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Chapter

Cooperative Spontaneous Lasing
and Possible Quantum Retardation
Effects
Nicolae A. Enaki

Abstract

The collective decay effects between the dipole-active three-level subsystems in
the nonlinear interaction with dipole-forbidden transitions, like 2S� 1S of
hydrogen-like radiators, are proposed, taking into consideration the cooperative
exchanges between two species of atoms through the vacuum field in the scattering
and the two-photon resonance processes. One of them corresponds to the situation
when the total energy of the emitted two photons by the three-level radiator in the
cascade configuration enters into the two-photon resonance with another type of
dipole-forbidden transitions of hydrogen-like (or helium-like) atoms. The similar
situation appears in the cooperative scattering between two species of quantum
emitters when the difference of the excited energies of the two dipole-active tran-
sitions of the three-level radiators is in the resonance with the dipole-forbidden
transitions of the Hydrogen-like radiators. These effects are accompanied by the
interference between single- and two-quantum collective transitions of the inverted
radiators from the ensemble. The two-particle collective decay rate is defined in the
description of the atomic correlation functions taking into consideration the phase
retardation between them. The kinetic equations which describe the cooperative
processes as the function of time and correlation are obtained. The behavior of the
system of radiators at short and long time intervals in comparison with the retarda-
tion time between them is studied.

Keywords: 42.50.Fx Cooperative phenomena in quantum optical systems,
32.80.Qk Coherent control of atomic interactions with photons, 03.65.Ud
Entanglement and quantum nonlocality, 03.65.Yz Decoherence, open systems,
quantum statistical methods
2000 AMS Subject Classification: Primary 82C10, 81Q15; Secondary 20G42,
81R15

1. Introduction

The single-photon cooperative emission of the inverted system of radiators
proposed by Dicke [1] opens the new possibilities of this phenomenon in the
description of decay processes in the multilevel system [2] and multi-photon inter-
action of radiators with EMF (see, e.g., [3, 4]). The experimental possibilities [3, 4]
of nonlinear cooperative interaction of radiators with vacuum field remain in the
center of attention of many theoretical models proposed in the last time [5, 6].
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For example, using the classical and quantum approaches in Refs. [7–10], it is given
the quantitative description of two-color super-fluorescence, observed in [2]. In the
recent experiment [11], the cooperative emission of excited atomic oxygen rela-
tively the transition 3p3P ! 3s3S at wavelength 845nm as a result of two-photon
photolysis of atmospheric O2 followed by two-photon excitation of atomic oxygen
by a laser pulse at 226nm is demonstrated.

Combining single- and two-photon processes, this chapter aims to investigate
the cooperative emission of the inverted system of radiators taking into account the
resonance between one- and two-photon cooperative transitions of two three-level
atomic subsystems represented in Figure 1. In this approach, the two dipole-active
species of radiators studied in Refs. [12, 13] are replaced with one three-level atomic
subsystem Ξ (or V) inverted relative to the single-photon emission in the resonance
with 2S - 1S dipole-forbidden transitions of hydrogen (or He)-like sub-ensemble.
This new cooperative effect between two species of radiators occurs when two
three-level emitters enter into two-quantum resonances with other emitters of the
second ensemble inverted relative dipole-forbidden transition. Similar collectiviza-
tion processes can amplify (or inhibit) the collective spontaneous emission rate of
each atomic sub-ensemble. The sign of exchange integral between the two atoms
from different sub-ensembles depends on the retardation time and distance
between them. This problem is connected to the possibilities of amplifying of
entangled quanta and established the coherence between photon pairs. For this, the
cooperative interaction of three-radiator subsystems is proposed in which one of
them is inverted relative to the dipole-forbidden transitions, but another inverted
dipole-active three-level system ignites this transition.

Taking into consideration the elementary acts of two-photon resonance between
radiators, we have demonstrated the increasing of two-photon emission rate in one
of the radiator subsystem comparison with traditional two-photon super-
fluorescence [5]. The mutual influence of two- and single-photon super-fluorescent
processes on the two-photon cooperative emission of the inverted subsystem rela-
tively dipole-forbidden transition depends on the position of atoms in the exchange
potential. Two possibilities of two- and three-particle exchanges through the
vacuum field are represented in Figure 1A–C, taking into consideration the two-

Figure 1.
The resonances between the two-photon transitions of D atomic subsystem and the three-level dipole-active
systems in Ξ (A), V (B), and Λ (C) configurations. The three-level atoms are situated at relative distances rdξ,
rdλ, and rrv. The exchange energies between theD subsystem in the two-photon resonance ω0 ¼ ω1 þ ω2 with the
Ξ subsystem (A) and the scattering resonance 2ω0 ¼ ωa � ωs with V subsystem (B) are given by the expressions
(14) and (17).
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photon resonance and scattering processes between the dipole-forbidden subsystem
D and dipole-active subsystems of Ξ, Λ, and V, respectively. Here, the product of
two vacuum polarizations of the atom Ξ (or V, Λ) comes into resonance with the
polarization of the dipole-forbidden transitions of the D atom.

Using two small parameters in Section 2, we propose the projection
operator method of elimination of the EMF operators from the generalized
equation of atomic subsystems in single- and two-photon resonances. The
possibilities of two-photon cooperative resonance between three-level radiators
situated at a distance compared with the emission wavelength are demonstrated.
Following this description the resonance interaction of a dipole-forbidden atom
and three-level dipole-active radiator in the cascade configuration is described
by the cooperative rate and the exchange integral (13). The similar expression (16)
is obtained in the scattering process of three-level system in V or Λ—
configurations with dipole-forbidden D subsystem represented in Figure 1. In Sec-
tion 3 the spontaneous emission for the two radiators in the cascade or scattering
resonances is given without the de-correlation of the atomic correlation functions
between them.

2. Master equation of cooperative exchange between three-level
radiators in two-quantum exchanges

Let us consider the interaction of three-level subsystems of radiators in V and Ξ

configuration with D dipole-forbidden two-level ensemble through the vacuum of
EMF. The Ξ three-level subsystem in cascade configuration, prepared in excited
state ∣2ξi, can pass into the Dicke super-radiance regime [1] relatively the dipole-
active transitions 2ξ ! ιξ ! 1ξ at frequencies ω2 and ω1 (Figure 1A). According to
Figure 1A, the excited D atom relatively the dipole-forbidden transition 2d ! 1d
passes in the ground state ∣1di simultaneously generating two quanta under the
influence of cooperative decay of the Ξ three-level subsystem. Two-photon
transition of the D-atom takes place through the virtual levels represented by the
notations ∣3di with opposite parity relative to the ground ∣1di and excited ∣2di states,
respectively. This case corresponds to the situation when the emission frequencies
of the dipole-active Ξ radiators and D dipole-forbidden radiators satisfy the reso-
nance condition ω1 þ ω2 ¼ 2ω0. Here ω1 and ω2 are the transition frequencies of the
Ξ dipole-active radiators in Ξ, and ℏωd ¼ 2ℏω0 is the energy distance between the
ground ∣nSi and excited ∣ nþ 1ð ÞSi states of the dipole-forbidden transitions of D
radiator (see Figure 1A).

