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Chapter

“Set of Strings” Framework for Big
Data Modeling
Igor Sheremet

Abstract

The most complicated task for big data modeling in comparison with relational
approach is its variety, being a consequence of heterogeneity of sources of data,
accumulated in the integrated storage space. “Set of Strings” Framework (SSF)
provides unified solution of this task by representation of database as updated finite
set of facts, being strings, in which structure is defined by current metadatabase,
which is also an updated set of the context-free generating rules. This chapter is
dedicated to SSF formal and substantial description.

Keywords: big data, “Set of Strings” framework, string databases, context-free
grammars, Post systems

1. Introduction

From the three “V’s,” traditionally used for description of big data (volume,
variety, velocity) [1–7], variety is the most difficult for theoretical modeling. The
main reason of such difficulty is heterogeneity of sources of data, accumulated in
the integrated storage space. By this, data items, passing to the aforementioned
storage, have different structures and formats (more or less formalized texts, mul-
timedia, hyperlinked trees of pages, etc.), which makes practically impossible
application to such data of well-known relational-originated approaches to database
(DB) description, manipulation, and knowledge extraction/application [8–12]. This
obstacle makes hardly achieved the fourth “V” (veracity), which last time is often
associated with big data [13–17], as well as with implementation of data mining over
such data storages [18–21].

Such background makes necessary the alternative approach to data and knowl-
edge modeling. This chapter contains compact consideration of the so-called “Set of
Strings” Framework (SSF), developed in order to integrate on the unified theoreti-
cal basis capabilities, already used in the relational-like data representations and
associated with them knowledge models, with big data immanent property—its
variety.

SSF is a result of an attempt to design the aforementioned basis upon the most
general representation of elementary data item, which may be stored, transported,
received, processed, and visualized. Such representation is string (no matter, sym-
bol, or bit), and SSF combines the best features of classical string-generating formal
grammars, developed by Chomsky [22], with string-operating logical systems,
proposed by Post [23].
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The second section of this chapter is dedicated to the description of string
databases (SDB), while the third, - to their interconnections with relational and non-
relational DB. In the fourth section, incomplete information modeling within SSF is
considered. The main content of the fifth section are the so-called word equations
on context-free languages (WECFL), being key element of the SSF algorithmics.

2. “Set of strings” basic equations

The background of the SSF is representation of a database as a finite set of
strings:

W t ¼ w1;…;wm tð Þ

� �

⊂V ∗ , (1)

where W t means DB at the discrete time moment t and V ∗ is a set of all strings
in the initial (terminal) alphabet V. Such databases will be called lower, if it is
necessary to distinguish them from the other, the set of strings databases. The struc-
ture of DB elements wi ∈W t, named facts, is determined by metadatabase (MDB),
in which the current state is denoted by Dt.

Couple

Θt ¼ <W t, Dt>, (2)

is named data storage (DS). Data storage is in the correct state, if W t ∈W Dtð Þ,
whereW Dtð Þ is the set of all correct databases, defined by the MDB.

Access message to DS is triple:

ωt ¼ < o, c, x>, (3)

where o is the operation, which execution is the purpose of the access (insert,
delete, update, query), c is the DS component (DB, MDB) which is the objective of
the access, and x is the content of the access, i.e., query body, or DB elements
(facts), which are inserted or deleted. For simplicity it is supposed that the answer
(reply) to the access is obtained by the user at the moment tþ 1, next to t, and it is

denoted Atþ1, if c ¼ DB, and AD
tþ1, if c ¼ MDB (both sets are finite).

A set of all possible access messages (3) is called data storage manipulation
language (DSML).

SSF background is a sequential definition of four interconnected representations
of DSML semantics.

Set-theoretical (S)-semantics of DSML is defined by equations on sets, which
connect together input data, DB before and after access, and answer (reply) to the
access.

Mathematical (M)-semantics follows aforementioned equations but is defined
by some well-known and understandable mathematical constructions, being back-
ground of DSML.

Operational (O)-semantics is adequate to M-semantics but is represented by
algorithms, providing execution of operations on DB.

At last, implementational (I)-semantics is also represented by algorithms,
which, in general case, are much more efficient than the previous, in which the
main purpose is recognition of algorithmic decidability of answer search (deriva-
tion), i.e., possibility of answer generation by finite number of steps.

Let us begin from S-semantics of the DSML segment, addressing DB, called
lower, as usually, data manipulation language (DML). The equations, defining DML
S-semantics, operate the following sets:

2
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1.W t (database at the moment of user’s access to DB).

2.W tþ1 (database after execution of operation, i.e., at the moment
tþ 1,when answer is accepted by the user).

3. It (set, expressing user’s awareness about some fragment of problem area at the
moment of access to DB).

4.Atþ1 (answer to the access).

Basic equations, defining DML S-semantics, are as follows:

W tþ1 ¼ W t ∪ It, (4)

Atþ1 ¼ W tþ1 �W t, (5)

for insertion (speaking more precisely, inclusion),

W tþ1 ¼ W t � It, (6)

Atþ1 ¼ W t �W tþ1, (7)

for deletion (exclusion),

W tþ1 ¼ W t, (8)

Atþ1 ¼ W t ∩ It, (9)

and for query (everywhere “�” is subtraction on sets). As seen, Eqs. (4)–(9)
fully correspond to the sense of basic operations on DB, inherent to any DML. In
Eqs. (6) and (9), set It may be infinite.

