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Abstract

Cerebral aneurysms (CA) are acquired lesions, affecting 5–10% of the population, being about 
three times more common in women than in men. The absolute majority of CA is asymptom-
atic. However, in symptomatic cases, cerebral aneurysms present without about 80% of cases 
with severe intracranial hemorrhage, with mortality up to 50% and severe morbidity of up to 
80%. At this point, the carotid siphon is particularly important because it is the blood gateway 
to the anterior cerebral circulation, being the most sinuous portion of the internal carotid 
artery, and because it houses about 30% of the intracranial aneurysm. The constant interac-
tions of blood flow with carotid siphon curvatures are apparently intrinsically related to the 
epidemiology of these lesions in the various locations of the intracranial circulation and their 
presentation form. It is well established that a greater anterior knee angle has a significant 
independent relation with intracranial aneurysms located after carotid siphon, larger aneu-
rysms, and greater risk of rupture. These findings may be associated with the hemodynamic 
interactions of blood flow and the curvature of carotid siphon. Little is known about the 
anatomical changes in carotid siphon and, consequently, the repercussions of the hemody-
namic changes that the neurosurgical interventions mechanisms could entail. Devices such 
as intracranial stents, detachable coils, and even clips of aneurysms can modify the morphol-
ogy of carotid siphon, and the knowledge of these consequences could be used to obtain 
better therapeutic results. In the last 10 years, a new device for the treatment of intracranial 
aneurysms has been presenting promising results, flow diverters stents (FDS), and its use to 
treat aneurysms in carotid siphon appears to cause morphological changes characterized by 
increased anterior and posterior angles. Specifically, the anterior angle increase was associ-
ated with better angiographic results. Aneurysms of the extracranial carotid artery (ECAA) 
are rare and little is known about its natural history. The etiology is diverse and most ECAA 
are asymptomatic, but they may progress to a pulsatile mass, cranial nerve compression, or 
cause a stroke. ECAA treatment is still controversial and a better insight into natural history 
and risk of complications of the different treatments is needed in order to get the consensus.
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1. Introduction

1.1. Epidemiological aspects

Cerebral aneurysms (CA) are acquired lesions, characterized as saccular or diffuse dilation of 
the intracranial arteries walls. It affects 5–10% of the population, being about three times more 
often in women than in men [1]. About 70–75% of the patients present single lesions and the 
remains show multiple lesions, which can affect both hemispheres in both the carotid as well 
as the vertebro-basilar circulation [2].

The absolute majority of CA is asymptomatic. Among the symptomatic patients, about 80% 
present as hemorrhagic stroke and are characterized by spontaneous subarachnoid hemor-

rhages. The remaining 20% may present symptoms such as mass effect, thromboembolic 
events, or nonspecific headaches [3].

Spontaneous subarachnoid hemorrhage (SAH) secondary to CA rupture is commonly 
described as a devastating disease, accounting for about 5% of all strokes, with an incidence 
of 10 cases per 100,000 individuals. Vlak et al. showed that the prevalence of unruptured 
intracranial aneurysms was significantly higher in patients aged 30 years or older com-

pared with those who were younger than 30 years [47]. Autopsy reports have demonstrated 
that the incidence of SAH or unruptured intracranial aneurysms was 3–4 times higher in 
patients older than 70 years and that the prevalence of aneurysms increases with aging, as 
well as prolonged exposure to hypertension, smoking, and atherosclerotic vessel degenera-

tion [48]. The incidence peak is between 50 and 60 years (only 20% of cases occur before 
45 years) and there is considerable predominance for females: 1.6 females for 1 male. This 
female predominance is probably due to hormonal changes, particularly estrogen consider-

ing primiparous views or patients with later menarche that present a risk reduction [4, 5]. 
Epidemiological studies show that the female preponderance of intracranial aneurysms 
becomes significant only after the fourth or fifth decade, during the perimenopausal and 
postmenopausal periods. Moreover, estrogen has a protective effect against vascular injury 
[46] and hormone-replacement therapy has been shown to be a protective factor for sub-

arachnoid hemorrhage [47].