The similar cooperative emissions can be observed in the two-quantum reso-
nance interactions between the V (or Λ) three-level radiator in two quanta scatter-
ing interactions and the dipole-forbidden transitions of D atoms through the
vacuum field (see Figure 1B,C). In this situation, we consider that the dipole-active
transitions of the three-level radiator in the V (or Λ) configuration satisfy the
scattering condition ωa � ωs ¼ ωd in interaction with the D subsystem. As it is
represented in Figure 1B, the cone of the transition energies of the V or Λ dipole-
active three-level atoms must be larger than the dipole-forbidden transition
∣ nþ 1ð ÞSi � ∣nSi of atoms D, so that two-photon resonance between the two dipole-
active transitions of V atom enters in the exact scattering resonance, ωa � ωs ¼ ωd,
withD atom. This nonlinear transition increases with the decreasing of the detuning
from resonance with virtual ∣3di states of the D two-level system.

The Hamiltonian of the system consists of the free and interaction parts

H ¼ Ĥ0 þ Ĥ I. Here the free part of this Hamiltonian is represented through the
atomic and field operators:
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Ĥ0 ¼ ∑
k

ℏωkâ
†
kâk þ ℏ ∑

N

m¼1
ωdD̂zm � ∑

2

α¼s, a
∑
Nλ

l¼1

ℏωαΛ̂
α
αl

þ ∑
2

α¼s, a
∑
Nv

l¼1

ℏωαV̂
α
αl þ ∑

α¼1, 2
∑
Nξ

j¼1
ℏ �1ð ÞαωαΞ̂

α
αj,

(1)

where N, Nξ, Nλ, and Nv are the number of atoms in the D, Ξ, Λ, and V
subsystems, respectively; the energies of first and second levels of the Ξ, Λ, and V
three-level subsystems are measured from the third intermediate state ∣ιi. The

operators Ξ1
1, j, Ξ

ι
ι, j, and Ξ

2
2, j describe the population of the ground, intermediary,

and excited states of the Ξ atom. The population operators of two excited and

ground states V̂ 2
2, j, V̂

1
1, j, and V̂ ι

ι, j can be introduced for the three-level atom in V

configuration too. The similar expressions for two ground and one excited state can

be introduced for Λ three-level atomic configuration Λ̂
2
2, j, Λ̂

1
1, j, and Λ̂

ι
ι, j, respec-

tively. The D atoms are considered as a two-level system, the state energy positions
of which are measured from the middle point between the excited and ground

states, respectively, Dz, j ¼ D2
2, j �D1

1, j

� �

=2. The first term of the Hamiltonian

describes the free energy of EMF, the k � k, λmodes of which is initially considered

in the vacuum state ∣0ki. Here âk and â†
k are annihilation and creation operators of

EMF photons with wave vector k, polarization ελ, and the frequency ωk, which

satisfy the commutation relation â†
k; â

†

k
0

h i

¼ δ
k,k

0 .

Taking into consideration the conservation energy laws, ℏ ω1 þ ω2ð Þ ¼ 2ℏω0 and
ℏ ωa � ωsð Þ ¼ 2ℏω0 (according to Figure 1A–C, respectively), we introduce the

interaction Hamiltonian Ĥ I ¼ Ĥ I1 þ Ĥ I2 of the Ξ, Λ, V, and D subsystems with free

EMF. Here Ĥ I1 describes the single-photon interaction of three-level atoms in the Ξ,
V, and Λ configurations with a vacuum of EMF:

Ĥ I1 ¼ �∑
k

∑
Nξ

j¼1
μ1ι; gk
� �

Ξ̂
ι

1j
þ μ2ι; gk
� �

Ξ̂
2

ιj

h i

âk exp i k; rj
� �� �

�∑
k

∑
Nλ

l¼1

μι1; gk
� �

Λ̂
ι

1l
þ μι2; gk
� �

Λ̂
ι

2l

h i

âk exp i k; rlð Þ½ �

�∑
k

∑
Nv

l¼1

μι1; gk
� �

V̂
1

ιl
þ μι2; gk
� �

V̂
2

ιl

h i

âk exp i k; rlð Þ½ � þH:c:,

(2)

where ε1Ĥ
Ξ1�
I1 � Ξ̂

ι
1jâk and ε1Ĥ

Ξ2¼
I1 � Ξ̂

2
ιjâk represent the two-photon cascade

excitation of Ξ atom through the intermediary state ∣ιi; ε1Ĥ
S�
I1 � Λ̂

ι
2, jâk (or

ε1Ĥ
S�
I1 � V̂ 2

ι, jâk) and ε1Ĥ
A�
I1 � Λ̂

ι
1, jâk (ε1Ĥ

A�
I1 � V̂ 1

ι, jâk) describe the excitation of Λ

(or V) atom with the absorption of the photons with the energies ℏωs and ℏωa,
respectively. μi, j is dipole momentum transitions between the i and j states of the

atoms. The second part of interaction Hamiltonian, Ĥ I2, describes the nonlinear
interaction of the dipole-forbidden transition of D two-level system with vacuum
field:

ĤI2 ¼ ∑
k1, k2

∑
N

m¼1
½qs k1; k2ð ÞD̂�

mâ
†
k2
âk1 1� δk1,k2ð Þ exp i k1 � k2; rmð Þ½ �

� qb k1; k2ð ÞD̂
þ

mâk2 âk1 exp i k1 þ k2; rmð Þ½ �� þH:c:

(3)
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This interaction is expressed by two-photon emission terms ε2Ĥ
bþ
I2 � D̂�

mâ
†
k2
â†
k1

and possible scattering of an emitted photon by the Ξ and V subsystems

ε2 �HI2s� � D̂∓
mâ

†
k2
âk1 . The excitation and lowering operators of V, Λ, and Ξ dipole-

active three-level subsystems are described by the operators of U 3ð Þ algebra, which

satisfy the commutation relations Û
α

βj; Û
β0

α0l

h i

¼ δl, j Û
α

α0jδβ,β0 þ Ûβ

β0j
δα,α0

n o

. Here the

operator Ûα
βj is equivalent with V and Ξ operators, V̂α

βj and Ξ̂
α
βj, respectively. The

inversion D̂lz together with lowering and exciting D̂j
�
operators of D subsystem

belongs to SU 2ð Þ algebra: D̂lz; D̂j
�

h i

¼ �D̂l
�
δl, j and D̂

þ

l ; D̂
þ
m

h i

¼ 2δl,mD̂lz. In com-

parison with single-photon interaction of Ξ and V atoms with vacuum field

μi, j; gk

� �

, the nonlinear interaction of D two-level subsystem with EMF in two-

photon and scattering interaction is described by the interaction constants and
second order:

qb k1; k2ð Þ ¼
d31; gk1

� �

d32; gk2

� �

2ℏ ω32 þ ωk1ð Þ
þ

d31; gk2

� �

d32; gk1

� �

2ℏ ω31 � ωk2ð Þ
,

qs k1; k2ð Þ ¼
d31; gk1

� �

d32; gk2

� �

ℏ ω32 � ωk1ð Þ
þ

d31; gk2

� �

d32; gk1

� �

ℏ ω31 þ ωk1ð Þ
,

where gk ¼ ελ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πℏωk=V
p

and di, j is dipole momentum transitions between the
levels of theD atom. In the definition of the interaction parts of the Hamiltonian (2)
and (3), we introduced the fictive small parameters ε1 and ε2 which will help us to
establish the contributions of the second and third orders in two-photon decay
rates.

