
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

Chapter

Vision-Based Autonomous Control
Schemes for Quadrotor
Unmanned Aerial Vehicle
Archit Krishna Kamath, Vibhu Kumar Tripathi

and Laxmidhar Behera

Abstract

This chapter deals with the development of vision-based sliding mode control
strategies for a quadrotor system that would enable it to perform autonomous tasks
such as take-off, landing and visual inspection of structures. The aim of this work is
to provide a basic understanding of the quadrotor dynamical model, key concepts in
image processing and a detailed description of the sliding mode control, a widely
used robust non-linear control scheme. Extensive MATLAB simulations are
presented to enhance the understanding of the controller on the quadrotor system
subjected to bounded disturbances and uncertainties. The vision algorithms devel-
oped in this chapter would provide the necessary reference trajectory to the con-
troller enabling it to exercise control over the system. This work also describes, in
brief, the implementation of the developed control and vision algorithms on the DJI
Matrice 100 to present real-time experimental data to the readers of this chapter.

Keywords: quadrotor dynamical control, unmanned aerial vehicle, vision-based
control, sliding mode control

1. Introduction

In the past few years, the interest in unmanned aerial vehicle (UAV) has been
growing strongly. The possibility of removing human pilots from danger as well as
the size and cost of UAVs are indeed very attractive but have to be compared to the
performances attained by human-piloted vehicles in terms of mission capabilities,
efficiency and flexibility. The design of flight controllers able to offer to UAVs an
accurate and robust control is an important step in the design of fully autonomous
vehicles. In practical operations, fixed-wing UAVs have been used for years in
routine surveillance missions but their lack of stationary flight capability has shifted
the focus to vertical take-off and landing (VTOL) vehicles offering the possibility of
being launched from virtually anywhere along with the ability to hover above a
target. Several designs are available when it comes to VTOL vehicles; however, the
quadrotor configuration presented in this chapter offers all the advantages of VTOL
vehicles along with an increased payload capacity, a stability in hover inherent to its
design (while it is the hardest flight condition to maintain for conventional
helicopter) as well as an increased maneuverability [1].

1

In this work, the vision-based position and altitude tracking control of a
quadrotor UAV is considered. This would be then on used to align the drone to the
center of a pre-defined landing pad marker on which the quadrotor would autono-
mously land. In practical missions, the stability of the quadrotor is easily affected by
abrupt changes in the input commands. The flight controller that is designed must
be capable in offering an accurate and robust control to the quadrotor. The control-
ler demonstrated in this chapter is the sliding mode controller (SMC). The sliding
mode control (SMC) technique, being a non-linear control technique, has found
great applications in offering robust control solutions for handling quadrotors [2–7].
This chapter will briefly describe the process of implementing a vision algorithm
alongside a classical SMC for autonomous landing of the quadrotor on a stationary
platform.

2. Quadrotor configuration

The quadrotor UAV is a highly non-linear, 6 DoF, Multi-Input-Multi-Output
(MIMO) and under-actuated system [8]. One can describe the vehicle as having
four propellers in cross configuration as shown in Figure 1. Quadrotor motion is
controlled by varying the speed of the four rotors. A quadrotor has two sets of
clockwise and two sets of counter-clockwise rotating propellers to neutralize the
effective aerodynamic drag. Vertical movement of the quadrotor system is con-
trolled by simultaneously increasing or decreasing the thrust of all rotors. Yawing
motion is created by proportionally varying the speeds of counter-clockwise rotat-
ing propellers and the rolling and pitching motions are created by applying differ-
ential thrust forces on opposite rotors of the quadrotor [9].

3. Quadrotor mathematical model

The quadrotor dynamics, also called the equations of motion, are a set of 6 s
order differential equations. The quadrotor being a 6 DoF plant, a total of 12 states
are required to describe its motion completely. These 12 states are described using
the 6 equations of motion. These play a vital role in controller design and would be
extensively used in the subsequent sections of this chapter.

Figure 1.
Quadrotor UAV configuration.

2

Unmanned Robotic Systems and Applications

The kinematic and dynamic models of a quadrotor will be derived based on a
Newton-Euler formalism with the following assumptions [10]:

• The quadrotor structure is assumed to be rigid and symmetrical.

• The center of gravity of the quadrotor coincides with the body fixed frame origin.

• The propellers are rigid.

• Thrust and drag are proportional to the square of propeller’s speed.

The first step in developing the quadrotor kinematic model is to describe the
different frames of references associated with the system. It is necessary to use
these coordinate systems for the following reasons:

1. Newton’s equations of motion are given the coordinate frame attached to the
quadrotor.

2. Aerodynamics forces and torques are applied in the body frame.

3.On-board sensors like accelerometers and rate gyros measure information with
respect to the body frame. Alternatively, GPS measures position, ground
speed, and course angle with respect to the inertial frame.

4.Most mission requirements like loiter points and flying trajectories are
specified in the inertial frame. In addition, map information is also given in an
inertial frame.

In this case, we describe a total of frames, namely: inertial frame (Fi), the vehicle
frame (Fv), the vehicle frame-1 (Fv1), the vehicle frame-2 (Fv2), and the body frame
(Fb). The inertial frame is fixed at a point at ground level and uses the N-E-D notation,
where N points towards north direction, E points towards east direction and D points
towards earth. On the other hand, the body frame is at the center of quadrotor body,
with its x axis pointing towards the front of the quadrotor, y axis pointing towards the
left of the quadrotor and the z axis pointing towards the ground. The vehicle frame has
an axis parallel to the inertial frame but has the origin shifted to the quadrotor’s center
of gravity. Vehicle frame’s yaw is adjusted to match the quadrotor’s yaw to get the
vehicle frame-1 frame which is then pitch adjusted to get the vehicle frame-2. Finally
the body frame is obtained by adjusting the roll of the vehicle frame-2.

The transformation from inertial to vehicle frame is just a simple translation. On
the other hand, the transformation from vehicle to body frame is given by a rotation
matrix Rb

v ϕ; θ;ψð Þ , given by:

Rb
v ϕ; θ;ψð Þ ¼ Rb

v2 ϕð ÞRv2
v1 θð ÞRv1

v ψð Þ ¼
1 0 0
0 cos ϕð Þ sin ϕð Þ
0 � sin ϕð Þ cos ϕð Þ

2

4

3

5

cos θð Þ 0 � sin θð Þ
0 1 0

sin θð Þ 0 cos θð Þ

2

4

3

5

cos ψð Þ sin ψð Þ 0
� sin ψð Þ cos ψð Þ 0

0 0 1

2

4

3

5

¼
cθcψ sϕsθcψ � cϕcψ cϕsθcψ þ sϕsψ

cθsψ sϕsθsψ þ cϕcψ cϕsθsψ � sϕcψ

�sθ sϕcθ cϕcθ

2

6

4

3

7

5

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

(1)

3

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

where, ϕ, θ and ψ represent the roll, pitch and yaw angles of the quadrotor
measured in the vehicle frame-2, vehicle frame-1 and vehicle frame respectively. In
addition to these Euler angles, the quadrotor is associated with several other state
variables that describe its position, linear velocity and angular velocities. These are
described as:

1. x—The inertial (north) position of the quadrotor.