1.2. Risk factors

The exact etiology of CA formation remains unclear. However, there is no doubt that CA are 
acquired lesions, initiated from a lesion with genetic, atherosclerotic, traumatic, or inflam-

matory origin in the vascular endothelium and developed by hemodynamic stress in this 
region [6]. Factors such as blood hypertension, use of oral contraceptives, drugs (cigarette, 
cocaine, and alcohol), pregnancy, and neurosurgical diagnostic procedures (lumbar punc-

ture and cerebral angiography) are classically associated with the development of lesions or 
aneurysmal rupture [6–8]. In addition, environmental and geographic factors, such as season 
and colder territories, increase the incidence of rupture [6–8]. Some genetic syndromes are 
associated with a higher incidence, such as autosomal dominant polycystic kidney disease 
type I and II, Marfan syndrome, neurofibromatosis type I, and Ehlers-Danlos syndrome type 
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II and IV [8]. Patients who have already been treated for a ruptured aneurysm also have an 
increased risk of developing another lesion, around 2% per year, against 1% of the general 
population [6–9]. Genetic inheritance related to aneurysmal development has been complex 
and multigenic; genes such as 1p34.4-36.13, 7q11, 19q13.3, Xp22, endothelial nitric oxide syn-

thase gene, among others, have been frequently found in familial cases of CA [9].

It is believed that these factors converge to modify the intimal layer and increase the hemody-

namic stress of the arterial wall. Hemodynamic stress is basically executed by the elements of 
blood flow and water hammer pulse, which explains the preferential location of the saccular 
aneurysms in bifurcations and convexities of vascular curvatures, facing the direction that 
the flow would be if there were no curves [10]. Thus, we can systematize the hemodynamic 
interaction as the flow inertial force, perpendicular to the arterial wall, and the parallel shear 
force caused by the viscosity and friction of the blood elements with the arterial wall [10]. The 
way these forces interact in the formation, development, and rupture of aneurysmal lesions is 
still a matter of debate, but apparently the shear stress would be more important at the initial 
moments of aneurysmal formation; whereas, the flow inertial force would be more important 
for late development and rupture of the lesions [11].

Considering these factors, the carotid siphon deserves special importance, since it is the blood 
flow gateway to the anterior cerebral circulation, being characteristically the most sinuous 
portion of the internal carotid artery and with the anterior communicating complex, com-

pound 80% of the CA [4, 10].

1.3. The carotid siphon

The carotid siphon corresponds to the portion of the internal carotid artery that begins at the 
end of its petrous (horizontal) segment (or lacerum segment) and ends at the supraclinoid 
internal carotid bifurcation. The first portion, the end of the petrous segment, is characterized 
by the path of the carotid when exiting its exclusively intraosseous path and traversing the 
crease of dura mater around the foramen lacerum. This portion may have branches not easily 
visible angiographically, among which it can be highlighted the coraco-tympanic branch and 
the artery of the pterygoid canal (vidian artery) [12].

The carotid artery enters the cavernous sinus after crossing the petrolingual ligament, where 
it presents initially a vertical ascending segment and then we observe the first important cur-

vature, the posterior angle, of about 90° in anterior direction. It is followed by a horizontal 
intra-cavernous portion, which ends at a second curvature, the anterior angle, with about 160° 
in upward and posterior direction. In its intracavernosal path, usually arises the meningohy-

pophyseal trunk, close to its first curvature, and then the inferolateral trunk in the extension 
of its horizontal segment [13].