In this section the conditions for which the pure super-fluorescence of the small
number of radiators [14, 15] in the subsystems Ξ, V, and D enters into interaction
during the delay time of cooperative spontaneous emission of each subsystem are
considered, so that inhomogeneous broadening of excited atomic states can be
neglected, τi ≪T2, i. Here τi ¼ τ0=Ni is the collective time for which the polarization
of the i subsystem becomes macroscopic; T2, i is the de-phasing time of the
subsystem i, which includes the reciprocal inhomogeneous and Doppler-broadened
line-width, i � Ξ, V, and D (see, e.g., the papers [15, 16]). These conditions can be
achieved using laser cooling method [17, 18] for three atomic ensembles
represented in Figure 1A,B. Let us suppose that delay time of the super-radiant
pulse is less than T2, i; we will drop the terms connected with de-phasing time T2, i

from the kinetic equations. In order to estimate the three-particle cooperative
interaction, we will examine the situation in which one- and two-quantum interac-
tions with the EMF bath are taken into account simultaneously. In this case it is
necessary to eliminate from the density matrix equation the boson operators of EMF
in nonlinear interaction with atomic subsystem. In comparison with the paper [12],
here we will take into consideration the two-quantum effects connected with the
influence of three-level atomic systems V and Ξ on the two-photon spontaneous
emission of dipole-forbidden D subsystem. In this case instead of two dipole-active
atoms, we can take into consideration only one three-level atom in two-photon
resonance with dipole-forbidden system.

Let P be the projection operator for the complete density matrix �ρ tð Þ on the

vector basis of a free EMF subsystem ρs tð Þ ¼ P�ρ tð Þ and �ρb tð Þ ¼ P�ρ tð Þ, where �ρs tð Þ
and �ρb tð Þ are slower and rapidly oscillating parts of the density matrix, respectively,
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P ¼ 1� P. It can be shown that P2 ¼ P and PP ¼ 0. Recognizing that for t ¼ 0
an electronic subsystem does not interact with the EMF, we define the projection
operator P ¼ �ρph 0ð Þ⊗Trph ⋯f g, where the trace is taking over the photon states and

�ρph 0ð Þ ¼ 0j i 0h j represents the density matrix of the vacuum of EMF. In this case

one can represent the slow part of density matrix through the density matrix
�W tð Þ ¼ Trph �ρ tð Þf g of the atomic subsystem �ρs tð Þ ¼ �ρph⊗

�W tð Þ, where

�W 0ð Þ ¼ Trph�ρ 0ð Þ ¼ �ρr 0ð Þ is the density matrix of the prepared state of the atomic

subsystem. The equations for the matrix �ρs tð Þ and �ρb tð Þ are

∂�ρs tð Þ

∂t
¼ �iPLI tð Þ �ρs tð Þ þ �ρb tð Þ

	 


, (4)

∂�ρb tð Þ

∂t
¼ �iPLI tð Þ �ρs tð Þ þ �ρb tð Þ

	 


, (5)

where L̂I tð Þ ¼ ε1 �HI1 tð Þ;…
� �

=ℏ + ε2 �HI2 tð Þ;…
� �

=ℏ is the interaction part of

Liouville operator. Following the known procedure of elimination of the rapidly
oscillating part of the density matrix, we integrate Eq. (5) with respect to �ρb tð Þ and
substitute the resulting solution in Eq. (4). After this procedure we obtain the
expression

∂�ρs tð Þ

∂t
¼ �P

ð

t

0

dτLI tð ÞU t; t� τð ÞLI t� τð Þρs t� τð Þ, (6)

where the two-time evolution operator is represented by the T product

�U t; t� τð Þ ¼ T exp �iP
Ð

t

t�τ

dτ1LI τð Þ

� �

. In comparison with well-known procedure

of the decomposition on the small parameter ε of the right-hand site of expression (6),
here we have two parameters ε1 and ε2. The quantum correlation between the single-
and two-photon interactions of atoms through the vacuum of the EMF can be found in
the third order of the expansion on the small parameter product ε21ε2 of the right-hand
side of Eq. (6). Indeed considering the second and third order of the expansion on

the small parameters ε1 and ε2, we represent the evolution operators �U t; t� τð Þ and

�ρs t� τð Þ in the following approximate form �U t; t� τð Þ≈ 1� iP
Ð

t

t�τ

dτ1Li τ1ð Þ and

�ρs t� τð Þ ¼ �ρs tð Þ þ P
Ð

τ

0

dτ1L̂i t� τ1ð Þ
Ð

t�τ1

0

dτ2L̂i t� τ1 � τ2ð Þ�ρs t� τ1 � τ2ð Þ. Upon

substitution of this expression in Eq. (6), in the third order of small parameter λ, the
equation for ρs tð Þ becomes

∂

∂t
�ρs tð Þ ¼ �P

ð

t

0

dτ1L̂i tð Þ L̂i t� τ1ð Þ � i

ð

t

t�τ1

dτ2L̂i τ2ð Þ

8

<

:

9

=

;

L̂i t� τ1ð Þ�ρs tð Þ: (7)

Representing the Liouville operator, L̂I tð Þ, through single-, LI1 tð Þ ¼ ε1
�HI1 tð Þ;…

� �

=ℏ, and two-photon, λLI2 tð Þ ¼ ε2 �HI2 tð Þ;…
� �

=ℏ, interaction parts, we can
observe that in the third order on the decomposition on interaction Hamiltonian,
the main contribution to the right-hand site of Eq. (7) gives the terms proportional
to the ε21ε2. Indeed, taking into consideration that the trace of an odd number of

boson operator is zero, Trph ρ0�a
†
k1
�ak2†�ak3�ak4�ak5

n o

¼ 0, it is not difficult to observe
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that the projection of the operator product ε22ε1P
�HI1

�HI2
�HI2 takes the zero value too.

In the third order of the small parameters εi, the contribution of Liouville operator

L̂I1 and L̂I2 must be found from the terms like PL̂I1L̂I2L̂I1�̂ρs tð Þ, which corresponds to
two-photon resonances between the single- and two-photon transitions in the
three-level atomic systems described by the Hamiltonian part (2) and (3), respec-
tively. It is not difficult to observe that second-order decomposition on the interac-
tion Hamiltonian gives zero contributions in the correlations between the Ξ, V, and
D subsystems. This follows from the zero value of the trace of the odd number of

boson operators, Trph �ρ0�a
†
k1
�ak2�ak3†

n o

¼ 0, which corresponds to the projection of

the operator product P �HI1
�HI2P ¼ 0.

Following this procedure of calculation of mean value of boson operators, it is
observed that the two-photon resonance represented in Figure 1A can be described
by the following diagrams:

Δρb3 ¼ iλ3
ð

t

0

dτ1

ð

τ1

0

dτ2 PL̂
Ξ1�

I1 tð Þ^̂L
Ξ2�

I1 t� τ2ð ÞL̂bþ
I2 t� τ1ð Þρs tð Þ

n

þPL̂R�
I1 tð ÞL̂S�

I1 t� τ2ð ÞL̂bþ
I2 t� τ1ð Þρs tð Þ

þPL̂
Ξ2�

I1 tð ÞL̂bþ
I2 t� τ2ð ÞL̂Ξ1�

I1 t� τ1ð Þρs tð Þ

þPL̂
Ξ1�

I1 tð ÞL̂bþ
I2 t� τ2ð ÞL̂Ξ2�

I1 t� τ1ð Þρs tð Þ

þPL̂
bþ

I2 tð ÞL̂Ξ1�
I1 t� τ2ð ÞL̂Ξ2�

I1 t� τ1ð Þρs tð Þ

þPL̂bþ
I2 tð ÞL̂

Ξ2�

I1 t� τ2ð ÞL̂Ξ1�
I1 t� τ1ð Þρs tð Þ

o

þH:c:

(8)

Here LΞ1�
I1 tð Þ ¼ ε1 �H

Ξ1�

I1 tð Þ;…
h i

=ℏ, LΞ2�
I1 tð Þ ¼ ε1 �H

Ξ2�

I2 tð Þ;…
h i

=ℏ, and

Lb�
I2 tð Þ ¼ ε2 �H

b�

I2 tð Þ;…
h i

=ℏ represent the Liouville operators of the interaction part of

the Ξ and D atoms expressed through EMF annihilation and atomic exciting opera-
tors in the single- and two-quantum interactions.

