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Chapter

Protein-Protein Interaction Assays 
Using Split-NanoLuc
Yuki Ohmuro-Matsuyama and Hiroshi Ueda

Abstract

Protein-protein interaction assays are fundamental to basic biology, drug 
discovery, diagnostics, screening, and immunoassays. Protein-fragment comple-
mentation (PCA) is one of such useful protein-protein interaction assays. PCA 
when performed using luciferase is a reversible approach, whereas when performed 
using green fluorescent protein analogs is an irreversible approach. The NanoLuc 
technology developed in 2012 utilizes a small and structurally robust luciferase that 
is capable of producing very bright luminescence. NanoLuc PCA has been used 
to detect many protein-protein interactions and for screening purposes. Methods 
developed from NanoLuc PCA include the HiBiT technology and NanoLuc ternary 
technology. These novel technologies are promising in various fields and further 
developments are anticipated.

Keywords: NanoLuc, PCA, NanoBiT, protein-protein interaction, HiBiT,  
NanoLuc ternary technology

1. Introduction

It is predicted that there are 150,000–650,000 protein-protein interactions in 
the human interactome [1–3]. Protein-protein interaction assays have been devel-
oped and used for studies on basic biology, drug discoveries, diagnostics, screen-
ings, and immunoassays.

In 1994, the first protein-fragment complementation assay (PCA) was developed 
using split ubiquitin [4]. PCA typically uses two-split reporter proteins that are 
fused to the target proteins. The interaction leads to the association of the fragments 
and the subsequent reconstitution of the full-length structure from the two frag-
ments (Figure 1) [5–8]. More recently, fluorescent proteins and luciferase enzymes 
have been widely utilized for innovative PCAs. Reversible PCAs generally utilize 
enzymes, and the exceptions are two fluorescent proteins IFP1.4 and UnaG [9, 10]. 
Most other PCA systems that use fluorescent proteins, including green fluorescent 
protein (GFP) analogs, show irreversible behavior. In such irreversible assays, 
once the full-length structure is reconstituted, it is difficult to separate them into 
the two fragments when dissociation occurs after the interaction. On the contrary, 
in the reversible PCA systems, both interaction and dissociation can be detected. 
Therefore, PCA systems using enzymes, such as luciferase, are more suitable to 
detect the spatiotemporal dynamics of protein-protein interactions. However, until 
recently, the luminescent signal is significantly weaker than the fluorescent signal.

Recently, a novel luciferase enzyme, NanoLuc, and its furimazine substrate were 
developed [11, 12]. NanoLuc is small (19 kDa) and structurally stable, and produces 
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very bright luminescence. Based on this attractive enzyme, PCA systems were 
developed [13, 14]. This innovation on the NanoLuc PCA improves the luminescent 
signal, which is markedly better than the conventional PCA signal obtained using 
other luciferases. Herein, we will focus on the new PCA technology and its applica-
tion, and further discuss potential improvements in the system.

2. PCA using NanoLuc

Verhoef et al. constructed a PCA system using NanoLuc [14]. They made several 
pairs of NanoLuc fragments by cutting at several loop regions, and selected a pair 
comprised of the N-terminal 52-amino acid (aa) fragment and the C-terminal 
119-aa fragment (Figure 2A). These fragments were used to successfully detect the 
interaction between the transactivation domain fragment of p53 and Mdm2.

At almost the same time, Dixon et al. developed another NanoLuc-based PCA 
system designated NanoLuc Binary Technology (NanoBiT) [13]. This was devised 
by first identifying a dissection site from 90 candidate sites. An 18-kDa N-terminal 
fragment and 13-aa C-terminal fragment were selected. The KD value between 
these fragments was 6 μM. This low affinity was suitable for PCA, but their use was 
hampered by the very low stability of the N-terminal fragment. The sequence of the 
N-terminal fragment was optimized from an N-terminal library containing 15,000 
variants. The optimization increased the luminescent signal by 300-fold when the 
two fragments were interacting, which was 37% that of the wild-type NanoLuc. 
However, the affinity between the N- and C-terminal fragments became too strong 
for PCA (KD = 900 nM). As a next step, the sequence of the C-terminal peptide 
was optimized from 350 variants. Finally, two fragments were obtained. They were 
designated LgBiT (18 kDa) and SmBiT (11 aa). These exhibited significantly low 