2. y—The inertial (east) position of the quadrotor.

3. z—The altitude of the aircraft.

4.u—The body frame velocity in x direction in body frame.

5. v—The body frame velocity in y direction in body frame.

6.w—The body frame velocity in z direction in body frame.

7. p—The roll rate measured in body frame.

8.q—The pitch rate measured in body frame.

9. r—The yaw rate measured in body frame.

Hence a total of 12 states are used to describe the motion of the quadrotor in the
3D space.

3.1 Kinematic model

The position derivatives _x; _y; _zð Þ are inertial frame quantities and velocities
u; v;wð Þ are in the body frame. They can be related through the transformation
matrix as follows [11]:

d

dt

x

y

z

2

6

6

4

3

7

7

5

¼ Rv
b

u

v

w

2

6

6

4

3

7

7

5

¼ Rb
v

� �T

u

v

w

2

6

6

4

3

7

7

5

¼

cθcψ sϕsθcψ � cϕcψcϕsθcψ þ sϕsψ

cθsψ sϕsθsψ þ cϕcψcϕsθsψ � sϕcψ

�sθ sϕcθcϕcθ

2

6

6

4

3

7

7

5

u

v

w

2

6

6

4

3

7

7

5

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(2)

The relationship between absolute angles ϕ, θ, and ψ , and the angular rates p, q,
and r is also complicated by the fact that these quantities are defined in different
coordinate frames. The angular rates are defined in the body frame Fb, whereas the
roll angle ϕ is defined in Fv2, the pitch angle θ is defined in Fv1, and the yaw angle ψ
is defined in the vehicle frame Fv.

4

Unmanned Robotic Systems and Applications

We need to relate p, q, and r to _ϕ, _θ, and _ψ . Since _ϕ, _θ and _ψ are small and
noting that Rv

v1 _ψð Þ, Rv1
v2

_θ
� �

and Rv2
b

_ϕ
� �

are all identity matrices, we get:

p

q

r

2

6

4

3

7

5
¼ Rv2

b
_ϕ
� �

_ϕ

0

0

2

6

6

4

3

7

7

5

þ Rv2
b

_ϕ
� �

Rv1
v2

_θ
� �

0
_θ

0

2

6

4

3

7

5
þ Rv2

b
_ϕ
� �

Rv1
v2

_θ
� �

Rv
v1 _ψð Þ

0

0

_ψ

2

6

4

3

7

5

¼
1 0 � sin θð Þ
0 cos ϕð Þ sin ϕð Þ cos θð Þ
0 � sin ϕð Þ cos ϕð Þ cos θð Þ

2

6

4

3

7

5

_ϕ

_θ

_ψ

2

6

6

4

3

7

7

5

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

(3)

Inverting this, we get:

_ϕ
_θ

_ψ

2

4

3

5 ¼
1 sin ϕð Þ tan θð Þ cos ϕð Þ tan θð Þ
0 cos ϕð Þ � sin ϕð Þ
0 sin ϕð Þ sec θð Þ cos ϕð Þ sec θð Þ

2

4

3

5

p

q

r

2

4

3

5 (4)

3.2 Dynamic model

Let v be the velocity vector of the quadrotor. Newton’s laws of motion hold good
for inertial frames of references only. On applying these to a transnational frame,
the equation modifies as follows:

m
dv

dti
¼ f (5)

wherem is the mass of the quadrotor, f is the total applied to the quadrotor, and d
dti

is the time derivative in the inertial frame. From the equation of Coriolis, we have:

m
dv

dti
¼ m

dv

dtb
þ ωb=i � v

� �

¼ f (6)

where ωb=i is the angular velocity of the air-frame with respect to the inertial
frame. Since the control force is computed and applied in the body coordinate
system, and since ω is measured in body coordinates, we will express the above
equation in body coordinates, where v b ¼ u; v;wð ÞT, and ωb

b=i ¼ p; q; rð ÞT. There-
fore, in body coordinates the above equation becomes:

_u
_v
_w

2

4

3

5 ¼
rv� qw

pw� ru

qu� pv

2

4

3

5þ 1
m

f x
f y
f z

2

4

3

5 (7)

where f x f y f z

h iT
¼ f .

For rotational motion, Newton’s second law states that:

dhb

dti
¼ m (8)

where h is the angular momentum and m is the applied torque. Using the
equation of Coriolis we have:

5

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

dh

dti
¼ dh

dtb
þ ωb=i � h

� �

¼ m (9)

Again, the above equation is most easily resolved in body coordinates where
hb ¼ Jωb

b=i, where J is the constant inertia matrix given by:

J ¼
Jx �Jxy �Jxz

�Jxy Jy �Jyz
�Jxz �Jyz Jz

2

4

3

5 (10)

As we use a quadrotor with a symmetric frame about all three axes,
Jxy ¼ Jyz ¼ Jxz ¼ 0. Hence, J becomes:

J ¼
Jx 0 0
0 Jy 0
0 0 Jz

2

4

3

5 (11)

Defining mb ¼ τϕτθτψ
� �T we can write Eq. (9) in the body coordinates as:

J

_p
_q

_r

2

4

3

5 ¼
0 r �q

�r 0 p

p �q 0

2

4

3

5

Jx 0 0
0 Jy 0
0 0 Jz

2

4

3

5

p

q

r

2

4

3

5þ
τϕ

τθ

τψ

2

4

3

5 (12)

Hence:

_p
_q

_r

2

4

3

5 ¼

Jy � Jz
Jx

qr

Jz � Jx
Jy

pr

Jx � Jy
Jz

qp

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

þ

1
Jx
τϕ

1
Jy
τθ

1
Jz
τψ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(13)

To summarize, from Eqs. (2)–(13), we obtain the 6 DoF equation of a quadrotor
and is given as follows:

_x

_y

_z

2

4

3

5 ¼
cθcψ sϕsθcψ � cϕcψ cϕsθcψ þ sϕsψ
cθsψ sϕsθsψ þ cϕcψ cϕsθsψ � sϕcψ
�sθ sϕcθ cϕcθ