The scattering resonance can be represented by the diagrams in which the
conservation law ωa � ωs ¼ 2ω0 must take place as represented in Figure 1B:

Δρs3 ¼ i

ð

t

0

dτ1

ð

τ1

0

dτ2 PLA�
I1 tð ÞLSþ

I1 t� τ2ð ÞLsþ
I2 ðt�

	

τ1Þρs tð Þ

þPLSþ
I1 tð ÞLA�

I1 t� τ2ð ÞLsþ
I2 t� τ1ð Þρs tð Þ

þPLA�
I1 tð ÞLsþ

I2 t� τ1ð ÞLSþ
I1 t� τ2ð Þρs tð Þ

þPLSþ
I1 tð ÞLsþ

I2 t� τ1ð ÞLA�
I1 t� τ2ð Þρs tð Þ

þPLsþ
I2 tð ÞLA�

I1 t� τ1ð ÞLSþ
I1 t� τ2ð Þρs tð Þ

þPLsþ
I2 tð ÞLSþ

I1 t� τ1ð ÞLA�
I1 t� τ2ð Þρs tð Þg þH:c:,

(9)

where Ls�
I2 tð Þ ¼ ε2 �H

s�

I2 tð Þ;…
h i

=ℏ is the Liouville parts for two-photon

scarpering process of D atomic subsystem and LS�
I1 tð Þ ¼ ε1 �H

S�

I1 tð Þ;…
h i

=ℏ and
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LA�
I1 tð Þ ¼ ε1 �H

A�

I1 tð Þ;…
h i

=ℏ correspond to the single-photon transitions in Ξ atomic

subsystem described by the Hamiltonian parts (3) and (2), respectively.

So that after the trace on the EMF variables, we obtain Tr ρ̂ph�ak1�ak3�ak2†�ak4†
n o

¼ δk1k2δk3,k4 þ δk1,k4δk3,k2
� �

, Tr ρ̂ph�ak1�ak2†
n o

¼ δk1k2 , and Tr ρph�a
†

k2
�ak4†�ak1�ak3

n o

¼ 0.

We found the correlations between Ξ, V, and D atomic subsystem represented in
Figure 1.

We found the correlations between Ξ, V, and D atomic subsystem represented
in the Figure 1. Following projection technique procedures developed in Refs.
[5, 13, 19], we find the terms of in the right-hand side of the master equation
(7)–(9) for three species of radiators in interaction

d �W tð Þ

dt
¼

d �W0 tð Þ

dt
þ
d �W21b tð Þ

dt
þ
d �W21s tð Þ

dt
: (10)

First term describes the cooperative single- and two-photon effects in each
subsystem, respectively. Second term describes the exchanges between the single-
photon processes of Ξ three-level subsystem and the two-photon transitions of
the D radiators as this is represented in Figure 1A. The third term describes the
scattering effect of the two radiators represented in Figure 1B.

All parameters and collective exchange integrals between the three-level
radiators in V configuration and dipole-forbidden two-level system D are defined in
the literature [1–12]:

d �W0 tð Þ

dt
¼

1

2τι,1
∑
Nξ

l, j¼1

χ1 j; lð Þ �Ξ
1

ι, j;
�W tð Þ�Ξ

ι

1, l

h i

þ
1

2τι,2
∑
Nξ

l, j¼1

χ2 j; lð Þ �Ξ
ι

2, j;
�W tð Þ�Ξ

2

ι, l

h i

þ
1

2τι,a
∑
Nv

l, j¼1

χa j; lð Þ �V
ι

1, j;
�W tð Þ�V

1

ι, l

h i

þ
1

2τι, s
∑
Nv

l, j¼1

χs j; lð Þ �V
ι

2, j;
�W tð Þ�V

2

ι, l

h i

þ
1

2τι, s
∑
Nλ

l, j¼1

χs j; lð Þ �Λ
2

ι, j;
�W tð Þ�Λ

ι

2, l

h i

þ
1

2τι,a
∑
Nλ

l, j¼1

χa j; lð Þ �Λ
2

ι, j;
�W tð Þ�Λ

ι

2, l

h i

þ
1

2τd
∑
N

l, j¼1

χd j; lð Þ �D
�

j ;
�W tð Þ�Dlþ

h i

þH:c:,

(11)

where τι,α ¼ 3ℏc3= 4μ2α, ιω
3
α

� �

is the spontaneous emission time of the dipole-

active transitions ∣αi ! ∣ιi of three-level atom in Ξ and V configurations and

τd ¼ π32ℏ2c6= 42ω7
0d

2
23d

2
31q

2
b ω0;ω0ð Þ

� �

is the two-photon spontaneous emission

rate in the D atomic subsystem. This equation can be used for the description of
interaction between the dipole-forbidden and dipole-active subsystems of radiators.
For comparison of the real parts of the single- and two-photon exchange integrals,
we can observe that the second decreases inversely proportional to the square

distance rJl between two D radiators: Re χα j; lð Þ½ � = sin ωαrj, l=c
� �

= ωαrj, l=c
� �

and

Re χd j; lð Þ½ � � sin 2 ω0rj, l=c
� �

= ω0rj, l=c
� �2

.

Following the two-parameter approach projection technique proposed in Ref.
[13], HI1 � ε1 and HI2 � ε2, we easily found the three-particle exchanges between
the radiators represented in Figure 1A described by master equation
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d �W21b tð Þ

dt
¼ �

i

4τb12d
∑
N

m¼1
∑
Nξ

l¼1

∑
Nξ

j¼1
Ub m; lð Þf

� �D
�

m;
�W tð Þ�Ξ

2

ι, l
�Ξ
ι

1, j

h i

þ �D
�

m;
�W tð Þ�Ξ

ι

1, j
�Ξ
2

ι, l

h in o

þ U ∗
b j; l;mð Þ �Ξ

2

ι, l;
�Ξ
ι

1, j;
�Dm�

�W tð Þ
h ih i

þ ½�Ξ
ι

1, j; ½
�Ξ
2

ι, l;
�Dm�

�W tð Þ��
o

�
i

2τb12d
∑
N

m¼1
∑
Nξ

j¼1
∑
Nξ

l¼1

Vb j;m; lð Þ

� �D
�

m
�W tð Þ�Ξ

2

ιl;
�Ξ
ι

1, j

h i

þ �D
�

m
�W tð Þ�Ξ

ι

1, j;
�Ξ
2

ι, l

h in o

þH:c:

(12)

Here for ωs ≃ωr, we have found the following integrals:

1

τb12d
¼

4

3

� �2
ω3
s ωrð Þ3μι2μι1d23d31

2ℏ2c6
1

ω32 þ ω2
þ

1

ω31 þ ω1

 �

,

Vb j;m; lð Þ≃
c2 exp �iω2rml=c½ � � 1½ � exp iω1rjm=c

� �

� 1
� �

ω1ω2rjmrml
,

Ub j;m; lð Þ ¼ exp �iω1rmj=c
� �

Vb j; l;mð Þ:

(13)

Here 1=τb12d is the three-particle cooperative emission rate of two atoms from Ξ

subsystems and one atom from D ensemble situated at the relatively small distance
rjl ≪ λs rð Þ. Vb j;m; lð Þ is the exchange integral which describes the influence of the m

atom from D ensemble on the single-photon transitions of the j and l radiators from
the Ξ subsystem. Ub j;m; lð Þ is the inverse process of the cooperative action of j and l
radiators from the Ξ ensemble on the two-photon transitions of m radiator from the
D subsystem.

