6 male mice was sufficient to 
induce AAA and TAA formation and aneurysmal rupture in the presence of high salt 
[41–43]. Recently, we published the detailed methodology on how to implant DOCA 
pellet or Aldo pumps to induce aortic aneurysm [44]. Here, we will focus on the 
significant novel finding of this new AAA mouse model, highlight its unique features 
that mimic human aortic aneurysm, and discuss its significance and potential impact 
on the current understanding, diagnosis, and treatment of human aortic aneurysm.

2.  Development of a new mouse model of aortic aneurysm induced by 
DOCA- or Aldo-salt

2.1 Discovery of DOCA-salt mouse model of aortic aneurysm by accidence

In an independent pilot study using 10- to 12-month-old C57BL/6 male mice to 
investigate DOCA-salt-induced hypertension, we unexpectedly observed that many 
mice died from AAA rupture. We were intrigued by this observation since it raised 
the possibility that activation of the MR by DOCA can cause AAA in the presence 
of high salt. Given that administration of DOCA and salt to mice or rats have been 
used extensively as an experimental model of low-renin hypertension [45], it was 
surprising that DOCA-salt-induced AAA has not been reported in previous studies. 
While the exact reasons for this discrepancy are unclear, our results suggest that the 
age of mice (i.e., 10-month old vs. 10-week old) may be critical for DOCA and salt 
to induce AAA (see below).

2.2 Both DOCA and high salt are required to induce aortic aneurysm

To verify our pilot studies and define whether DOCA, salt, or both is critical for 
DOCA-salt-induced aortic aneurysm, 10-month-old C57BL/6 male mice received 
DOCA alone (subcutaneous implantation of DOCA pellets; 50 mg, 21-day release; 
Innovative Research of America, USA), salt alone (drinking water containing 
0.9% NaCl plus 0.2% KCl), DOCA and salt, or no treatment (controls). We used 
C57BL/6 mice because C57BL/6 mice are more susceptible to chemical (i.e., BAPN/
Ang II)-induced TAD, AAD, and aneurysmal rupture than other strains of mice 
(i.e., FVB mice) [24, 25]. We used 10-month-old rather than 10-week-old mice 
because we found that DOCA- or Aldo-salt-induced aortic aneurysm were aging 
dependent [41, 43]. We used male mice rather than female mice because DOCA- or 
Aldo-salt-induced aortic aneurysm has sex difference (unpublished data). All mice 
were euthanized 3 weeks after treatment.

We used three different approaches to quantify DOCA-salt-induced aortic 
aneurysm. First, the maximal intraluminal diameters of abdominal aortas were 
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quantified in vivo by a high-resolution ultrasound imaging system (Vevo 2100, 
Visualsonics, Toronto, Canada). The results showed that both DOCA and salt but 
not DOCA or salt alone could potently induce abdominal aortic dilation relative to 
the control [41]. Second, the maximal external diameters of isolated abdominal and 
thoracic aortas were quantified ex vivo by Nikon SMZ800 Stereo Microscope with a 
digital camera and NIS-Elements software. Consistently with the ultrasound data, 
both DOCA and salt but not DOCA or salt alone significantly increased external 
diameters of abdominal and thoracic aortas relative to the control [41].

Third, we calculated the incidence of DOCA-sat-induced AAA, TAA, and 
aneurysmal rupture based on the definition that AAA or TAA has at least a 50% 
increase in diameter compared with the normal diameter of the aorta [1]. Of the 45 
mice treated with DOCA-salt, 28 mice developed AAA (62%), 22 mice developed 
TAA (42%), and 8 mice died of aortic aneurysmal rupture (18%). In contrast, no 
AAA, TAA, or aortic aneurysmal rupture was observed in control, DOCA, or salt 
alone. Interestingly, AAA was only found in the suprarenal abdominal aorta, which 
is similar to that in the Ang II AAA mouse model [13], whereas TAA was mostly 
associated with AAA and was mostly observed in the descending thoracic aorta, 
indicating that TAA is likely derived from AAA.