2

4

3

5

u

v

w

2

4

3

5

_ϕ

_θ

_ψ

2

6

4

3

7

5
¼

1 sin ϕð Þ tan θð Þ cos ϕð Þ tan θð Þ
0 cos ϕð Þ � sin ϕð Þ
0 sin ϕð Þ sec θð Þ cos ϕð Þ sec θð Þ

2

4

3

5

p

q

r

2

4

3

5

_u

_v

_w

2

4

3

5 ¼
rv� qw

pw� ru

qu� pv

2

4

3

5þ 1
m

f x
f y
f z

2

6

4

3

7

5

_p

_q

_r

2

4

3

5 ¼

Jy � Jz
Jx

qr

Jz � Jx
Jy

pr

Jx � Jy
Jz

qp

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

þ

1
Jx
τϕ

1
Jy
τθ

1
Jz
τψ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(14)

6

Unmanned Robotic Systems and Applications

3.3 Forces and moments

The objective of this section is to describe the forces and torques that act on the
quadrotor. Since there are no aerodynamic lifting surfaces, we will assume that the
aerodynamic forces and moments are negligible. The forces and moments are
primarily due to gravity and the four propellers.

As seen in Figure 1, each motor produces a force F and a torque τ. The total force
acting on the quadrotor is given by:

F ¼ F1 þ F2 þ F3 þ F4 (15)

The rolling torque is produced by the force difference between the motor pair
1–4 and 2–3 and is given as:

τϕ ¼ L F1 þ F4ð Þ � L F2 þ F3ð Þ (16)

Similarly, the pitching torque is produced by the force difference between the
motor pair 1–3 and 2–4 and is given as:

τθ ¼ L F1 þ F3ð Þ � L F2 þ F4ð Þ (17)

Due to Newton’s third law, the drag of the propellers produces a yawing torque on
the body of the quadrotor. The direction of the torque will be in the opposite direction
of the motion of the propeller. Therefore the total yawing torque is given by:

τψ ¼ τ1 þ τ2 � τ3 � τ4 (18)

The lift and drag produced by the propellers is proportional to the square of the
angular velocity. We will assume that the angular velocity is directly proportional to
the pulse width modulation command sent to the motor. Therefore, the force and
torque of each motor can be expressed as:

F ∗ ¼ K1δ ∗

τ ∗ ¼ K2δ ∗

�

(19)

where K1 and K2 are constants that are determined experimentally, δ ∗ is the
motor command signal, and *—represents 1, 2, 3, and 4. Therefore, the forces and
torques on the quadrotor can be written in matrix form as:

F

τϕ

τθ

τψ

2

6

6

4

3

7

7

5

¼

K1 K1 K1 K1

LK1 �LK1 �LK1 LK1

LK1 �LK1 LK1 �LK1

K2 K2 �K2 �K2

2

6

6

4

3

7

7

5

δ1

δ2

δ3

δ4

2

6

6

4

3

7

7

5

¼ M

δ1

δ2

δ3

δ4

2

6

6

4

3

7

7

5

(20)

The control strategies derived in subsequent sections will specify forces and
torques. The actual motors commands can be found as:

δ1

δ2

δ3

δ4

2

6

6

4

3

7

7

5

¼ M�1

F

τϕ

τθ

τψ

2

6

6

4

3

7

7

5

(21)

Note that the pulse width modulation commands are required to be between
zero and one.

7

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

In addition to the force exerted by the motor, gravity also exerts a force on the
quadrotor. In the vehicle frame Fv, the gravity force acting on the center of mass is
given by:

fbg ¼
0
0
mg

2

4

3

5 (22)

Hence, transforming fbv , we get:

fbv ¼ Rv
b

0

0

mg

2

6

6

6

4

3

7

7

7

5

¼

�mg sin θð Þ

mg cos θð Þ sin ϕð Þ

mg cos θð Þ cos ϕð Þ

2

6

6

6

4

3

7

7

7

5

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(23)

Therefore, transforming equation set (14), we get:

_x

_y

_z

2

6

6

4

3

7

7

5

¼
cθcψ sϕsθcψ � cϕcψ cϕsθcψ þ sϕsψ

cθsψ sϕsθsψ þ cϕcψ cϕsθsψ � sϕcψ

�sθ sϕcθ cϕcθ

2

6

6

4

3

7

7

5

u

v

w

2

6

6

4

3

7

7

5

(24)

_ϕ

_θ

_ψ

2

6

6

4

3

7

7

5

¼
1 sin ϕð Þ tan θð Þ cos ϕð Þ tan θð Þ
0 cos ϕð Þ � sin ϕð Þ
0 sin ϕð Þ sec θð Þ cos ϕð Þ sec θð Þ

2

6

6

4

3

7

7

5

p

q

r

2

6

6

4

3

7

7

5

(25)

_u

_v

_w

2

6

6

4

3

7

7

5

¼
rv� qw

pw� ru

qu� pv

2

6

6

4

3

7

7

5

þ
�g sin θð Þ

g cos θð Þ sin ϕð Þ
g cos θð Þ cos ϕð Þ

2

6

6

4

3

7

7

5

þ 1
m

0

0

�F

2

6

6

4

3

7

7

5

(26)

_p
_q

_r

2

4

3

5 ¼

Jy � Jz
Jx

qr

Jz � Jx
Jy

pr

Jx � Jy
Jz

qp

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

þ

1
Jx
τϕ

1
Jy
τθ

1
Jz
τψ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(27)

Eqs. (24)–(27) represent the complete non-linear model of the quadrotor. How-
ever, they are not appropriate for control design for several reasons. The first reason
is that they are too complicated to gain significant insight into the motion of the
quadrotor. The second reason is that the position and orientation are relative to the
inertial world fixed frame, whereas camera measurements will measure position
and orientation of the target with respect to the camera frame. Hence, the above set
of equations are further simplified using small angle approximation. We obtain:

8

Unmanned Robotic Systems and Applications

€x ¼ cos ϕð Þ sin θð Þ cos ψð Þ þ sin ϕð Þ sin ψð Þð Þ F
m

€y ¼ cos ϕð Þ sin θð Þ sin ψð Þ � sin ϕð Þ cos ψð Þð Þ F
m

€z ¼ cos ϕð Þ cos θð Þð Þ F
m

� g

€ϕ ¼
Jy � Jz
Jx

_θ _ψ þ τϕ

Jx

€θ ¼ Jz � Jx
Jy

_ϕ _ψ þ τθ

Jy

€ψ ¼
Jx � Jy
Jz

_θ _ϕ þ τψ

Jz

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(28)

Equation set (28) would be used henceforth for developing control strategies.