Figure 2.
The real part of exchange integral Vb, defined in expression (14), is plotted as a function of relative distance
between radiators, X ¼ ω0r=c, and relative displacement, Δ ¼ ω1 � ω0ð Þ=ω0.
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For two atoms represented in Figure 1A, the simple exchange integral between
these radiators can be obtained from expression (13):

Vb ¼
λ1λ2 exp �2iπr=λ2ð Þ � 1½ � exp 2iπr=λ1ð Þ � 1½ �

2πrð Þ2
, (14)

where λ2 and λ1 are the emission wavelengths in cascade transition of the dipole-
active three radiators in Ξ configuration, situated at distance r. The real part of this
function describes the three-particle decay rate of the system. The dependence of
exchange integral (14) on the relative distance between the Ξ and D atoms (14),
X ¼ ω0r=c and the displacement, Δ ¼ ω1 � ω0ð Þ=ω0 relatively the degenerate
frequency ω0, is plotted in Figure 2. As follows from this dependence, the exchange
integral achieved the maximal radius, when ω1 ¼ ω2, which corresponds to the
situation Δ ¼ 0.

The part of master Equation (10) for resonance scattering interaction between
the absorbed and emitted photons by the dipole-active Λ and V subsystems and D
dipole-forbidden radiators can be obtained from the third-order expansion on the
smallest parameter λ. In this situation, the scattering part of the master equation
represented by the scheme 1 B becomes

d �W21s tð Þ

dt
¼

i

2τ s
sad

∑
m, j, l¼1

Us j;m; lð Þ½�V
1

ι, j;
�V
ι

2, l
�Dm�Ŵ tð Þ�

n

þU ∗
s j;m; lð Þ½�V

ι

2, l;
�W tð Þ�V

1

ι, j
�Dm��

o

�
i

2τssad
∑

m, j, l¼1

Vs j;m; lð Þ �D
�

m;
�V
ι

2, l
�W tð Þ�V

1

ι, j

h i

þH:c:,

(15)

Figure 3.
The real part of the scattering exchange integrals Vs, defined in expressions (17), is plotted as a function of
relative distance between radiators, X ¼ ω0r=c, and relative scattering frequency, ωs=ω0.
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where

1

τssad
¼

4

3

� �2
μι2μι1d23d31ω

3
s ωað Þ3

c6ℏ2

1

ω32 � ωs
þ

1

ω31 þ ωs

 �

,

Vs j;m:lð Þ ¼
exp �iωsrml=c½ � � 1ð Þ exp iωarmj=c

� �

� 1
� �

ωsωa rml=cð Þ rmj=c
� � ,

Us j;m; lð Þ ¼ exp �iωsrml=c½ �Vs j;m:lð Þ:

(16)

First term in Eq. (15) describes the transition of D atom under the influence of
the scattering process of emitted photons of the atoms from V subsystem. This
process is described by exchange integral Vs j;m:lð Þ. The last two terms in master
Eq. (15) describe the scattering process of emitted photons by the V atoms under
the influence of D subsystem.

The similar expression is obtained for the interaction of Λ three-level radiator
with D atom represented in Figure 1C. In this case we must replace the operators of
V subsystem in expression (15) with corresponding transition operators of Λ system

�V
1

ι, j ! Λ̂
ι

1j:
�V
ι

2, l !
�Λ
2

ι, l and their Hermit conjugated operators.

For the two atoms, expression (16) was reduced to the simple representation

Vs ¼
λsλa 1� exp �2iπr=λsð Þ½ � 1� exp 2iπr=λað Þ½ �

2πrð Þ2
: (17)

Here the wavelength λs (λa) corresponds to the emitted photons at Stokes or
anti-Stokes frequencies represented in Figure 1. The numerical representation of
the real part of the exchange integral (17) as the function of the relive distance
between the atoms X ¼ ω0r=c and the relative Stokes frequency ωs=ω0 is plotted in
the Figure 3. It is observing the nonsignificant dependence of this exchange integral
on the frequency ωs. The significant dependence on the detuning from resonance
can be observed in the dependence of cooperative rate 1=τssad represented in expres-
sions (16).

In this section we obtained the correlations between dipole-active and dipole-
forbidden subsystems of radiators, where the two-quantum exchange integral has
the same magnitude as the two-photon quantum interaction between atoms of D
subsystem. In the case of the big number of radiators in each subsystem, the
correlated terms, expressions (12) and (15), give the cubic contribution in the

cooperative diagrams of the kinetic equation ε21ε2NN2
ξ. When N ¼ Nξ these terms

can archived the value proportional to the Dicke super-radiance [1] even for the
same small parameters of each subsystem ε1 ¼ ε2. In this case the number of atoms
in each subsystem must achieve the value for which the third order has the same

magnitude as the second order ε2N2 � ε3N3. In conclusion we observe that the
decomposition on the small parameter ε can be regarded as a sum of single- and the

two-photon transition amplitudes proportional to ε1 and ε2, where ε1 � μ1ι; gk
� �

and
ε2 � qb k1; k2ð Þ or qs k1; k2ð Þ. Considering the situation when the two-photon ampli-
tude is smaller than the single-photon amplitude ε2 < ε1, we conclude that beginning
with the third-order term, the correlation diagrams (12) and (15), proportional to
ε21ε2, can play an important role in the two-quantum decay process even for the two-
atomic system consisted from one atom of each subsystems: D and Ξ (or D and V).
For example, in the situation when ε1 ¼ 0:7 and ε2 ¼ 0:25, the magnitude of two-
photon emission, ε22 ¼ 0:0625, becomes smaller than the cooperative magnitude

ε21ε2 ¼ 0:1225Þ. In other words we can find the condition for which we can neglect
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the decay rate of two-photon emission of the D atom in comparison with the
cooperative effect described by expressions (12) and (15). This possibility to control
the two-photon decay process of D atom with the decay process of Ξ or V excited
three-level atom is given in the next section.