Figure 1. 
Basic principle of PCA. (A) The reporter protein (F) is separated into two fragments (N and C). (B) N and C 
are fused to target protein (left). When the interaction occurs, N and C move to the neighboring position, and 
the full-length reporter protein is reconstituted.

Figure 2. 
Two systems of NanoLuc PCA. (A) Verhoef et al. separated NanoLuc into N-terminal 52-aa fragment and 
C-terminal 119-aa fragment. (B) Dixon et al. separated NanoLuc into the large fragment, LgBiT (18 kDa), 
and the small fragment, SmBiT (11 aa).
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affinity (KD > 10 μM) and high luminescent intensity. The very bright signal and 
remarkably high signal/background ratio obtained enabled the quantitative detec-
tion of several interactions. Furthermore, the luminescent signals were capable of 
rapid change and were reversible depending on changing interactions (Figure 2B).

3. Application of NanoBiT for analysis of protein-protein interaction

In spite of recent appearance, NanoBiT has been already used to analyze several 
protein-protein interactions. Elevation of plasma triglycerides causes various meta-
bolic diseases. These triglycerides are digested by lipoprotein lipase [15–19]. Chi 
et al. used NanoBiT to demonstrate the association between lipoprotein lipase and 
angiopoietin-like 3 (ANGPTL3) induced by ANGPTL8 [20]. They further described 
that the association inhibits the digestion activity of lipoprotein lipase.

Guanine nucleotide-binding (G) protein-coupled receptors (GPCRs) bind G 
proteins or β-arrestins, and initiate several cellular signaling events. Regulator of 
G protein signaling (RGS) proteins regulate G proteins. The regulation has been 
implicated in several disease states, including various cancers, Parkinson’s disease, 
and cardiomyopathy [21–25]. Several reports have described the use of NanoBiT to 
analyze the mechanisms of GPCRs. These included the interaction of several sets of 
RGS proteins and G proteins [26] and the interaction between the galanin receptor 
2 GPCR and β-arrestin2 [27]. Furthermore, the LgBiT-fused galanin receptor 2 was 
modified with a fluorescent dye, and the conformational changes of galanin receptor 
induced by the binding of ligands, including galanin, spexin, and Fmoc-dA4-dQ14, 
were analyzed by bioluminescence resonance energy transfer (BRET). Stome et al. 
applied NanoBiT to analyze the interaction between the GPCR adenosine receptor 
3 and β-arrestin2, and observed that the 1-deoxy-1-[6-[[(3-iodophenyl)methyl]
amino]-9H-purin-9-yl]-N-methyl-β-D-ribofuranuronamide (2-CI-IB-MECA) 
agonist recruited β-arrestin2 [28]. In addition, the authors described the impor-
tance of the phosphorylation site of adenosine receptor 3 for the association. The 
site was implicated as a potential clinical target. Melanocortin receptors are also 
categorized as GPCRs. Melanocortin 4 receptor (MC4R) binds one of melanocortins 
α-melanocyte-stimulating hormone (α-MSH), which is considered is important in 
obesity. Habara et al. isolated melanocortin receptor 4 and its regulator Melanocortin 
2 receptor accessory protein 2 (MRAP2) from cats and analyzed the heterodimeriza-
tion of these proteins [29]. Leory et al. characterized several mutants of Janus Kinase 
2 in signaling by a transmembrane cytokine receptor, erythropoietin receptor [30].