After the second curvature, the internal carotid crosses two dural rings and emerges to a new 
horizontal segment, but now supraclinoid and intradural, where it launches its main branches 
(ophthalmic artery, posterior communicating artery, and anterior choroidal artery), ending 
with its bifurcation. This bifurcation gives rise to the middle cerebral artery and the anterior 
cerebral artery, which also marks the end of the carotid siphon [14] (Figure 1).
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Although this pattern is relativity monotonous among individuals, important anterior and 
posterior angles variations were identified. These variations were initially systematized by 
Krayenbuehl and Yasargil, who classified the carotid siphons from the purely morphological 
point of view into seven subtypes [15] (Figure 2):

• Type U, representing 40.1% in the population up to 20 years, 35% between 21 and 50  
years, and 15.2% between 51 and 74 years;

• Type V, representing 14.6% in the population up to 20 years, 24.5% between 21 and 50 years, 
and 22.3% between 51 and 74 years;

• Type C, representing 45.2% in the population up to 20 years, 14.6% between 21 and 50 years, 
and 5.2% between 51 and 74 years;

• Type Omega, absent up to 20 years, representing 23.7% in the population between 21 and 
50 years, and 50.7% between 51 and 74 years;

• Type Double Siphon, absent up to 20 years, representing 1.4% in the population between 
21 and 50 years, and 4.1% between 51 and 74 years;

• Type Megasiphon, absent up to 20 years, representing 0.2% in the population between 21 
and 50 years, and 2.3% between 51 and 74 years; and

• Type Dolicosiphon, absent up to 20 years, representing 0.4% in the population between 21 
and 50 years, and 1.5% between 51 and 74 years.

Figure 1. Carotid siphon: digital angiography with subtraction in profile incidence evidencing the segments of the 
carotid siphon (personal file).
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Subsequently, this classification was reviewed by Zhong, simplifying and systematizing the 
classification in only four anatomical subtypes of the carotid siphon [16] (Figure 3):

• Type U (about 55% of cases): rectified supraclinoid portion with posterior angle greater 
than 0° and presenting a wide anterior angle of positive values;

• Type V (about 27% of cases): rectified supraclinoid portion with posterior angle greater 
than 0° and presenting a sharp anterior angle of positive values;

• Type C (about 16% of cases): curved supraclinoid portion, with posterior angle around 0° 
and presenting a wide anterior angle of negative values; and

• Type S (about 2% of cases): supraclinoid portion rectified with very acute or negative 
posterior angle, anterior angles of negative values and presenting a wide anterior angle.

The first attempt at geometric and mathematical systematization of the carotid siphon was 
performed by Lang and Reiter [17], who classified the carotid siphons into three subtypes, 
exclusively due to the posterior angle. Thus, the most frequent type, 49.3% of the cases, had 
the posterior angle around 90°. The second subtype, 36.0% of the cases, presented the inferior 
angle to 90° and the third subtype, 14.7%, with an angle greater than 90°.

This morphology of the siphon is not static and progressively varies with aging, development, 
and degenerative processes, especially by the influence from atherosclerotic and hypertensive 
disease [18].

It is believed that the main physiological function of these successive curvatures would be 
the attenuation of the vectorial force of the blood flow, with consequent reduction of hemo-

dynamic stress to the distal cerebral circulation [18–20]. Thus, there is a constant interaction 
between the carotid siphon vascular walls with the shear force of the blood elements and the 
water hammer pulse of the arterial flow [19, 20].

1.4. Wall stressing stress

The consequences that the curvatures of the cerebral circulation generate in the hemodynam-

ics of the carotid siphon, as well as the relation between the incidence of aneurysms and steno-

ses close to the regions of pronounced curvatures, have been studied in recent years [19, 20].

It is admitted that the loss of the kinetic energy of linear blood flow, when colliding with the 
endothelial wall of the curvatures, forcing the change of direction of blood flow and trans-

forming the normally linear flow into turbulent flow, is related to the endothelial transforma-

tion [18, 21–23]. This phenomenon generates deceleration of the blood flow, reducing the 
interactions of tangential forces with the vessel wall, called wall shear stress [22].