3. Two-photon energy transfer between the two three-level radiators

Master Eq. (10) can be used for the description of cooperative interaction
between the dipole-forbidden and dipole-active radiators in two-photon exchanges.
Indeed passing again from Schrodinger to Heisenberg pictures

Tr Ŵ tð ÞÔ 0ð Þ
h i

¼ Tr Ŵ 0ð ÞÔ tð Þ
h i

, we can obtain from this expression the equation

of the arbitrary atomic operator Ô tð Þ. Let us firstly discuss the nonlinear interaction
in which Ξ and D atoms enter in two-photon resonance as represented in Figure 1A.
Studying the cooperative interaction between the dipole-forbidden and dipole-
active radiators, the closed system of equations for the correlation functions can be
found in such approach. Considering that the numbers of atoms in the each
subsystem are relatively small, we can obtain the following generalized equation for
the arbitrary operator Ob:

d Ob tð Þh i

dt
¼

1

2τι,1
∑
Nξ

l, j¼1

χ1 j; lð Þ Ξ̂
ι

1, l tð Þ Ôb tð Þ; Ξ̂1
ι, j tð Þ

h iD E

þ
1

2τι,2
∑
Nξ

l, j¼1

χ2 j; lð Þ Ξ̂
2

ι, l tð Þ Ôb tð Þ; Ξ̂ι
2, j tð Þ

h iD E

þ
1

2τd
∑
N

l, j¼1

χd j; lð Þ D̂
þ

l tð Þ Ôb tð Þ; D̂�
j tð Þ

h iD E

�
i

4τb12d
∑
N

m¼1
∑
Nξ

l¼1

∑
Nξ

j¼1

(

Ub m; l; jð Þ½ Ξ̂
2

ι, l tð ÞΞ̂
ι
1, j tð Þ Ôb tð Þ; D̂�

m tð Þ
h iD E

þ Ξ̂
ι

1j tð ÞΞ̂
2
ιl tð Þ Ôb tð Þ; D̂�

m tð Þ
h iD E

� þU ∗
b j; l;mð Þ〈

(

Ôb tð Þ; Ξ̂ι
1, j tð Þ

h i

; Ξ̂
2

ι, l
tð Þ

 �

þ Ôb tð Þ; Ξ̂2
ι, l tð Þ

h i

; Ξ̂
ι

1, j
tð Þ

 �

)

D̂�
m〉

)

�
i

2τb12d
∑
N

m¼1
∑
Nξ

j¼1
∑
Nξ

l¼1

Vb j;m; lð Þ 〈Ξ̂
ι

1, j tð Þ½Ξ̂
2
ι, l tð Þ; Ôb tð Þ�D̂�

m tð Þ〉
n

þ〈Ξ̂
2

ι, l tð Þ½Ξ̂
ι
1, j tð Þ; Ôb tð Þ�D̂�

m tð Þ〉
o

þH:c:

(18)

In order to simplify this problem, we analyze below the situation in which we
have only a single atom in each subsystem. In this case we can replace the operator

Ob with the excitation numbers operators N̂α ¼ Ξ̂
α
α tð Þ and N̂d ¼ D̂z þ 0:5 of Ξ and

D atoms, respectively. Here α ¼ 1, 2 and ι. When emission frequencies of the one-
photon radiators coincide with ω1 ≃ω2 ≃ω0, the dependence (14) becomes real and
positive defined function Ξ and D radiators. Here exp iω0r=c½ � � 1½ � exp �iω0r=c½ �½
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�1 ¼ 2 1� cos ω0r=cð Þ½ �. According to this expression, the exchange integrals
become

Vb
12d ¼

2ð1� cos 2πr=λ0ð Þ

2πr=λ0ð Þ2
, Ub

12d ¼ exp �iω0r=c½ �Vsrd:

In this case one can introduce the expression exchange rate 1=τbsrd as a function of
the distance between the dipole-active and dipole-forbidden subsystems:

1

τb12d rð Þ
¼

1

τbsrd

2ð1� cos 2πr=λsð Þ

2πr=λsð Þ2
, (19)

where λ0 ¼ c= 2πω0½ �. Taking into account the above definitions and introducing

the correlation functions between the polarizations of Ξ and D atoms F̂b t; rð Þ
� �

¼ i Ξ̂
2

1 tð ÞD̂
�
tð Þ

D E

� D̂
þ
tð ÞΞ̂1

2 tð Þ
D Eh i

and Êb t; xð Þ
� �

¼ Ξ̂
2

1 tð ÞD̂
�
tð Þ

D E

þ D̂
þ
tð ÞΞ̂1

2 tð Þ
D E

,

we obtain the closed system of equations from expression (18):

d

dt
N̂2 t; xð Þ
� �

¼ �
N̂2 tð Þ
� �

τι,2
�

1

4τb12d xð Þ
cos xð Þ F̂b t; xð Þ

� �

� sin xð Þ Ê t; xð Þ
� �� �

,

d

dt
N̂ ι t; xð Þ
� �

¼
N̂2 t; xð Þ
� �

τι,2
�

N̂ ι t; xð Þ
� �

τι,1
þ

1

2τb12d xð Þ
½ cos xð Þ F̂b t; xð Þ

� �

� sin xð Þ Ê t; xð Þ
� �

� þ
F̂b t; xð Þ
� �

2τb12d xð Þ
,

d

dt
N̂1 t; xð Þ
� �

¼
N̂ ι tð Þ
� �

τι,1
�

1

4τb12d xð Þ
cos xð Þ F̂b t; xð Þ

� �

� sin xð Þ Êb t; xð Þ
� �� �

�
1

2τb12d xð Þ
F̂b t; xð Þ
� �

;

d

dt
N̂d t; xð Þ
� �

¼ �
N̂d t; xð Þ
� �

τd

þ
1

4τb12d xð Þ
cos xð Þ F̂b t; xð Þ

� �

þ sin xð Þ Êb t; xð Þ
� �� �

,

d

dt
F̂b t; xð Þ
� �

¼ �
F̂b t; xð Þ
� �

2

1

τd
þ

1

τι,2

� �

�
1

2τb12d xð Þ
f cos xð Þ 2 N̂2 t; xð ÞN̂d tð Þ

� �

� N2 t; xð Þh i
�

� N̂d tð Þ N̂ i tð Þ � N̂2 tð Þ
� �� �

þ 〈N̂d tð Þð1� N̂2 tð Þ � 2N̂ i tð Þ〉�

� 2 N̂d tð ÞN̂ i tð Þ
� �

þ 2 N̂d tð ÞN̂2 tð Þ
� �

g;

d Êb t; xð Þ
� �

dt
¼

Êb t; xð Þ
� �

2

1

τd
þ

1

τι,2

� �

�
1

2τb12d xð Þ
sin xð Þ½2 N̂2 tð ÞN̂d tð Þ

� �

� N̂2 tð Þ
� �

þ N̂d tð Þ N̂ i tð Þ � N̂2 tð Þ
� �� �

� N̂d tð Þ 1� N̂2 tð Þ � 2N̂ i tð Þ
� �� �

�;

d

dt
N̂2 tð ÞN̂d tð Þ
� �

¼ � N̂2 tð ÞN̂d tð Þ
� � 1

τι,2
þ

1

τd

 �

,

d

dt
N̂ ι tð ÞN̂d tð Þ
� �

¼
N̂2 tð ÞN̂d tð Þ
� �

τι,2
� N̂ ι tð ÞN̂d tð Þ
� � 1

τι,1
þ

1

τd

 �

:

(20)
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Using this system of Eq. (20), we can numerically study the cooperative
nonlinear exchanges through the vacuum field between the Ξ and D radiators
situated at relative distance x. One can observe that the spontaneous generation of
photon pair by the D atom is drastically modified by the time increase of the
cooperative correlation between the radiators. Indeed considering that the decay
rate of the D atom 1=τd is smaller than similar rates of the cascade transition in the Ξ
atom (τd=τξ, i ≃ 6; τd= 4τ12dð Þ ¼ 2), we can numerically represent this dependence as
a function of the relative time, t=τd, and the relative distance between the radiators,
x ¼ 2πr=λ0. As shown in Figure 4A, the decay rate of D atom is drastically modified
at small distances between the radiators which is in accordance with the analytic
expressions (19). Considering that both atoms Ξ and D are prepared in the excited
state, we observe the significant enhancement of the two-photon emission rate of
the D radiator under the influence of the Ξ decay process.