Interactions with other membrane proteins implicated as important drug targets 
were also analyzed by NanoBiT. Folding and steric hindrance are problematic for 
many membrane proteins. The small size of SmBiT could eliminate these prob-
lems. O’Neil et al. revealed the amino acids of NADPH that were important for 
the interaction with p22 using NanoBiT [31]. Chaudhri et al. applied NanoBiT to 
analyze the association between programmed death ligand 1 (PD-L1) and B7–1 
[32]. Peptide hormone, a member of the relaxin family of peptides, participates in 
reproduction, food intake, stress response, and glucose homeostasis [33–36]. Hu 
et al. demonstrated the association between the relaxin family peptide receptors 
peptide 3 and peptide 4 using NanoBiT [37]. The same group further reported that 
the interaction is electrostatic by analyzing the association between several mutant 
ligands and their receptors [38]. Equilibrative nucleoside transporters regulate 
the levels of adenosine and hypoxanthine level, and are crucial in purinergic 
signaling in the central nervous system, cardiovascular and renal systems, and 
in pathophysiological conditions including myocardial ischemia, inflammation, 
and diabetic nephropathy [39–41]. Grañe-Boladeras et al. analyzed the homo- and 
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hetero-oligomerization of ENT1 and ENT2, and revealed that the phosphorylation 
by protein kinase C promotes oligomerization [42].

4. Application of NanoBiT for screening

Several groups have successfully used NanoBiT in highly accurate drug screen-
ing, including illegal drugs [43, 44]. In the latter studies, β-arrestin2 was fused to 
SmBiT, and the CB1 and CB2 GPCRs of cannabinoid (the neurologically active com-
ponent of cannabis) were fused to LgBiT. As cannabinoid induces the interaction 
between β-arrestin2 and these receptors, the luminescent intensity was increased by 
adding synthetic cannabinoids and their metabolites. The synthetic cannabinoids 
and metabolites were detected in subnanomolar concentrations in authentic urine 
samples with an accuracy rate of 73%.

Next, the authors tried to detect synthetic opioids, which act similarly to heroin 
or morphine. The μ-opioid receptor and β-arrestin2, which interact in the presence of 
opioid, were fused to LgBiT and SmBiT, respectively [45]. The system was nearly 100% 
successful in detecting subnanomolar levels of the synthetic opioids in blood samples.

Aggregation of TDP (transactivating response region DNA binding protein)-43 
occurs in approximately 95% of amyotrophic lateral sclerosis patients [46, 47]. 
Oberstadt et al. constructed a screening system for inhibitors of aggregation by 
the fusion between the LgBiT and SmBiT probes and TDP-43 [48]. Aurorafin, 
chelerythrine, and riluzole were identified as inhibitors from the Library of 
Pharmacologically Active Compounds (LOPAC1280).

Stomes et al. selected agonists of the interaction between adenosine receptor 3 
and β-arrestin2 and revealed the structural features of the selected ligands [28].

The NanoBiT screening system is not only effective for drug screening but 
can be valuable to screen enzyme substrates. Peptide ligases, which can connect 
two polypeptides, are powerful tools for protein engineering [49–52]. Li et al. 
performed the screening of substrates of the peptide ligase Sortase A by fusing this 
enzyme to SmBiT and the candidate peptides to LgBiT [53]. In addition to known 
substrate sequences, they rapidly identified some previously unknown substrates 
with varying activities. In addition, the measurement was very stable, and the 
signal was maintained for more than 16 h.

5. Application of NanoBiT using self-assembling NanoLuc fragments

Self-assembling NanoLuc fragments have been used to detect protein aggrega-
tion, to detect the edited protein by CRISPR/Cas9, to monitor viral entry, release, 
and propagation, and to analyze clathrin-dependent internalization (Figure 3).