Example 1. Let database, containing data items from various emergency
devices, be as follows:

W t ¼ AREA GREEN VALLEY IS IN NORMAL STATE AT 15:03,f

AREA BLUE LAKE IS IN NORMAL STATE AT 15:05,

AREA LOWER FOREST IS SMOKED AT 15:20g, (10)

(due to free use of natural language in facts, it is unnecessary to comment DB
content). Equation

W tþ1 ¼ W t ∪ AREA GREEN VALLEY IS SMOKED AT 15:20f g (11)

describes insertion of data item, in which the source is device, mounted at the
Green Valley, which was detected as smoked since 15.20. When at this moment
tþ 1 user accesses DB with query, in which the purpose is to get information about
all smoked areas, the infinite set It may be as follows:

Itþ1 ¼ AREA A IS SMOKED AT 00:00,…,f

AREA A IS SMOKED AT 23:59,…,

AREA AA IS SMOKED AT 00:00,…,

AREA AA IS SMOKED AT 23:59,…,

AREA Z IS SMOKED AT 00:00,…,

AREA Z IS SMOKED AT 23:59,…g: (12)

3
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The answer to the query is

Atþ2 ¼ W tþ1 ∩ Itþ1 ¼ AREA GREEN VALLEY IS SMOKED AT 15:20,f

AREA LOWER FOREST IS SMOKED AT 15:20g: (13)

In expression (12), names of all areas are strings in the alphabet
V ¼ A;…;Z;0;…; 9; :;f g, so

Itþ1 ¼ AREAf g ∙V ∗ ∙ SMOKED ATf g ∙ 00;…; 23f g ∙ :f g ∙ 00;…; 59f g:∎ (14)

Note that definitions (4)–(9) are not unique. For example, in the inclusion
definition, elements of It set, having place in the DB at moment t, may be included
to the answer

Atþ1 ¼ W t ∩ It, (15)

as well as the answer may be defined as

Atþ1 ¼ FACT}
� �

∙ W t ∩ Itð Þ ∙ }ALREADY PRESENTS IN DATABASE
� �

∪ FACT}
� �

∙ W tþ1 �W tð Þ ∙ }IS INCLUDED TO DATABASE
� �

: (16)

So, according to Eq. (16), the answer to the access may be as follows:

Atþ1 ¼ FACT “AREA GREEN VALLEY SMOKEDf

AT 15:20”ALREADY PRESENTS IN DATABASE,

FACT “AREA LOWER FOREST IS SMOKED AT 15:20”

IS INCLUDED TO DATABASEg:∎ (17)

As may be seen, Eqs. (4)–(9) are based on the closed-world interpretation,
which defines that the absence of the fact in the database is equivalent to its absence
in the real world (problem area).

DML operations do not touch MDB; thus Dtþ1 ¼ Dt.
Let us consider DML M- and O-semantics of DML.
The background of M-semantics of the simplest DML is the representation of the

MDB Dt as a set of the context-free (CF) generating rules α ! β, where α is a
nonterminal symbol (“nonterminal” for short) and β is a string of both nonterminal
and terminal symbols. Every nonterminal symbol, from the substantial point of
view, is the name of some substring of fact, entering DB; thus β represents the
structure of α. The only nonterminal symbol α0, which does not enter any string β,
is the “axiom” in the terminology of formal grammars and “fact” in the terminology
of SSF. So MDB Dt unambiguously defines CF grammar

Gt ¼ <V,Nt, α0, Dt>, (18)

where

Nt ¼ αf j α ! β∈Dtg (19)

is the set of nonterminals (“nonterminal alphabet”) of Gt.
Database W t is named correct to metadatabase Dt, if

W t ⊆ L Gtð Þ, (20)

4
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i.e., facts, having place in the DB, are words of the CF language L Gtð Þ. In other
notation,

∀w∈W tð Þ α0
∗

¼)
Gt

w, (21)

where
∗

¼)
Gt

is used to define that string in alphabet V ∪Nt is generated (or

derived) from another one.
Example 2. Let MDB Dt be as follows (nonterminal symbols are framed by

metalinguistic brackets):

< fact> ! AREA< name of area>IS< state>

AT < time>,

< name of area> ! < text>,

< state> ! IN NORMAL STATE,

< state> ! SMOKED,

< time> ! < hours>:<minutes>,

< hours> ! <0 to 1><0 to 9>,

< hours> ! 2<0 to 3>,

<0 to 1> ! 0,

<0 to 1> ! 1,

<0 to 9> ! 0,

…

<0 to 9> ! 9,

<0 to 3> ! 0,

…

<0 to 3> ! 3,

<minutes> ! <0 to 5><0 to 9>,

<0 to 5> ! 0,

…

<0 to 5> ! 5,

< text> ! < symbol>,

< text> ! < symbol>< text>,

< symbol> ! A,

…

< symbol> ! Z,

< symbol> ! 0,

…

< symbol> ! 9,

< symbol> ! ˽:
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Database

W t ¼ AREA AW IS SMOKED AT 15:10,f

AREA E IS IN NORMAL STATE AT 23:59 g

is correct to this MDB, unlike database
W t ¼ AREA AT NORMALf g.∎
Proposed application of CF grammars differs from the classical, in which the

main sense is the description of a set of correct sentences of some language (most
frequently, programming language). This description is created by its developers or
researchers, is based on syntactic categories referred as nonterminals, and is con-
stant through all life cycle of the language (minor changes may be done by reason of
language modification or deeper understanding). In the SSF case, CF generating
rules are used for description of the DB element (facts) structure, so nonterminals
are more semantic than syntactic objects. From the other side, MDB is updated by
DS administration and is a dynamic set, in which changes provide immediate
changes of DB in order to keep it in the correct state. Such changes may be defined
by the following equations, similar to Eqs. (4)–(9):