2.3  Infusion of mice with Aldo can also induce aortic aneurysm in the presence 
of high salt

Since DOCA is a synthetic MR agonist, we wondered whether Aldo, a physi-
ologic ligand of MR in our body, could induce aortic aneurysm in the presence of 
high salt. To define the concentration of Aldo that is sufficient to induce aortic 
aneurysm in the presence of high salt, 10-month-old C57BL/6 male mice were 
infused with three different doses of Aldo (200, 500, and 700 μg/kg/day) for 
4 weeks. Aldo was delivered to mice via subcutaneous implantation of osmotic 
minipump (Alzet model 2004; DURECT, USA) containing Aldo solubilized in 50% 
DMSO. All groups of mice were treated for 4 weeks.

Infusion of mice with all three doses of Aldo was very similar to implantation 
of mice with DOCA pellets and markedly increased maximal intraluminal and 
external diameters of suprarenal abdominal aortas compared to the control mice 
(without treatment). Similarly, infusion of mice with all three doses of Aldo is 
also similar to implantation of mice with DOCA pellets and potently induced AAA 
(over 58%), TAA (over 42%), and aneurysmal rupture (over 25%) compared to the 
control mice. These data demonstrated that the infusion of mice with 200 μg/kg/
day Aldo is sufficient to induce AAA in the presence of high salt.

We measured the plasma Aldo concentrations by a commercial EIA kit (Enzo 
Life Science, USA) 4 weeks after Aldo and salt administration. We found that 
plasma Aldo concentrations were elevated in a dose-dependent manner. Of note, 
infusions of mice with 200 μg/kg/day Aldo resulted in plasma Aldo concentrations 
to ~10 nM, which could be seen in some human diseases such as congestive heart 
failure and primary aldosteronism [31, 46, 47]. These results indicate that the Aldo-
salt AAA mouse model is a physiopathological model that mimics human diseases 
rather than a pharmacological model that would cause concerns due to the use of 
high doses of reagent.

2.4 DOCA-salt-induced aortic aneurysm is independent of Ang II

Although systematic plasma renin and Ang II concentrations are suppressed in 
animals administered with DOCA and salt [45], local aortic Ang II concentration 
can be increased due to activation of vascular RAAS, which was thought to be of 
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pathophysiological relevance to the development of atherosclerosis [48]. Moreover, 
there is a synergistic interaction between Ang II and Aldo in VSMCs [49, 50]. 
Therefore, it is interesting to investigate whether DOCA-salt-induced aortic aneu-
rysm is dependent upon Ang II. To address this important question, 10-month-old 
C57BL/6 male mice were treated with either an ACE inhibitor (enalapril) or an 
ARB (losartan) before (1 week) and after (4 weeks) DOCA-salt administration. 
As expected, enalapril or losartan effectively decreased blood pressure, but enala-
pril or losartan had little effect on the DOCA-salt-induced aortic dilation, aortic 
aneurysm formation, and aneurysmal rupture [41]. These results demonstrate that 
the DOCA-salt-induced aortic aneurysm is independent of Ang II thus provide an 
alternative mouse model of aortic aneurysm for investigators in the field who need 
an Ang II-independent mouse model to verify their key findings.

2.5 Activation of MR is a prerequisite for DOCA- or Aldo-salt to induce aortic 
aneurysm

To define the role of MR in DOCA- or Aldo-salt-induced aortic aneurysm, 
we treated 10-month-old C57BL/6 male mice with an MR antagonist eplerenone 
1 week before and 4 weeks after Aldo-salt administration [41]. Eplerenone (Pfizer, 
USA) was delivered by feeding mice with custom diets (chow supplemented with 
eplerenone at 2.5 mg/g, Research Diets, Inc., USA). In contrast to the minimal effect 
of blocking Ang II with enalapril or losartan, treatment of mice with eplerenone 
completely abolished Aldo-salt-induced aortic dilation, AAA formation, and aortic 
aneurysmal rupture [41]. A similar but less potent effect on DOCA-salt-induced 
AAA was also found in mice treated with spironolactone [41]. These results suggest 
that activation of MR by DOCA or Aldo is a prerequisite for DOCA- or Aldo-salt to 
induce aortic aneurysm.