Figure 3. 
Scheme for protein fragments self-assembly. Since the affinity between N and C is high, the full-length reporter 
protein is reconstituted by just mixing N and C.
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The first description of the use of self-assembling NanoLuc fragments was pro-
vided by Zhao et al [54]. NanoLuc was separated into two fragments, N65 (1–65 aa) 
and 66C (66–171 aa). NanoLuc was rapidly reconstituted when N65 and 66C were 
mixed. Next, N65 was fused to the target proteins. When the target protein was 
soluble, N65, which had the correct structure, could reassemble with 66C, resulting 
in recovery of the luminescence. On the other hand, the insoluble target protein 
did not induce the recovery of the luminescence, because the aggregated N65 could 
not assemble with 66C (Figure 4). The aggregations of amyloid-β mutants were 
assessed using the system. Similar monitoring systems of protein aggregation using 
split-GFP and conventional split-luciferase systems had been previously reported 
[55–60]. However, a time lag occurred for the chromophore formation in the split-
GFP system, and other luciferases were relatively unstable compared with NanoLuc. 
Zhao et al. succeeded the robust measurement of amyloid-β in this study.

Other self-assembling NanoLuc fragments were described [13]. The SmBiT 
sequence was optimized using peptides with different affinities to LgBiT. Of the 
candidates, the HiBiT peptide displayed high affinity (KD = 700 pM) although the 
affinity of SmBiT was very low (KD > 100 μM). HiBiT (11 aa) and LgBiT assembled 
spontaneously, allowing the construction of NanoLuc. HiBiT is a useful tag due to 
the small size as further described below.

In one of the split-GFP systems, GFP was split into two fragments [57]. The 
C-terminal fragment of GFP contains 16 aa (GFP11). Waldo et al. found that this 
and the other fragment (GFP1–10) expressed in the cell assembled spontaneously, 
and the GFP fluorescence was recovered. Leonetti et al. described the synthesis 
of the donor DNA templates encoding GFP11 and the tagging of endogenous 
proteins using CRISPR/Cas9 (Figure 5A) [61]. The formation of full-length GFP 
was induced by coexpression with GFP1–10, and the tagging endogenous protein 
by GFP11 could be detected. Instead of GFP11, Schwinn et al. used HiBiT as the 
tag for endogenous proteins and were successful in achieving the highly efficient 
integration and monitoring of the expression dynamics of the tagging proteins 
without the time lag, which occurs in the split-GFP system due to the chromophore 
formation (Figure 5B) [62].

Ryes-Alaraz et al. analyzed the internalization of galanin receptor 2, which is 
dependent on the binding of the endogenous ligand, using an HiBiT-fused galanin 
receptor 2 [27]. LgBiT could bind to the HiBiT-fused receptor on the cell surface. 

Figure 4. 
Self-assembling Nluc fragment as a probe for protein aggregation. (A) N65 is fused to the target protein. When 
the fusion protein is not aggregated, NanoLuc is reconstituted by the addition of 66C. (B) When the target 
protein is aggregated, N65 is also aggregated, and, then, the reassembly does not occur.
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However, LgBiT could not bind to the HiBiT-fused receptor in cells due to the 
impermeability of LgBiT to cells (Figure 6).

This technology has often been used to quantify targets. Oh-hashi et al. used 
HiBiT to quantify the expression of transcription factor ATF4 that was induced by 
endoplasmic reticulum stress [63]. Sasaki et al. developed a quantitative detection 
system of viral entry and release using HiBiT fused to subviral particles and flavi-
virus-like particles of West Nile virus [64]. Tamura et al. constructed recombinant 
viruses carrying HiBiT [65]. Viral amplification and propagation were rapid and 
comparable with the parental viruses, due to the small size of HiBiT. The techniques 
proved useful to study the viral life cycle and pathogenesis.

6. NanoLuc ternary technology

In PCA, the reporter protein is generally separated into two fragments. To our 
knowledge, PCA using 3-split reporter protein was first reported by Cabantous 
et al. [66]. In the study, GFP was split into two peptides, GFP10 and GFP11, and 
the remaining part. The two peptides were each fused to an interacting partner. 
When the interaction occurred, the peptides came into close proximity with one 
another and then assembled to form the full length of GFP with the remaining 
part (Figure 7).