Dtþ1 ¼ Dt ∪ IDt , (22)

AD
tþ1 ¼ Dtþ1 �Dt, (23)

W tþ1 ¼ W t (24)

for insertion (inclusion) of new CF rules to MDB,

Dtþ1 ¼ Dt � IDt , (25)

AD
tþ1 ¼ Dt �Dtþ1, (26)

W tþ1 ¼ W t ∩L Gtþ1ð Þ (27)

for deletion (exclusion) of CF rules, having place in MDB,

Dtþ1 ¼ Dt, (28)

AD
tþ1 ¼ Dt ∩ IDt , (29)

W tþ1 ¼ W t (30)

and for query to MDB. Here IDt is similar to It in Eqs. (4)–(9), being a set of CF
rules representing knowledge of DS administration about MDB. As seen, Eqs. (22)
and (23) provide extension of MDB; thus

L Gtð Þ⊆L Gtþ1ð Þ, (31)

and DB remains correct, because

W t ⊆L Gtð Þ⊆L Gtþ1ð Þ: (32)

In Eqs. (25) and (26), where some part (subset) of MDB may be deleted,

L Gtþ1ð Þ⊆L Gtð Þ, (33)

6
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so some facts w∈L Gtð Þ may become not satisfying condition (20) of DB cor-
rectness to MDB Dtþ1, because w∉L Gtþ1ð Þ. In Eqs. (25)–(30), it is presumed, that
Dt is also SDB, in which MDB defines structure of CF rules, which may be as
Example 2.

Let us note that the notion of SDB correctness toMDB is from the substantial point
of view weaker than the notion of data storage correctness, because in general case

W Dtð Þ⊆ 2L Gtð Þ, (34)

i.e., set of databases in correct storage is the subset of Boolean of L Gtð Þ, while
SDB correct to MDB is such that

W Dtð Þ ¼ 2L Gtð Þ, (35)

i.e., every SDB, containing facts, being words of CF language L Gtð Þ, is correct,
which is not true in the reality. DS correctness is the generalization of notion of DB
integrity, deeply developed inside relational approach covering the total content of
database, i.e., interconnections between its different elements. There are known vari-
ous tools for integrity criteria declaration and check—first of all, functional dependen-
cies and their multiple modifications [24–32]. Storage correctness, being SDB analog of
integrity, is considered inside SSF on the basis of augmented Post systems (APS).

Let us consider now the application of the described segment of the SSF to the
representation of the most frequently used data models. We shall call such applica-
tion by the term “emulation.”

3. Emulation of the known data models

We shall demonstrate how relational and non-relational databases may be
represented on the described higher background. We shall consider relational data
model as a full-scope example of databases with symmetric access (DBSA) [8–12]
and a family of asymmetric access (or key-addressed) databases (KADB), which
contains, among others, hypertext, page, and WWW- and Twitter-like DB [32–41].

Let us begin from the relational model of data.

Consider relational database (RDB), in which the scheme is R1 A1
1;…;A1

m1

� �

;

�

…;Rk Ak
1 ;…;Ak

mk

� �

g, where R1,…,Rk are the names of relations and A1
1,…, Ai

j,…, Ak
mk

are the names of attributes. Every relation Ri at moment t is the set of tuples

Ri ⊆Di
j �…�Di

mj, (36)

where Di
j is the domain (set of possible values of attribute Ai

j).

We shall define SDB <W t, Dt>, corresponding to this RDB, as follows. We shall
include to the MDB Dt rules

< fact> ! R1 : <A1
1>,…, <A1

m1>,

…

< fact> ! Rk : <Ak
1>,…, <Ak

mk>,

(37)

where “<” and “>” are the dividers (aforementioned metalinguistic brackets in

the Backus-Naur notation) and Ri and Ai
j are the strings, being names of relations

and attributes, respectively (dividers provide syntactic unambiguity).
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Along with Eq. (36), MDB will include rules such that

Di
j ¼ bj<Ai

j>)
∗
b&b∈ V � ;f gf g ∗

n o

, (38)

i.e., these rules provide generation of sets of words in terminal alphabet V, being
domains of the respective attributes. For unambiguity we assume that comma “,”

does not enter values of attributes V ∈Di
j.

By this, every tuple bi1;…; bimi

� �

of the relation Ri is represented by fact

Ri : b
i
1,…, bimi ∈W t: (39)

Note that representation of facts in the form (37)–(39) is not unique. As seen
from Examples 1 and 2, tuples, entering relations, may be represented as any
natural language phrases, described by the corresponding rules.