4. Vision algorithm development

In order to control a system like the quadrotor, very reliable sensors are needed
that can provide a good estimate of the system states. Sensors like the IMU and GPS
are subjected to noise which can make them quite undesirable for control applica-
tions. Hence, an efficient method of developing control strategies for autonomous
quadrotor operations is to utilize the concept of computer-vision.

Using computer vision algorithms, the on-board camera of the quadrotor can be
used to confer full autonomy on the system, thereby allowing it to operate in almost
any environment. This also eradicates the necessity of setting up an additional set of
cameras or to calibrate the environment lighting. As long as the on-board camera is
previously calibrated (just needed once) and the target to be tracked is perfectly
known (marker size and ID), this system is ready to operate. The usage of ArUco
markers as targets allows an easy and fast computation enabling its use in real time
applications like autonomous take-off and landing.

In this chapter, let us consider the application of autonomous landing of the
quadrotor on a stationary platform like a car roof-top. To enable the quadrotor to
identify the landing pad, an ArUco markers board must be attached to the roof of a
car. The vision algorithmmust be designed to detect a specific ArUco marker ID, and
provide the quadrotor’s pose relative to the marker. The algorithms used for detection
and identification of the marker board are reviewed in the succeeding sub-section.

4.1 The ArUco library

To detect the marker with a regular camera (RGB camera) a library called ArUco
is used that was developed by Aplicaciones de la Visión Artificial (AVA) from
the Universidad de Córdoba (UCO) [12]. This library is “a minimal library for
Augmented Reality applications based on open source computer vision (OpenCV)”
[13] and has an API for developing markers in C++ which is very useful in this
work. A 100 mm Code 7 ArUco marker is shown in Figure 2.

A generic ArUco marker is a 2D bar-code that can be considered as a 7 � 7
Boolean matrix, with the outer cells filled with black (which makes a perfect square,
easy to find with image processing). The remaining 5� 5 matrix is a 10-bits coded
ID (up to 1024 different IDs), where each line represents a couple of bits. Each line
has only 2 bits of information out of the 5 bits, with the other 3 being used for error
detection.

9

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

These extra 3 bits add asymmetry to the markers, i.e., only a few valid markers
are symmetric (e.g., Figure 3), which allows a unique orientation detection for the
markers. The codification used is a slight modification of the Hamming Code (the
first bit is inverted to avoid a valid black square).

So, any ArUco marker can be created by converting a number to binary, splitting
into five groups of two bits and by putting each couple in one line of the marker,
from the top to the bottom. For example the marker ID of Figure 2 is the number 7,
which is (00 00 00 01 11) in binary. Using the information in Table 1, it can be
verified that the generated marker is the same as that in Figure 2.

The ArUco library processes the image supplied and detects the marker ID as
well as its position and orientation in the 3D world, relative to the camera. The open
source code of ArUco is based in OpenCV, which is a library highly optimized for

Figure 2.
ArUco marker (ID: 7, size: 100 mm).

Figure 3.
ArUco marker (ID: 1023, size: 100 mm).

Table 1.
Codification of an ArUco marker.

10

Unmanned Robotic Systems and Applications

image processing. Therefore, all the calculations are performed in a matter of
seconds so it can be used in real time applications.

The main code is not very complex and the markers detection is performed as
follows:

1. Converting color image to gray image.

2. Apply adaptive shareholding.

3.Detect contours.

4.Detect rectangles:

• Detect corners.

• Detect linked corners.

• Consider figures with only four connected corners.

5. For detected markers:

• Calculate homography (from corners).

• Threshold the area using OTSU, which assumes a bi-modal distribution
and finds the threshold that maximizes the extra-class variance while
keeping a low intra-class variance.

• Detect and identify a valid marker, which respects Table 1, and if not
detected tries the four rotations.

6.Detect extrinsic parameters (by supplying the calibration matrix, distortion
matrix and physical markers dimensions).

The extrinsic parameters are calculated with the help of an OpenCV function:
solvePnPðÞ [14, 15]. For the marker considered, the four corners of its image and
their respective 3D coordinates are provided to the algorithm, which will be:

X1�4 ¼
�d=2 d=2 d=2 �d=2
d=2 d=2 �d=2 �d=2
0 0 0 0

2

4

3

5 (29)

where d[m] is the dimension of the side of the printed squared marker. As it can
be observed, all the four points have their coordinate Z = 0 and their (X, Y)
coordinates are disposed as a square, which means that the marker is considered to
be horizontal, in the origin of the world reference, as suggested in Figure 4 and so
the extrinsic parameters will be the rotation and translation of the camera relative to
the marker.

Figure 5 gives the real time implementation of the algorithm for marker detec-
tion. The vision algorithm gives the position and orientation offset of the marker
center with respect to the camera center. This acts as a reference error to the
controller which will use it to position the drone to the center of the ArUco marker
and land it. Hence, the succeeding section of this chapter describes the control
strategy development.

11

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

5. Control strategy

5.1 Introduction to sliding mode control

The sliding mode control (SMC) strategy deals with the design of a sliding
manifold also called as a sliding surface which basically describe the desired behav-
ior of the system. The designed control law works to bring the system states onto
the user defined sliding surface and then slide them towards the equilibrium point
along this surface. The general form of the sliding surface was proposed by Slotine
and Li and is defined as [16]:

S ¼ d

dt
þ ci

� �r�1

e ¼ 0 (30)

where e is the tracking error defined as e ¼ x� xd. ci is a positive constant and r
is the relative degree of the SMC. In the presence of external disturbances and

Figure 4.
A marker at the world’s reference.

Figure 5.
Real-time implementation.

12

Unmanned Robotic Systems and Applications

uncertainties, the system trajectories may deviate from the sliding surface. This can
be overcome by making the sliding surface attractive. To ensure sliding surface
attractiveness, Lyapunov’s theory is utilized as shown below:

Consider the Lyapunov’s function V given as:

V ¼ 1
2
S2 (31)

To make the sliding surface attractive and to guarantee asymptotic stability, _V

must be negative definite. In order to make _V negative definite following condition
must be satisfied.