Let us simplify the system of Eq. (20) in order to solve it exactly. Indeed, when
dipole-active Ξ atom is situated at small distance relative to the D radiator (x≪ 1),
the system of Eq. (20) is drastically simplified:

d

dt
N̂2 tð Þ
� �

¼ �
N̂2 tð Þ
� �

τι,2
�

F̂b tð Þ
� �

4τb12d
,

d

dt
N̂d tð Þ
� �

¼ �
N̂d tð Þ
� �

τd
þ

1

4τb12d
F̂b tð Þ
� �

,

d

dt
F̂b tð Þ
� �

¼ �
F̂b tð Þ
� �

2

1

τd
þ

1

τι,2

� �

�
1

2τb12d
½4 N̂2 tð ÞN̂d tð Þ
� �

þ N̂d tð Þ
� �

� N̂2 tð Þ
� �

� 5 N̂dN̂ i

� �

�,

d

dt
N̂2 tð ÞN̂d tð Þ
� �

¼ � N̂2 tð ÞN̂d tð Þ
� � 1

τι,2
þ

1

τd

 �

,

d

dt
N̂ ι tð ÞN̂d tð Þ
� �

¼
N̂2 tð ÞN̂d tð Þ
� �

τι,2
� N̂ ι tð ÞN̂d tð Þ
� � 1

τι,1
þ

1

τd

 �

:

(21)

The exact solution of this linear system of equation can be represented through

solution of characteristic equation Yα ¼ ∑5
j¼1C

j
α exp Θjt

� �

, where α ¼ 1; 2; 3;4; 5 and

Yαf g are the atomic functions, Y1 tð Þ ¼ N̂d tð Þ
� �

, Y2 tð Þ ¼ N̂2 tð Þ
� �

, Y3 tð Þ ¼ F̂b tð Þ
� �

,

Y4 tð Þ ¼ N̂2 tð ÞN̂d tð Þ
� ��

, and Y5 tð Þ ¼ N̂ ι tð ÞN̂d tð Þ
� ��

; the solution of characteristic
equation is

Θ1 ¼ �
1

τ2
þ

1

τd

� �

; Θ2 ¼ �
1

τ1
þ

1

τd

� �

; Θ3 ¼ �
1

2

1

τd
þ

1

τι,2

� �

;

Θ4,5 ¼ �
1

2

1

τι,2
þ

1

τd
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

τd
�

1

τι,2

� �2

�
1

τ212b

s

8

<

:

9

=

;

:

(22)

The coefficients Cj
α

	 


are determined from the initial conditions. As follows
from the numerical estimation plotted in Figure 4B and solutions of characteristic
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in Eq. (22), the oscillatory decay of the atomic inversion is possible, when
1=τd ¼ 1=τι,2. In this case the solutions Θ4,5 become complex. We observe such an
oscillation of the atoms inversion of Ξ radiator prepared initially in the excited state.
In this process the rate of energy transfer from Ξ to D atoms represented in
Figure 4B has the oscillator behavior. In the case of the excitation of D, the
coupling between the radiators becomes more effective, when the virtual level of

Figure 4.
(A) The decay rate �d Nd=dth i of the dipole-forbidden transitions of the D radiator under the influence of Ξ
three-level radiator. This solution of Eq. (21) is plotted as function of t=τd and relative distance between the
radiators x ¼ ω1r=c, for the following parameters of the system: N1h i ¼ Nιh i ¼ 0:, N2h i ¼ 1:, Ndh i ¼ 1,
τd=τ1 ¼ τd=τ2 ¼ 6, and τd= 4τ12dð Þ ¼ 2. (B) The decay process of excited state ∣2i of three-level system (thick
line) and the transfer of the excitation from the Ξ radiator to D atom (dashed line) in the process of cascade
emission of Ξ atom situated at relative distance x < < 1 for the same parameters of the system and excitation
conditions: N1h i ¼ Nιh i ¼ 0, N2h i ¼ 1:, and Ndh i ¼ 0.
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the D atom is situated between the excited and ground states (see Figure 4B). As
the virtual states of the D radiator is off from the resonance with the dipole-active
transitions of the Ξ radiators, the excitation of D atom takes place only with the
absorption of both emitted photons by the Ξ atom. The cooperative effects
between the Ξ and D radiators are described by second-order correlation

function G2 ¼ Ê
�
tð ÞÊ

�
tð ÞÊ

þ
tð ÞÊ

þ
tð Þ

D E

¼ G0
2 þ α F̂b tð Þ

� �

. Here G0
2 was derived in

Ref. [5]. The contribution to the second-order correlation function remains
larger than the square value of the first-order correlation function
G1 ¼ E� tð ÞEþ tð Þh i, so that we can conclude that new cooperative effects
between single- and two-photon transitions of D and Ξ subsystems play an
important role in the two-photon decay process. Let us now return to the V
three-level system in scattering interaction with the D system as this is
represented in Figure 1B. In accordance with master Eq. (10) and its analytic
representation (15), we can obtain the following expression for arbitrary atomic

operators Ôs tð Þ.

d Ôs tð Þ
D E

dt
¼

1

2τι,1
∑
Nv

l, j¼1

χa j; lð Þ V̂
1

ι, l tð Þ Ô
sð Þ
tð Þ; V̂ ι

1, j tð Þ
h iD E

þ
1

2τι,2
∑
Nv

l, j¼1

χs j; lð Þ V̂
2

ι, l tð Þ Ô
sð Þ
tð Þ; V̂ ι

2, j tð Þ
h iD E

þ
1

2τd
∑
N

l, j¼1

χd j; lð Þ D̂
þ

l tð Þ Ô
sð Þ
tð Þ; D̂�

j tð Þ
h iD E

�
i

2τssad
∑
N

m¼1
∑
Nv

j¼1
∑
Nv

l¼1

V s j;m; lð Þ V̂
1

ι, j tð Þ Ô
sð Þ
tð Þ; D̂�

m tð Þ
h i

V̂ ι
2, l tð Þ

D E

þ
i

2τssad
∑

m, j, l¼1

Us j;m; lð Þ〈½Ô
sð Þ
tð Þ; V̂ 1

ι, j tð Þ�V̂
ι
2l tð ÞD̂

�
m tð Þ〉

n

þU ∗
s j;m; lð Þ〈V̂

1

ι, j tð ÞD̂
�
m tð Þ½Ô

sð Þ
tð Þ; V̂ ι

2, l tð Þ�〉
o

þH:c:

(23)

The similar expression can be obtained for a Λ three-level system in interaction

with D radiators, doing the substitution V̂ β
α, j ! Λ

α
βj. For two atoms in each

subsystem, an attractive peculiarity follows from this substitution. If Os tð Þ is the
inversion of the D atom, the direct modification of the D atomic excitation by Λ

three-level atom is equal to zero Λ̂
ι

1, l tð ÞΛ̂
2
ι, l tð Þ N̂d tð Þ; D̂�

m tð Þ
� �

D E

¼ 0 due to the oper-

ator product Λ̂ι
1, l tð ÞΛ̂

2
ι, l tð Þ ¼ 0 for the same atom. In order to obtain the closed

system of equation from master Eqs. (15)and (23), we consider the simple interac-
tion of two atoms in the scattering process represented by the analytical scheme of