Recent studies have evidenced the direct relation of the incidence of intracranial stenoses 
in follow-up with low or oscillatory wall shear stress [23–25]. The characterization of which 
curvatures and anatomies are more prone to the pathological scenarios has motivated several 
studies that seek to define the geometric risk factors [24–26]. Piccinelli et al., for example, 
have shown that curvatures with small radius and low angulation tend to be related to the 
presence of ruptured aneurysms [27]. Kim and Kang, on the other hand, have demonstrated 
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that a short supraclinoid segment of the internal carotid artery is directly associated with an 
increased incidence of aneurysm of the posterior communicating segment [28]. Zhang et al. 
have showed that siphons that present more acute curvatures lead to a significant decrease 
and oscillation of wall shear stress right after curvatures, which are the most favorable sites 
for the development of stenoses [29]. Silva Neto et al., on the other hand, evidenced that more 
acute anterior angles are statistically related to a higher incidence of aneurysms in the poste-
rior communicating segment [30]. Sangalli described the association between aneurysms in 
the most distal portions of the carotid siphon and the less acute curvatures [31]. We recently 

Figure 3. Types of siphons described by Zhong. (A) Type U, (B) Type V, (C) Type C, and (D) Type S [16].

Figure 2. Types of carotid siphon described by Krayenbuehl and Yasargil. (1) Type U, (2) Type V, (3) Type C, (4) Type 
Omega, (5) Type Double Siphon, (6) Type Megasiphon, and (7) Type Dolicosiphon.
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published our study, where we saw a significant independent direct relation of greater ante-
rior knee angle with intracranial aneurysms located after the carotid siphon, larger aneu-
rysms, and greater risk of rupture. These findings may be associated with the hemodynamic 
interactions of blood flow and the curvature of the carotid siphon [49].

Anterior angles above the median of our sample (15.40°) are directly related independently 
to a 36% higher incidence of rupture (p = 0.0055, PR = 1.36, 95% CI: 1.09 to the location of 
cerebral aneurysms 48% more frequently after the carotid siphon (p = 0.0336, RC = 1.48, 95% 
CI: 1.03–2.13), and to larger lesions. For each increase of 1° in the anterior angle, there is 
an increase in aneurysm size of 1001 mm (p = 0.015). These findings may mean that carotid 
siphons with more intense curvatures would lead to greater changes in the shear force of 
the wall and greater damping of the vector force in a hammer water pulse. These changes in 
blood flow would lead to increased hemodynamic stress in the carotid siphon, with a conse-
quent higher frequency of aneurysm in this topography and the formation of smaller lesions 
and with a lower risk of rupture, due to the decrease in the vector force in a hammer water 
pulse toward the aneurysmal domus [49].

Then, the change of direction of blood flow at the points of curvature of the carotid siphon 
occur in detriment of the deceleration of the linear velocity of blood flow and the loss of the 
linear vector force of the water hammer pulse. This deceleration would occur with a change 
from laminar to turbulent flow in the proximity of the curvatures, with lower intensity and 
greater oscillations of the shear stress of the wall. On the other hand, decreasing the force of 
the linear vector toward the aneurysmal sac would reduce the size of the aneurysms and the 
risk of rupture. Still a greater swirling flow would lead to greater initial endothelial lesion 
for the aneurysmal formations. Thus, more obtuse anterior angles, with less laminar flow 
deceleration and less generation of turbulent flow in the vicinity of the carotid siphon, were 
statistically associated with larger aneurysms, greater risk of rupture and a higher incidence 
of aneurysm after the carotid siphon; whereas, more acute anterior angles, with greater decel-
eration of the laminar flow and greater generation of swirling flow in the siphon, were shown 
to be associated to smaller aneurysms, lower risk of rupture, and a higher incidence of aneu-
rysm in the carotid siphon [49].

High-velocity laminar flow due to a nontortuous carotid siphon would lead to hemodynamic 
consequences for the other curvatures and bifurcations of the cranial circulation after the 
carotid siphon, explaining the higher incidence of postsiphon aneurysms and a higher risk 
of rupture at these sites in patients with higher angles. Stratified analysis of the subgroups 
by location revealed that aneurysms located in the anterior communicating artery in patients 
with anterior angle greater than 15.40° presented an 84% greater chance of rupture (p = 0.049), 
suggesting that the hemodynamic effects resulting from the anatomy of the siphon can persist 
anatomically after the siphon [49].