S _S <0 (32)

In order to achieve finite-time convergence (global finite-time stability), the
above condition is modified as:

S _S ≤ � ηV1=2 (33)

To satisfy the above inequality condition, a reaching law is selected as:

_S ¼ �K sign Sð Þ (34)

where K is the gain and is always positive.
The signum function, sign Sð Þ, may be defined as:

sign Sð Þ ¼
þ1 S>0

0 S ¼ 0

�1 S<0

8

>

>

<

>

>

:

The control law generated using SMC has two components defined as [17]:

u tð Þ ¼ ueq tð Þ þ uh tð Þ (35)

where ueq tð Þ is the equivalent control, which can be derived by the invariance

condition of the sliding surface, i.e., S ¼ 0 and _S ¼ 0, and uh tð Þ is a hitting control
law also called reaching law based control, which can be obtained by testing the
attractiveness condition. This hitting law is basically used to overcome the effect of
uncertainties and unpredictable disturbances. Chattering appears in SMC due to
signum function and can be overcome by using boundary layer method, in which
the signum function is replaced by a continuous approximation function like a
saturation or hyperbolic function [18].

To understand the basic steps of control law design using sliding mode, Let us
consider a second order uncertain nonlinear system [19]

_x1 ¼ x2
_x2 ¼ f xð Þ þ g xð Þu tð Þ þ d

�

(36)

where x ¼ x1 x2½ �T is the system state vector, f xð Þ and g xð Þ 6¼ 0 are smooth
nonlinear functions, and bounded uncertain term d satisfies ∣d∣ ≤ ds >0, and u tð Þ is
the scalar control input.

13

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

Let us define the tracking error as:

e ¼ x1 � xd (37)

where xd is the desired value of the controlled variable x1.
The sliding variable is selected as:

S ¼ _e þ λe (38)

where λ>0.
Taking the time derivative of S we get:

_S ¼ €e þ λ _e

¼ _x2 � €xdð Þ þ λ _x1 � _xdð Þ

¼ f xð Þ þ g xð Þu tð Þ þ d� €xdð Þ þ λ _x1 � _xdð Þ

(39)

The equivalent control effort which is designed to guarantee desired perfor-
mance under nominal model is derived as the solution of _S ¼ 0 without considering
modeling errors and un-modeled dynamics d ¼ 0ð Þ. It is represented by ueq and
given by:

ueq ¼
1

g xð Þ €xd � f xð Þ � λ x2 � _xdð Þ½ � (40)

The hitting control law uh, to eliminate the effect of perturbations in conven-
tional SMC, is chosen as:

uh ¼ � K

g xð Þ sign Sð Þ (41)

Hence the control law u will be the summation of ueq and uh and is written as:

u ¼ 1
g xð Þ €xd � f xð Þ � λ x2 � _xdð Þ � K sign Sð Þ½ � (42)

Now we wish to prove that, for the system Eq. (36), with the sliding variable
Eq. (38), if the control law is designed as:

u ¼ 1
g xð Þ €xd � f xð Þ � λ x2 � _xdð Þ � K sign Sð Þ½ � (43)

with λ>0 then the S ¼ 0 will be reached in finite time. Also, the states x1 and x2
will converge to zero asymptotically. We use the Lyapunov’s stability criteria: Let us
choose the following Lyapunov candidate function as:

V ¼ 1
2
S2 (44)

Taking the time derivative of V we get:

_V ¼ S _S

¼ S f xð Þ þ g xð Þuþ d� €xd þ λ x2 � _xdð Þ½ �
(45)

14

Unmanned Robotic Systems and Applications

From Eq. (42), Substitute u in Eq. (45) then

_V ¼ S �K sign Sð Þ þ dð Þ
≤ � K∣S∣þ ds∣S∣

¼ �∣S∣ K � dsð Þ≤ � η
ffiffiffi

2
p ∣S∣

(46)

Since _V is negative semi definite for K ≥ ds þ η
ffiffi

2
p . This ensure the finite time

convergence of the sliding manifold. As a result, states are converging to desired
value asymptotically. There are two phases associated with sliding mode control
namely reaching phase and sliding phase. The reaching phase, is the part where the
state trajectory starts from its initial condition and moves toward the sliding sur-
face. In sliding phase, trajectories moves only on the desired sliding surface. The
time taken by the states to reach sliding surface is called reaching time, denoted as
tr. To derive an expression for tr: From Eq. (33), we can write

_V ¼ �ηV1=2 (47)

Indeed, separating variables and integrating Eq. (47) over the time interval
0≤ t≤ tr, we obtain

tr ¼
2
η
V 0ð Þ1=2 (48)

Therefore, a control u that is computed to satisfy Eq. (47) will drive the variable
S to zero in finite time tr and will keep it at zero thereafter. Now we extend this idea
to the quadrotor by using the model represented by the equation set (28).

5.2 SMC design for quadrotor

Let us represent the non-linear model of the quadrotor as:

_x ¼ f xð Þ þ g xð Þuþ d (49)

where:

f xð Þ ¼

_ϕ
Jy � Jz
Jx

� �

_θ _ψ

_θ

Jz � Jx
Jy

 !

_ϕ _ψ

_ψ
Jx � Jy

Jz

� �

_ϕ _θ

_z

�g

_x

0
_y

0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,d ¼

0
dϕ
0
dθ
0
dψ
0
dz
0
dx
0
dy

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(50)

15

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

and

g xð Þ ¼

0 0 0 0
0 1=Jx 0 0
0 0 0 0
0 0 1=Jy 0
0 0 0 0
0 0 0 1=Jz
0 0 0 0

cosϕ cos θð Þ=m 0 0 0
0 0 0 0

ux=m 0 0 0
0 0 0 0

uy=m 0 0 0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(51)

Here, the terms ux and uy are termed as virtual inputs and are evaluated as:

ux ¼ cosϕ sin θ cosψ þ sinϕ sinψ
uy ¼ cosϕ sin θ sinψ � sinϕ cosψ

(52)

From Eq. (49), the state vector can be expressed as

x ¼ ϕ; _ϕ; θ; _θ;ψ ; _ψ ; z; _z; x; _x; y; _y
� �T

and the control input vector as

u ¼ u1; u2; u3; u4ð ÞT which corresponds to F; τϕ; τθ; τψ
� �

. d represents bounded
lumped disturbance which is a sum of modeling uncertainties and external wind
gust disturbance associated with the quadrotor dynamics. For convenience, let the
states of the system be renamed as: x ¼ x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12ð ÞT.

The quadrotor dynamical model can be split into 6 second-order sub-systems,
namely the altitude, x-position, y-position, roll, pitch and yaw sub-systems. The
altitude and yaw sub-systems are controlled directly by u! and u4. However, the
position sub-systems are coupled with the roll and pitch sub-systems. Hence, the
concept of virtual control is utilized to develop the control scheme. Hence, ux and uy
will control the x and y positions and u2 and u3 will control the roll and pitch
sub-systems.