Possibly inspired by this GFP ternary technology, Dixon et al. developed the 
NanoLuc ternary technology, NanoLuc is consisted of 11 β-strands [67]. The 

Figure 5. 
Application of self-assembling fragment for Crispr-Cas9 system. (A) GFP11-encoding template is inserted at 
the end of the genome encoding target protein by Crispr-Cas9 system. GFP11-fused target protein is expressed. 
By the addition of GFP1–10, full-length GFP is reconstituted and the target protein was detected. (B) HiBiT is 
used instead of GFP11, and higher sensitivity is attained.

Figure 6. 
Application of self-assembling fragment for the analysis of internalization. LgBiT can bind to HiBiT-galanin 
receptor 2 on the cell membrane, while it cannot access HiBiT-galanin receptor 2 in the endosome.
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authors dissected two β-strands and the remaining part. Each strand was fused to a 
Fab fragment of an antibody and an ankyrin repeat protein, which bound to distinct 
areas of the cancer marker, HER2. When both antibodies recognized HER2, the 
two strands came close together and the full length of NanoLuc was reconstituted 
from the three fragments of NanoLuc (Figure 8). The sensitivity was similar to the 
sensitivity detected using the commercially available AlphaLISA HER2 kit  
(Perkin Elmer) and NanoBiT. Furthermore, the detectable concentration range of 
HER2 was broader compared to the range detected by NanoBiT.

At almost the same time, we developed the NanoLuc ternary technology for 
use as an open-sandwich immunoassay (OS-IA), because OS-IA could not be 
performed using NanoBiT [68]. For OS-IA, two antigen-binding regions, the 
heavy-chain variable region (VH) and the light-chain variable region (VL), were 
isolated from the full-length antibody. OS-IA is based on the antigen-dependent 
interaction affinity between VH and VL, which is dependent on the antigen 
(Figure 9) [69]. The advantage of OS-IA is that small antigens can be noncom-
petitively detected with high sensitivity. VH and VL were fused to LgBiT and 
SmBiT. However, the signal was not increased by the addition of the small peptide 
antigen (7 aa) named BGP-C7. We suspected that fusion with LgBiT sterically 
hindered the interaction, or prevented the folding of these antibody fragments 
due to the relatively large size of LgBiT.

The next step was to split LgBiT in two. The C-terminal strand (11 aa) was 
named LcBiT, and the remaining part was named LnBiT. LcBiT and SmBiT were 
fused to VH and VL, respectively. When LnBiT, VH-LcBiT, and VL-SmBiT were 
mixed, the signal was increased depending on the concentration of BGP-C7. The 

Figure 7. 
GFP ternary split technology for the detection of protein-protein interaction. The two small fragments GFP10 
and GFP11 are fused to the interacting proteins, respectively. When the interaction occurs, GFP is reconstituted 
from GFP10, GFP11, and externally added GFP1–9.

Figure 8. 
Sandwich immunoassay based on NanoLuc ternary technology developed by Dixon et al. The two β-strands 
are fused to a Fab and an ankyrin repeat protein, respectively, which bind to two distant parts of Her2 protein. 
NanoLuc was reconstituted from the two strands and externally added remainder of NanoLuc.
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background signal without BGP-C7 was lower than the background signal of VH-
LgBiT and VL-SmBiT.

Next, the signal was enhanced by optimizing the sequence of SmBiT. The 
signal was increased 288-fold using the sequence, which has higher affinity to 
LgBiT. The enhancement was high enough to permit detection by the naked 
eye. The detection limit of BGP-C7 was comparable with the limit detected by 
OS-ELISA. Furthermore, the strong signal was maintained for more than 1 h.

The small tags of the NanoLuc ternary system have proven to be very useful 
when both target proteins have complex structures. Furthermore, the system 
exhibits a robust and bright signal.

7. Discussion and conclusion

The described NanoLuc binary and ternary technologies are superior compared 
with other PCAs using other luciferase enzymes. The signals obtained were almost 
the strongest among the signals of PCAs using luciferase enzymes. The most impor-
tant advantage is the small size of the fusion tags, SmBiT and LcBiT.