Let us consider now key-addressed databases. Their common feature is that
every fact, entering KADB, includes a unique key, which is necessary to select, delete,
and update this fact. These DB are associated with NoSQL family of DML [42–45],
which in the last years is considered as a practical alternative to SQL-like DML
[8–12, 46–48], developed since the introduction of the relational model of data.

We shall represent KADB as set

W t ¼ k1 ¼ d1;…; km ¼ dmf g, (40)

where symbol “=” inside angle brackets is the divider, ki ∈ V � ¼f gð Þ ∗ is
the key, and di ∈V ∗ is the data, corresponding to this key (or identified by it).
At every moment t, KADB must satisfy the consistency condition: KADB is
consistent, if

∀tð Þ ∀k∈ V � ¼f gð Þ ∗ð Þ∣ k ¼f g � V ∗ ∩W t∣ ≤ 1, (41)

i.e., set W t would not include two or more elements with one and the same key.
Content of access to KADB must include key k, so It ⊆ k ¼f g � V ∗ ,
and for inclusion It ¼ k ¼ df g. S-semantics of insertion to KADB is as follows:

W tþ1 ¼
W t ∪ k ¼ df g, if k ¼f g � V ∗ ∩W t ¼ ∅f g,

W t � k ¼f g � V ∗ ∪ k ¼ df gotherwise,

�

(42)

because postulation of fact k ¼ d at moment t is equivalent to the negation of
fact k ¼ d0, where d 6¼ d0, which was postulated at some earlier moment t0 < t. So in
the case of KADB update is implemented by insertion, and reply to this access may
be defined as follows:

Atþ1 ¼
k ¼ d, if k ¼f g � V ∗ ∩W t ¼ ∅;f g,

W t ∩ k ¼f g � V ∗ð Þ∪ k ¼ df gotherwise,

�

(43)

thus in the case of update reply contains deleted as well as included fact.
Concerning M-semantics of KADB, we may see, that every known class of such

databases is identified by its own structure of keys and techniques of their
extraction from the current processed fact.

The simplest approach is implemented in Twitter network, where keys,
necessary for access to the descendants of the current element of the hypertext, are
bounded by two dividers—“#” from the left and blank from the right.

8
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In the Internet HTTP/WWW service, similar keys are represented as strings of
symbols, visualized by other colors in comparison with the rest of the text of the
current hypertext page. This is equivalent to splitting terminal alphabet V to two
subsets, first including symbols of the ordinary colors and the second symbols of the
“key-representing” colors. However, HTTP/WWW hypertexts are organized in a
much more complicated manner. First of all, along with the displayed pages, in
which the structure is described by hypertext markup language (HTML) or its
various later versions (XML et al.), there is another KADB, in which elements
contain keys, being the aforementioned strings of another colors, and data are, in
fact, unified resource locators (URL), providing direct network access to the sub-
ordinated pages. This access is possible, because URL contains string, providing
application of the domain name service (DNS) for resolving proper IP address. In
fact, HTML is no more than language for the convenient representation of CF rules,
which form current metadabase of the WWW KADB.

One of the simplest versions of KADB is the so-called page databases, in which
elements are strings of equal length, the first string of the page being key [38, 39].
Thus

∀tð ÞL Gtð Þ ¼ Vl Vl
� �

∗ , (44)

where l is the length of the string (in this case divider “=” is redundant). Data
may be also string p : d, where “:” is the divider and prefix p before the sequence of
l-symbol strings defines the name of the program, called for this sequence inter-
pretation (e.g., visualization). In general case d may be the string of bits, not only
string of symbols of alphabet V.

Until now we discussed only S-semantics and start point of M-semantics, being
representation of metadabase as a set of rules of CF grammar. Second such point in
the SSF is the representation of databases with incomplete information.

4. Representation of databases with incomplete information
and sentential data manipulation languages

Let Dt be the metadabase. Then database with incomplete information (for
short, DBI or, if it is necessary to underline “set of strings” DBI, then SDBI),
denoted Xt, is the finite set of the so-called incomplete facts (N-facts) being
sentential forms (SF) of CF grammar Gt:

Xt ¼ x1;…; xmf g⊆ SF Gtð Þ, (45)

where

SF Gtð Þ ¼ xja0 )
∗

Gt

x

� �

(46)

is the set of all sentential forms of grammar Gt. Obviously, L Gtð Þ⊂ SF Gtð Þ:
Example 3. Consider MDB from Example 2 and corresponding DBI

Xt ¼ AREA LONELY TREES IS NORMAL AT 12:31,f

AREA LONELY TREES< state>AT 12:<minutes>,

AREA< name of area>IS SMOKED AT 15:30g:
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The first N-fact of the three, entering this DBI, does not contain nonterminals,
so it is fact in the sense of S-semantics of DML. The second N-fact contains non-
terminals <state> and <minutes>, which correspond to the uncertainty of the state
of the area Lonely Trees and time moment, when this state occurs; however, the
aforementioned moment enters interval from 12.01 to 12.59. The last N-fact con-
tains information about the same area, which was detected as smoked at 15.30. ∎

Before consideration of equations, defining M-semantics of operations on DBI, we

shall introduce interpretation of relation
∗

¼)
Gt

of the mutual derivability of sentential

forms of context-free grammar as relation of mutual informativity of N-facts.