2.6 DOCA-salt induces aortic aneurysm independent of increased blood  
pressure

Administration of DOCA and salt to mice or rats has been used in the field to 
induce hypertension [45]. Hypertension is recognized as a potential risk factor for 
aortic aneurysm [3–5]. Thus, it is important to determine whether hypertension 
contributes to DOCA-salt-induced aortic aneurysm. Blood pressure was measured 
using a noninvasive tail-cuff system (Coda 6; Kent Scientific Corp., USA). As 
expected, administration of DOCA or Aldo plus salt to 10-month-old male mice 
increased both blood pressure and external diameters of the abdominal aorta 
[41, 43]. However, there was no correlation between blood pressure increase and 
external diameters of abdominal aorta after DOCA-salt treatment. Similarly, there 
was also no difference in blood pressure between the mice with aortic aneurysm and 
the mice without aortic aneurysm. Moreover, treatment of mice with ACE inhibitor 
enalapril or ARB losartan effectively decreased blood pressure, but both enalapril 
and losartan had little effect on DOCA-salt-induced aortic aneurysm. Thus, we 
concluded that DOCA-salt induces aortic aneurysm independent of increased blood 
pressure. This conclusion is consistent with that in the Ang II infusion AAA mouse 
model [19].

2.7 Vascular pathology of DOCA- or Aldo-salt induced aortic aneurysms

Human aortic aneurysm is characterized by elastin and collagen degradation, 
matrix metalloproteinase (MMP), upregulation, inflammatory cell infiltration, 
vascular smooth muscle cell degeneration, and oxidative stress [51]. To investigate 
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whether DOCA- or Aldo-salt-induced aortic aneurysms have these pathologic 
features, paraffin-embedded aortic cross-sections were subjected to Elastic-Van 
Gieson staining of elastin. Interestingly, elastin degradation was only observed 
in AAA induced by DOCA- or Aldo-salt [41, 43]. Immunocytochemistry studies 
revealed that MMP2, MMP9, F4/80 (macrophages), Ly6B2 (neutrophils), caldes-
mon (smooth muscle cells), terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL; apoptosis), and dihydroethidium (DHE; oxidative stress) were 
increased in aortas with AAA compared with that in control aortas [41, 43].

In agreement with these immunocytochemical studies, we determined mRNA 
expression of several inflammatory genes, including vascular cell adhesion mol-
ecule 1 (Vcam-1), chemokine (C-C motif) ligand 2 (Ccl2, also known as MCP-1), 
tumor necrosis factor (Tnf), and Ncf1 (also known as p47phox) in both abdominal 
and thoracic aortas from mice-administrated DOCA-salt or control mice. We found 
that Vcam-1, Ccl2, Ncf1, and Tnf were all markedly upregulated in thoracic aortas 
from mice-administrated DOCA-salt compared to control mice. Interestingly, 
Vcam-1, Ccl2, and Ncf1, but not Tnf, were also significantly upregulated by DOCA-
salt in abdominal aorta from mice-administrated DOCA-salt compared to control 
mice [41, 43].

2.8 Unique features of the DOCA- or Aldo-salt mouse model of aortic aneurysm

The DOCA- or Aldo-salt mouse model exhibited several unique features that 
may be relevant to the human aortic aneurysm. First, DOCA- or Aldo-salt-induced 
aortic aneurysm required to use 10-month-old mice [41, 43] rather than 10-week-
old mice (mostly used by the Ang II AAA mouse model [13, 19–23] and other 
chemical-induced mouse modes [17, 18, 24, 25]). Given the fact that human AAA 
occurs in old peoples [2, 3, 7], the DOCA- or Aldo-salt mouse model of aortic 
aneurysm may more resemble human AAA than other chemical-induced aortic 
aneurysms in this regard. Second, DOCA- or Aldo-salt-induced aortic aneurysm 
used wild-type C57BL/6 mice [41, 43] rather than hyperlipidemia mice (i.e., apoli-
poprotein E-deficient (ApoE−/−) used by Ang II infusion mouse models  
[13, 19–23]), thus avoiding the potential confounding effects of hyperlipidemia 
on aortic aneurysm. Third, using Aldo, a physiological agonist of MR, rather than 
chemicals (i.e., calcium chloride or pancreatic elastase) to induce aortic aneurysm, 
highlights its potential role in the etiology of aortic aneurysm. Moreover, the plasma 
concentration of Aldo in mice infused with Aldo [41] could be seen in human 
congestive heart failure and primary aldosteronism [31, 46, 47], suggesting that the 
Aldo-salt AAA mouse model is a pathological model rather than a pharmacological 
model that would cause concerns due to the use of high doses of reagent. Finally, 
high salt intake was required for DOCA to induce aortic aneurysm [41], indicating 
that high salt intake may be a new risk factor for the development of human AAA.