In order to design u2, let us consider the roll subsystem which can be obtained
from Eq. (49) given as:

_x1 ¼ x2

_x2 ¼
Jy � Jz
Jx

x4x6 þ
u2
Jx

þ dϕ

9

>

=

>

;

(53)

As mentioned previously, dϕ is the bounded lumped uncertainty in the roll
dynamics with an upper bound of ds. Let us consider the tracking error in roll
angle as:

eϕ ¼ x1 � ϕd (54)

where ϕd is computed from Eq. (52) as:

ϕd ¼ sin �1 ux sinψd � uy cosψd

� �

(55)

The sliding variable is defined as:

16

Unmanned Robotic Systems and Applications

Sϕ ¼ _eϕ þ λ1eϕ (56)

Taking the time derivative of Sϕ:

_Sϕ ¼ €eϕ þ λ1 _eϕ

¼ €ϕ � €ϕd

� �

þ λ1 x2 � _ϕd

� �

(57)

In order to eliminate the disturbance effects, the reaching law is selected as:

_Sϕ ¼ �K1 sign Sϕ
� �

(58)

From Eqs. (57) and (58) the control law can be chosen as:

u2 ¼ Jx €ϕd �
Jy � Jz
Jx

x4x6 � λ1 x2 � _ϕd

� �

� K1sign Sϕ
� �

 �

(59)

On similar lines, u1, ux, uy, u3 and u4 are designed as:

u3 ¼ Jy €θd �
Jz � Jx

Jy
x2x6 � λ2 x4 � _θd

� �

� K2sign Sθð Þ
" #

(60)

where θd is computed from 52 and is given as:

θd ¼ sin �1 ux cosψd þ uy sinψd
ffi

1� ux sinψd � uy cosψd

� �2
q

0

B

@

1

C

A
(61)

u4 ¼ Jz €ψ d �
Jx � Jy
Jz

x2x4 � λ3 x6 � _ψ dð Þ � K3sign Sψ
� �

 �

(62)

u1 ¼
m

cos x1cosx3
€zd þ g � λ4 x8 � _zdð Þ � K4sign Szð Þ½ � (63)

The sliding variables are expressed as:

Sθ ¼ _eθ þ λ2eθ

Sψ ¼ _eψ þ λ3eψ

Sz ¼ _ez þ λ4ez

9

>

>

=

>

>

;

(64)

With the tracking errors as:

eθ ¼ x3 � θd;

eψ ¼ x5 � ψd;

ez ¼ x7 � zd;

9

=

;

(65)

To achieve x and y motion control, the virtual inputs ux and uy are designed as:

ux ¼
m

u1
€xd � λ5 x10 � _xdð Þ � K5sign Sxð Þ½ �

uy ¼
m

u1
€yd � λ6 x12 � _yd

� �

� K6sign Sy
� �� �

(66)

17

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

where

Sx ¼ _ex þ λ5ex

Sy ¼ _ey þ λ6ey

)

(67)

and

ex ¼ x9 � xd;

ey ¼ x11 � yd;

)

(68)

As previously done, the task now is to prove that the system Eq. (49), with the
sliding variables given by Eqs. (56), (64) and (67). If the control laws are designed
as Eqs. (59), (60), (62), (63), and (66) then the sliding manifolds are reached in
finite time tr and the tracking error eϕ, eθ, eψ , ez, ex, ey will stay on the sliding
manifolds thereafter. Consequently the controlled states x1, x3, x5, x7, x9, x11
will converge to the desired values in finite time tf in the presence of bounded
disturbance and uncertainties.

To do so, let us select a candidate Lyapunov function as:

V ¼ 1
2
STS (69)

where S ¼ Sϕ; Sθ; Sψ ; Sz; Sx; Sy
� �T. By taking the time derivative of the Lyapunov

energy function Eq. (69), one can get:

_V ¼ ST _S (70)

where _S ¼ _Sϕ; _Sθ; _Sψ ; _Sz; _Sx; _Sy
� �T

. After substitution of S, _V can be expressed as:

_V ¼ ST €e þ A _eð Þ (71)

where _e ¼ _eϕ; _eθ; _eψ ; _ez; _ex; _ey
� �T and A is the diagonal matrices where

A ¼ diag λ1; λ2; λ3; λ4; λ5; λ6f g with λi >0. Substituting the value of designed control
laws in Eq. (71):

_V ¼ ST �Ksign Sð Þ þ d
� �

(72)

where K ¼ diag K1;K2;K3;K4;K5;K6f gwith Ki >0 and d ¼ dϕ; dθ; dψ ; dz; dx; dy
� �T

and sign Sð Þ ¼ sign Sϕ
� �

; sign Sθð Þ; sign Sψ
� �

; sign Szð Þ; sign Sxð Þ;
�

sign Sy
� �

ÞT

_V ¼ ST �Ksign Sð Þ þ d
� �

≤ ∑
6

i¼1
jSijdsi � KijSijð Þ

¼ �∑
6

i¼1
∣Si∣ �dsi þ Kið Þ

≤ � η1
ffiffiffi

2
p ∑

6

i¼1
∣Si∣

(73)

18

Unmanned Robotic Systems and Applications

where ∣di∣< dsi. Hence, the convergence of S is proven by the Lyapunov stability
theory. The sliding variables are converging to zero in finite time, i.e., S ! 0.
Therefore, tracking error will converge to zero asymptotically, i.e., e ! 0.

6. Simulation results

This section presents the simulation results of the SMC described in the previous
section. The tracking performance of the quadrotor is evaluated by making it track a
circle of radius 1 m at an altitude of 3 m with a desired yaw angle of π=6. The
tracking performance is shown in Figures 6–9.

The control inputs are shown in Figures 10–13. One can observe that there exists
a presence of chattering in the control inputs when using the signum function and
cannot be directly implemented in real-time hardware. To overcome this, the
boundary layer approximation is utilized which smoothens the control inputs.

Figure 6.
X-position tracking.

Figure 7.
Y-position tracking.

19

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

Figure 9.
Yaw tracking.

Figure 8.
Altitude tracking.

Figure 10.
u1.

20

Unmanned Robotic Systems and Applications

Figure 11.
u2.

Figure 12.
u3.

Figure 13.
u4.

21

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

7. Vision-integrated control

Figure 14 presents an overview of the vision-integrated control. The camera
captures the image and based on the vision algorithm, the position and orientation
offset between the quadrotor and the marker is obtained. This offset is fed to the
sliding mode controller which reduces this error and aids in landing the quadrotor at
the center of the marker.

8. Hardware results

This section presents the results obtained from real-time implementation of the
vision-integrated sliding mode control for the autonomous landing of the quadrotor
in indoor and outdoor environments.