Figure 1B. In this case we introduce the new indexes }s} and }a} instead of }1} and
}2}, which correspond to the Stokes and anti-Stokes scattering frequencies ωs and
ωa. Considering that the anti-Stokes frequency ωa is larger than Stokes ωs, one can
approximate the exchange integrals (17) with expression

Vs ≃
sin xað Þ

xa
þ i

1� cos xað Þ

xa
: (24)

Here xa ¼ ωar=c. The mean values of the operators N̂ s

� �

¼ V̂
2

2

D E

, N̂a

� �

¼ V̂
1

1

D E

,

and N̂d

� �

are considered the populations of excited states of V and D radiators,
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respectively. The functions F̂ s t; xað Þ
� �

¼ i V̂
1

2 tð ÞD̂
�
tð Þ

D E

� D̂
þ
V̂ 2

1 tð Þ
D Eh i

,

Ês t; xað Þ
� �

¼ V̂
1

2 tð ÞD̂
�
tð Þ

D E

� D̂
þ
tð ÞV̂ 2

1 tð Þ
D Eh i

, N̂dN̂ s

� �

, and N̂dN̂a

� �

describe the

polarization and population correlations between the atoms Ξ and D. For this
two-atom system, we can obtain the following closed system of equations from
generalized equation (23).

Figure 5.
The decay process of the dipole-forbidden transitions of the D radiator under the influence of V three-level
radiator for following parameter atom for following parameters of the system, Nah i ¼ 0:5, Nsh i ¼ 0:5,
Ndh i ¼ 1, τa=τd ¼ 0:1, τa=τs ¼ 6, and τa=τasd, (A) represents the decay rate�d Nd=dth i and (B) represents the
excitation of the D atom plotted as the numerical solution of the system of Eq. (25) as function of t=τaÞ and
relative distance xa ¼ 2πr=λa in the three-dimensional representation.
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d

dt
N̂ ι t; xað Þ
� �

¼
1

τι,a
N̂a t; xað Þ
� �

þ
1

τι, s
N̂ s t; xað Þ
� �

þ
1

τssad

1� cos xað Þ

xa
Ês t; xað Þ
� �

,

d

dt
N̂a t; xað Þ
� �

¼ �
1

τι,a
N̂a t; xað Þ
� �

þ
1

2τssad

sin xað Þ

xa
F̂ s t; xað Þ
� �

�
1� cos xað Þ

xa
〈Êsðt; xaÞ〉

 �

,

d

dt
N̂ s t; xað Þ
� �

¼ �
1

τι, s
N̂ s t; xað Þ
� �

�
1

2τssad

sin xað Þ

xa
F̂ s t; xað Þ
� �

þ
1� cos xað Þ

xa
〈Êsðt; xaÞ〉

 �

,

d

dt
N̂d t; xað Þ
� �

¼ �
1

τd
N̂d t; xað Þ
� �

þ
1

2τssad

sin xað Þ

xa
F̂ s t; xað Þ
� �

�
1� cos xað Þ

xa
〈Êsðt; xaÞ〉

 �

,

d

dt
F̂ s t; xað Þ
� �

¼ �
1

2

1

τd
þ

1

τι, s
þ

1

τι,a

� �

F̂ s t; xað Þ
� �

þ
1

τssad

sin xað Þ

xa
N̂d t; xað ÞN̂ s t; xað Þ
� �

� 1� N̂d t; xað Þ
� �

N̂a t; xað Þ
� �� �

,

d

dt
Ês t; xað Þ
� �

¼ �
1

2

1

τd
þ

1

τι, s
þ

1

τι,a

� �

Ês t; xað Þ
� �

�
1� cos xað Þ

xaτssad
N̂d t; xað ÞN̂ s t; xað Þ
� �

þ 1� N̂d t; xað Þ
� �

N̂a t; xað Þ
� �	 


d

dt
N̂d t; xað ÞN̂ s t; xað Þ
� �

¼ �
1

τd
þ

1

τι, s

 �

N̂d t; xað ÞN̂ s t; xað Þ
� �

�
1

2τssad

sin xað Þ

xa
F̂ s t; xað Þ
� �

þ
1� cos xað Þ

xa
〈Êsðt; xaÞ〉

 �

,

d

dt
N̂d t; xað ÞN̂a t; xað Þ
� �

¼ �
1

τd
þ

1

τιa

 �

N̂d t; xað ÞN̂a t; xað Þ
� �

:

(25)

As follows from the system (25), and numerical simulation plotted in Figure 5

the first N̂d

� �

=τd and second terms 1=τssad
� �

F̂ s

� �

describe the generation rate of

entangled photon pairs and scattering rate with absorption of Stokes photon and
generation of two anti-Stokes photons by the system formed from V and D atoms.
When the time tends to infinity, all excited atomic energies E0 ¼ ℏωa þ ℏωs þ ℏωd

of three-level V and two-level D atoms are emitted by the system. Taking into
account the conservation law in the scattering process ωa � ωs � ωd ¼ 0, we observe
that this cooperation between the atoms becomes predominant, when the collective
scattering rate 1=τssad increases. In other words, the probability of absorption of
Stokes photon ℏωs which is accompanied with the generation of the new anti-Stokes
photon ℏωa by D atom becomes possible. In this case two atoms represented in the
Figure 1B can generate an entangled anti-Stokes photons with energy E0 ¼ 2ℏωa.
The possibility of the excitation transfer between the atoms Ξ and D represented in
Figure 4B can be found in the special preparation of the system.
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We can conclude that it is possible to study all cooperations two-photon process
between single atoms in each system represented in Figure 1A–C. For example, the
system of Eqs. (20) and (25) can be solved simultaneously taking into consideration
scattering and two-photon transitions. In this case the effective energy transfer of
the excitation between the atoms Ξ, V, and D radiator prepared in the special initial
states can open the new possibilities of non-resonance interaction between the
atomic subsystems.

4. Conclusions

This chapter proposed the cooperative effects between three-level system and
dipole-forbidden two-level systems in nonlinear interaction through the vacuum
field during the spontaneous emission time. The possibility of cooperative migra-
tion of energy from one excited dipole-active three-level atom to another takes
place with phase retardation effects and depends on the position of atoms in the
system. This excitation transfer from dipole-active to dipole-forbidden subsystems
takes place with phase dependence amplitudes, so that the cooperative excitation of
the system consisted from two species of atoms depends on the retardation of
radiation along the sample and geometry of the system. This follows from the
excited or ground state of one of the radiators represented in Figures 4 and 5. As in
Ref. [20], the exchanges between the Ξ (or V) three-level atom and D take place
with the absorption and emission of two quanta, but in this chapter, we take into
consideration the real and imaginary parts of exchange integrals. In this case, two

correlation functions introduced functions F̂b sð Þ t; xað Þ
� �

and Êb sð Þ t; xað Þ
� �

, which

modify the dynamics of possible excitation of D atoms by Ξ and V radiators. The
scattering transfer of the energy between the excited state of V three-level radiator
and dipole-forbidden transitions of D two-level atoms are effective when the
dipole-forbidden atom enters in the two-photon resonance with the energy differ-
ence between the two dipole transitions (Figures 1A and 5A). When the atom D is
in the excited state, the emitted Stokes photon by one atom of the V systems can be
absorbed by another radiator from the D subsystem, so that two radiators pass into
the ground state generating two anti-Stokes photons with energies E0 ¼ 2ℏωa. The
opposite situation can be observed when D atom is prepared in the ground state.
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