Let Gt be acyclic and unambiguous CF grammar [49]. If so,
∗

¼)
Gt

is the relation of

partial order on the set SF Gtð Þ [38, 39].
There is maximal element of the set SF Gtð Þ—it is axiom α0 (“fact”) because

for every x ∈ SF Gtð Þ, α0
∗

¼)
Gt

x. For every subset X ⊆ SF Gtð Þ, there exists set of its

upper bounds, e.g., sentential forms (“N-facts”) y∈ SF Gtð Þ, such that y
∗

¼)
Gt

x for all

x∈X, and minimal (least) upper bound, sup X, such that for every other upper

bound y from the mentioned set, the relation y
∗
¼)
Gt

sup X is true. For some

X ⊆ SF Gtð Þ, there may exist set of lower bounds, e.g., sentential forms (“N-facts”)

y∈ SF Gtð Þ, such that x
∗
¼)
Gt

y for all x∈X, and maximal lower bound inf  X such that

for every other lower bound y, inf  X
∗
¼)
Gt

y is true.

Algorithms of sup and inf generation are described in detail in [38, 39].
Example 4. For DBI from Example 3, inf  Xt does not exist, but

sup Xt ¼ AREA< name of area>IS< state>AT 1<0 to 9>:<minutes>:

At the same time,

inf AREA LONELY TREES IS< state>AT 12:30,f

AREA< name of area>IS SMOKED AT 12:<minutes>g

¼ AREA LONELY TREES IS SMOKED AT 12:30:∎

Since now we shall use interpretation of
∗

¼)
Gt

as of the relation of the mutual

informativity of incomplete facts. According to this interpretation, x
∗
¼)
Gt

x0 means

that N-fact x0 is not less informative in comparison with N-fact x (if x
þ
¼)
Gt

x0, then x0

is more informative and is called concretization of x). (This interpretation naturally
fits to A. Kolmogorov’s algorithmic theory of information basic postulates, i.e.,
constructive objects mutual complexity [50]).

10
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Graphical illustration of interconnections between sup x; yf g and inf x; yf g is in

Figure 1. As seen, sup x; yf g)
∗
x, sup x; yf g)

∗
y, x)

∗
inf x; yf g, y)

∗
inf x; yf g,

inf x; yf g)
∗
w, and inf x; yf g)

∗
w0, where w∈L Gtð Þ and w0 ∈L Gtð Þ.

Let us consider DBI Xt ¼ x1;…; xm tð Þ

� �

⊆ SF Gtð Þ. We shall call such DBI

nonredundant (NR), if there are no two N-facts x and x0 entering Xt, one of which is

more informative than the other. (It is obvious that if x0
∗

¼)
Gt

x, then there is no

necessity of storing x0, because all information, having place in x0, presents in x. So
x0 is a redundant N-fact, and DBI, containing such N-facts, is also redundant).

Until the contrary is declared, we shall consider only NR DBI lower. By this,
when defining M-semantics of update of NR DBI, understood as inclusion of N-fact
x∈ SF Gtð Þ, it is reasonable to suppose, that it contains maximally informative
N-facts, which only may be acquired by the system. In this case inclusion of N-fact
x∈Xt to DBI may be defined as follows:

Xtþ1 ¼ Xt⋃ xf g � y j y∈Xt& x
∗

¼)
Gt

y⋁y
∗

¼)
Gt

x

 !( )

: (47)

According to this definition, N-fact x inclusion to DBI Xt causes extraction from
DBI of all N-facts, which are more or less informative than x. Such logics provides
maintenance of nonredundancy of the DBI. As seen, all N-facts, having place inXt and
being “compatible” with N-fact x by informativity, are eliminated from this DBI.

It is reasonable to define reply to the inclusion of N-fact x as set of N-facts,
eliminated from DBI:

Atþ1 ¼ Xt � Xtþ1: (48)

Example 5. If N-fact x ¼ AREA GREEN VALLEY IS SMOKED AT 15:30 is
included to DBI Xt from Example 3, then

Figure 1.
Graphical illustration of interconnection between sup x; yf g and inf x; yf g.
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Xtþ1 ¼ AREA LONELY TREES IS NORMAL AT 12:31,f

AREA LONELY TREES< state>AT 12:<minutes>,

AREA GREEN VALLEY IS SMOKED AT 15:30g,

because

AREA< name of area>SMOKED AT 15:30
∗

¼)
Gt

AREA GREEN VALLEY IS SMOKED AT 15:30.∎
As to M-semantics of queries, there may by two different versions, which run

out of the new DBI features in comparison with DB.
The first version is obvious:

A
y
tþ1 ¼ x j x∈Xt&y)

∗
x

n o

, (49)

where A
y
tþ1 is the answer to the query with content y, and all N-facts from DBI

Xt, which are no less informative than x, are included to the answer.
As seen, by this we postulate query language to databases (or DB with complete

information): it is the set of sentential forms of CF grammar Gt, and in the case of
SF y is the content of query ωt,

It ¼ wjy)
∗

Gt

w&w∈V ∗

� �

, (50)

i.e., it is the set of facts, more informative than N-fact y, having place in the
query. So combining Eqs. (9) and (49), we obtain

Atþ1 ¼ W t ∩ It ¼ wjy)
∗

Gt

w&w∈W t

� �

, (51)

i.e., the result of access is the subset of database W t, containing all facts, more
informative than y.