8.1 Hardware description

As mentioned in earlier parts of this chapter, the quadrotor used for the imple-
mentation of this work is the DJI Matrice M100 shown in Figure 15. The DJI Matrice

Figure 14.
Complete block diagram.

Figure 15.
DJI Matrice M100.

22

Unmanned Robotic Systems and Applications

100 is a fully customize-able and programmable flight platform that lets its users
perform operations such as pipeline health monitoring, surveillance, search and
rescue and in applications requiring external sensor interface. Accompanied with
the M100, a series of add-ons help in making its handling user-friendly. Similar to
any other development drone in the market, the Matrice M100 comes with a
programmed flight controller.

To aid in implementation of user defined controllers and task maneuvers, a
separate on-board computer, named the DJI Manifold, is provided in Figure 16. The
Manifold is an embedded Linux computer which incorporates a NVIDIA Tegra K1
SOC (CPU + GPU + ISP in a single chip) with both standard and extended connec-
tions and interfaces. The single GPU (Graphical Processing Unit) unit helps us run
CUDA to aid in performing complex image processing operations. The Linux envi-
ronment acts as a support to run ROS (Robot Operating System), which is the key
element for any sorts of development on the Matrice M100. This would be men-
tioned in detail in the upcoming sub-section.

To gather visual data, the DJI Matrice M100 is provided with a completely
controllable Zenmuse X3 Gimbal. This could be easily interfaces with the DJI Man-
ifold for image processing. However, in this case, a separate downward facing
camera is used to perform the task of vision based landing. This is done so as to keep
the gimbal free to perform other tasks such as image capturing, video capturing and
likewise. The downward facing camera chosen is the LogiTech C310 camera
(Figure 17) which can be interfaced with the manifold using an USB connection.

The landing pad is a wooden platform of dimension 4 feet � 4 feet. At the
center, an AruCo marker is placed of dimension 12.5 cm � 12.5 cm. The AruCo
Marker chosen is a 4 � 4 matrix of marker ID 7. The dimension of the marker is
chosen such that it is clearly detected from an altitude as high as 10 m as well as
from an altitude as low as 0.4 m. The landing pad setup as shown in Figure 18
would be mounted on the roof of a car for experimental purposes.

8.2 Software description

This section briefly describes the software abstraction layer and its paradigm to
control and the associated hardware flow of Matrice M100 quadrotor. As discussed in
the hardware setup the DJI M100 uses DJI Manifold as its on-board computer to
control and communicate with Flight controller and on-board sensors interfaced with
it. DJI On-board SDK (OSDK) is an open source software library which enables the
OBC (On-Board Computer) to handle the Input-Output data coming from the

Figure 16.
DJI manifold.

23

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

on-board control unit and sensor units. To establish the reliable network among the on-
board sensor units and OBC, several serial communication protocols such asUART1,
UART2, CAN1, CAN2, USB and VBUS1 to VBUS5 are used. In this Paper, the main
focus is on estimating the pose of the quadrotor using an on-board monocular camera
connected to one of the USB ports. Other sensors, such as theDJI Guidance, which is
connected to theVBUS, can be sued for fusion at different frame rates if necessary. The
multi-layer hardware communication block diagram is as shown in Figure 19.

The multi-layer hardware connection is described in the Figure 19.
The on-board SDK includes:

• C++ library to access arm processor based linux(OS).

• Robot Operating System (ROS): Interface and associated packages to handle
multiple sensor nodes.

• DJI Assistant2: Real time flight simulator to verify the developed algorithms.

• DJI OSDK API: Used to asynchronously to send the control commands to flight
control unit and s the acknowledgment from it.

Figure 18.
Landing pad setup.

Figure 17.
LogiTech C310.

24

Unmanned Robotic Systems and Applications

The software components of OSDK consist of APIs provided by DJI SDK library.
The OSDK supports two varieties of asynchronous Programming and sends infor-
mation to the OSDK workflow. The asynchronous programming mechanism works
on executing the code receiving from the acknowledgement which is independent
of main flow execution. The components also include:

• Serial device drivers: It communicates with flight controller and OBC via
UART. The serial device drivers also takes care of input-output handling,
memory management like locking and unlocking and interrupts.

• Thread communication: Allows inter thread communication to handle
different level of signals.

• Application layer API calls: The core of on-board API is a communication
between the flight control commands send from the processor to the control
unit and in turn receives the acknowledgement independent of program flow.
It provides callback functions. The synchronous programming API blocking
calls will return only when the CMD-ACK round trip is done. This gives the
assurance that the command is executed.

This process flow is depicted as shown in Figure 20.

8.3 Test environment description

Two test environments were used to validate the developed control algorithm.
To assess the quadrotor’s capability of performing vision based landing in the indoor
environment, an empty plot of dimension 12 feet � 21 feet was used enclosed by
nets. The plot was surrounded with obstacles on all four sides making it absolutely
necessary for the drone not to move away too far away from the landing pad. The
test environment is as shown in Figure 21. The first set of experiments were
conducted using this setup. This also gave an opportunity to validate the shadow
elimination that was incorporated in the drone. Note that the indoor experiment
had the landing pad setup placed on the ground.

The second setup included the landing pad placed on the roof of a car as shown
in Figure 22. It is assumed that the car is stationary when the quadrotor is
performing the task of vision based landing.

Figure 19.
OSDK architecture and software framework.

25

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

8.4 Results

8.4.1 Indoor environment

The first environment was the indoor environment with the marker placed on
the ground in an enclosed space of 12 feet � 12 feet. The drone was made to
autonomously lift-off and then the vision based landing node was initiated. The
node simultaneously also recorded the position, velocity, acceleration and offset as
the drone performed the corrections needed to align with the marker.

These results were plotted and are shown in Figures 23–26. Note that 1 s pro-
duces 18 samples and hence, from the time of initiation to completion, the action of

Figure 21.
Indoor test environment.

Figure 20.
OSDK software flow.

26

Unmanned Robotic Systems and Applications

vision based landing took 30 s in this case. Over 10 trials an average error of 3.2 cm
was observed with the maximum error as 6 cm from the marker center.

8.4.2 Outdoor environment

The second test environment was the outdoor environment with the landing pad
mounted on the roof of a car. A 4� 4 feet wooden board was mounted on the roof
top of a car with the ArUco marker affixed to the center of this board. It was tested
in an open ground with winds blowing at 10 km/hr. NW. This helped us understand
the robustness of the controller designed. A slight swaying of the drone was
observed, however, the designed controller managed to land the quadrotor on the
marker with an average error of 4 cm with a maximum error of 7 cm over 20 trials.
Once again, the acceleration, velocity, position and offset values were recorded and

Figure 22.
Outdoor test environment.