These studies have contributed to a better understanding of the geometric risk factors, but 
little is known about the anatomical changes in the carotid siphon and, consequently, the 
repercussions of the hemodynamic changes that the mechanisms of neurosurgical interven-
tions could entail. Devices, such as intracranial stents and detachable coils, and even clips 
of aneurysms can modify the morphology of the carotid siphon and the knowledge of these 
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consequences could be used to obtain better therapeutic results. This becomes even more 
important considering that one-third of intracranial aneurysms are located in the carotid 
siphon [4, 32].

1.5. Flow diverter stents

The microsurgical access of carotid siphon aneurysms can often be considered of high techni-
cal complexity. In this way, endovascular treatment has become popular as a safe and effec-

tive alternative [32–34].

In the last 10 years, a new device for the treatment of intracranial aneurysms has been pre-

senting promising results, the intracranial flow diverter stents (FDS). They are cylinders with 
walls formed by braided metallic wires configuring extremely diminutive fenestrations. 
When implanted in the wall of the parental artery, the small fenestrations allow the passage of 
blood to the penetrating branches, avoiding neurological deficits, but blocking the blood flow 
into the aneurysmal sac, and leading to thrombosis and subsequent progressive reduction of 
its volume [32, 33, 41, 43].

It is nowadays believed that such stents, by virtue of their structural conformation of braided 
wires, would perfectly fit the anatomy of the vessel in which it was implanted [32].

The rupture of intracranial aneurysms continues to be one of the neurosurgical diseases with 
the highest morbidity and mortality. Despite advances in the knowledge of the causes and 
evolution of these lesions, the understanding of all etiological mechanisms remains a chal-
lenge for modern neurosurgery.

Recently, hemodynamic studies of the interaction between blood flow and the endothelial 
wall have received increased attention as an important element in the genesis, development, 
and rupture of cerebral aneurysms [19, 20, 39]. In this context, studies of carotid siphon inter-

actions are especially important because of the anatomical peculiarities of this region and 
considering that about one-third of all intracranial aneurysms are located there [1, 18, 21].

Studies such as those by Lin et al., Bogunović et al., and Takeuchi et al. showed that vessels 
with more intense curvatures are related to greater oscillation and decrease of wall shear force 
[21–23]. The change in direction of blood flow caused by the carotid siphon curvatures would 
be related to the transformation of the originally linear flow into turbulent flow. This transfor-

mation of the flow pattern would decrease and oscillate wall shear stress, which would pre-

cipitate the first endothelial changes in the genesis of aneurysm formation or stenoses [24, 25].  
Jou et al., using 3D reconstructions of 25 patients with paraclinoid aneurysms, identified that 
the mean wall shear stress is inversely dependent on the size of the aneurysmal sac and that 
ruptured aneurysms present a lower mean wall shear stress near the aneurysmal cervix [39]. 
Zhang et al., also using 3D reconstructions, hemodynamic studies, and the anatomical clas-

sification of Zhang, showed that stenotic lesions tend to appear soon after intense carotid 
siphon curvatures, also evidencing that siphons that present more pronounced curvatures, 
such as type C, have statistically more stenoses than siphons with softer curvatures [29]. 
Piccinelli et al. analyzed individually the aneurysm curves of the carotid siphon and showed 
that ruptured aneurysms are statistically more present in carotid siphon curves of smaller 
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diameter and shorter length, being preferentially located in the external wall of the curvature 
[27]. Recently, Lauric et al. compared demographic data with 3D angiogram and showed that 
women have carotid siphons with curvatures greater than men and patients with aneurysms 
on siphon also present larger curvatures [40]. Lauric et al. evidenced that men generally have 
carotid siphons with less prominent curvatures than women [40].