2.9 Significance and potential impact of the DOCA- or Aldo-salt mouse model of 
aortic aneurysm

We described a new mouse model of aortic aneurysm induced by administra-
tion of MR agonist DOCA or Aldo plus high salt to 10-month-old male mice and 
provided compelling preclinical evidence that reveals a previously unrecognized, 
but potentially significant, role of Aldo, MR, and high salt in the pathogenesis of 
AAA. It is worth pointing out that this new mouse model of aortic aneurysm could 
be used as a platform to study intervention including medication (i.e., we have 
tested the effect of ACE inhibitor (enalapril), ARB (losartan), and MR antagonist 
(eplerenone and spironolactone) [41]). It is also worth pointing out at least three 
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significance and potential impact of the DOCA- or Aldo-salt mouse model of aortic 
aneurysm on the current basic research and clinical practice on the etiology, clinic 
diagnosis, evaluation, and treatment of AAA.

First, in agreement with the pivotal role of Aldo in cardiovascular diseases (i.e., 
hypertension and heart failure) [31, 32, 46], our studies highlight a potentially 
important but previously unrecognized role of Aldo in the etiology of human aortic 
aneurysm. Our studies suggest that increased plasma concentration of Aldo may be 
a new risk factor for human aortic aneurysm or may serve as a new plasma bio-
marker for evaluation of aortic aneurysm progression.

Second, it is well recognized that unfavorably excessive dietary sodium intakes 
remain prevalent around the world and are associated with an increased risk for car-
diovascular diseases including hypertension, stroke, coronary heart disease, heart 
failure, and renal disease [52–54]. However, it is unknown that excessive dietary 
sodium intake may also be detrimental to the aorta with respect to aortic aneurysm. 
Our finding that excessive dietary sodium intake was essential for MR agonist to 
induce aortic aneurysm in mice suggests that excessive dietary sodium intakes may 
also be implicated in the etiology of human aortic aneurysm. In agreement with 
our findings, it was recently reported that high salt intake was associated with an 
increased prevalence of AAA in older men [55]. Moreover, our findings indicate 
that lifestyle change such as reduction of dietary sodium intakes may be effective to 
prevent old people from the development and progression of aortic aneurysm.

Third, given the fact that currently there is no approved drug for treatment 
of AAA, our studies suggest that spironolactone and eplerenone, two clinically 
approved drugs that have been used for the treatment of human heart failure and 
essential hypertension [56], may also be effective in the treatment of human aortic 
aneurysm. Recently, a proof-of-concept randomized controlled clinical trial has 
been initiated based on our findings and is currently going on in Australia, which 
aims to test the effect of eplerenone on the progression of AAA (https://clinicaltri-
als.gov/ct2/show/study/NCT02345590).

3. Conclusions

1. Subcutaneous implantation of MR agonist DOCA pellets to 10-month-old 
C57BL/6 male mice can potently induce aortic aneurysm formation and rup-
ture in the presence of high salt. Both DOCA and salt, but not DOCA or salt 
alone, are required to induce aortic aneurysm formation and rupture in mice.

2. Infusion of 10-month-old C57BL/6 male mice by subcutaneous implantation 
of osmotic pumps to release Aldo to a pathological level can also induce aortic 
aneurysm formation and rupture, suggesting that increased plasma concentra-
tion of Aldo may be implicated in the etiology of human aortic aneurysm.

3. DOCA- or Aldo-salt-induced AAA mimics human AAA with respect to elastin 
degradation, MMP activation, inflammatory cell infiltration, smooth muscle 
cell degeneration, and oxidative stress.

4. Treatment of mice with ACE inhibitor enalapril or an ARB losartan has little 
effect on DOCA-salt-induced aortic aneurysm, suggesting that DOCA-salt-
induced aortic aneurysm is independent of Ang II.

5. Treatment of mice with MR antagonist spironolactone and eplerenone effec-
tively abolishes or diminishes DOCa- or Aldo-salt-induced aortic aneurysm, 
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suggesting that activation of MR is a prerequisite for DOCA- or Aldo-salt 
to induce aortic aneurysm, and more importantly, spironolactone and 
eplerenone, two clinically approved drugs, may also be effective for the treat-
ment of some aortic aneurysm.

6. There is no correlation between blood pressure and aortic dilation or AAA 
formation in the DOCA- or Aldo-salt mouse model of aortic aneurysm, sug-
gesting that DOCA-salt induces AAA independent of increased blood pressure.
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