Figure 23.
Acceleration profile (Indoor Testing).

27

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

Figure 26.
Camera parameters (Indoor Testing).

Figure 24.
Velocity profile (Indoor Testing).

Figure 25.
Position profile (Indoor Testing).

28

Unmanned Robotic Systems and Applications

Figure 27.
Acceleration profile (Outdoor Testing).

Figure 28.
Velocity profile (Outdoor Testing).

Figure 29.
Position profile (Outdoor Testing).

29

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

are shown in the Figures 27–30. The time for completion of the task from the point
of initialization was found to be 43 s.

9. Conclusion

In this work, a vision-based sliding mode control for autonomous landing of a
quadrotor UAV is proposed. The vision algorithm is developed to detect the cen-
troid, position and orientation of the camera with respect to a landing pad marker
(ArUco marker) placed on the roof of a car. The designed sliding mode controller
proves to be effective when working alongside the developed vision algorithm and
is simulated using MATLAB environment. This is then on extended to the actual
experimental tests on the DJI Matrice M100, in indoor and outdoor environments.
The main conclusions are summarized as follows:

1. The designed controller ensures that all the state variables converge to their
reference values, even if their reference values are subjected to sudden
changes.

2. The alignment of the drone over the landing pad marker is obtained by using
the position and yaw offset values as inputs to the sliding mode controller.

3. The robustness of the designed controller is demonstrated among the various
experimental trials in outdoor environments (subjected to winds), and the
effectiveness of the proposed control scheme is also justified.

All of the results presented above are quiet promising and can be reproduced in
any quadrotor system. Reference [20] demonstrates the results of the proposed
work. As a future addition to this work, readers can consider using EKF to infuse
IMU data with vision to enhance the tracking data. In addition, the users can also
improve the proposed SMC to incorporate power rate reaching laws or super twist-
ing laws to attenuate chattering further.

Figure 30.
Camera parameters (Outdoor Testing).

30

Unmanned Robotic Systems and Applications

Acknowledgements

The authors would like to thank the Subhash Chand Yogi and Abhay Pratap
Singh from Indian Institute of Technology-Kanpur, who have helped in running
simulations and hardware experiments.

Author details

Archit Krishna Kamath, Vibhu Kumar Tripathi and Laxmidhar Behera*
Department of Electrical Engineering, Indian Institute of Technology, Kanpur,
India

*Address all correspondence to: lbehera@iitk.ac.in

© 2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

31

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

References

[1] Besnard L, Shtessel YB, Landrum B.
Quadrotor vehicle control via sliding
mode controller driven by sliding mode
disturbance observer. Journal of the
Franklin Institute. 2012;349(2):658-684

[2] Zheng EH, Xiong JJ, Luo JL. Second
order sliding mode control for a
quadrotor UAV. ISA Transactions. 2014;
53(4):1350-1356

[3] Bouchoucha M, Seghour S, Tadjine
M. Classical and second order sliding
mode control solution to an attitude
stabilization of a four rotors helicopter:
From theory to experiment. In: 2011
IEEE International Conference on
Mechatronics; IEEE; 2011. pp. 162-169

[4] Xu R, Özgüner Ü. Sliding mode
control of a class of underactuated
systems. Automatica. 2008;44(1):
233-241

[5]Mokhtari A, Benallegue A, Orlov Y.
Exact linearization and sliding mode
observer for a quadrotor unmanned
aerial vehicle. International Journal of
Robotics and Automation. 2006;21(1):
39-49

[6] Benallegue A, Mokhtari A, Fridman L.
High-order sliding-mode observer for a
quadrotor UAV. International Journal of
Robust and Nonlinear Control: IFAC-
Affiliated Journal. 2008;18(4-5):427-440

[7] Sharifi F, Mirzaei M, Gordon BW,
Zhang Y. Fault tolerant control of a
quadrotor UAV using sliding mode
control. In: 2010 Conference on Control
and Fault-Tolerant Systems (SysTol),
IEEE; 2010. pp. 239-244

[8] Ashrafiuon H, Erwin RS. Sliding
mode control of underactuated
multibody systems and its application to
shape change control. International
Journal of Control. 2008;81(12):
1849-1858

[9] Tripathi VK, Behera L, Verma N.
Design of sliding mode and
backstepping controllers for a
quadcopter. In: 2015 39th National
Systems Conference (NSC), IEEE; 2015.
pp. 1-6

[10] Erginer B, Altug E. Modeling and
PD control of a quadrotor VTOL
vehicle. In: 2007 IEEE Intelligent
Vehicles Symposium, IEEE; 2007.
pp. 894-899

[11] Beard R. Quadrotor dynamics and
control rev 0.1

[12]Garrido-Jurado S, Muñoz-Salinas R,
Madrid-Cuevas FJ, Marín-Jiménez MJ.
Automatic generation and detection of
highly reliable fiducial markers under
occlusion. Pattern Recognition. 2014;47
(6):2280-2292

[13] Bradski G, Kaehler A. Learning
OpenCV: Computer vision with the
OpenCV Library. “O’Reilly Media,
Inc.”; 2008

[14] Kannala J, Brandt SS. A generic
camera model and calibration method
for conventional, wide-angle, and fish-
eye lenses. IEEE Transactions on Pattern
Analysis and Machine Intelligence.
2006;28(8):1335-1340

[15]Munoz-Salinas R. Aruco: A minimal
library for augmented reality
applications based on opencv.
Universidad de Córdoba; 2012

[16] Slotine JJ, Li W. Applied Nonlinear
Control. Englewood Cliffs, NJ: Prentice
Hall; 1991

[17] Shtessel Y, Edwards C, Fridman L,
Levant A. Sliding Mode Control and
Observation. New York: Springer; 2014

[18] Runcharoon K, Srichatrapimuk V.
Sliding mode control of quadrotor. In:

32

Unmanned Robotic Systems and Applications

2013 The International Conference on
Technological Advances in Electrical,
Electronics and Computer Engineering
(TAEECE), IEEE; 2013. pp. 552-557

[19] Kuo BC, Golnaraghi F. Automatic
Control Systems. Englewood Cliffs, NJ:
Prentice-Hall; 1995

[20] Kamath AK, Sakthi Vignesh R,
Behera L. Vision Based Autonomous
Landing on Stationary Platform.
[Online]. Available from: https://www.
youtube.com/watch?v=d-D7enlMzlo

33

Vision-Based Autonomous Control Schemes for Quadrotor Unmanned Aerial Vehicle
DOI: http://dx.doi.org/10.5772/intechopen.86057