In one of the first studies to evaluate geometric and anatomical changes in the carotid siphons 
after FDS release in the treatment of the aneurysm in this region and its repercussions Waihrich 
et al. observed that FDS release led to a morphological change in the carotid siphon, charac-

terized by a progressive and statistically significant increase (p < 0.001) in the anterior and 
posterior angles independently of the angiographic result in the O’Kelly-Marotta scale [35, 

50]. In addition, the multivariate analysis showed that there is an increase in the frequency of 
D results progressively in the quartiles of the anterior angle increase, inferring that there is a 
greater possibility of radiological cure (result D) in larger increases of anterior angle. Despite 
the progressive increase of the posterior angle after the FDS release, the statistical relation 
between this increase and the D result by the multivariate analysis was not observed. Probably, 
this result was due to the smaller magnitude of the posterior angle increase, both after stent 
implantation (from 3.97° ± 25.06° to 22.05° ± 25.18° vs. 71.98° ± 31.27° to 79, 43° ± 31.80°), and 
in relation to the result D with non-D (from 8.34° ± 22.21° to 26.78° ± 24.40° vs. 74.67° ± 25.35° 
to 81.08° ± 33.58°) [36–38, 50].

The FDS technology is based on increasing blood flow resistance in the aneurysm neck, reduc-

ing the inflow and outflow of blood into and out of the aneurysmal sac, and stagnating and 
thrombosing the blood into the aneurysm. However, changes in carotid siphon geometry 
may be related to a higher probability of cure. It is possible that the increase of the angle and 
the reduction of the anterior angle curvature lead to a reduction of the hemodynamic stress 
in the region, that is, the morphological changes would increase the intensity and reduce the 
oscillation of the wall shear force, contributing to better final results.

The age, in patients under 60 years, also proved to be an independent variable for a greater 
chance of cure. Lin et al. evidenced in their study that carotid siphons with greater tortuos-

ity present greater technical difficulty for the release of FDS [21]. In fact, patients older than 
60 years presented a higher statistical proportion of the more tortuous types of siphons (types 
S and C, with p < 0.001) and statistically lower values of both the anterior angle (6.06° ± 28.49° 
vs. 18.07° ± 20.26°, p < 0.001), and posterior (71.00° ± 37.68° vs. 80.80° ± 27.14°, p = 0.025), 
evidencing the presence of more tortuous siphons in this population [50]. Another important 
point is that large and giant aneurysms present greater technical difficulty in their treatment 
and, in addition, often require more time to thrombose completely [6, 42].

2. Cervical internal carotid artery aneurysm

Aneurysms of the extracranial carotid artery (ECAA) are rare, and little is known about its 
natural history, the etiology is diverse, and most ECAA are asymptomatic and do not grow 
over time but may progress into a pulsatile mass, cranial nerve compression, or cause a stroke. 
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Patients with an asymptomatic ECAA have a rate of ischemic stroke in the aneurysm territory 
of 1.1 per 100 patient years. For patients with an increasing ECAA diameter, intervention may 
be considered, while in patients with small non-growing asymptomatic ECAA, a conservative 
approach seems justified [45].

The main cause of the ECAA is atherosclerotic disease, followed by trauma and most aneu-

rysms in 608 on a total of 1239 patients were located in the internal carotid artery, i.e., its 
cervical extracranial portion in a study by Welleweerd et al. invasive treatment for extracra-

nial carotid artery aneurysms pertains to only 0.6–3.8% of all extracranial carotid interven-

tions. The best medical treatment comprises antithrombotic treatment and regular follow-up. 
Traditional surgical treatment has been associated with the risk of stroke and cranial nerve 
damage; whereas, endovascular ECAA repair has only been described in small case series. 
However, early mortality and number of strokes is low in surgical and endovascular treat-
ment even in the long-term follow-up, supporting the assumption that invasive treatment 
could prevent stroke [44].

3. Conclusion

The morphological analysis of the anatomy of the carotid siphon revealed a directly propor-

tional relation between the anterior carotid siphon angle and larger aneurysms, a higher risk 
of rupture, and the location of the aneurysms distal to the carotid siphon.

The use of flow redirecting stents to treat aneurysms in the carotid siphon caused morphologi-
cal changes characterized by increased anterior and posterior angles. Specifically, the anterior 
angle increase was associated with better angiographic results, i.e., aneurysmal occlusion at 
6 months.

About ECAA treatment, a better knowledge about the natural history and risk of complica-

tions of the different treatments is needed in order to get a consensus, the early and long-
term outcome of invasive treatment are favorable, despite some cranial nerve damage be 
possible after surgery.
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