The background of the second version is the interpretation of the query as an
action, which aim is to check if there are such possible facts w∈L Gtð Þ,which are
more informative than N-fact x, entering Xt, and N-fact y (query content):

∃w∈L Gtð Þð Þ x
∗

¼)
Gt

w&y
∗

¼)
Gt

w, (52)

so, while x is not concretization of y, it is sensible to include x to the answer,
because there may be facts w∈L Gtð Þ,which are both x and y concretizations. The
set of such facts is the intersection Wx ∩Wy, where

Wx ¼ w j x
∗

¼)
Gt

w

( )

, (53)

Wy ¼ w j y
∗

¼)
Gt

w

( )

:
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Finite representation of the aforementioned intersection is, obviously, maximal
lower bound of the set x; yf g. For this reason, answer to the query with content y
may be set

A
y

tþ1 ¼ xf j x∈Xt & ∃ inf x; yf gg, (54)

and, as an alternative,

A
y

tþ1 ¼ inf x; yf gf j x∈Xt & ∃ inf x; yf gg: (55)

Example 6. Consider DBI Xt from Example 3 and the query with content
y ¼ AREA< name of area>IS SMOKED AT < time>. The purpose of this query is to
get information about all areas smoked. According to Eqs. (49), (54), and (55)

A
y
tþ1 ¼ AREA< name of area>IS SMOKED AT 14:30f g,

A
y
tþ1 ¼ AREA LONELY TREES< state>AT 13:<minutes>,f

AREA< name of area>IS SMOKED AT 14:30g,

A
y

tþ1 ¼ AREA LONELY TREES IS SMOKED AT 13:<minutes>,f

AREA< name of area>IS SMOKED AT 14:30g.∎

Returning to DB, which DML S-semantics was defined by Eqs. (4)–(9), we
may now write its M-semantics equations not only for query but also for insertion
and deletion. Namely, if string w is the content of the insertion access, then

W tþ1 ¼
W t ∪ wf g, ifw∈L Gtð Þ,

W t otherwise:

�

(56)

Similarly, if string y, containing terminal and nonterminal symbols of CF
grammar Gt, is the content of the delete access, then

W tþ1 ¼ W t � wjy)
∗

Gt

w&w∈L Gtð Þ

� �

: (57)

Data manipulation languages, described in this section, will be called sentential
(SDML), because content of any access to DB/DBI, specified with the help of such
DML, is a sentential form of CF grammar, which set of rules is current MDB.

Concerning KADB, capabilities of the sentential DML are compatible with the
aforementioned NoSQL languages, which provide selection of DB elements, in
which keys are specified in the queries.

Of course, it is not difficult to extend SDML by features, providing construction
of more complicated selection criteria (including, e.g., number intervals) [38, 39].
But in comparison with SQL and similar relational languages, providing symmetric
access to DB, SDML are rather poor. To achieve capabilities of the relationally
complete query languages, it is necessary to extend SDML by features, providing
comparison of values, having place in different facts. Such features are critically
needed also for knowledge representation, extraction, and processing.

To achieve the formulated purpose, we shall use another tool, differing from CF
grammars, namely, Post systems (PS), which also operate strings but, due to vari-
ables in their basic constructions (productions), have basic capabilities for afore-
mentioned functions. The result of integration of the described “set of strings”
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databases with PS are augmented Post systems. The intermediate layer between
SDB and APS is formed by the so-called word equations on context-free languages,
considered in the next section.

5. Word equations on context-free languages

Word equation is a well-known object of discrete mathematics, defined as
follows [51–56].

Word equation is written as

s ¼ s0, (58)

where s and s0 are the so-called terms. Term is a non-empty sequence of symbols
of alphabet, which we shall call terminal, presuming it is the same set V, as higher,

and variables, which universum is denoted Г. So s∈ V ∪ Гð Þþ, s0 ∈ V ∪Гð Þþ. Domain
(set of values) of every variable γ ∈Γ, having place in any term, is V ∗ . Term
without any variables is, obviously, word in alphabet V. At least one variable must
present in WECFL or just the same in term ss0(or s0s):

ss0 ∈ V ∪Γð Þþ � Vþ
: (59)

Set

d ¼ γ1 ! u1;…; γn ! unf g, (60)

where γ1,…, γn are the variables, u1,…, un are the strings in alphabet V, and ! is
the divider (which is not occasionally the same as higher in the generating rules
α ! β, entering metadabases), is called substitution.

Term s d½ � is the result of application of substitution d to term s and is defined as
follows. If

s ¼ u1γi1u2…umγimumþ1, (61)

where ui ∈V ∗ and i ¼ 1,…, mþ 1, , then

s δ½ � ¼ u1 γi1 u2 …um γim umþ1, (62)

where

γij ¼
uij, if γij ! uij ∈ d

γij otherwise:

(

(63)

Definitions (62) and (63) cover general case, when some of the variables,
entering term s, do not enter the substitution (60).

Substitution d is called terminal substitution to term s∈ V ∪Γð Þþ � Vþ, if

s d½ �∈Vþ, (64)

i.e., result of its application to term is word in the alphabet V. In this case,
obviously,

γi1;…; γinf g⊆ γi;…; γnf g: (65)
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Terminal substitution to terms s and s0 is called solution of word equation (58), if

s d½ � � s d0
� 	

, (66)

i.e., result of application of d to terms s and s0 is one and the same word (here
} � } is identity sign).