As mentioned in Section 4, NanoBiT has been used as a screening tool. In sev-
eral studies, SmBiT was fused to membrane proteins, which are important targets 
of drug discovery. The brightness of NanoLuc increased the hit ratio, and SmBiT 
was validated as a tag for the fusion with proteins having complex structures, such 
as membrane proteins. Although the measurements were very accurate, research-
ers should pay attention to the influence of low-molecular weight compounds on 
enzymatic activity [70–72]. Some compounds increase enzymatic activity, while 
others decrease it. The TurboLuc system reported by Audi et al. is somewhat 
smaller in molecular weight (16 kDa) than NanoLuc [73]. Compared with NanoLuc 

Figure 9. 
Open sandwich immunoassay (OS-IA) and NanoLuc ternary technology. (A) Principle of OS-IA. Small 
antigens (MW < 1000) can be noncompetitively detected. (B) Noncompetitive detection of small antigen by 
NanoLuc ternary technology. Visual detection was possible when sufficient amount of antigen was present.
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and Firefly luciferase, the activity of TurboLuc was less affected by low-molecular 
weight compounds. Ho et al. examined the influence of 42,460 PubChem com-
pounds on enzymatic activities of several luciferases [74]. NanoLuc, Renilla 
luciferase, firefly luciferase, and Gaussia luciferase were affected by 2.7, 10, 4, and 
0.02% of the compounds, respectively. The relationship between the chemical 
similarity and the inhibition profile showed that the compounds varied depending 
on the luciferase used. While NanoLuc has several advantages for screening, in 
some cases, researchers should select other enzymes or more than two enzymes. 
Furthermore, we previously cautioned using a mathematical model that the 
comparison between the affinity of interacting proteins and the signal detected 
by luciferase-based PCA can cause misinterpretation of the quantitation [75]. In 
addition, we suggested that the geometry of the interacting proteins influences the 
luminescent signal. In other words, the structures of the interacting proteins can 
affect the reconstitution of luciferase. Quantitative measurement with PCA using 
luciferase is possible, but careful examinations are needed.

One of the other problems is the unstable luminescence in cells. When we use the 
standard furimazine ester for live cell assay, the light intensity decreases within 1 h, 
and it will not be suitable for large screenings in cellulo. Recently, live cell substrates 
with longer half-life (Vivazine and Endurazine, Promega) have become available. 
These substrates can maintain the luminescent signal for several hours, although 
the peak luminescent intensity is significantly lower compared with that detected 
using the conventional furimazine ester. However, the luminescent intensity of 
unmodified furimazine can be maintained for several hours in vitro. Oxygen in cells 
and the culture medium will also be an important factor for the stable luminescence 
because the NanoLuc-catalyzed reaction requires oxygen, especially when the light 
emitted is strong. The last problem is the prices of these substrates, which tend to be 
costly especially when larger scale screening is intended.

Detection of the interaction among more than three proteins, and the simul-
taneous detection of more than two interactions will become more important in 
future. For the detection among three proteins, the combination of NanoBiT and 
BRET might be useful. The brightness of NanoLuc often disturbs simultaneous 
detection using both NanoLuc and other luciferases. Therefore, NanoLuc inhibi-
tors were developed [76]. After the measurement of NanoLuc luminescence, the 
luminescence can be diminished by the inhibitors, which enables detection of the 
luminescence of another luciferase. For the simultaneous detection by multicol-
ors, several color variants of eNano-Lantern (a fusion protein of NanoLuc and 
fluorescent protein) can be applied to NanoBiT. In eNano-Lantern, the lumines-
cence at longer wavelength can be observed by the efficient intramolecular BRET 
mechanism [77].

Dixon et al. and the authors developed a novel PCA using 3-split NanoLuc 
[67, 68]. The pair of the small tags is very effective to avoid misfolding and steric 
hindrance of target proteins. Our next challenge will be to further improve the 
efficiency and stability of the reconstitution for its wider use.
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