Returning to SDB and M-semantics of their DML, we may see that set of terms
may be the simplest query language to SDB. If term

s ¼ u1γi1u2…umγimumþ1, (67)

is query to DB W t, then

It ¼ u1ui1u2…umuimumþ1jui1 ∈V ∗&…&uim ∈V ∗f g, (68)

and

Atþ1 ¼ W t ∩ It ¼ wjw∈W t& ∃ui1 ∈V ∗ð Þ… ∃uim ∈V ∗ð Þu1ui1u2…umuimumþ1 ¼ wf g,

(69)

so Eq. (69) is the definition of M-semantics of the term’s query language to SDB;
as seen, w∈Atþ1, if w∈W t, and word equation s ¼ w has at least one solution.

Example 7. Consider database W t, containing three facts:
SENSOR 1 IS AT GREEN VALLEY,
SENSOR 2 IS AT BLUE LAKE,
AREA LOWER FOREST IS SMOKED.
If query s ¼ SENSOR a, which purpose, as seen, is to select all facts with infor-

mation about sensor installation, then

Atþ1 ¼
SENSOR 1 IS AT GREEN VALLEY,

SENSOR 2 IS AT BLUE LAKE

� �

,

and solution of word equations
SENSOR a = SENSOR 1 IS AT GREEN VALLEY
and
SENSOR a = SENSOR 2 IS AT BLUE LAKE
are, respectively,

a ! 1 IS AT GREEN VALLEYf g

and
a ! 2 IS AT BLUE LAKEf g. ∎

However, the application of the term’s query language to databases with incom-
plete information, containing sentential forms of CF grammar with scheme Dt,
being DS metadabase, is not so simple and needs more sophisticated mathematical
background.

Let G be CF grammar, corresponding metadabase D (lower index t for simplicity
is omitted). We shall call word equation on context-free language L Gð Þ couple

< s ¼ s0, δ>, (70)

where the first component s ¼ s0 is the word equation in the sense (58), called
here kernel, while
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δ ¼ γ1 ! β1;…; γl ! βlf g, (71)

is the so-called suffix, which defines domains (sets of values) of variables
γ1,…, γl, entering terms s and s0, by means of strings β1,…, βl, containing terminal
and nonterminal symbols of grammar G. Kernel and suffix must satisfy the
so-called sentential condition

s δ½ �; s0 δ½ �f g⊆ SF Gð Þ, (72)

i.e., strings, being the result of application of substitution δ to terms s and s0,
must be sentential forms of grammar G. As seen, δ is the generalization of substitu-
tion (60), so it will be called lower SF-substitution.

WECFL (70) may be read “s ¼ s0, where δ.”
Domain of variable γi is the set of strings in terminal alphabet V, which are

generated from string βi by application of rules of grammar G. This domain is
denoted as

V γi; δð Þ ¼ ujγi ! βi ∈ δ&βi )
∗
u&u∈V ∗

n o

(73)

(from here we shall use )
∗
in the sense )

∗

G
).

Suffix δ defines set of terminal substitutions to terms s and s0, denoted

∑δ ¼ ∪
u1 ∈V γ1; δð Þ

⋯
ul ∈V γl; δð Þ

γ1 ! u1;…; γl ! ulf gf g: (74)

As it is easy to see, direct consequence of the sentential condition (72) and
definition (74) is

s d½ �; s0 d½ �f g⊆L Gð Þ, (75)

for every d∈∑δ.
If terminal substitution d is such that

s d½ � � s d0
� 	

, (76)

it is called solution of WECFL (70). Set of solutions of WECFL (70), which is
infinite in general case, is denoted D s ¼ s0; δ½ �.

Function V may be applied to every term, so

V s; δð Þ ¼ s d½ �jd∈∑δ

� �

⊆L Gð Þ, (77)

V s0; δð Þ ¼ s0 d½ �jd∈∑δ

� �

⊆L Gð Þ: (78)

Example 8. Let metadatabase be the same as in Example 2, and WECFL is

<AREA GREEN VALLEY ISa ¼ b AT 15:00,

fa ! < state>AT < time>, b ! AREA< name of  area>IS< state>g>:

As seen, this equation satisfies sentential condition, because
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s δ½ � ¼ AREA GREEN VALLEY IS< state>AT < time>∈ SF Gtð Þ,

s0 δ½ � ¼ AREA< name of  area>IS< state>AT 15:00∈ SF Gtð Þ:

According to Eq. (73),
V a; δð Þ ¼ IN NORMAL STATEATf g � T ∪ SMOKEDATf g � TV b; δð Þ ¼ AREAf g

�S� IS IN NORMAL STATEATf g∪ AREAf g� S � IS SMOKEDf g, where T is the set of
strings, explicating time (00:00,00:01,…, 23:58, 23:59), while S is the set of names
of the monitored areas.

Terminal substitution

s ¼ a ! SMOKEDAT 15:00, b ! AREA GREEN VALLEY IS SMOKED

is the solution of the presented WECFL. ∎
As seen, in general case the set of solutions of WECFL may be infinite, and the

problem is to find finite representation of this set.
Let us consider two sentential forms x and x0 of unambiguous and acyclic CF

grammar G. Each of them defines generated (derived) from it set of strings, being
words of language L Gð Þ:

Wx ¼ wjx)
∗
w&w∈V ∗

n o

, (79)

Wy ¼ wjy)
∗
w&w∈V ∗

n o

: (80)

And therefore SF x and x0 are finite representations of sets Wx and Wy, both
being subsets of language L Gð Þ. This obstacle serves as background for the follow-
ing statement, representing necessary solution.

Statement 1 [51]. If

W ¼ Wx ∩Wx0 6¼ ∅f g, (81)

then there exists SF y such that

W ¼ wjx)
∗
y&x0 )

∗
y&y)

∗
w&w∈V ∗

n o

:∎ (82)

Verbally, non-empty intersection of sets Wx and Wy is the subset of language
L Gð Þ, in which words are generated from SF y, which itself is generated from SF x
and x0 simultaneously.

Example 9. Consider SF s d½ � and s0 d½ � from Example 8. As seen, SF

y ¼ AREA GREEN VALLEY IS< state>AT 15:00

is the finite representation of intersection W s d½ � ∩W s0 d½ �.∎

Thus SF y from Eq. (82) is nothing else than required finite representation of the
non-empty intersection (81).

This finding is a basis for constructing the set of solutions D s ¼ s0; δ½ �. Let us
begin from the case where all variables, having place in WECFL (or, just the same,
in term ss0), enter it once, i.e., there is no more than one occurrence of any variable
in ss0.

Obviously, if

W ¼ V s; δð Þ∩V s0; δð Þ ¼ ∅f g, (83)
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then WECFL (70) does not have a solution, i.e.,

D s ¼ s0; δ½ � ¼ ∅f g, (84)

and if W 6¼ ∅f g, then, since s δ½ � and s0 δ½ � are sentential forms of CF grammar G,
there exists finite representation of set W, being SF y generated (derived) from s δ½ �
and s0 δ½ � simultaneously.

From this place it is clear, that finite representation of the set D s ¼ s0; δ½ � is set

δ ¼ γ1 ! β1;…; γl ! βl
� �

, (85)

such that

W ¼ fw∣s δ
� 	

¼ s0 δ
� 	

¼ y&y)
∗
w&w∈V ∗ }: (86)

It is easy to verify that β1,…, βl are strings, containing terminal and nonterminal
symbols, and being generated from strings β1,…, βl, respectively, by s δ½ �) y ∗ and
s0 y½ �) y ∗ .

Set δ will be named unifier of WECFL (70). In accordance with Eqs. (54) and
(55), we shall consider lower so-called maximal unifiers, corresponding to

y ¼ inf s δ½ �; s0 δ½ �f g, (87)

where y is the maximal lower bound of the considered two-element set.
Example 10. Let metadatabase be the same as in Example 2, and WECFL is

<AREA a IS SMOKEDAT t ¼ bAT 15:00,

fa ! < name of  area>, t ! < time>, b ! AREA< name of  area>IS< state>g>:

As seen,

s δ½ � ¼ AREA< name of  area>IS SMOKEDAT < time>,

s0 δ½ � ¼ AREA< name of  area>IS< state>AT 15:00,

y ¼ inf s δ½ �; s0 δ½ �f g ¼ AREA< name of  area>IS SMOKEDAT 15:00,

and thus

δ ¼ fa ! < name of  area>, t ! 15:00,

b ! AREA< name of  area>IS SMOKEDg:∎

Now we may return to DBI and introduce the so-called term data manipulation
language (TDML), being the set of the so-called augmented terms < s, d>, where s
is the term and d is the SF-substitution. M-semantics of this language is similar to
Eqs. (49), (54), and (55) and is obtained by replacement of SF y by couple < s, d>:

As,d
tþ1 ¼ xjx∈Xt&s d½ �)

∗
x

n o

, (88)

A
s,d
tþ1 ¼ xjx∈Xt&∃inf s d½ �; xf gf g, (89)

A
s,d

tþ1 ¼ inf s d½ �; xf gjx∈Xt&∃inf s d½ �; xf gf g: (90)
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Moreover, from now we may use augmented terms or even their sets as N-facts.
Corresponding equations, which describe M-semantics of TDML, much more
useful from the practical point of view, are as follows:

As,d
tþ1 ¼ < s; d>j< s; d>∈Xt&s d½ �)

∗
s d
� 	

n o

, (91)

A
s,d
tþ1 ¼ < s; d>j< s; d>∈Xt&∃inf s d½ �; s d

� 	� �� �

, (92)

A
s,d

tþ1 ¼ D s ¼ s; d∪ d
� 	

j< s; d>∈Xt

� �

: (93)

As may be seen, the last definition provides the most informative reply,
containing maximal unifiers of WECFL, each corresponding N-fact, entering BDI.

The concerned reader may find the detailed consideration of WECFL, DBI
algorithmics (including N-facts fusion), and key theoretical issues of SDB/DBI
internal organization, providing associative access to the stored data as well as their
compression, in [38–40].

All the said about TDML is sufficient for consideration of already mentioned
knowledge representation, called augmented Post systems, being core of the
deductive capabilities of “Set of Strings” Framework. APS are described in the
separate chapter of this book.
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